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Abstract—Communication security could be enhanced at phys-
ical layer but at the cost of complex algorithms and redundant
hardware, which would render traditional physical layer security
(PLS) techniques unsuitable for use with resource-constrained
communication systems. This work investigates a waveform-
defined security (WDS) framework, which differs fundamentally
from traditional PLS techniques used in today’s systems. The
framework is not dependent on channel conditions such as
signal power advantage and channel state information (CSI).
Therefore, the framework is more reliable than channel de-
pendent beamforming and artificial noise (AN) techniques. In
addition, the framework is more than just increasing the cost
of eavesdropping. By intentionally tuning waveform patterns to
weaken signal feature diversity and enhance feature similarity,
eavesdroppers will not be able to identify correctly signal formats.
The wrong classification of signal formats would result in sub-
sequent detection errors even when an eavesdropper uses brute-
force detection techniques. To get a robust WDS framework, three
impact factors, namely training data feature, oversampling factor
and bandwidth compression factor (BCF) offset, are investigated.
An optimal WDS waveform pattern is obtained at the end after a
joint study of the three factors. To ensure a valid eavesdropping
model, artificial intelligence (AI) dependent signal classifiers
are designed followed by optimal performance achievable signal
detectors. To show the compatibility in available communication
systems, the WDS framework is successfully integrated in IEEE
802.11a with nearly no adding computational complexity. Finally,
a low-cost software-defined radio (SDR) experiment is designed
to verify the feasibility of the WDS framework in resource-
constrained communications.

Index Terms—Waveform-defined security (WDS), waveform,
encryption, secure communications, physical layer security, Inter-
net of things, non-orthogonal, signal classification, deep learning,
machine learning, software-defined radio.

I. INTRODUCTION

SECURITY in communications is a hot research topic
aiming to prevent confidential information leakage. The

challenges of secure communications exist in various open
systems interconnection (OSI) layers as explained in work
[1]. The lowest layer is physical layer, which deals with
radio signal transmission and reception. Since radio signals
are commonly broadcasted over the air, therefore the physical
layer is more vulnerable to eavesdropping.

Channel dependent defence strategies [2], such as millimeter
wave, beamforming, artificial noise and directional modulation
are proposed to mitigate unauthorized eavesdropping. These
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solutions intend to degrade performance at eavesdroppers
by exploiting channel environments. However, unlike perfect
channel state information (CSI) assumptions in theoretical
simulations, imperfect or blind CSI [3] is a common situation
in practical communications. Therefore, channel dependent
physical layer security (PLS) solutions would be unreliable
without accurate CSI. Beamforming has a potential beam
leakage risk [4] due to imperfect beam shaping especially
when legitimate users and eavesdroppers are spatially close.
Moreover, beamforming does not work practically in long
distance communications since radio beams would become
wide at far field. Artificial noise [5] is regarded as an efficient
solution but it wastes extra power on noise generation.

Internet of things (IoT) security [6] is challenging since
IoT connects a massive number of devices with practical con-
straints such as low-cost hardware, low-power consumption,
limited signal processing capability and small size on-board
memory. Most of existing physical layer security techniques
are initially designed for sophisticated systems and are not
suitable for resource-constrained IoT. In IoT applications, most
of the traffic occurs in uplink channels, which is from IoT
devices to a central receiver. Due to limited size, limited
complexity, limited power and low data rate requirements,
each IoT device is typically equipped with a single antenna. In
this case, a multiple input multiple output (MIMO) architecture
[7] is not possible for IoT devices and therefore the traditional
beamforming is not achievable. This is also the case for
millimeter wave since sending a high frequency modulated
signal would complicate each IoT device and consume more
power. In addition, the accurate acquisition of legitimate
instantaneous CSI at the transmitter (CSIT) [8] is not practi-
cal for resource-constrained IoT applications since frequently
sending pilot symbols for channel estimation would reduce
power efficiency and waste spectral resources. Furthermore,
since eavesdroppers are normally external to IoT networks and
would passively intercept signals [6], the location and CSIT
of eavesdroppers are hardly to know by the transmitter. With
the development of artificial intelligence (AI), deep learning
based adversarial attacks [9], [10] are increasingly detrimental
to communication security. This situation is more challenging
in resource-constrained IoT applications since simple hardware
architectures and software protocols cannot provide advanced
countermeasures. All the mentioned challenges in resource-
constrained IoT applications indicate the development of a new
physical layer security framework.

This work proposes a waveform-defined security (WDS)
framework, aiming to use a non-orthogonality concept in
physical layer signal waveform to improve communication
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security. The fundamental waveform is based on spectrally
efficient frequency division multiplexing (SEFDM) [11], [12],
which intentionally creates inter carrier interference (ICI) via
packing sub-carriers closer. The self-created interference com-
plicates signal recovery but meanwhile increases the cost for
eavesdropping. A similar concept was attempted by [13] via
overlapping two orthogonal frequency division multiplexing
(OFDM) signals to get a composite non-orthogonal signal.
However, with the hardware advancement, brute-force max-
imum likelihood (ML) signal detection becomes realistic in
low-cost hardware resulting in the security risk of eavesdrop-
ping.

Rather than a simple waveform design, the WDS framework
designs a waveform tuning mechanism aiming to confuse
eavesdroppers to misidentify signals. In this case, eavesdrop-
pers can not recover signals even with the brute-force ML de-
tector. Therefore, only the legitimate user who knows exactly
the signal format can recover signals. The work in [14] initially
revealed the feasibility of using the non-orthogonal SEFDM
signal waveform in secure communications. However, further
optimizations and practical experiments should be investigated
to comprehensively verify the robustness of the framework.

The main contributions of this work are as the following.
• To deal with physical layer security in resource-

constrained IoT, a WDS framework is proposed. WDS
outperforms the recent PLS achievements in [15]. Firstly,
WDS avoids CSIT leading to a simpler solution compared
to beamforming and artificial noise. Secondly, the non-
orthogonal waveform structure in WDS adds ICI leading
to a more secure solution relative to OFDM. Thirdly,
WDS only modifies waveform and thus its hardware
is simpler than MIMO and millimeter wave solutions.
Fourthly, WDS supports omni-directional communica-
tions while non-orthogonal multiple access (NOMA) is
limited to protected zone due to potential eavesdropping
successive decoding. Finally, WDS has higher spectral
efficiency than channel coding schemes via compressing
occupied spectral bandwidth.

• An efficient WDS waveform pattern is obtained after
a joint study on three waveform tuning impact factors,
namely training data feature, oversampling factor and
bandwidth compression factor (BCF) offset.

• The WDS framework can be easily incorporated into
existing communication standards such as wireless local
area network (WLAN) IEEE 802.11a. A compatible
WLAN-WDS frame is designed to preserve most of
the original WLAN frame structure, which enables a
straightforward deployment of the WDS framework in
practice.

• A dual WDS security mechanism is designed. Firstly, the
WLAN-WDS frame is so similar to the standard WLAN
frame such that an eavesdropper would mistakenly de-
code WLAN-WDS frames using the standard WLAN
protocol. Secondly, even the proper protocol is applied
to decode WLAN-WDS frames, eavesdroppers cannot
separate different signal patterns in the WDS framework,
resulting in failed signal demodulation and detection.

• Low-cost software-defined radio (SDR) prototyping ex-
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Fig. 1. Illustration of self-created inter carrier interference within
SEFDM signal waveform. (a) OFDM sub-carrier packing. (b)
SEFDM sub-carrier packing.

periments are designed to validate the proposed WDS
framework over the air. Experiments verify the feasi-
bility of WDS framework in low-cost hardware and
pave the way for applications in resource-constrained
IoT scenarios. In addition, the experiments reveal the
robustness of WDS framework even when eavesdroppers
have advantages in signal power and channel conditions.

The rest of this paper is organized as follows. Section II
will introduce the fundamentals of the waveform. In Section
III, eavesdropping models applying maximum likelihood clas-
sifier, machine learning classifier and deep learning classifier,
are investigated, followed by a brief description of signal
detection. In Section IV, three waveform tuning impact fac-
tors, namely training data feature, oversampling factor and
BCF offset, are studied to show their impacts on the WDS
framework. A WLAN coexistent scheme is studied in Section
V showing the compatible integration of the WDS framework.
A low-cost experiment is implemented in Section VI to verify
the feasibility of the proposed WDS framework in low-cost
hardware, which further indicates its possibility in resource-
constrained IoT applications. Finally, Section VII concludes
the work.

II. WAVEFORM FUNDAMENTALS

Non-orthogonal SEFDM waveform aims to compress signal
spectral bandwidth while maintaining the same data rate. This
is achieved by packing sub-carriers closer via breaking the
orthogonality principle in OFDM. The graphic explanation of
SEFDM waveform is illustrated in Fig. 1 where the same sub-
carrier bandwidth is employed in OFDM and SEFDM except
that the sub-carrier spacing in SEFDM is closer resulting in
self-created ICI.

A simplified mathematical format of one SEFDM symbol
is expressed as

Xk =
1√
Q

N−1∑
n=0

sn exp

(
j2πnkα

Q

)
, (1)

where the parameters are defined as
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• Xk, the time sample with the index of k = 0, 1, ..., Q−1.
• Q = ρN , the number of time samples.
• N , the number of sub-carriers.
• ρ, the oversampling factor.
• 1√

Q
, the scaling factor.

• sn, the nth single-carrier symbol in one SEFDM symbol.
• α = ∆f ·T , the bandwidth compression factor where ∆f

is the sub-carrier spacing and T is the time duration of
one SEFDM symbol.

ICI will be introduced when α < 1. To mathematically show
the impact of ICI, the instantaneous power for one SEFDM
symbol, Xk, is computed as

|Xk|2 =
1

Q

N−1∑
n=0

N−1∑
m=0

sns
∗
m exp

(
j2π(n−m)kα

Q

)

=
1

Q

N−1∑
n=0

|sn|2︸ ︷︷ ︸
Signal

+

1

Q

N−1∑
n=0

N−1∑
m 6=n,m=0

sns
∗
m exp

(
j2π(n−m)kα

Q

)
︸ ︷︷ ︸

ICI

.

(2)

The signal power representation includes a signal term and
an ICI term. When α = 1 for OFDM, the ICI term equals
zero. However, for SEFDM signals with α < 1, the ICI term
is not cancelled, which is the main factor that enables the non-
orthogonal waveform a candidate for physical layer security.

An inverse discrete Fourier transform (IDFT) architecture
is applicable to SEFDM signal generation. The general idea
has been implemented in very large scale integration (VLSI)
[16] and successfully applied in practical experiments [12].
The basic principle is to pad zeros at the end of each vector
s. Thus a longer symbol vector is achieved as

s
′

n =

{
sn 0≤n < N
0 N≤n < M

, (3)

where M = Q/α should be rounded to its closest integer. The
direct modulation in (1) is therefore transformed to a typical
IDFT format as

X
′

k =
1√
M

M−1∑
n=0

s
′

n exp

(
j2πnk

M

)
, (4)

where n, k = [0, 1, ...,M − 1]. The output is truncated with
only Q samples reserved while the rest of the samples are
discarded.

To simplify the expression, a matrix format of the signal
generation is given by

X = FS = F
′
S
′︸︷︷︸

truncate

, (5)

where X is a Q-dimensional vector of time samples, S is an
N -dimensional vector of transmitted symbols and F is a Q×N
sub-carrier matrix with elements equal to exp( j2πnkαQ ). S

′
is

an M -dimensional vector of transmitted symbols and F
′

is an
M×M sub-carrier matrix with elements equal to exp( j2πnkM ).

Fig. 2. Waveform defined secure communication.

It is noted that the symbol vector obtained from the second
multiplicative term should be truncated to Q samples.

At the receiver side, the signal Y is obtained via additive
white Gaussian noise (AWGN) channel as

Y = X + Z, (6)

where Z is an Q-dimensional vector of noise samples. After
signal demodulation via multiplying (6) with the conjugate
sub-carrier matrix F∗, an N -dimensional vector of demodu-
lated symbols R is obtained as

R = F∗X + F∗Z = F∗FS + F∗Z = CS + ZF∗ , (7)

where C is an N × N correlation matrix defined as C =
F∗F. To recover original signals S from R, the ICI caused by
the correlation matrix C has to be mitigated using specially
designed signal detectors.

Similar to the operations in (3) and (4), a discrete Fourier
transform (DFT) architecture is applicable to SEFDM signal
demodulation. After padding zeros at the end of Y , a longer
symbol vector Y

′
is therefore obtained with its elements

defined below

y
′

n =

{
yn 0≤n < Q
0 Q≤n < M

. (8)

The M-point DFT for SEFDM signal demodulation is thus
given by

R
′

k =
1√
M

M−1∑
n=0

y
′

n exp

(
−j2πnk
M

)
, (9)

where the output has to be truncated to Q samples similar to
the operation in (4). In fact, to get the original symbol vector
S, the output can be truncated to N symbols directly.

III. EAVESDROPPER MODEL

The proposed waveform based secure communication topol-
ogy is presented in Fig. 2. As commonly defined, Alice is
the information sender, Bob is the legitimate user and Eve is
the eavesdropper. The eavesdropper Eve is configured to be
passive in this work, which only listens to signals and would
not actively manipulate legitimate signals. As shown in Fig. 2,
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Fig. 3. Visualization of signal feature diversity and similarity via
tuning SEFDM patterns. (a) Type-I signal pattern. (b) Type-II signal
pattern. Values in the bracket indicate the bandwidth compression
factor α. To have a fair illustration comparison, the same QPSK
single-carrier symbols are modulated by both Type-I and Type-II
signals. In the rest of this work, random QPSK symbols will be
used for each signal.

there are two steps for a successful eavesdropping interception.
Firstly, an eavesdropper should know the full information
of signal formats. This could be achieved by manually or
automatically extracting signal features followed by signal
classification algorithms. Secondly, an efficient signal detector
is required to recover signals based on the confirmed signal
format from the first step. The specifically designed signal
patterns, reused from [17], are illustrated in Fig. 3. The Type-
I signal pattern has strong signal diversity since the feature
difference between adjacent signals is obvious. However, the
Type-II signal pattern shows closer BCF patterns and therefore
strong signal feature similarity, resulting in more challenging
signal classification at Eve. In terms of the legitimate commu-
nication link, the BCF pattern is pre-known between Alice and
Bob. Therefore, Bob will not need signal classification and will
go through signal detection straightforwardly. In practice, the
BCF pattern could be privately pre-shared between Alice and
Bob. Another solution could design a BCF pattern generator
that can reproduce identical BCF patterns at Alice and Bob.
This work will consider pre-known BCF knowledge and skip
the BCF pattern synchronization between Alice and Bob.

Each signal type has multiple BCF patterns. Therefore, in
either one communication session or different communication
sessions, BCF patterns will be dynamically changed. In this
case, each transmitted symbol will use a different BCF config-
uration and this random-like BCF transmission strategy will
confuse eavesdroppers and enhance the security level of WDS.

It should be noted that Alice does not need any CSIT from
Bob and Eve. The WDS secure communication framework
is therefore less sensitive to channel environment variations
and more robust than any other channel dependent physical
layer security techniques. In addition, the avoidance of CSIT
can simplify the entire system design, benefiting low-cost and
resource-constrained communications.

A. Learning and Classification Strategies

Eavesdropping signal format classification models can be
classified into maximum-likelihood based classifier, manual-
feature based classifier and automatic-feature based classifier.
Unlike the commonly used root mean square error (RMSE)
metric in regression models, the performance of a classification
model will be measured by accuracy rate, which is the ratio
of the number of correct classifications to the total number of
classifications.

The maximum-likelihood classifier provides an optimal
solution. It was initially applied in modulation classification
using single-carrier symbol-level likelihood functions [18],
[19]. In an AWGN channel with perfect knowledge of all pa-
rameters except the modulation format, the likelihood function
is expressed as

L(r|M, σ) =
1

P

N−1∏
n=0

P−1∑
p=0

1

2πσ2
exp

(
−|r(n)−M(i, p)|2

2σ2

)
,

(10)
where M indicates modulation candidates, M(i, p) represents
the pth constellation symbol in the ith modulation scheme.
Each modulation scheme has up to P constellation symbols. N
is the number of symbols for each observation, which indicates
the number of sub-carriers in multicarrier signals. σ2 is noise
variance and r(n) is the nth single-carrier complex symbol.

The maximum-likelihood classification is to maximize the
likelihood function among all the modulation candidates. As-
suming the entire potential solution set is Θ, the maximum
likelihood based solution M̂ is give by

M̂ = arg max
M(i)∈Θ

L(r|M, σ). (11)

It is clearly seen from (10) and (11) that the maximum-
likelihood classification is limited to single-carrier symbols.
It is also well noticing that this work focuses on signal
format classification rather than modulation classification. The
latter one can straightforwardly use the optimal maximum-
likelihood function. However, signal format classification is
more complex since most of the signals are based on multi-
carrier structures. Without an accurate signal format classifica-
tion as the first step, the subsequent modulation classification
[18], [19] will not be achievable. To convert a multi-carrier
signal into its baseband single-carrier symbols, the multi-
carrier signal format has to be known, which is the challenge
to be solved in this section.

The optimality of non-orthogonal signal classification has
not been mathematically achieved since the conventional
maximum-likelihood function is not applicable to multicarrier
signals. In addition, the continuous variations of BCF val-
ues can theoretically lead to infinite classification solutions.
Therefore, this section investigates two alternatives, which
can classify multicarrier signals using manual-feature machine
learning and automatic-feature deep learning.

Manual-feature classifiers rely on manual feature extrac-
tions followed by traditional machine learning classification
methods. Professional domain-knowledge has to be applied to
manually extract features, which could be time-domain char-
acteristics, frequency-domain characteristics, wavelet trans-
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Fig. 4. Wavelet classifier training framework for the non-orthogonal
signal classification.

formed time-frequency characteristics and other statistical
characteristics. Commonly used machine learning algorithms
for classification tasks are support vector machine (SVM), k-
nearest neighbours (KNN), decision trees, naive Bayes and
neural networks. Feature engineering is required to manually
extract signal features at the first step. Previous work [20]
revealed that wavelet time-frequency features with statistical
feature dimensionality reduction schemes achieve the optimal
classification accuracy. Therefore, the manual-feature classifier
in this work will collect the dimensionality reduced wavelet
time-frequency features for SVM classification.

The wavelet classifier training framework in this work is
presented in Fig. 4 where time-frequency features are obtained
after using multiple wavelet filters on the training data. Since
the extracted time-frequency features are two-dimensional, a
statistical based dimension reduction scheme is applied to con-
vert the two-dimensional feature matrix into a one-dimensional
feature vector. As verified by [20], the most efficient dimension
reduction scheme relies on variance-interquartile-range statis-
tical features. At the end, the error-correcting output codes
(ECOC) model with SVM learners are used to train the wavelet
classifier on the one-dimensional feature vector. It is clear
that professional knowledge is required for the manual feature
extraction process, which might be challenging for non-experts
in this area. However, the manual feature extraction scheme
will be more beneficial when the training data size is limited.

Automatic-feature classification, relying on deep learning, is
becoming a popular approach to operate eavesdropping attack
[9], [10] since deep learning can simplify the training pro-
cess without any professional domain knowledge for feature
extractions. However, a large amount of data will be required
by deep learning to automatically learn signal features and
output a signal classifier model. A representative deep learning
based classifier is convolutional neural network (CNN) [21], in
which it proved 20% higher modulation classification accuracy
than traditional baseline classifiers. There are some other
commonly used deep learning classification algorithms such as
long short-term memory (LSTM) and Autoencoder. However,
they both have limitations in flexible feature extractions. CNN
is a general deep learning method for classification tasks. It
was initially applied in image classification and was later
used in communication signals since a complex signal can
be converted into a two-dimensional image with separate real
and imaginary signal parts. A deep CNN would consist of
several convolutional layers that will be used to automatically
learn hidden features in a more flexible way than LSTM and
Autoencoder. In addition, the implementation of CNN is more
efficient since multiple nonlinear filters can work in parallel.
Therefore, this work will focus on the CNN method and skip

Fig. 5. CNN classifier training framework for the non-orthogonal
signal classification.

other deep learning algorithms. Previous work [17] designed
an efficient CNN classifier for different non-orthogonal sig-
nals. In this work, the neural network architecture will be
reused to test the robustness of the proposed WDS framework.

The CNN neural network layer architecture in this work is
presented in Fig. 5, in which multiple neural network (NN)
modules are stacked to automatically learn signal features.
There are additional sub-layers in each NN module, namely
convolutional layer, Batch-normalization layer, ReLU layer
and MaxPool layer. The last NN module is responsible for
outputting features. Therefore, an AveragePool layer is applied
instead of the MaxPool layer. The classification is operated
using a full-connection neural layer with SoftMax outputs. The
optimal CNN classifier will be trained and updated iteratively
via minimizing the cross-entropy loss between predicted val-
ues and true values.

It should be noted that the investigated IoT system in this
work only includes legitimate users Alice and Bob. Since
the eavesdropper Eve is not a part of the IoT system, its
computational complexity is not considered in this work. In
addition, the aim of Eve is to exhaustively identify legitimate
user signals. In this case, both the machine learning and deep
learning algorithms in this work are applied only at Eve.
Therefore, the computational complexity of intelligent signal
classifiers has nothing to do with the IoT system.

B. Signal Detection

Signal detection is the second step of a complete eaves-
dropping, which aims to recover signals from ICI once signal
formats are confirmed from the first step. The optimal detec-
tion algorithm is ML, which searches all possible solutions
and determines the optimal one as

S
ML

= arg min
S∈ON

‖R−CS‖2 , (12)

where O is the constellation cardinality and ON indicates
the entire candidate solutions. By narrowing the search space,
limited by a sphere radius g, the ML solution in (12) can be
simplified into the sphere decoding (SD) solution [22] as

S
SD

= arg min
S∈ON

‖R−CS‖2 ≤ g, (13)

g = ‖R−CS
ZF
‖2 , (14)

where S
ZF

= bC−1Re is a coarse solution based on zero
forcing (ZF), which is used here to narrow the entire search
space to a partial search space.
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The SD detector is simplified relative to ML and it has
been proved feasible in SEFDM signals with a large number
of sub-carriers [23] and strong ICI. However, its computational
complexity is random [24] and is highly related to noise power.
Therefore, the work in [25] proposed a simplified interference
cancellation method named iterative detection (ID), which can
efficiently recover signals with minor ICI when the value of
α is approaching one. The iterative cancellation is defined as

Sζ = R− (C− e)Sζ−1, (15)

where Sζ is the N-dimensional symbol vector after ζ iterations,
Sζ−1 indicates the results after ζ − 1 iterations and e is an
N ×N identity matrix.

In summary, the ID detector shows lower computational
complexity but it is limited to signals with weak ICI [25].
When signals have strong ICI (i.e. small α), the random-
complexity SD has to be used. Therefore, the choice of a signal
detector depends on signal conditions, which is determined by
the value of BCF α.

IV. IMPACT FACTOR INVESTIGATIONS

This section evaluates three impact factors, which will
determine the waveform characteristics and therefore affect
eavesdropping signal classification accuracy. Channel and
hardware impairments are considered for training datasets in
this work. A three-path wireless channel power delay profile
(PDP) with path delay (s) [0 9e-6 1.7e-5] and path relative
power (dB) [0 -2 -10] are reused from [17], [20], [21], [26].
The K-factor is 4 and the frequency offset is configured to be
2 parts per million (PPM). The maximum Doppler frequency
is set to 4 Hz considering indoor people walking speed. In
addition, the training dataset will cover a wide range of Es/N0
from -20 dB to 50 dB. Signal specifications are flexible and
will be detailed in each scenario below.

A. Impact of Training Data

In the previous work [17], training dataset is generated
based on a data augmentation (DA) principle. This dataset
generation mechanism aims at data-limited scenarios. The
basic idea is to generate one data symbol, which will go
through different feature-diversified wireless channels. The
DA method will output multiple channel impaired symbols
as a training dataset. Therefore, a symbol could be easily
expanded to a large size dataset via time-variant wireless chan-
nels. Although the DA based dataset generation has wireless
channel diversity, it has limited signal feature diversity. Such a
diversity-limited dataset is efficient in machine learning based
classifier training [20] where features are manually extracted
using expert knowledge. However, it might not be efficient
for deep learning based CNN classifier training [17] where a
large amount of diversified data has to be used to automatically
extract features.

The DA based training methodology is evaluated at the
beginning. A source symbol is generated per signal class (i.e.
per α). Each OFDM or SEFDM symbol will have 2048 time
samples via oversampling 256 single-carrier QPSK symbols by
a factor of ρ=8 [17], [20]. Each source symbol within a signal
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Fig. 6. Classification accuracy comparisons based on the data aug-
mentation (DA) training methodology.

class will be expanded to 2,000 OFDM/SEFDM symbols
by going through independent time-variant wireless channels
defined at the beginning of this section. Therefore, the Type-I
signal pattern will have four independent datasets consisting
of overall 8,000 OFDM/SEFDM symbols. The same data
generation principle is repeated for the Type-II signal pattern
leading to seven datasets and overall 14,000 OFDM/SEFDM
symbols. Based on the study in [20], the value of Es/N0 has
great effects on the training efficiency where a dataset covering
a wide Es/N0 range would train a high accuracy classifier.
Therefore, prior to the classifier training, the raw dataset would
be contaminated by AWGN ranging from Es/N0=-20 dB to 50
dB with an increment step of 10 dB. Such a dataset with rich
AWGN information would help to train a robust classifier.

To evaluate the classification accuracy at eavesdroppers, the
wavelet classifiers are trained based on [20] in Fig. 4 and
the CNN classifiers are trained according to [17] in Fig. 5.
The classification accuracy, based on the DA training data, is
presented in Fig. 6. It should be noted that previous works
in [17], [20] trained classifiers using the DA training data as
well. Therefore, Fig. 6 summarizes what has been achieved
in previous works and will be used as benchmarks for this
work. It is clearly seen that both the CNN and wavelet Type-
I signal classifiers perform well and reach 100% accuracy.
For the Type-II signal pattern, the wavelet classifier maintains
similar accuracy but the accuracy of the CNN classifier drops
by at least 20%. This is expected because a diversity-limited
dataset cannot efficiently assist CNN to automatically extract
rich signal features while the manual feature extraction based
wavelet classifier is not sensitive to the limited data diversity.
It indicates that the DA based data generation is more suitable
to wavelet classifier training.

To train a robust classifier for non-orthogonal waveforms,
data diversity (DD) is enhanced via diversifying source data
generation instead of the data augmentation. The basic princi-
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Fig. 7. Classification accuracy comparisons based on the data diver-
sity (DD) training methodology.

ple for DD is to generate multiple source symbols instead of
a single source symbol in DA. Unlike the dataset expansion
mechanism in DA, the enhanced feature of DD is that each
source symbol will go through an independent channel. There-
fore, the generated training dataset will have diversity both
in source symbols and channel environments. This subsection
will generate 2,000 OFDM/SEFDM source symbols per signal
class and each source symbol will be distorted by an inde-
pendent time-variant wireless channel. Therefore, each signal
class will have 2,000 random OFDM/SEFDM symbols with
random wireless channel distortions. In this case, both data
and channel characteristics have diversity and would be fair
to both machine learning and deep learning classifier training.

With the diversity enhanced dataset, both CNN classifiers
and wavelet classifiers are re-trained following the same
process in [17] and [20], respectively. The results in Fig. 7
reveal that both the CNN and wavelet classifiers can reach
100% classification accuracy at high Es/N0. It indicates that
the DD based data generation is suitable to both CNN and
wavelet classifiers training. Moreover, the CNN classifiers can
even work well at low Es/N0. The significant achievement is
at Es/N0=0 dB where the CNN based Type-II signal classi-
fication (72% accuracy rate) has approximately 38% higher
accuracy than that of the wavelet Type-II signal classification
(34% accuracy rate).

In summary, the typical machine learning based wavelet
classification method is robust when training data is generated
via augmenting a limited dataset. The deep learning based
CNN classifier is however sensitive to training data and its
classification accuracy drops with a diversity-limited training
dataset. With a diversity enhanced dataset, both the CNN
and wavelet based classifiers can identify Type-I and Type-
II signals at 100% accuracy. Therefore, in the following, the
DD based training data is used for both the CNN and wavelet
classifiers while the DA based training data is merely for the
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Fig. 8. Time-domain SEFDM sample (α=0.8) illustration to show the
impact of oversampling on the same data. (a)ρ=8. (b)ρ=4. (c)ρ=2.

wavelet classifiers.

B. Impact of Oversampling

Oversampling factor ρ in wired/wireless communications
determines signal resolution. A higher value of ρ leads to a
better signal resolution. In addition, it is also a method to
introduce spectral protection guard band [27]. Previous works
[17], [20] followed a large oversampling factor of ρ=8, which
is more than the requirements in practical systems such as 4G-
LTE [27], 5G-NR [28] and WLAN 802.11 [29]. Therefore, this
section will study the oversampling impact on non-orthogonal
signal classification.

An oversampling factor determines the number of samples
per symbol, which is expected to have more impacts on
SEFDM signals as shown in (2). It is clearly seen that the
common signal term in either OFDM (α = 1) or SEFDM
(α < 1) is only related to the raw single-carrier symbol sn,
which is independent from the oversampling factor ρ. The
exponential term, exp( j2π(n−m)kα

Q ), in the ICI part, is zero
for OFDM when α = 1. However, the term is not zero in
SEFDM, which is determined by the factor ρ because of
Q = ρN . Therefore, the value of ρ will affect the accurate ICI
expression and further determine the resolution of an SEFDM
signal representation.

To have a general idea of the oversampling impact on
SEFDM, a set of integer values, ρ = 8, 4, 2, are evaluated
in Fig. 8. For the purpose of illustration, a total number of 20
time samples are truncated for the case of ρ=2. Based on this
benchmark, a number of 40 time samples are truncated for the
case of ρ=4 and 80 time samples for ρ=8.

The SEFDM signal of α=0.8, with an oversampling factor
of ρ=8, is illustrated in Fig. 8(a). The time-domain sample
waveform is smooth and indicates a sufficient signal resolu-
tion. With the reduction of an oversampling factor to ρ=4,
the SEFDM signal resolution is reduced and its time-domain
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Fig. 9. Wavelet classification accuracy comparisons with various
oversampling factors on the DA based training dataset.
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Fig. 10. Wavelet classification accuracy comparisons with various
oversampling factors on the DD based training dataset.

waveform is slightly distorted in Fig. 8(b). Further reducing the
oversampling factor results in Fig. 8(c). It is clearly seen that
the signal shape is greatly changed and the signal profile is not
following the one in Fig. 8(a). It is inferred that the reduction
of an oversampling factor would have apparent effects on
accurate SEFDM signal representations.

For Type-I and Type-II signals of ρ=8, 4, the DA based
wavelet classification accuracy is between 95% and 100% as
presented in Fig. 9. With a further reduced oversampling factor
to ρ=2, the Type-I signal classification accuracy drops to 75%
while the Type-II accuracy drops to 63%. This is due to the
reduced SEFDM signal resolutions and therefore inaccurate
ICI representations.
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Fig. 11. CNN classification accuracy comparisons with various over-
sampling factors on the DD based training dataset.

The DD based wavelet classifier is tested with results
showing in Fig. 10. A similar trend is observed for the cases of
ρ=8, 4, where the accuracy is between 95% and 100%. How-
ever, data diversity can efficiently improve the classification
accuracy for the case of using a small oversampling factor
ρ=2. Results show that the Type-I signals can be identified
with 95% accuracy and the Type-II signals with 82% accuracy.
Comparing with the same oversampled signals in Fig. 9,
the accuracy rates for the Type-I and Type-II signals are
improved approximately by 27% and 30%, respectively. The
results indicate that both the DD and DA training method-
ologies achieve similar classification performance when the
oversampling factor ρ is large sufficient. However, when the
oversampling factor ρ is small, the DD based training is more
robust than the DA based training. Therefore, in the following
studies, the DD training method will be used for wavelet
classifiers training.

The CNN classifiers, trained by signals with different values
of ρ, are evaluated in Fig. 11. The signals with large oversam-
pling factors, ρ=8, 4, can achieve high accuracy between 97%
and 100%. When the factor is reduced to ρ=2, the Type-I
signal maintains a high accuracy at 95% while the Type-II
signal accuracy drops to around 84%.

In summary, oversampling determines the number of sam-
ples used to represent one symbol and therefore determines
the resolution of a signal. The level of oversampling af-
fects accurate feature extractions and robust classifier train-
ing especially for non-orthogonal SEFDM signals. A large
oversampling factor leads to a better training condition and
therefore higher classification accuracy but at the cost of time
sample redundancy. A small oversampling factor will save
time sample resources, which is more realistic in practical
communication systems. It should be noted that the accuracy
degradation due to reduced oversampling will be an extra
benefit to SEFDM signals in terms of secure communications.
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Fig. 12. Classification accuracy for the Type-III signal pattern.

For a comprehensive comparison, an upper-bound case of ρ=8
(following [17], [20]) and a lower-bound case of ρ=2 will be
both considered in the following studies.

C. Impact of BCF Offset

Tuning the bandwidth compression factor will modify signal
feature similarity and diversity. Previous work studied two
types of signal patterns in [17]. As shown in Fig. 3, the Type-
I signals with BCF offset ∆α=0.1 have a signal pattern of
α=1.0, 0.9, 0.8, 0.7. The Type-I signals are easily identified
by either CNN classifiers or wavelet classifiers. A more
challenging scenario is the Type-II signal pattern where its
BCF offset is ∆α=0.05, which results in a feature-similarity
dominant scenario. With proper dataset training and symbol
oversampling, the Type-II signals can be classified by both
CNN classifiers and wavelet classifiers with results shown in
Section IV-A and Section IV-B.

An inspiring enhancement approach for communication
security is to narrow the BCF offset further and to have a more
challenging feature-similarity dominant scenario. The tuning
of BCF offset is flexible and has a number of patterns. This
section will choose one pattern for an example demonstration.
The optimal tuning pattern is not extensively investigated
in this work. A signal pattern with BCF offset ∆α=0.015,
termed Type-III, is designed in this section with bandwidth
compression factors α=1, 0.985, 0.97, 0.955, 0.94. Fig. 12
will evaluate the Type-III signal pattern classification accuracy
using the DD based training method and with ρ=8, 2.

It is clearly seen in Fig. 12 that with the sufficient oversam-
pling ρ=8, the CNN classifier still achieves a high accuracy
rate at around 96%. With the same oversampling, the wavelet
classifier can only reach 76% accuracy. Reducing the factor to
ρ=2, the accuracy rates of both the CNN and wavelet classifiers
will drop to 52% and 44%, respectively.

In summary, a large value of BCF offset, such that in
the Type-I and Type-II signal patterns, would simplify signal

classification. However, a small value of BCF offset would
challenge accurate signal identification. It is inferred that
with a further reduction of BCF offset, an accurate signal
classification would be impossible. In addition, oversampling
has a greater effect on the Type-III signal pattern than the
other two signal types.

V. WLAN COEXISTENCE

WLAN is a ubiquitous technique being used in our daily
life. Emerging data-hungry IoT applications are increasingly
dependent on WLAN networks, such as remote monitoring,
in which a large amount of video/voice data is generated
and might be uploaded to the cloud. Typical narrowband IoT
techniques such as ZigBee, LoRa, SigFox and NB-IoT would
not be possible to achieve this. In addition, most narrowband
IoT applications would require WLAN gateways to connect
to the Internet. Therefore, the importance of WLAN in IoT
applications is significant.

To show the coexistence capability of the WDS frame-
work with existing communication systems, the Type-III sig-
nal pattern is integrated in the WLAN standard following
IEEE 802.11a signal specifications [29]. By simply upgrad-
ing the IFFT signal generation methodology, the proposed
WDS framework can be deployed straightforwardly in existing
WLAN systems. It should be noted that this work considers
coexistence of WDS frames and existing WLAN frames
in a time-division multiplexing mode. Therefore, inter-band
coexistence interference is not introduced in this work. For
complex scenarios when WDS frames and WLAN frames are
working in a frequency-division multiplexing mode, inter-band
coexistence interference will appear. Previous work in [30] has
studied its impact and research results verified that the inter-
band interference can be mitigated by using coding schemes.
Due to limited space, this work will merely consider the basic
scenario when WDS frames and WLAN frames are working in
a time-division multiplexing mode, which has no coexistence
interference.

A. WDS Framework in IEEE 802.11a

IEEE 802.11a has a unique signal structure, which consists
of 48 data symbols and 4 pilot symbols. With a fractional
oversampling factor of ρ=16/13, the IFFT size is 64. It is
clear that the IFFT size in 802.11a is smaller than that of the
previous simulations in Section IV. The smaller oversampling
factor will additionally enhance communication security as
proved by Section IV-B.

As clarified in (4), the typical SEFDM signal is imple-
mentable by IFFT. Therefore, the SEFDM signal generation
is highly coexistent with the 802.11a standard via merely
modifying the length of IFFT. At the receiver, an FFT is
also applicable to match the transmitter side architecture. All
other signal processing and system architectures maintain the
same with 802.11a. In this case, SEFDM signal generation
and reception are highly compatible with the standard WLAN
framework.

The 802.11a frame structure is presented in Fig. 13(a). The
entire frame is termed physical layer conformance procedure
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Fig. 13. The design of WDS signal frame coexisting with the standard
WLAN 802.11a. (a) Typical WLAN 802.11a frame. (b) Proposed
WLAN-WDS frame.

(PLCP) protocol data unit (PPDU) [29], which includes legacy
preamble and data field. The legacy preamble, consisting of
legacy short training field (L-STF), legacy long training field
(L-LTF) and legacy signal (L-SIG) field, is used for frequency
compensation, phase correction, timing synchronization, chan-
nel estimation, automatic gain control (AGC) adjustment,
modulation and coding scheme (MCS) notification, etc. The
PLCP service data unit (PSDU) in the data field is responsible
for carrying data symbols.

To have a high compatibility with 802.11a, only the PSDU
field will be replaced by the Type-III pattern signals and any
other fields will be maintained as the 802.11a standard. In this
case, the modification to the existing 802.11a standard is mi-
nor. Unlike the conventional WLAN frame including OFDM-
preamble and OFDM-PSDU, the newly designed WLAN-
WDS frame will consist of OFDM-preamble and Type-III
pattern based SEFDM/OFDM-PSDU.

Once a WLAN-WDS frame is received, an eavesdropper
will have two possible actions to recover signals. In Scenario-
I, Eve will mistakenly assume that all captured frames are
defined by the traditional WLAN 802.11a standard as shown
in Fig. 13(a). This makes sense because a WLAN-WDS frame
reuses the WLAN legacy preamble as shown in Fig. 13(b),
which would give a wrong indication that the following PSDU
is also specified by 802.11a. Therefore, the mismatch between
the information extracted from the legacy preamble and the
PSDU data will confuse Eve to mistakenly use the typical
802.11a standard to recover the WLAN-WDS PSDU field
even the data field PSDU is actually modulated by mixed
SEFDM/OFDM symbols. The incorrect PSDU demodulation
will significantly affect signal detection. In Scenario-II, the
eavesdropper is assumed to realize the unique PSDU pattern
in WLAN-WDS frames. However, the eavesdropper cannot
easily recognize the difference between SEFDM-PSDU and
OFDM-PSDU since an efficient signal classifier is not avail-
able. Therefore, the subsequent signal detection will not be
reliable.

A list of terms are defined below and will be used in the
following simulation and experiment.

• WLAN-OFDM: OFDM symbols are generated for PSDU
following the 802.11a standard, which has 48 data sym-
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Fig. 14. BER performance of detecting WLAN-Type-III signals at
the legitimate user.

bols, 4 pilot symbols, 64 time samples and ρ=16/13.
• WLAN-SEFDM: SEFDM symbols are generated for

PSDU following the 802.11a standard, which has 48 data
symbols, 4 pilot symbols, 64 time samples and ρ=16/13.

• WLAN-WDS: the WDS framework is integrated in the
standard WLAN frame, as shown in Fig. 13(b).

• WLAN-Type-III: the Type-III signal pattern, consisting
of WLAN-OFDM and WLAN-SEFDM, is applied to the
PSDU field in an WLAN-WDS frame.

B. Reliability and Security

According to the available physical layer security exper-
iment research in [4], [31], [32], [33], the commonly used
security metrics are signal power difference and bit error rate
(BER). It is well noticing that the security enhancement of
the proposed WDS framework is not dependent on the sig-
nal power advantage of legitimate communication links over
eavesdropper communication links. The aim of the framework
is to confuse eavesdroppers. Therefore, an eavesdropper will
not break the communication security even its received signal
power is higher than the legitimate user. In this case, instead
of considering the signal power difference between legitimate
users and eavesdroppers, this work will use BER as one
metric to evaluate the communication security. Additionally,
a specific metric, termed confusion matrix, is also applied in
this work. Unlike the average accuracy results on entire signal
classes in Section IV, a confusion matrix can tell the details
of classification for each signal class.

This section focuses on the feature-similarity dominant
Type-III signal pattern. As explained in Fig. 2 that the legit-
imate user Bob knows accurate signal formats based on pre-
shared information. Therefore, Bob can decode signals without
the first-step signal classification. Based on the descriptions
in Section III-B, the simple ID signal detector is sufficient to
recover non-orthogonal signals when the self-created ICI is not
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Fig. 15. Scenario-I: BER performance of detecting WLAN-Type-III
signals at the eavesdropper when received symbols are incorrectly
demodulated and detected following the WLAN-OFDM specification.

Table I: CNN classifier neural network layer architecture

Layers Dimension
Input layer 2× 64
Convolutional layer-1 2× 64× 64
Convolutional layer-2 2× 32× 64
Convolutional layer-3 2× 16× 64
Convolutional layer-4 2× 4× 64
Convolutional layer-5 2× 2× 64
Full-connection layer 2× 1× 64
SoftMax output layer 1× 1× 5

strong. Since the minimum bandwidth compression factor in
the Type-III signal pattern is α=0.94, therefore the ID detector
is sufficient. The BER performance for the signals at legitimate
user Bob is presented in Fig. 14. It is clearly seen that using
the typical matched filter (MF) detector, performance loss will
exist and the signal with α=0.94 has the worst performance.
On the other hand, all the signals can be recovered perfectly by
ID detectors leading to identical performance with the WLAN-
OFDM signal. This indicates the WDS framework reliability
at a legitimate user when the ID detector is applied.

In terms of BER performance at Eve, there are two possible
eavesdropping scenarios considering the use of the proposed
WLAN-WDS frame in Fig. 13(b). To test the BER perfor-
mance, a total of 5,000 OFDM/SEFDM symbols are generated
and each signal class has 1,000 symbols.

In Scenario-I, all the symbols will be incorrectly demod-
ulated based on WLAN-OFDM specifications. The improper
operation from Eve results in extremely degraded BER in Fig.
15. It is seen that the result of Scenario-I converges to a flat
BER curve when Es/N0 is increased, which indicates a failure
of eavesdropping.

In Scenario-II, it is assumed that Eve will notice the tricks
of the WLAN-WDS PSDU and will apply signal classifiers
to identify each signal format. Following the same training
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Fig. 16. WLAN-Type-III signal classification at the eavesdropper.
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Fig. 17. Confusion matrix of WLAN-Type-III signals CNN classi-
fication at Es/N0=20 dB. α=1 indicates WLAN-OFDM while other
values of α indicate WLAN-SEFDM.

methodology in Fig. 5, a CNN classifier is re-trained for the
WLAN-Type-III signals with the neural network architecture
presented in Table I where five convolutional layers are
stacked. A wavelet classifier is re-trained following Fig. 4
based on the manually extracted variance-interquartile-range
features and the ECOC model with SVM learners.

The classification accuracy for the WLAN-Type-III signal
pattern is shown in Fig. 16. It is clearly seen that when apply-
ing WLAN-Type-III structured signals with an oversampling
factor ρ=16/13, both the CNN and wavelet classifiers cannot
identify signals properly with only 24% and 27% accuracy,
respectively. The reduced accuracy is expected since Fig. 12
has verified that a small oversampling factor will degrade
classification accuracy.

The detailed results of classification can be expressed in
the format of confusion matrix, in which diagonal elements
indicate perfect classification while any non-diagonal elements
indicate misclassification. A confusion matrix commonly uses
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Fig. 18. Confusion matrix of WLAN-Type-III signals wavelet classi-
fication at Es/N0=20 dB. α=1 indicates WLAN-OFDM while other
values of α indicate WLAN-SEFDM.

different coloured grids to give, at first glance, a general idea
of correct classification and incorrect classification. However,
a more scientific approach is to examine the values in each
coloured grid. The values in each diagonal grid indicate the
number of correctly identified symbols while other values
indicate incorrectly identified symbols. In addition, a separate
percentage table is jointly presented, in which the first column
represents correct classification accuracy rates and the second
column represents incorrect classification accuracy rates. The
CNN based confusion matrix is presented in Fig. 17. The
values on the vertical axis indicate BCF for true signal classes
while the horizontal axis shows predicted signal classes. The
average accuracy for each signal class is between 19.6%
and 26%. It is clearly seen that only 25.8% of transmitted
WLAN-OFDM signals are properly classified. A similar result
for wavelet classification is illustrated in Fig. 18 where the
average accuracy is ranged from 22.7% to 33.1%. In terms
of the WLAN-OFDM signal, its correct classification is at
30%. Most of the misclassified WLAN-OFDM signals are
concentrated in its adjacent signal class, α=0.985. This is due
to the fact that the WLAN-SEFDM signal of α=0.985 is more
similar to the WLAN-OFDM signal than any other WLAN-
SEFDM signals. In this case, misclassification is unavoidable
and communication security is beneficially enhanced.

The performance evaluation of Scenario-II is more complex
than that of Scenario-I. As shown in Fig. 17 and Fig. 18,
each confusion matrix has 25 possible classification map-
ping schemes. Each mapping, either correct or incorrect, will
indicate one signal recovery scheme. Therefore, there are
overall 25 signal recovery schemes per confusion matrix.
One signal recovery scheme includes signal demodulation
and signal detection. The function of one complete recovery
process is to demodulate and detect true class labelled signals
using predicted class labels. To get a general idea of the
performance, a single BER result is obtained by averaging
the 25 possible results per confusion matrix. Therefore, for
either the CNN classifier or the wavelet classifier, a total of
eight BER results will be obtained when considering Es/N0
from -20 dB to 50 dB with a 10 dB increment step.
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Fig. 19. Scenario-II: BER performance of WLAN-Type-III signals at
the eavesdropper when received symbols are incorrectly demodulated
and detected following the confusion matrix classification mapping
scheme.

Prior to the BER calculation, multiple confusion matrices
should be obtained at Es/N0=-20 dB:50 dB. Due to the limited
space, this work merely presents the confusion matrices at
Es/N0=20 dB in Fig. 17 and Fig. 18. The final BER of
Scenario-II will consider all the confusion matrices Es/N0=-
20 dB:50 dB leading to Fig. 19. The results show clearly that
without an accurate classifier, which is currently unachievable,
the eavesdropper cannot properly recover signals.

It reveals that the WDS framework in WLAN maintains
the legitimate user side reliability using a specially designed
signal detector. In addition, the joint study of confusion matrix
and BER verifies that the framework enhances security by
confusing an eavesdropper in two possible scenarios.

C. Complexity Analysis

The complexity of WDS framework should be evaluated
comprehensively. It can be divided into signal processing
complexity and hardware architecture complexity.

WDS signal processing includes signal generation, signal
classification and signal detection. Taking Fig. 2 as an ex-
ample. Alice is responsible for signal generation. Bob will
use the ID detector to recover signals. Eve will need sig-
nal classification and signal detection. Since the purpose of
Eve is to exhaustively recover signals without considering
power/resource consumption, therefore the complexity at Eve
is ignored in this work. In principle, the higher eavesdropping
computational complexity the better security level for the
proposed WDS framework.

Unlike typical WLAN communications where more traffic
happens at downlink, IoT based applications would generate
more traffic at uplink. In this case, the signal generation
at Alice who is functioned as an IoT user, will be more
concerned in this work. The signal detection at Bob, which
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would be at a WLAN router, is not considered. The reason
is that WLAN routers are powered via wires and power
consumption or computational complexity is not very crucial
to the implementation of WDS. Therefore, the computational
complexity in this section focuses merely at an IoT user side.
In terms of the downlink channel from a WLAN router to an
IoT device, the original 802.11a standard will be used in order
to maintain simple signal processing at an IoT device. Since
an IoT downlink channel is responsible for crucial control
instructions that will determine the working principle for each
IoT device, the WDS framework is also applicable but at the
cost of extra signal processing power consumption from the
non-orthogonal ID signal detector. Therefore, the deployment
of WDS is flexible and its computational complexity is related
to applications and downlink/uplink channels.

In terms of hardware architectures, unlike MIMO beam-
forming requiring multiple RF chains; millimeter wave re-
quiring high frequency modulators; directional modulation
requiring unique antennas; artificial noise requiring beam-
forming and power allocation, the proposed waveform-defined
security framework can use available hardware and will not
require additional hardware resources. Therefore, the hardware
complexity of WDS is identical to the typical WLAN config-
urations. In this case, hardware complexity is not considered
in this section.

The WDS computational complexity is thus analyzed
merely on the digital signal generation. As explained in [34],
by using the framework of Fastest Fourier Transform in the
West (FFTW), the asymptotic computational complexity of
IDFT is O(ξ× log2ξ) when the transform size is ξ. It is well
noticing that FFTW works well when the value of ξ is either
a power of two or a prime number. Therefore, considering the
IDFT-based signal generation with Q samples, the complexity
of OFDM signal generation is

O(Q× log2Q). (16)

In terms of SEFDM signal processing at the transmitter, as
explained in Section II, an IDFT architecture is applicable
even when α is introduced. Therefore, the SEFDM signal
generation complexity, computed based on (4) considering
Q/α signal length, is given by

O(Q/α× log2Q/α). (17)

As explained in (3), zeros are padded at the end of each
input symbol vector. Therefore, a pruned operation [16] can
be applied to simplify further the SEFDM signal generation
complexity to

O(Q/α× log2Q). (18)

A bar chart is designed in Fig. 20 to compare each signal
generation method as a function of the number of operations.
Computational complexity for each signal is computed follow-
ing (16), (17) and (18). It is clearly seen in Fig. 20 that the
OFDM signal generation complexity is independent and will
not be affected by the value of α. The complexity of SEFDM
signal generation is correlated to the value of α. With the
reduction of α, more operations are required. This is reason-
able since the value of Q/α is increased when α is reduced.
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Fig. 20. Asymptotic complexity of WLAN-Type-III framework in
terms of the number of complex operations in (a) linear-scale and
(b) log-scale.

Therefore, a larger IDFT is needed for an SEFDM signal with
smaller α. In addition, the pruned version of SEFDM signal
generation has limited computational complexity reduction
advantage. Another discovery in Fig. 20 is that the number of
required operations for SEFDM signal generation at different
α is on the same order of magnitude relative to the OFDM
signal generation.

VI. LOW-COST SDR EXPERIMENT

Proof-of-concept experiments of traditional physical layer
security techniques have been designed and tested in mil-
limeter wave [4], artificial noise generation [32], directional
modulation [31] and secrecy coding [33]. However, those
experiments might not be practical to low-cost and resource-
constrained communication scenarios.

This section aims to verify the WDS framework in low-cost
hardware with the following objectives:
• The WDS framework is applicable to low-cost hardware,

which will be beneficial to resource-constrained IoT
communications.

• The WDS framework is highly coexistent with existing
WLAN communication standards. It will be flexibly
extended to other standards.

• The WDS framework is robust and will not be compro-
mised even when eavesdroppers have signal power and
channel environment advantages.

• CSIT is not required by the framework in experiments.

A. Experiment Design

The low-cost Analog Devices SDR PLUTO [35] is applied
in the experiment to demonstrate that the proposed WDS
framework is practical to resource-constrained IoT scenarios.
The framework does not require complex hardware such
as MIMO antennas, directional modulation driven antennas,
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Fig. 21. Experiment setup for the WDS framework considering a
non-line-of-sight eavesdropping link in Scenario-A and a line-of-sight
eavesdropping link in Scenario-B.

phase shifters, high-frequency modulators and artificial noise
generators. In this experiment, the SDR devices are equipped
with single omni-directional antennas and therefore beam-
forming is not implemented.

The SDR device at Alice will generate all the signals based
on the WLAN-Type-III signal pattern and deliver the signals
over the air. Eve and Bob will receive them on their own
SDR devices. Bob will demodulate and detect the signals with
pre-shared signal format information while Eve will need to
intelligently identify different signals before subsequent signal
demodulation and detection.

To maintain a stable legitimate channel environment, the
locations of Alice and Bob are fixed throughout the experi-
ment. To have different eavesdropping channel scenarios, the
position of Eve can be flexibly re-located. Two experiment
scenarios are designed and tested using three SDR devices as
shown in Fig. 21.

In the first experiment, Scenario-A, a line-of-sight legitimate
link exists between Alice and Bob while the eavesdropping
link between Alice and Eve is blocked by a metal box
to emulate a non-line-of-sight communication. This scenario
is challenging to Eve since the eavesdropping link signal
power is lower than that of legitimate link. This scenario is
designed based on the assumption that Eve in this work is
passive and will merely listen to confidential information in
a disadvantageous location. Otherwise, the existence of Eve
will be detected.
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Fig. 22. Confusion matrix of Eve employing CNN classification in
Scenario-A. α=1 indicates WLAN-OFDM while other values of α
indicate WLAN-SEFDM.

In the second experiment, Scenario-B, Eve is placed next
to Bob without the metal box blockage. In this case, a line-
of-sight eavesdropping link is created, which has a similar
signal power condition with the legitimate link. Scenario-B is
challenging to communication security since the eavesdrop-
per has a better condition than that in Scenario-A. Typical
beamforming and artificial noise based physical layer security
solutions are not efficient any more since Eve and Bob are
placed closely next to each other.

This experiment will follow the 802.11a signal specifi-
cations and use the maximum bandwidth option, 20 MHz.
The employed SDR PLUTO is supported by the WLAN
toolbox [36] in Matlab. Therefore, the implementations of
802.11a and WLAN-WDS are straightforward. Over-the-air
carrier frequency is tuned to 2.412 GHz, which is the Channel-
1 frequency defined by [29]. To have a high coexistence
with WLAN, this experiment maintains the 802.11a standard
defined legacy preamble while merely changing the PSDU data
field to the WLAN-Type-III signal pattern.

B. Experiment Results

To validate the experimental communication security at the
eavesdropper, both confusion matrix and BER are investigated.
In the experiment, 1,000 symbols per signal class are gen-
erated. There are overall 5,000 OFDM/SEFDM symbols for
each test. Unlike simulations, in practical experiments, signal-
to-noise ratio (SNR) is commonly measured at the receiver. In
this experiment, to show the signal power difference between
Eve and Bob, SNR is measured based on their frequency-
domain signal spectra.

In Scenario-A, the value of SNR at Bob is around 35 dB,
which is power sufficient to provide reliable performance with
zero BER. The metal box at Eve can create a non-line-of-
sight link but cannot influence SNR greatly. Therefore, by
tuning the AGC at Eve, the SNR is reduced to 10 dB. This
will emulate the practical eavesdropping condition where inter-
ception environment is commonly disadvantageous. With the
above experiment setup, the average successful classification
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Fig. 23. Confusion matrix of Eve employing wavelet classification in
Scenario-A. α=1 indicates WLAN-OFDM while other values of α
indicate WLAN-SEFDM.
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Fig. 24. Confusion matrix of Eve employing CNN classification in
Scenario-B. α=1 indicates WLAN-OFDM while other values of α
indicate WLAN-SEFDM.
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Fig. 25. Confusion matrix of Eve employing wavelet classification in
Scenario-B. α=1 indicates WLAN-OFDM while other values of α
indicate WLAN-SEFDM.

accuracy at Eve is 23.06% for the CNN classifier in Fig. 22
and 24.58% for the wavelet classifier in Fig. 23.

In Scenario-B, the location of Bob is fixed while Eve is
placed next to Bob, which gives Eve a better eavesdropping
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Fig. 26. Eavesdropping BER considering signal classifiers, eavesdrop-
per channel conditions and eavesdropper receiver operations.

environment with a line-of-sight link at SNR=35 dB. The
confusion matrices for Scenario-B are presented in Fig. 24
and Fig. 25, which show average classification accuracy of
23.16% and 24.38%, respectively. It is practically verified that
the proposed waveform-defined security framework is robust
and is not related to SNR and communication link conditions
at eavesdroppers.

An additional experiment discovery is that the CNN classi-
fication accuracy is not equal for each signal class in Fig. 22
and Fig. 24. It is apparent that WLAN-OFDM has a higher
classification accuracy than other signal types achieving 42.8%
and 44.0% in Scenario-A and Scenario-B, respectively. More-
over, all other WLAN-SEFDM signals are mostly classified
into WLAN-OFDM. The reason for this is that the offline
trained CNN model is not perfectly fit in a new channel
environment. Previous work [17] applied transfer learning to
deal with the mismatch between offline training environment
and practical environment. However, this is not realistic in
secure communications since legitimate users will not allow
eavesdroppers to adjust signal classifiers via transfer learning.
Therefore, the mismatch between offline and practical environ-
ments would additionally enhance communication security. In
terms of wavelet classification, accuracy is relatively stable for
each signal class, which indicates the robustness of wavelet
classification since signal features are manually extracted
based on domain knowledge rather than data training.

To have a comprehensive study on eavesdropping BER
performance, Fig. 26 jointly considers signal classifier types
(i.e. CNN and wavelet), eavesdropper channel conditions
(i.e. Scenario-A and Scenario-B) and eavesdropper receiver
operations (i.e. Scenario-I and Scenario-II). Therefore, eight
tests are designed with results showing in Fig. 26. It is clear
that all the BER results maintain at a similar level while
the Scenario-II based eavesdropping shows slightly degraded
performance. As explained in Section V-B, Scenario-I has no
classification mechanism and assumes all the received signals
belong to WLAN-OFDM. However, Scenario-II applies clas-
sifiers and misclassification would happen. The performance
of signal detection is highly dependent on the quality of
signal classification. It is inferred from Fig. 26 that signal
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misclassification might leads to better BER than a system
without signal classification.

VII. CONCLUSION

Traditional physical layer security techniques are highly
dependent on channel conditions such as accurate CSI at the
transmitter. However, in practical communications, perfect CSI
is mostly unachievable due to time-variant channel charac-
teristics. In addition, extra hardware is commonly required
by beamforming or artificial noise techniques. Therefore, a
waveform-defined security (WDS) framework is proposed to
avoid the dependance on CSI and complex hardware. This
work firstly studies three impact factors, which can tune wave-
form patterns undiscoverable at eavesdroppers. Results show
that training data diversity has great effects on signal iden-
tification accuracy. In addition, a small oversampling factor
and a narrow BCF offset can further confuse eavesdropping.
A WLAN-WDS frame is designed to show a compatible
coexistence with the existing WLAN 802.11a standard. Results
show that BER performance is ensured at the legitimate
user and security is promised via preventing eavesdropping.
In addition, WLAN-WDS has the computational complexity
on the same order of magnitude relative to the traditional
WLAN. A low-cost experiment is operated to verify the WDS
framework in resource-constrained communication systems.
The SDR devices applied in this work are equipped with
single omni-directional antennas and therefore beamforming
is not implementable. Results show that the eavesdropper
fails to recover signals even with an advantageous line-of-
sight channel condition at SNR=35 dB, which proves that
the success of WDS framework is not dependent on channel
conditions. This work successfully verified that the proposed
WDS framework is applicable in resource-constrained IoT
communications while traditional PLS techniques are un-
achievable due to channel condition dependance and extra
hardware complexity.
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