
Levels of Decentralization and Trust in Cryptocurrencies:
Consensus, Governance and Applications

Sarah Azouvi

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

2021

2

I, Sarah Azouvi, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has

been indicated in the work.

Abstract

Since the apparition of Bitcoin, decentralization has become an ideal praised almost

religiously. Indeed, removing the need for a central authority prevents many forms

of abuse that could be performed by a trusted third party, especially when there

are no transparency and accountability mechanisms in place. Decentralization is

however a very subtle concept that has limits.

In this thesis, we look at the decentralization of blockchains at three different

levels. First we look at the consensus protocol, which is the heart of any decentral-

ized system. The Nakamoto protocol, used by Bitcoin, has been shown to induce

centralization through the shift to mining pools. Additionally, it is heavily criticized

for the enormous amount of energy it requires. We propose a protocol, Fantômette,

that incorporates incentives at its core and that consumes much less energy than

Bitcoin and other proof-of-work based cryptocurrencies.

If the consensus protocol makes it possible to decentralize the enforcement of

rules in a cryptocurrency, there is still the question of who decides on the rules. In-

deed, if a central authority is able to determine what those rules are then the fact that

they are enforced in a decentralized way does not make it a decentralized system.

We study the governance structure of Bitcoin and Ethereum by making measure-

ments of their GitHub repositories and providing quantitative ways to compare their

level of centralization by using appropriate metrics based on centrality measures.

Finally, many applications are now built on top of blockchains. These can also

induce or straightforwardly lead to centralization, for example by requiring that

users register their identities to comply with regulations. We show how identities

can be registered on blockchains in a decentralized and privacy-preserving way.

Impact Statement

Decentralized cryptocurrencies have the potential to disrupt financial services and

give a real financial alternative to traditional institutions, especially for those who

live under abusive governments. The results in this thesis could meaningfully help

both industry and academia when designing decentralized cryptocurrencies.

First, in a world where climate change is the main challenge faced by future

generations, our Fantômette protocol could be used as an alternative to the energy

consuming Proof-of-Work. Additionally, our protocol was the first one to be argued

ε − (k, t)−robust (under the adversary specifications that we detail in this thesis).

This type of property together with our research on game theory and security has

the potential to impact the way we reason about the security of blockchains.

Our work on governance was the first of its kind and has already garnered

interest from the community as it was reported on one of the major cryptocurrency

media at that time, Coindesk [1]. It thus has the potential to generate a new line

of research around the quantification of centralization that could have a real impact

on how governance structures are designed, as it would help measure their level of

openness and centralization.

Lastly, our work on identity registration could help make blockchains more

mainstream as, in order to comply with regulations, many services will have to ask

for more information about users. We present a way to do this without compromis-

ing the privacy of users.

Finally, the content of this thesis has been presented on multiple occasions,

both at academic venues and industry conferences. It is also available freely online.

Acknowledgements

I am so grateful I had the opportunity to work on such a fascinating topic that I

believe could have a real positive impact on society. This would not have been

possible without the support of many people. Sarah Meiklejohn who took me as

her PhD student, introduced me to exciting research problems, and gave me the

freedom to pursue my interests. George Danezis, my second supervisor who pro-

vided general guidance and before that supervised my MRes, along with Gianluca

Stringhini. Both contributed to my reconversion into information security. Philip

Treleaven who funded my PhD and supported my change of topic in the early stage

of my MRes.

I am grateful for my co-authors who contributed to the work in this thesis:

Mustafa Al-Bassam, Shehar Bano, Alexander Hicks, Mary Maller, Patrick Mc-

Corry, Steven Murdoch Alberto Sonnino.

I cannot thank all of my office mates in 6.22 enough. They made this PhD

experience enjoyable and gave me an academic family, and everyone at UCL Pole

Fitness Society who provided me a space to relax and have fun outside of work.

This would not have been the same without you.

I am also grateful to Henri Stern and all the Protocol Labs team and Evan

Cheng and the Calibra team for exciting collaborations.

Finally, I would like to thank all my friends and family, especially my mother,

my brother, and my cousin Eva for their continuous love and support. Lastly, Alex,

my partner in all aspects of my life, one sentence would not be enough to thank you

for your love and support. You push me to be a better person.

Contents

1 Introduction 13

1.1 Problem statement . 13

1.2 List of Papers . 17

2 Background Definitions and Notation 20

2.1 Cryptographic Primitives and Notation 20

2.1.1 Digital signatures . 20

2.1.2 Hash functions . 21

2.2 Blockchains and Cryptocurrencies 21

2.2.1 Bitcoin and Ethereum . 21

2.2.2 Centralization . 25

2.2.3 Proof-of-stake . 27

3 Literature Review and Related Work 29

3.1 Blockchain Centralization . 30

3.2 Proof of Stake Consensus Protocols 30

3.3 BlockDAGs . 33

3.4 Blockchain Security and Incentives 34

3.5 Governance . 37

3.6 Identity Management on Blockchains 38

4 Betting on Blockchain Consensus with Fantômette 40

4.1 Background . 41

4.1.1 Additional Cryptographic Primitives 42

Contents 7

4.1.2 BlockDAGs . 44

4.1.3 Consensus as a game . 46

4.2 Modelling Blockchain Consensus 48

4.2.1 Assumptions . 48

4.2.2 A model for leader election 49

4.2.3 Blockchain-based consensus 52

4.3 Caucus: A Leader Election Protocol 55

4.3.1 Our construction . 55

4.3.2 Security . 59

4.3.3 Grindability . 62

4.4 Fantômette: A Consensus Protocol 63

4.4.1 Protocol specification . 64

4.4.2 Incentives . 67

4.4.3 Compound effect . 69

4.5 Security of Fantômette . 70

4.5.1 Adversary Specification 70

4.5.2 Security arguments . 73

4.5.3 Simulations . 89

4.6 Limitations . 91

4.7 Conclusions . 93

5 Egalitarian Society or Benevolent Dictatorship: The State of Cryp-

tocurrency Governance 94

5.1 Methodology . 96

5.1.1 Comparison with programming languages 96

5.1.2 Data collection . 97

5.1.3 Centrality metrics . 98

5.2 Data Analysis . 99

5.2.1 Contributors to the main codebase 99

5.2.2 Commenters on the main code base 102

5.2.3 Improvement Proposals for Bitcoin and Ethereum 104

Contents 8

5.2.4 Diversity of communities 105

5.3 Discussion . 107

5.4 Conclusions . 109

6 Who Am I? Secure Identity Registration on Distributed Ledgers 110

6.1 Background . 112

6.1.1 Public-key encryption . 112

6.1.2 Blind signatures . 112

6.1.3 The web of trust . 112

6.2 Definitions and Threat Model . 113

6.3 Decentralized Registration . 115

6.3.1 Basic web of trust . 116

6.3.2 Blinded web of trust . 118

6.3.3 Multi-Casascius . 120

6.3.4 Mix-network . 123

6.4 Implementation and Deployment 126

6.4.1 Overview . 126

6.4.2 Technical specification . 127

6.4.3 Costs . 128

6.5 Conclusion . 128

7 Conclusion and Open problems 130

Bibliography 131

List of Figures

2.1 Block structure (simplified). 22

2.2 Blockchain fork. 23

4.1 Example of a blockDAG. A full arrow indicates a bet (Bprev) and a

dashed arrow indicates a reference (Bleaf). 46

4.2 The Caucus protocol. 56

4.3 Example of two blocks added on competing chains. 73

4.4 A visual sketch of the proof of Theorem 4.5.2. A participant placing

a bet between x2 and y2, and y1 and z1 must have placed their bet on

x2 first, thus z1 references x2. 76

4.5 Results from our simulation, averaged over 150 runs and consider-

ing up to 50 non-altruistic players (out of a total of 150). 89

5.1 The coverage of each file in a given repository, as determined by

the number of authors that have contributed to that file. Different

clients are grouped according to the cryptocurrency they support. . . 100

5.2 The evolution of the Satoshi and Nakamoto indexes over time. The

values for Ethereum are in blue, for Bitcoin in red, and for Rust in

green. 102

5.3 Number of comments per commenters per month. 104

5.4 Improvement Proposals for Bitcoin and Ethereum. 106

List of Figures 10

6.1 The Multi-Casacius protocol from Section 6.3.3; for ease of expo-

sition we present a version of the protocol that does not support

revocation. The dashed line denotes the separation between the first

phase (the formation of the key) and the second phase (the forma-

tion of the onion) of the protocol. 122

List of Tables

3.1 Comparison of different PoS consensus protocols 33

5.1 The open-source repositories for the various cryptocurrencies we

consider. For Ethereum and Ethereum Classic, the listed reposito-

ries contain the code for the Go, C++, and Python versions of the

client. Parity is compatible with both Ethereum and Ethereum Classic. 98

5.2 Centrality metrics used. 99

5.3 Centrality metrics for the number of contributors per files in the

repositories and the number of comments per author in the pull re-

quests and issues . 101

5.4 p-values for the Kolmogorov-Smirnov test on the number of authors

per file. 101

5.5 Minimal number of commenters that contribute to x% of all the

comments. 103

5.6 p-values for the number of comments per author 105

5.7 Centrality metrics for the number of comments per author. 105

5.8 Sørensen-Dice Coefficient for the 30 most commenters and

Weighted Sørensen-Dice Coefficient for all the commenters 108

6.1 The different properties of a blockchain-based registration protocol

and whether or not they are satisfied by our various constructions.

No circle indicates that the property is not satisfied, a filled circle

indicates it is, and a partially filled circle indicates it is partially

satisfied. 116

List of Tables 12

6.2 Cost for operations, where all data is stored on the blockchain. . . . 129

Chapter 1

Introduction

Connaître ce n’est pas démontrer, ni expliquer. C’est accéder à la vi-

sion. Mais pour voir, il convient d’abord de participer.

Antoine de Saint-Exupéry - Pilote de guerre (1942)

1.1 Problem statement
Motivated by a rejection of any central authority, Bitcoin was created by the

pseudonymous Satoshi Nakamoto [2]. It is a digital currency, not regulated by

any central bank or government, which relies on a peer-to-peer network to function.

In this system, no one entity can act to censor transactions or prevent individuals

from joining the network (as is possible with traditional institutions [3]). Decentral-

ization has long been some sort of ideology to cipherpunks and crypto-anarchists;

whether it comes to financial freedom (e.g., Bitcoin), privacy and anonymity (e.g.,

Tor) or data sharing (e.g., BitTorrent). Indeed such decentralized systems help de-

fend human rights around the world [3, 4, 5], especially to those under oppressive

governments. The ideal decentralized system does not depend in any way on any

single party. Troncoso et al. [6] give an overview of decentralized systems, defin-

ing a decentralized system as “a distributed system in which multiple authorities

control different components and no single authority is fully trusted by all others”.

This highlights the fact that every component of the system should be decentral-

ized. This can be hard to achieve in practice, and the level of decentralization of

a system should always be looked at critically. For example, a single authority

1.1. Problem statement 14

controlling a distributed system, whose components are running on different ma-

chines, is not decentralized. Similarly, a decentralized system where all important

parties are independent but under the jurisdiction of a single government may not

truly be decentralized. All these independent parties may also depend on a very

few hardware manufacturers (or other service providers). A central component of

a decentralized system is a consensus protocol, by which the system’s participants

can agree on its current state and use that information to take various actions. In the

case of Bitcoin, this means appending transactions to a ledger, also known as min-

ing. Consensus protocols have been studied for decades in the distributed systems

literature, and classical protocols such as Paxos [7] and PBFT [8] have emerged as

“gold standards” of sorts, in terms of their ability to guarantee the crucial properties

of safety and liveness even in the face of faulty or malicious nodes.

Bitcoin has renewed interest in consensus protocols, due largely to two crucial new

requirements: openness and incentivization. First, classical consensus protocols

were designed for a closed and relatively small set of participants, whereas in an

open (or “permissionless”) setting the goal is to enable anyone to join. This re-

quires the design of new consensus protocols that can both scale to handle a far

greater number of participants, and also ones that can address the question of Sybil

attacks [9], as participants may no longer be well identified. Bitcoin solves this by

using a consensus protocol sometimes referred to as Nakamoto protocol or Proof-

of-Work (PoW) where, in order to gain the right to enter new information in the

system, a participant must solve a computational puzzle. In theory, each peer in

the network has an amount of “power” proportional to their computing capabilities.

Provided a majority of the computational power is honest, only valid information

enters the ledger. The underlying feature of this system is a globally visible, append-

only ledger or blockchain.

This has in fact been proved secure [10, 11], but provides Sybil resistance by

requiring enormous amounts of computational power to be expended. As such,

it has also been heavily criticized for the large amount of electricity that it uses.

Furthermore, it has other subtle limitations; e.g., it does not achieve any notion

1.1. Problem statement 15

of fully deterministic finality and some attacks have been found on its incentive

scheme [12, 13].

With its rise in popularity, the price of Bitcoin has increased exponentially,

and the price of mining has followed this trend with the apparition of ASIC mining

hardware. As a result, a phenomenon known as mining pools has appeared in which

miners join their resources to mine, together, more blocks. This goes against the

decentralized ideal originally envisioned. If few miners were to control most of the

system, they could collude and abuse the system and its users easily by, for example,

censoring some transactions or other miners.

Additionally, there is the question of who makes the rules in the first place.

Even if the enforcement of the rules is decentralized through the consensus pro-

tocol, if a central authority was able to decide on these rules the system would

not be truly decentralized. For example, in the case of Bitcoin, its pseudonymous

creator Satoshi Nakamoto made many arbitrary decisions: he decided the time in-

terval between block generation, the mining reward, or the size of the blocks. These

are very important decisions that affect the security and performance of Bitcoin

and have generated heated arguments. Especially after Satoshi Nakamoto withdrew

from the project, it was not clear who could have the authority to make impor-

tant decisions. There is indeed a governance structure in all blockchains, and these

governance structures have a seemingly inherent degree of centralization. Most

cryptocurrencies address this by open sourcing their code and opening their proto-

cols to so-called “improvement proposals,” in which anyone can propose changes

to the high-level protocol. These improvement proposals serve not only to diminish

the degree of centralization in the maintenance of the platform, but also provide

a significant degree of transparency into the decision-making process. In estab-

lished platforms, however, it is not clear what punishment is possible if the core

developers misbehave. Ultimately users might not have any choice but to accept

their decision. The following is thus an important open question: in cryptocurren-

cies, where participants typically feel a strong sense of ownership, to what extent

are existing platforms open and transparent? A centralized and opaque governance

1.1. Problem statement 16

structure could lead to abuse and loss of trust.

Finally, blockchains have received a lot of attention for their potential appli-

cations. In addition to being used as the underlying architecture for cryptocur-

rencies, they have been discussed for achieving decentralized versions of identity

management, 1 DNS and public-key infrastructures, 2 notary publics,3 and file stor-

age.4 While centralized versions of these systems already exist, the attraction of

distributed ledgers is that they minimize the extent to which users must place trust

in a single entity such as a certificate authority. For some of these applications,

it may be necessary to know some information about their users, e.g., gambling

services would like to know that their users are over 18. In all existing deploy-

ments of distributed ledgers, users identify themselves using pseudonyms — or even

more anonymous identifiers, as in the cryptocurrency Zcash [14] — that they create

themselves. The use of pseudonyms is important for two reasons: first, all exist-

ing distributed ledgers are transparent, meaning their contents are globally visi-

ble, so having users reveal their real-world identities would completely violate their

privacy. Second, allowing users to generate their own identifiers is necessary to

preserve the openness of the system and allow anyone to join. While these “on-

chain” pseudonyms are thus seemingly quite useful (and to some extent necessary)

in public distributed ledgers, they make it challenging to associate the necessary

information about users without compromising their privacy. Ideally, users should

not be forced to reveal to anyone the tie between their real-world identity and their

pseudonym(s), as this compromises their entire privacy. The question is then how

to provide a way of registering certain attributes without undermining the privacy

of users?

As argued above, a decentralized system requires all of its components to be

decentralized, at least to some extent. This thesis tackles the outlined problems of

decentralization within blockchains at three different levels. First, at the protocol

1https://onename.com
2https://namecoin.info
3https://proofofexistence.com/
4https://filecoin.io

https://onename.com
https://namecoin.info
https://proofofexistence.com/
https://filecoin.io

1.2. List of Papers 17

level by proposing a new consensus protocol that provides a lower barrier to entry.

Second, at the governance level by quantifying the centralization in the governance

structure of decentralized blockchains. Third and finally, at the application layer by

proposing decentralized registration systems that maintain privacy.

We present in Chapter 4 a new consensus protocol, Fantômette based on proof-

of-stake (PoS). The idea behind proof-of-stake is to offer lower energy consumption

than the current protocol by using stake (i.e. the amount of coins that one owns in

the currency) instead of using proof-of-work to handle Sybils. Our protocol thus

solves the problem of how to enforce the rules of a cryptocurrency in a decentralized

manner without relying on intensive energy consumption. Additionally, proof-of-

stake does not require any investment in hardware and thus lowers the barrier to

entry, aiding the protocol to be executed in a more decentralized manner.

In Chapter 5, we quantify the level of centralization in the governance process

of Bitcoin and Ethereum, two of the main cryptocurrencies, by making measure-

ments on their Github repositories and providing a quantitative method of compari-

son.

Finally, in Chapter 6 we propose different decentralized registration processes

for blockchains that maintain some notions of privacy and decentralization.

The outline of the rest of this thesis is as follows. In Chapter 2, we give some

general background on the concepts discussed in this thesis as well as the notations

that will be used. In Chapter 3, we present a literature review of the research most

closely related to this thesis and discuss the conclusions from that literature review.

We conclude in Chapter 7 and present some open problems in the field.

1.2 List of Papers

This section presents the author’s published works, ordered chronologically. All

papers are joint work.

1.2. List of Papers 18

Sarah Azouvi, Mustafa Al-Bassam, and Sarah Meiklejohn. Who am I? Se-

cure identity registration on distributed ledgers. In Data Privacy Management,

Cryptocurrencies and Blockchain Technology, pages 373–389. Springer, 2017

This paper proposes different decentralized registration protocols for public keys

on distributed ledgers. The problem was introduced by Meiklejohn who suggested

looking at a decentralized version of Casascius coins [16]. The author then de-

signed the proposed protocols and associated threat model. Al-Bassam wrote the

implementation. We present this work in Chapter 6.

Sarah Azouvi, Mary Maller, and Sarah Meiklejohn. Egalitarian Society

or Benevolent Dictatorship: The State of Cryptocurrency Governance. In 22nd

International Conference on Financial Cryptography and Data Security, 2018

This paper proposes quantitative methods to analyze the level of decentralization in

the governance of Bitcoin and Ethereum. The metrics used were discussed by all

the authors. The author scraped the data and computed all the graphs and measures.

This work is presented in Chapter 5.

Sarah Azouvi, Alexander Hicks, and Steven J Murdoch. Incentives in Se-

curity Protocols. In Cambridge International Workshop on Security Protocols,

pages 132–141. Springer, 2018

This position paper argues that incentives are paramount in security protocols and

should be included in every stage of their development. The authors illustrate this

argument with three examples: EMV (card payments), Tor and cryptocurrencies.

The idea originated from a discussion between Hicks and the author regarding Tor

and cryptocurrencies. Murdoch then suggested the example of EMV. Hicks wrote

the part about Tor, Murdoch about EMV and the author about cryptocurrencies. The

part that the author wrote is used in Chapter 3.

1.2. List of Papers 19

Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick

McCorry, Sarah Meiklejohn, and George Danezis. Consensus in the age of

blockchains. In Advances in Financial Technologies, 2019

This paper is a systemization of knowledge of blockchain consensus protocols. The

idea emerged from a reading group organized weekly by Bano in which all the

authors participated. The author suggested the chronological approach of consider-

ing first traditional consensus protocols as they were designed before Bitcoin and

comparing them to the newer blockchain consensus protocols. Bano took all the

initiatives regarding the outcome of the paper. The author wrote the proof-of-stake

part as well as the part on incentives. The part that the author wrote is used in

Chapter 3.

Sarah Azouvi, Patrick McCorry, and Sarah Meiklejohn. Betting on

blockchain consensus with fantomette. arXiv preprint arXiv:1805.06786, 2018

This paper proposes a new proof-of-stake consensus protocol. The leader election

protocol Caucus and its modelization were designed by Meiklejohn and the author,

the Ethereum implementation of a previous version of the leader election [21] was

designed by McCorry. The Fantômette protocol was designed by the author who

also proposed the associated security model and the proofs and performed the sim-

ulations. This work is presented in Chapter 4.

Sarah Azouvi and Alexandre Hicks. SoK: Tools for Game Theoretic Mod-

els of Security for Cryptocurrencies. arXiv preprint arXiv:1905.08595, 2019

This paper is a systemization of knowledge of the work that bridges the fields of

computer science and game theory; specifically looking at models that could be

used when designing blockchains protocols. The author came up with the idea of

the paper. The outline of the paper was discussed between both authors. The author

wrote most of the paper. Part of this work is used in Chapter 2.

Chapter 2

Background Definitions and Notation

In this chapter, we give some background on the concepts that will be discussed

in this thesis. We start by introducing the necessary cryptographic primitives and

notations. Then in Section 2.2 we give some general background on blockchains,

including on proof-of-stake. Some parts of this chapter are based on [22].

2.1 Cryptographic Primitives and Notation
Following standard cryptographic notation, we use x $←− S to denote the process of

sampling a member uniformly from S and assigning it to x. In particular, we use

x $←− [n] to denote sampling x uniformly from {1, . . . ,n}. We use y←A(x1, . . . ,xn;R)

to denote running algorithm A on inputs x1, . . . ,xn and random coins R and assigning

its output to y. By y $←− A(x1, . . . ,xn) we denote y← A(x1, . . . ,xn;R) for R sampled

uniformly at random. Algorithms are randomized unless explicitly noted otherwise.

“PT” stands for “polynomial time.”

We say that two distribution ensembles {Xn} and {Yn} are computationally

indistinguishable if for any non-uniform probabilistic polynomial time algorithm

A: |Pr[A(Xn) = 1]−Pr[A(Yn) = 1]| is negligible; we denote this as X ≈ Y .

2.1.1 Digital signatures

Both Bitcoin and Ethereum rely on ECDSA for signing. In what follows we use

(pk,sk) $←− Sig.KeyGen(1λ) to denote key generation, σ
$←− Sig.Sign(sk,m) to denote

signing, and 0/1← Sig.Verify(pk,m,σ) to denote verification.

2.2. Blockchains and Cryptocurrencies 21

2.1.2 Hash functions

A hash function is a function H : {0,1}∗→{0,1}`; i.e., a function that maps strings

of arbitrary length to strings of some fixed length `. When a hash function is mod-

eled as a random oracle, this means that computing H(x) is modeled as (1) looking

up x in some global map and using the value of H(x) if it has been set already, and

(2) if not, picking a random value y $←− {0,1}` and setting H(x)← y in the map.

There are many desired properties of hash functions that trivially hold when

they are modeled as random oracles. For example, hash functions satisfy pre-image

resistance meaning that given a value h, it is not feasible except with negligible

probability to find a value x such that H(x) = h. Hash functions are also collision-

resistant meaning that it is not computationally feasible to find two values x1 and x2

such that H(x1) = H(x2) and second pre-image resistance meaning that given x1, it

is not computationally feasible to find x2 such that H(x1) = H(x2).

2.2 Blockchains and Cryptocurrencies

2.2.1 Bitcoin and Ethereum

Bitcoin is a decentralized cryptocurrency, meaning that it is maintained by a net-

work of peers rather than a central authority. In order to keep track of transac-

tions and thus of the balance of accounts, Bitcoin uses a shared public ledger called

blockchain. It is completely transparent meaning that everyone can have access to

all the transactions history. Within the system, users are represented by addresses

addr, each of which is uniquely linked to a pair of public and private ECDSA keys

(pk,sk). This provides pseudonymity to users, meaning that their identities are not

visible on the ledger, only their pseudonyms (i.e., their addresses). We denote by

addr(pk) the address associated with pk. Every time Alice wants to pay Bob us-

ing Bitcoin she generates a transaction tx(addr(pkA)→ addr(pkB)) and signs it

with her private key skA. More generally, Bitcoin transactions can have arbitrarily

many input and output addresses, in which case the transaction must be signed by

all private keys associated with the input addresses, or even m-of-n multi-signature

transactions, in which a transaction must be signed by the private keys associated

2.2. Blockchains and Cryptocurrencies 22

Figure 2.1: Block structure (simplified).

with at least m of the input addresses. Alice then broadcasts the signed transaction

to the network, which checks its validity (i.e., that the amount of Bitcoin has not

already been spent before and that the signature on the transaction is valid).

Transactions are then grouped into blocks that are chronologically ordered

by pointing to the hash of the previous block, this forms a chain of blocks or

blockchain. Due to this structure, changing one transaction in one block would

require changing all the following blocks as this will change the hash for that block.

For example, in Figure 2.1 changing tx1 will result in a new hash hi and thus in a

new hash hi+1. The blockchain is thus an append-only data structure.

In order for all the peers in the system to agree on their view of the blockchain

(i.e., to avoid double-spending), they proceed in a consensus algorithm sometimes

referred to as proof-of-work or Nakamoto Consensus. Each participant, called a

miner tries to solve a moderately-hard computational puzzle: finding a nonce such

that hi = H(hi−1||txset||nonce)< target where target is adjusted so that on average

one block is found every ten minutes, i is the height of the block and hi−1 is the

hash of the previous block. The first miner to solve this puzzle broadcasts its newly

created block (which contains txset, hi−1 and nonce) to its peers. The other miners

then check the validity of the block and add it to their blockchain. In the rare case

where two miners find a block at the same time, we say that there exists a fork in

the blockchain. Miners decide on which block to mine off of, Bitcoin then follows

the longest chain rule, meaning that whichever chain creates the most blocks is the

2.2. Blockchains and Cryptocurrencies 23

Figure 2.2: Blockchain fork.

one that is considered valid. Blocks that have not been included in that chain are

thus abandoned. For example in Figure 2.2, the longest chain is {1,2,3,4}, meaning

that blocks 2’ and 3’ are abandoned and will not be included in the blockchain.

In order to incentivize peers to join the network, Bitcoin has a reward scheme

where the miner who gets to mine the block that is added to the blockchain re-

ceives an amount of bitcoins (12.5 bitcoins as of 2019) to compensate them for the

(computational) work that they expend. They also receive optional transaction fees

added by the users. The security of Bitcoin and other proof-of-work cryptocurren-

cies relies on the fact that it is costly to create a block due to the amount of energy

required. An adversary would need to buy a lot of computational power in order to

deliberately create a fork. This property gives to the blockchain most of its desir-

able qualities. First the blockchain is immutable, this is due to the price of creating

blocks as well as their structure (linked by hash) explained above. If an adversary

was to change the content of a block, it would need to change all of the following

ones, incurring a large cost. This data structure hence provides full auditability as

anyone with access to the blockchain can thus verify the whole history without fear

of it being altered. This implies that nodes in the system need not trust each other.

Joining the protocol requires no registration of any sort, giving it its pure de-

centralized and open nature. The computational cost behind proof-of-work then

solves the problem of Sybils where an adversary creates many identities to control

the system. Decentralization and openness are one of the main properties that differ-

entiate a blockchain consensus protocol from more traditional consensus protocols:

Byzantine Fault Tolerant (BFT) consensus protocols [8]. In classical consensus

2.2. Blockchains and Cryptocurrencies 24

protocols, the set of participants needs to be known in advance and is closed, not

everyone can decide to take part.

Bitcoin also allows users to program smart contracts, thanks to its scripting

language, Script. A simple example of smart contracts is multisignature transac-

tions, mentioned earlier, i.e., a transaction that requires m signatures, out of a set of

n designated public keys. As another example, Bitcoin provides a Timelock smart

contract primitive that prevents some coins from being used before a specified time

in the future. Timelocks can then be used for the design of more complex func-

tionalities, such a payment channels, that allow parties to exchange funds offline.

The execution of a smart contract is enforced by the consensus protocol, just like

the transactions. In order to prevent infinite loops, Bitcoin’s script language is not

Turing complete.

Ethereum is a project that works similarly to Bitcoin but provides a Turing-

complete language, allowing for the definition of more complex smart contracts.

For example popular Ethereum smart contracts include electronic voting or cre-

ation of new tokens (ERC20). In Ethereum, a smart contract consists of program

code, a storage file, and an account balance. The program’s code is executed by the

network, which is responsible for maintaining a consistent view of the state of every

contract in the blockchain. Users can call the contract by sending transactions to its

address, which updates the state of the contract in the blockchain. Moreover, the ex-

ecution of a program’s instructions induces a cost; the currency used to pay for it is

called gas. Ethereum transactions contain a destination address to (that can specify

either the location of a stateful smart contract, or just a regular user-owned address),

an amount amt to be sent (denominated in ether), an optional data field data, a gas

limit, and a signature σ authorizing the transaction with respect to the sender’s key-

pair (pk,sk) (just as in Bitcoin). We denote the process of creating a transaction as

(ignoring all but the data field) tx $←− FormTx(sk,data), and the process of verifying

a transaction as 0/1← VerifyTx(tx).

2.2. Blockchains and Cryptocurrencies 25

2.2.2 Centralization

2.2.2.1 Mining Pools

Looking back at the initial success of Bitcoin, it has evolved to become different

in many ways from the intended design and the idea of “one-CPU-one-vote” envi-

sioned by Nakamoto. Because the price of mining has increased exponentially with

the popularity of Bitcoin, miners have started forming mining pools, where they

join their resources to mine, together, more blocks. The reason for doing so is that

by pooling their resources miners will be able to mine more blocks, they will then

share their gain accordingly, meaning that their average payoff is theoretically the

same but their variance is reduced as they do not need to create a block in order to

get some reward. Due to the depreciation of the hardware and the constant cost of

electricity, this is desirable. Indeed with a high variance a “small” miner may have

to wait too long before they receive a reward and may not be able to pay for their

electricity before they do so. Mining hardware itself has changed, as ASICs have

become more popular, and essential for profitable mining, increasing even more the

barrier to entry to mining.

Pools are obviously a big threat to the security of cryptocurrencies as they

could enable 51% attacks (where an adversary takes control of more than half of

the computational power), which have already happened to other cryptocurrencies.

As of August 2019, the most important 51% attack has targeted Ethereum Clas-

sic, which is the 16th largest cryptocurrency by market capitalization [23]. Attacks

have gradually targeted cryptocurrencies that are ranked higher on the list and it can

be expected that this trend will continue, in particular when prices of such attacks

are favored by market downturns.

2.2.2.2 Governance model

Cryptocurrencies have an inherent central component as someone has to come up

with the rules in the first place. In this section we are concerned with who makes

the rules in Bitcoin and Ethereum and especially how they are updated.

2.2. Blockchains and Cryptocurrencies 26

Bitcoin Bitcoin [2] was created by the pseudonymous Satoshi Nakamoto, who de-

ployed the currency on January 3 2009. There has been no sign of him since 2011,

when he said he would “move on to other things” and handed over control of the

project to some of the members of the community who were prominent at that time.

In September 2012, some important members of the community created the Bitcoin

Foundation, a non-profit organization based on the model of the Linux Founda-

tion, but today there is also a significant development effort by Blockstream [24],

a for-profit company run by the core developers, which has attracted significant

investment [25].

Ethereum Ethereum [26] was created by Vitalik Buterin, and launched on July 30

2015. Its initial development was done by the Ethereum Foundation, a Swiss non-

profit, but today there is also a significant development effort by Parity [27], which

is a for-profit company developing one of the main Ethereum clients.

Improvement Proposals (IP) No system is perfect, and cryptocurrency protocols

sometimes need updating due to flaws or vulnerabilities. These changes can be

fundamental and affect all users. To keep the improvement decision process open

and fair, most cryptocurrencies have an Improvement Proposal system, where any-

one can propose changes to the protocol and discuss existing proposals. If support

exists for a proposal, it may be incorporated into the codebase via one of the core

developers merging their pull request. There is no formal definition on how an im-

provement proposal is agreed upon [28]. The Improvement Proposals process is

mainly happening on GitHub, however there are many other places for discussion,

such as mailing lists, forums and IRC.

Chain Splits When disagreements occur in cryptocurrency communities, the only

way to resolve them might be for the communities to split. Anyone disagreeing with

the current core developers can fork the code and create their own currency. This has

happened in both Ethereum and Bitcoin. In June 2016 more than 50M USD of ether

were stolen due to a code vulnerability [29]. The Ethereum Foundation decided to

roll-back in time in order to take the stolen ether back from the hacker. Arguing

that this contradicts the fundamental immutability property of blockchains, some

2.2. Blockchains and Cryptocurrencies 27

members of the community forked Ethereum and Ethereum Classic was born [30].

The Bitcoin “block size” debate has been ongoing for years. Arguing that one of the

main limitations of the Bitcoin protocol is scalability and that this problem could

be solved with larger block sizes, some members of the community forked Bitcoin,

resulting in Bitcoin Cash in August 2017 [31], as well as Bitcoin Gold in October

2017 [32]. Bitcoin Cash also split in November 2018, resulting in Bitcoin SV [33].

2.2.3 Proof-of-stake

By its nature, PoW consumes a lot of energy. Thus, some alternative consensus

protocols have been proposed that are more cost-effective. As of this writing, ar-

guably the most popular of these is called proof-of-stake (PoS) [34, 35, 36, 37, 38].

If we consider PoW to be a leader election protocol in which the leader (i.e., the

miner with the valid block) is selected in proportion to their amount of computa-

tional power, then PoS can be seen as a leader election protocol in which the leader

(i.e., the participant who is eligible to propose a new block) is selected in proportion

to some “stake” they have in the system. This can be represented as the amount of

coins they have (either in some form of escrow or just in total), or the age of their

coins.

As security no longer stems from the fact that it is expensive to create a block,

PoS poses several technical challenges [39]. The main three are as follows: first,

the nothing at stake problem says that miners have no reason to not mine on top of

every chain, since mining is costless, so it is more difficult to reach consensus.

Second, PoS allows for grinding attacks, in which once a miner is elected

leader they privately iterate through many valid blocks (again, because mining is

costless) in an attempt to find one that may give them an unfair advantage in the

future (e.g., make them more likely to be elected leader).

Finally, in a long range attack, an attacker may bribe miners into selling

their old private keys, which would allow them to rewrite the entire history of the

blockchain.

PoS provides an arguably lower barrier to entry than PoW, as users only need

to invest in the cryptocurrency. PoW requires hardware investment (ASICs), which

2.2. Blockchains and Cryptocurrencies 28

depreciates with time, as well as cooling devices, as it is no longer possible to mine

with one’s GPU due to the prevalence of mining pools. After the initial investment,

a PoS protocol only requires one computer to be run, the electricity consumption is

thus far lower.

Chapter 3

Literature Review and Related Work

In this chapter, we review the work that is related to this thesis. We present only the

work that appeared before the first submission of this manuscript in August 2019.

First in Section 3.1 we review the general work that exists on the (de)centralization

of cryptocurrencies.When it comes to the decentralization of the enforcement of the

rules (i.e., the consensus protocol), the literature is very diverse. The work that most

closely resembles ours is the cryptographic literature on proof-of-stake. We evaluate

and compare the state-of-the-art proposals alongside the requirements of scalability

and incentivization in Section 3.2. As we will see, these protocols largely under-

consider the game theoretic aspects of the problem, which motivated our work in

Chapter 4. An interesting concept that has been introduced in the context of scala-

bility of blockchains are blockDAGs, which our Fantômette protocol also uses. We

review the work related to blockDAGs in Section 3.3. Then we discuss the incentive

challenge linked to decentralized cryptocurrencies in Section 3.4, which motivated

our security model in Chapter 4.

In Section 3.5, we review the existing literature on the governance of decen-

tralized cryptocurrencies. As we will see there is not much work that has been done

on the quantitative analysis of governance, which is what motivated our work in

Chapter 5.

Finally, in Section 3.6 we review the literature on identity management on

blockchains. Some parts of this chapter are based on [19, 22].

3.1. Blockchain Centralization 30

3.1 Blockchain Centralization
As previously argued, there are different layers where centralization can be ob-

served (e.g. mining, governance). Much of the previous research examining decen-

tralization on blockchains focuses specifically on Bitcoin, or on the general gover-

nance issues associated with blockchains. In terms of centralization within Bitcoin,

Gervais et al. observe that some of the key operations in Bitcoin, in particular the

mining process and the maintenance of the protocol, are not decentralized [40]. The

centralization of mining has been empirically analyzed by Gencer et al. [41], who

measured how decentralized Bitcoin and Ethereum’s networks are. They found that

three or four mining pools control more than half of the hash power of the network.

This highlights the need for further research studying this occurrence of centraliza-

tion and how decentralization can be maintained in practice.

Moore and Christin find a high degree of centralization in popular Bitcoin ex-

changes [42], and observe that popular exchanges are more likely to suffer security

breaches. Böhme et al. look at the various centralized intermediaries within the

broader Bitcoin ecosystem, such as currency exchanges, wallet providers, mixers,

and mining pools [43]. They also evaluate the decisions that the designers make

regarding how much money there should be in the system.

In terms of other cryptocurrencies, Reyes et al. examine the theft of 3.6 mil-

lion ether from The DAO in June 2016, and discuss the lessons learned and the

potential strengths and weaknesses of decentralized organizations [44]. Gandal and

Halaburda analyze how network effects affect competition in the cryptocurrency

market [45]. In particular, they look at the competition between different currencies

and competition between cryptocurrency exchanges and observe that there was a

“winner takes all” effect in early markets, but not today.

3.2 Proof of Stake Consensus Protocols
A number of proof-of-stake systems proposed in the cryptographic literature have

provably secure protocols [46, 37, 47]. A common theme in these systems is to ran-

domly elect a leader from among the participants via a lottery, who then appends

3.2. Proof of Stake Consensus Protocols 31

a block to the blockchain. Leader elections may be public, meaning that the out-

come is visible to all the participants [37, 47]. Alternatively, in a private election,

the participants use private information to check if they have been selected as the

leader, which can be verified by all other participants using public information [46].

Leader elections based on private lotteries are resilient to DDoS attacks because

participants privately check if they are elected before revealing it publicly in their

blocks, at which point it is too late to attack them.

The nature of the lottery varies across different systems, but broadly it is either

collaborative (i.e., it requires coordination between the participants) or independent.

In Ouroboros [37], the participants run a multiparty coin-tossing protocol to agree

on a random seed. The participants then feed this seed to a pseudo-random function

defined by the protocol, that elects the leader from among the participants in pro-

portion to their stake. In Ouroboros Praos [46] and Snow White [47], participants

independently determine if they have been elected. Snow White selects participants

for each epoch based on the previous state of the blockchain. Each of them inde-

pendently checks if they have been elected as the leader. Snow White uses similar

criteria for leader election as Bitcoin, i.e., finding a pre-image that produces a hash

below some target. Participants are however limited to computing only one hash per

time step (assuming access to a weakly synchronized clock) and the target takes into

account each participant’s amount of stake. In Ouroboros Praos, participants gen-

erate a random number using a verifiable random function (VRF). (See Section 4.1

for some background on VRF.) If the random number is below a threshold, it in-

dicates that the participant has been elected as the leader, who then broadcasts the

block along with the associated proof generated by the VRF to the network. Both

Ouroboros Praos and Snow White require only one broadcast message to prove

eligibility (as we do in Caucus in Chapter 4). Another comparable protocol is Algo-

rand [38], which proposes a scalable Byzantine agreement protocol. In Algorand,

a committee is elected at each step of the protocol by a “cryptographic sortition”

that also uses VRF. Each committee member then gets the opportunity to vote on a

block. The number of messages exchanged is O(T ×τ) where τ is the expected size

3.2. Proof of Stake Consensus Protocols 32

of the committee and T the expected fraction of honest players among them. The

numerical values given for these parameters are τ = 2000 and T = 0.685, assuming

there are 80% of honest users in total. This protocol is thus less scalable than our

protocol Fantômette that requires only one message broadcast. The cryptographic

sortition used in Algorand inspired Caucus in Chapter 4.

As for the incentives, in Ouroboros and Ouroboros Praos [46], the honest strat-

egy is a δ -Nash equilibrium. In a subsequent paper [48], they propose a reward-

sharing scheme that ensures that the desired number of pools emerge, i.e., that the

system is sufficiently decentralized. They do not provide any game-theoretic guar-

antees that consider irrational players.

In Snow White [47], the incentive structure is based on that of Fruitchains [49],

where honest mining is a Nash Equilibrium (NE) resilient to coalitions. Similarly

to Ouroboros they do not consider incentives with irrational players.

Algorand does not address the question of incentives.

Unlike Ouroboros Praos, Algorand and Snow-white, Fantômette does not re-

quire any synchronized clocks as liveness is achieved by the means of a Verifiable

Delay Function [50] (i.e., the players wait for the VDF to compute in the case where

no leaders are elected, they do not need to have synchronized clocks).

Casper [51] is still a work in progress, so it is difficult to say how well it

addresses scalability. On the topic of incentivization, it proposes that following that

protocol should be a Nash equilibrium and that an attacker should lose more in an

attack than the victims of the attack. Our protocol uses a similar idea of adding a

very harsh financial punishment to equivocating players.

Other non-academic work proposes PoS solutions [35, 52, 53, 54], which are

related to Fantômette in terms of the recurrent theme of punishment in the case of

misbehavior.

To summarise, unlike Fantômette, most existing proposals for non-PoW

blockchain consensus protocols provide at most a basic game-theoretic analysis,

using techniques like Nash equilibria, but do not consider more advanced game-

theoretic properties that consider coalitions or the presence of Byzantine adver-

3.3. BlockDAGs 33

Algorand Snow White Ouroboros Praos Fantomette

Messages T × τ 1 1 1

Liveness Synchronised Clocks Synchronised Clocks Synchronised Clocks VDF

Equilibrium NA Coalition NE Coalition NE ε-robustness

Table 3.1: Comparison of different PoS consensus protocols

saries. Furthermore, Fantômette uses blockDAGs and an incentive scheme to move

away from BFT-style algorithms, which are inherently less scalable. See Table 3.1

for a comparative summary of Algorand, Snow White, Ouroboros Praos and Fan-

tômette. (See Chapter 4 for some background on robustness.)

3.3 BlockDAGs
SPECTRE [55] introduced the notion of a blockDAG, which was further refined

by PHANTOM [56]. In a blockDAG, the block structure is a Directed Acyclic

Graph (DAG) of blocks rather than a chain of blocks: a block can reference many

other blocks, rather than just its parent as in Bitcoin. We provide a more in-depth

background on BlockDAGs in Section 4.1.2. Our Fantômette protocol is inspired

by PHANTOM (although translated to a non-PoW setting), and in particular we use

their definition of anticone to classify blocks that are not connected well enough to

the rest of the DAG. The motivation behind PHANTOM is to provide a system that

has a better throughput than Bitcoin by having a faster block rate. The idea is that

by using a DAG, it will be easy to detect “honest” blocks from adversarial blocks

as honest blocks will form a well connected DAG as opposed to adversarial blocks

which will have fewer connections, in the DAG, to the rest of the blocks. Informally,

the protocol extracts a subDAG from the current DAG by removing nodes that are

labeled adversarial, and then performs some topological ordering function on the

remaining subDAG in order to obtain a full order on the blocks (rather than partial).

Unlike Fantômette, PHANTOM does not have a natural ordering of blocks and thus

requires a much more complex algorithm. In Fantômette, however, we use two

different types of links in the blockDAG: bets and references. This allows us to

maintain a notion of chain and thus use a rather simple fork choice rule.

3.4. Blockchain Security and Incentives 34

Avalanche [57], a recent proposal also relying on blockDAG, but in the context

of PoS, recently appeared. They propose a PBFT-style consensus protocol that

achieves a communication complexity of O(kn) for some k� n, and is thus more

expensive than Fantômette that requires a single message broadcast. They do not

consider the question of incentives.

As highlighted in this section and the previous one, most of the literature

under-considers game-theoretic security notions when designing blockchain proto-

cols. This leads to many failures on incentives that we highlight in the next section

where we review the work that has been done on the incentives of blockchains.

3.4 Blockchain Security and Incentives

Nakamoto’s original Bitcoin paper [2] provided only informal security arguments.

Several papers have since formally argued the security of Bitcoin in different mod-

els [11, 58, 10] but without consideration of incentives in most cases.

In early work in this area, Kroll et al. [59] show that there is a NE in which

all players behave consistently with Bitcoin’s reference implementation, along with

infinitely many equilibria in which they behave otherwise e.g., where they all agree

to change a rule. Attacks like selfish mining [60, 12, 61] put this into question,

showing that their model did not encompass behaviour that could realistically occur.

More recently Garay et al. [62] proved the security of Bitcoin in the Ratio-

nal Protocol Design framework [63]. Their approach is based on the observation

that Bitcoin is still working despite flaws, and they prove that Bitcoin is secure by

relying on the rationality of players rather than an honest majority. This model

still has some flaws, e.g., they do not consider fully malicious players. Moreover,

their model does not encompass attacks that have been found on Bitcoin’s incentive

structure that we now describe.

Selfish mining [60] involves a rational miner increasing their expected utility

by withholding their blocks instead of broadcasting them to the rest of the network,

giving them an advantage in solving the new proof-of-work and making the rest of

the network waste computation by mining on a block that is not the top of the chain.

3.4. Blockchain Security and Incentives 35

Inspired by techniques introduced by Gervais et al. [64], Sapirshtein et al. [12] use

Markov Decision Processes (MDP) to find the optimal strategy when doing selfish

mining. (MDP are used to help make decisions in a discrete state space where

outcomes are partially random.) They show that with this strategy, an adversary

could mount a 51% attack with less than 25% of the computational power.

Another attack, the verifier dilemma [65] shows that miners are not incen-

tivized to verify the content of blocks, especially when this incurs an important

computation on their end.

Mining gaps are another type of attack on incentive structures [13, 66] where

the time between the creation of blocks increases because miners wait to include

enough transactions (in order to get the transaction fees). Both of these papers

use simulations to quantify the attacks, using techniques such as no-regret learning

where miners update their strategy at every “stage” of the game in a way to do as

close to the best strategy as possible (had it been known from the beginning) or

MDP.

Bribery attacks are another family of attacks, which are often thought of as an

example of the tragedy of the commons that describes a situation when individuals

acting selfishly affect the common good. In our context, it captures the fact that

miners have to balance their aim to maximise their profit with the risk of affecting

the long-term health of the cryptocurrency they mine, potentially reducing its price

and their profit.

Bonneau [67] first proposed that an adversary could mount a 51% attack at a

much reduced cost by renting the necessary hardware for the length of the attack

rather than purchasing it permanently. Building on this idea, a briber could just

pay existing miners to mine in a certain way, without ever needing to acquire any

hardware. This leads to a series of papers [68, 69, 70, 71, 72] that show it is possible

to introduce new incentives to an existing cryptocurrency, internally or externally,

in ways that do not require trust between miners and bribers.

Mechanisms like Ethereum’s uncle reward, which allows blocks that were

mined but not appended to the blockchain to later be referenced in another block

3.4. Blockchain Security and Incentives 36

for a reward can be used to subsidize the cost of bribery attacks [71] and selfish

mining [73, 74]. This is unfortunate, as uncle rewards were originally introduced to

aid decentralization [75] but have now been found to introduce incentives that work

against this, by reducing the mining power required to perform certain attacks.

This puts into question the value of saying that a cryptocurrency is incentive

compatible if new incentives can later be added. A cryptocurrency also does not

exist in a vacuum, and external incentives can always manifest in adversarial ways.

For example, Goldfinger attacks were proposed by Kroll et al. [59] and involve

an adversary paying miners of a cryptocurrency to sabotage it by mining empty

blocks. In some cases, even the threat of this type of attack can be enough to kill

off a cryptocurrency, as users would not want their investment’s value to deteriorate

if the attack actually happens, and would thus not invest. As a Goldfinger attack

can be implemented through a smart contract in another cryptocurrency [71], which

gives payouts when an empty block is mined in the targeted cryptocurrency, it is

not inconceivable that this could be attempted in practice. This clearly shows that

incentives from outside the cryptocurrency itself must be considered.

Budish [76] proposes an economic analysis of 51% attacks and double spend-

ing, and shows that the Nakamoto consensus has inherent economic limitations.

In particular, he shows from a strictly economic point of view that the security

of the blockchain relies on scarce, non-repurposable resources (i.e., ASICs) used

by miners as opposed to Nakamoto’s vision of “one-CPU-one-vote”, and that the

blockchain is vulnerable to sabotage at a cost that is linear in the amount of special-

ized computational equipment devoted to its maintenance.

In order to solve the failures in the incentive structure just outlined, some new

designs are being proposed. For example, blockDAGs that we already discussed

previously. When creating a new block, a miner should point to all the blocks that

they are aware of, revealing their view of the blockchain. This exposes more of the

decision making of the players. Players could still however lie and pretend not to be

aware of blocks but this is usually disincentivized by the protocol (i.e., a block that

references more blocks will have a bigger reward). Players are thus incentivized to

3.5. Governance 37

reveal the truth. We leverage this concept in Fantômette.

Among other types of consensus protocols, there are a couple that do closely

consider the topic of incentivization. SpaceMint [77] is a cryptocurrency based on

proof-of-space, and they prove that following the protocol is a Nash equilibrium.

The first version of Solidus [78], which is a consensus protocol based on PoW,

provides a (k, t)-robust equilibrium for any k+ t < f , although they leave a rigorous

proof of this for future work. We will introduce the robustness solution concept in

Chapter 4, where we use it for our security model.

3.5 Governance

From a theoretical point-of-view, De Filippi and Loveluck examine the overall

decision-making process of the Bitcoin developers [79]. In particular, they dis-

cuss the “block size” debate and the difficulty in deciding whether or not to fork

Bitcoin in order to increase the block size. Barrera and Hurder [80] propose a

game-theoretic analysis of blockchain governance. They model the decision of

implementing a new policy as a coordination game. They show that, under cer-

tain circumstances, hard forks and chain splits maximize the social welfare of a

blockchain community and the problem of “tyranny of the majority” does not arise

in the blockchain setting. Atzori gives a critical evaluation of whether blockchains

are suitable as political tools [81], and examines to which extent they can mitigate

coercion, centralization, and hierarchical structures. Reijers et al. study the ques-

tion of governance from the perspective of social contract theory and finds that it

fails to incorporate aspects of distributive justice [82]. Similarly, Lehdonvirta poses

the “blockchain paradox,” in which he argues that once you solve the problem of

decentralized governance, you no longer need blockchains [83].

From a quantitative point-of-view, Srinivasan and Lee [84] introduce a met-

ric for measuring the decentralization in cryptocurrencies which they call the

Nakamoto coefficient. We go beyond this work in Chapter 5, and use their

Nakamoto coefficient as well as other measurement techniques in order to compare

and contrast the level of decentralization in Bitcoin and Ethereum.

3.6. Identity Management on Blockchains 38

3.6 Identity Management on Blockchains
Decentralized PKI In the setting of certificate issuance, the systems we propose

in Chapter 6 are related to the idea of a public-key infrastructure (PKI). Some of

our proposed registration protocols rely on a fixed set of specified registrars. These

are related to the decentralized PKIs proposed by Fromknecht et al. [85] and the

ARPKI system [86], which both distribute the process of certificate issuance to not

only provide transparency into the process but also prevent misbehavior in the first

place. We also provide more ad-hoc settings in which we allow any user to act as

a registrar. This is related to the idea of the web of trust that we introduce later in

Chapter 6.

Anonymous credentials The notion of accessing a service in a privacy-preserving

manner can seemingly be achieved by anonymous credentials [87, 88, 89], which

allow an issuer to create credentials that vouch for a user’s identity or other generic

attributes (e.g., their age). These credentials can then be shown to a verifier in a way

that doesn’t reveal anything to the verifier beyond the fact that the user possesses

the attribute (e.g., is over 18 years old). The idea of issuing anonymous credentials

has also been explored in the decentralized setting [90]. Our goal, however, is

to allow users to not only access services but also to openly engage in existing

blockchain-based systems using a registered identifier that — despite being vouched

for by some registrar — cannot be linked to their real-world identity. To the best

of our knowledge, this goal cannot be achieved directly by any solution based on

anonymous credentials, at least not in an efficient manner: even if credentials could

be issued on-chain, they would be larger than a blockchain address and issuance

would consume a prohibitively high amount of gas.

Identity management on blockchains Finally, a lot of recent work, both in the aca-

demic literature and in the broader community, has focused on the question of using

the blockchain to establish and manage identities (see, e.g., https://github.

com/peacekeeper/blockchain-identity for a comprehensive list). The

ChainAnchor project [91] presents a system for identity and access control, with the

purpose of having anonymous but verified on-chain identities, and of providing in-

https://github.com/peacekeeper/blockchain-identity
https://github.com/peacekeeper/blockchain-identity

3.6. Identity Management on Blockchains 39

centives to miners to include only transactions from verified users. While some

of the techniques used are similar to our own, as they also adopt a form of regis-

tration, their focus is on permissioned ledgers and on requiring registration for all

users (which is useful in, e.g., the setting of providing compliance with know-your-

customer and anti-money-laundering regulations). In terms of industrial solutions,

uPort [92] is a web identity management system that links an Ethereum address

with a name, profile picture, and other information like an email address or Twit-

ter account, and OneName is a similar initiative that does the same with Bitcoin

addresses. MIT also recently introduced its Digital Certificates Project [93] using

the Bitcoin blockchain, with the goal of making “certificates transferable and more

easily verifiable.” These solutions have seen some level of adoption and we bor-

row some useful features from each of them (e.g., we use a similar technique to

achieve revocation as the Digital Certificates project), but add the benefit of addi-

tional points of comparison, and a security framework and analysis. Posterior to our

work, Hyperledger Indy [94] is a project for interoperability of decentralized identi-

ties on blockchains. Coconut proposes anonymous credentials on blockchains [95],

using Non-Interactive Zero Knowledge Proofs.

Chapter 4

Betting on Blockchain Consensus

with Fantômette

In this chapter, we look at the main component of a decentralized cryptocurrency:

its consensus protocol. We present a consensus protocol, Fantômette, based on

proof-of-stake that does not require any hardware investment from participants and

thus lowers the barrier to entry, compared to proof-of-work. Additionally, this pro-

tocol consumes far less electricity than proof-of-work, so it will be cheaper to run

than proof-of-work and is less likely to lead to pools as a decrease of variance will

have less impact on participants.

At heart, one of the biggest obstacles in designing proof-of-stake protocols is in

scaling their underlying leader election protocol, in which one participant or subset

of participants is chosen to lead the decisions around what information should get

added to the ledger for a single round (or set period of time). The second novel

requirement of blockchains is the explicit economic incentivization on behalf of

participants. More specifically, the protocol should not incentivize the formation of

pools and should be the best strategy to follow for rational players.

Our contributions

We propose Fantômette, a new proof-of-stake consensus protocol that incorporates

an incentive design and works in a setting that considers both rational and Byzan-

tine adversaries. Our initial observation is that the PoW-based setting contains an

implicit investment on the part of the miners, in the form of the costs of hard-

4.1. Background 41

ware and electricity. In moving away from PoW, this implicit investment no longer

exists, giving rise to new potential attacks due to the fact that creating blocks is

now costless. It is thus necessary to compensate by adding explicit punishments

into the protocol for participants who misbehave. This is difficult to do in a reg-

ular blockchain setting. In particular, blockchains do not reveal information about

which other blocks miners may have been aware of at the time they produced their

block, so they cannot be punished for making “wrong” choices. We thus move to

the setting of blockDAGs [55, 56], which induce a more complex fork-choice rule

and expose more of the decision-making process of participants. Within this model,

we are able to leverage the requirement that players must place security deposits

in advance of participating in the consensus protocol to achieve two things. First,

we can implement punishments by taking away some of the security deposit, and

thus incentivize rational players to follow the protocol. Second, because this allows

the players to be identified, we can provide a decentralized checkpointing system,

which in turn allows us to achieve a notion of finality.

Along the way, we present in Section 4.3 a leader election protocol, Caucus,

that is specifically adapted for open blockchains, and that we prove secure in a

model presented in Section 4.2. We then use Caucus as a component in the broader

Fantômette consensus protocol, which we present in Section 4.4 and argue for the

security of, according to our specific threat model, in Section 4.5. Here we rely on

Caucus to address the first requirement of scaling in blockchain-based consensus

protocols, so we can focus almost entirely on the second requirement of incen-

tivization. Our protocol includes a decentralized checkpointing mechanism that is

inferred from the structure of the blockDAGs and could be of independent interest

in the context of blockDAGs. This chapter is based on [20].

4.1 Background

In this section, we give some additional background on concepts used in the rest of

this chapter.

4.1. Background 42

4.1.1 Additional Cryptographic Primitives

4.1.1.1 Coin tossing and random beacons

Coin tossing allows two or more parties to agree on a single or many random

bits [96, 97]; i.e., to output a value R that is computationally indistinguishable from

random.

A coin-tossing protocol must satisfy liveness, unpredictability, and unbiasabil-

ity [98], where we define these as follows:

Definition 4.1.1. Let fa be the fraction of participants controlled by an adversary

A. Then a coin-tossing protocol satisfies fa-liveness if it is still possible to agree on

a random value R even in the face of such an A.

Definition 4.1.2. A coin-tossing protocol satisfies unpredictability if, prior to some

step barrier in the protocol, no PT adversary can produce better than a random

guess at the value of R.

Definition 4.1.3. A coin-tossing protocol is fa-unbiasable if for all PT adversaries

A controlling an fa fraction of participants, the output R is still computationally

indistinguishable from a uniformly distributed random string.

Many coin-tossing protocols [96] follow a structure called commit-then-reveal:

to start, in the commit phase each participant creates and broadcasts a cryptographic

commitment to a random value. In the reveal phase, participants broadcast the

opening of their commitments, which can be used to check the validity of the initial

commitment. The output value is then some combination (e.g., XOR) of all the

individual random values. Intuitively, while this basic solution does not satisfy

liveness, it satisfies unpredictability due to the hiding property of the commitment

scheme (where barrier corresponds to the step in which the last commitment is

opened), and unbiasability due to the binding property. In order to achieve liveness,

secret sharing can be used. To ensure that the protocol produces a valid output,

participants create shares of their secret and send these shares to other participants

during the commit phase. This allows participants to recover the value of another

participant even if they abort.

4.1. Background 43

A closely related concept to coin tossing is random beacons. These were

first introduced by Rabin [99] as a service for “emitting at regularly spaced time

intervals, randomly chosen integers”. To extend the above definitions to random

beacons, as inspired by [100], we require that the properties of fa-liveness and fa-

unbiasability apply for each iteration of the beacon, or round. We also require that

the barrier in the unpredictability definition is at least the beginning of each round.

4.1.1.2 Verifiable Random Function (VRF)

Another concept related to coin tossing is Verifiable Random Function. Verifiable

Random Functions (VRF), first introduced by Micali et al. [101], generate a pseudo-

random number in a publicly verifiable way. Formally, a VRF is defined as follows:

Definition 4.1.4. A VRF consists of three polynomial-time algorithm

(Gen,Prove,Verify) that works as follows: (1) Gen(1λ) outputs a key pair

(pk,sk); (2) Provesk(x) outputs a pair (y = Gsk(x), p = psk(x)); (3) Verify(x,y, p)

outputs 0 or 1 and verifies that y = Gsk(x) using p. A VRF satisfies correctness if:

• if (y, p) = Provesk(x) then Verify(x,y, p) = 1

• for every (sk,x) there is a unique y such that Verify(x,y, psk(x)) = 1

• it verifies pseudo-randomness: for any PPT algorithm A = (AE ,AJ):

P

(pk,sk)← Gen(1λ);

b = b′ (x,Ast)← AProve(.)
E (pk);

y0 = Gsk(x);y1←{0,1}len(G);

b←{0,1};b′← AProve(.)
J (yb,Ast)

≤ 1

2
+negl(k)

We ask, furthermore, that the above properties hold even in the case where an

adversary has maliciously generated their keypairs. Such schemes are presented

in [38, 46].

4.1.1.3 Verifiable Delay Function (VDF)

Informally, a Verifiable Delay Function requires a sequential number of steps to

compute such that it is not feasible for an adversary to predict the output of the

4.1. Background 44

function faster than the specified amount of time, even if they possess a large num-

ber of parallel processors. The simplest example of such a function is F = H p; i.e.,

a hash function iterated p times. The drawback of such a function, however is that

it would also take the same amount of time for someone to verify the correctness of

the function. Bünz et al. proposed an efficient Verifiable Delay function [50] that

can be efficiently and publicly verified yet requires sequential steps to compute.

More formally, a VDF is defined by three algorithms (VDF.Setup, Eval,

VDF.Verify) such that (1) VDF.Setup returns an evaluation and verification key

(ek,vk); (2) Eval takes an input x and produces an output y and proof VDF.π;

(3) VDF.Verify takes input x, output y = F(x) and proof VDF.π and return 1 if

y and VDF.π were generated correctly and 0 otherwise. A VDF must satisfy three

properties [102], (1) evaluation time: for every x, Eval runs in time at most δ ; (2)

sequentiality: a parallel algorithm that runs in time less than δ cannot compute

the function; (3) uniqueness: for an input x, exactly one y will be accepted by

VDF.Verify.

VDFs are still a work in progress, with new constructions being proposed. In

this work, we use them only as a fallback in the case where no leader is elected.

There could be other ways to update the random beacon when no leader is elected

than using a VDF but the advantage of a VDF is that it forces all the players to wait

for the same amount of time (without requiring synchronized clocks). It will thus

ensure that any elected player will have enough time to reveal themselves before

the rest of the players move on. The VDF will, however, not appear in most of

our security arguments as we consider a limited adversary that we will specify in

section 4.5.1. The only place where the VDF will appear in our security arguments

is when we argue for liveness (i.e., no adversary can force the protocol to completely

stop).

4.1.2 BlockDAGs

As the name suggests, a blockchain is a chain of blocks, with each block referring

to only one previous block. In contrast, a blockDAG [55, 56], is a directed acyclic

graph (DAG) of blocks. In this thesis (which slightly adapts the original definitions),

4.1. Background 45

every block still specifies a single parent block, but can also reference other recent

blocks of which it is aware. These are referred to as leaf blocks, as they are leaves

in the tree (also sometimes referred to as the tips of the chain), and are denoted

Leaves(G). Blocks thus have the form B= (Bprev,Bleaf ,π, txset) where Bprev is the

parent block, Bleaf is a list of previous leaf blocks, π is a proof of some type of

eligibility (e.g., a PoW), and txset is the transactions contained within the block.

We denote by B.snd the participant that created block B. In addition, we define the

following notation:

• G denotes a DAG, Gi the DAG according to a participant i, and G the space of all

possible DAGs.

• In a block, Bprev is a direct parent of B, and Ancestors(B) denotes the set of all

blocks that are parents of B, either directly or indirectly. By convention we assume

B ∈ Ancestors(B).

• A chain is a set of blocks M such that there exists one block B for which M =

Ancestors(B).

• Past(B) denotes the subDAG consisting of all the blocks that B references directly

or indirectly. By convention we assume B ∈ Past(B).

• DirectFuture(B) denotes the set of blocks that directly reference B (i.e., that in-

clude it in Bleaf).

• Anticone(B) denotes the set of blocks B′ such that B′ /∈ Past(B) and B /∈ Past(B′).

• d denotes the distance between two blocks in the DAG.

• The biggest common prefix DAG (BCPD) is the biggest subDAG that is agreed

upon by more than 50% of the players.

For example, if we consider the blockDAG in Figure 4.1, we have that

Ancestors(H) = {E,A,genesis} and {H,E,A,genesis} forms a chain. We also have

that DirectFuture(F) = {H, I}, Past(H) = {E,F,A,B,C,genesis}, Anticone(E) =

{D,F,G, I}, and d(A,H) = 2.

4.1. Background 46

Genesis
block

A

B

C

D

E

F

G

H

I

Figure 4.1: Example of a blockDAG. A full arrow indicates a bet (Bprev) and a dashed arrow

indicates a reference (Bleaf).

4.1.3 Consensus as a game

In game-theoretic terms, we consider the consensus protocol as a game in infinite

extensive-form with imperfect information [103], where the utilities of the player

depend on the blocks they have contributed. A blockchain-consensus game theoret-

ically has an infinite horizon, but here we consider a finite horizon of some unknown

length T . We assume that at each node in the game tree player i is in some local

state that includes their view of the blockDAG and some private information. We

note P the set of participants.

Following Abraham et al. [104], we consider the following framework. With

each run of the game that results in a blockDAG G, we associate some utility with

player i, denoted ui(G). A strategy σi for player i ∈ P is a (possibly randomized)

function from i’s local state to some set of actions, and tells the player what to

do at each step. A joint strategy ~σ = (σ1, . . . ,σn) for the players determines a

distribution over paths in the game tree. Let ui(~σ) denote player i’s expected utility

if ~σ is played. Let Si denotes the set of possibles strategies for player i, and let

S = S1×·· ·×Sn. A joint strategy is a Nash equilibrium if no player can gain any

4.1. Background 47

advantage by using a different strategy, given that all the other players do not change

their strategies.

An extension of Nash equilibria is coalition-proof Nash equilibria [104]. A

strategy is k-resilient if a coalition of up to k players cannot increase their utility

function by deviating from the strategy, given that other players follow the strategy.

Definition 4.1.5 (k-resilient strategy). Given a non-empty set of players C ⊆P ,~σC ∈

SC is a group best response for C to ~σ−C ∈ S−C if for all ~τC ∈ σC and i∈ C, we have:

ui(~σC ,~σ−C)≥ ui(~τC ,~σ−C)

A joint strategy is a k-resilient strategy if for all C ⊆ P with |C| ≤ k, ~σC is a group

best response for C to ~σ−C .

A strategy is t-immune if, even when a group of size t of players deviates

arbitrarily from the protocol, the payoff of the non-deviating players is greater than

or equal to their payoff in the case where these players do not deviate.

Definition 4.1.6 (t-immune strategy). A joint strategy ~σ ∈ S is t-immune if, for all

T ⊆ P with |T | ≤ t, all~τT ∈ ST , and all i 6∈ T we have ui(~σ−T ,~τT)≥ ui(~σ).

A strategy is a (k, t)-robust equilibrium if it is a k-resilient and t-immune

strategy. Similarly, in an ε-(k, t)-robust equilibrium, is an equilibrium that is ε-

k-resilient and ε-t-immune according to the definitions below.

Definition 4.1.7 (ε-k-resilient strategy). Given a non-empty set C ⊆ P ,~σC ∈ SC is

an ε-best response for C to ~σ−C ∈ S−C if for all~τC ∈ σC and i ∈ C, we have:

ui(~σC ,~σ−C)≥ εui(~τC ,~σ−C)

A joint strategy is an ε-k−resilient strategy if for all C ⊆ P with |C| ≤ k, ~σC is an

ε-best response for C to ~σ−C .

Definition 4.1.8 (ε-t-immune strategy). A joint strategy ~σ ∈ S is ε-t-immune if, for

all T ⊆ P with |T | ≤ t, all~τT ∈ ST , and all i 6∈ T we have ui(~σ−T ,~τT)≥ εui(~σ).

4.2. Modelling Blockchain Consensus 48

In addition to the players, we assume there exist some other agents that do not

participate in the game but still maintain a view of the blockDAG. These passive

agents represent full nodes, and will not accept blocks that are clearly invalid. The

existence of these agents allows us to assume that even adversarial players must

create valid blocks.

4.2 Modelling Blockchain Consensus
We present in this section a model for blockchain-based consensus, run amongst a

set of participants (also called players) P . A block B is considered to be a bet on

its ancestors Ancestors(B). After introducing the assumptions we make about par-

ticipants, we present a model for leader election, which is used to determine which

participants are eligible to create a block. We then present a model for blockchain

consensus, along with its associated security notions.

4.2.1 Assumptions

Following the related literature [46, 47], we consider a semi-synchronous

model [105]: time is divided in units called slots, and each message is delivered

within a maximum delay of ∆ slots (for ∆ unknown to participants). We assume

that all players form a well-connected network, in a way similar to Bitcoin, where

they can broadcast a message to their peers, and that communication comes “for

free.”

Types of players We follow the BAR model [106], which means players are ei-

ther (1) Byzantine, meaning that they behave in an arbitrary way; (2) altruistic,

meaning that they follow the protocol; or (3) rational, meaning that they act to max-

imize their expected utility. Although in our security properties we do not consider

all three types of players at the same time, we explain at the end of this section

why this is enough to argue that our protocol works in the BAR model. We use

(fB, fA, fR) to denote the respective fractions of Byzantine, altruistic and rational

players. Previous research has shown that altruistic behavior is indeed observed in

real-world systems (like Tor or torrenting) [107], so is reasonable to consider. In

addition to these types, as stated in Section 4.1.3 we consider passive participants.

4.2. Modelling Blockchain Consensus 49

They represent the users of a currency who keep a copy of the blockchain and pas-

sively verify every block (i.e., the full nodes). They will not explicitly appear in

the protocol, rather we assume that they “force” the creation of valid blocks as we

explain in Section 4.5, since if the chain includes invalid blocks or other obvious

forms of misbehavior they will simply abandon or fork the currency. Unless speci-

fied otherwise, players will now mean active players.

We consider a semi-permissionless setting, meaning that everyone is allowed

to join the protocol but they have to place a security deposit locking some of their

funds to do so; if they wish to leave the protocol, then they must wait for some

period of time before they can access these funds again. This allows us to keep

the openness of decentralization while preventing Sybils. Moreover, for ease of

exposition, we consider a flat-model meaning that one participant accounts for one

unit of stake. Thus saying two-third of participants is equivalent to saying par-

ticipants that together own two-third of the stake that is in deposit. Our protocol

can however be extended easily to a non-flat model, we discuss how at the end of

Section 4.3.1. Most of the paper makes the assumptions of a dynamic committee

where participants can leave and join as explained above. However, to consider a

notion of finality, we will need to strengthen this assumption. We will detail these

assumptions in Section 4.4, but briefly we will allow for a reconfiguration period,

and assume that outside of this period the set of participants is fixed.

4.2.2 A model for leader election

Most of the consensus protocols in the distributed systems literature are leader-

based, as it is the optimal solution in terms of coordination [108]. Perhaps as a

result, leader election has in general been very well studied within the distributed

systems community [109, 110, 111, 112, 113]. Nevertheless, to the best of our

knowledge the problem of leader election has not been given an extensive security-

focused treatment, so in this section we provide a threat model in which we consider

a variety of adversarial behavior.

Each participant maintains some private state stpriv, and their view of the public

state stpub. For ease of exposition, we assume each stpriv includes the public state

4.2. Modelling Blockchain Consensus 50

stpub. We refer to a message sent by a participant as a transaction, denoted tx, where

this transaction can either be broadcast to other participants (as in a more classical

consensus protocol) or committed to a public blockchain.

Our model consists of three algorithms and one interactive protocol, which

behave as follows:

(stpriv, txcom)
$←− Commit(stpub) is used by a participant to commit themselves to

participating in the leader election. This involves establishing both an initial pri-

vate state stpriv and a public announcement txcom.

{st(i)priv}i
$←− Update(1λ ,P,{(rnd,st(i)priv)}i) is run amongst the committed partici-

pants, each of whom is given rnd and their own private state st(i)priv, in order to

update both the public state stpub and their own private states to prepare the leader

election for round rnd.

txrev
$←− Reveal(rnd,stpriv) is used by a participant to broadcast a proof of their eli-

gibility txrev for round rnd (or ⊥ if they are not eligible).

0/1← Verify(stpub, txrev) is used by a participant to verify a claim txrev.

We would like a leader election protocol to achieve three security properties:

liveness, unpredictability, and fairness. The first property maps to the established

property of liveness for classical consensus protocols, although as we see below

we consider several different flavors of unpredictability that are specific to the

blockchain-based setting. The final one, fairness (related to chain quality [10]),

is especially important in open protocols like blockchains, in which participation

must be explicitly incentivized rather than assumed.

We begin by defining liveness, which requires that a leader can be elected even

if some fraction of participants are malicious or inactive.

Definition 4.2.1 (Liveness). Let fa be the fraction of participants controlled by

an adversary A. Then a leader election protocol satisfies fa-liveness if it is still

possible to elect a leader even in the face of such an A; i.e., if for every public state

stpub that has been produced via Update with the possible participation of A, it is

4.2. Modelling Blockchain Consensus 51

still possible for at least one participant, in a round rnd, to output a value txrev such

that Verify(stpub, txrev) = 1.

Unpredictability requires that participants cannot predict which participants

will be elected leaders before some time.

Definition 4.2.2 (Unpredictability). A leader election protocol satisfies unpre-

dictability if, prior to some step barrier in the protocol, no PT adversary A can

produce better than a random guess at whether or not a given participant will be

eligible for round rnd, except with negligible probability. If barrier is the step in

which a participant broadcasts txrev, and we require A to guess only about the el-

igibility of honest participants (rather than participants they control), then we say

it satisfies delayed unpredictability. If it is still difficult for A to guess even about

their own eligibility, we say it satisfies private unpredictability.

Most consensus protocols satisfy only the regular variant of unpredictability

we define, where barrier is the point at which the Update interaction is “ready” for

round rnd (e.g., the participants have completed a coin-tossing).

If an adversary is aware of the eligibility of other participants ahead of time,

then it may be able to target these specific participants for a denial-of-service (DoS)

attack, which makes achieving liveness more difficult. A protocol that satisfies de-

layed unpredictability solves this issue, however, as participants reveal their own

eligibility only when they choose to do so, by which point it may be too late for the

adversary to do anything. E.g., in a proof-of-stake protocol, if participants include

proofs of eligibility only in the blocks they propose, then by the time the leader is

known the adversary has nothing to gain by targeting them for a DoS attack. Sim-

ilarly, an adversary cannot know which participants to corrupt in advance because

it does not know if they will be eligible. This helps to obtain security against a

fully adaptive adversary that is able to dynamically update the set of participants it

is corrupting.

A protocol that satisfies private unpredictability, in contrast, is able to prevent

an adversary from inflating their own role as a leader. For example, if an adver-

sary can predict many rounds into the future what their own eligibility will be, they

4.2. Modelling Blockchain Consensus 52

may attempt to bias the protocol in their favor by grinding through the problem

space in order to produce an initial commitment txcom that yields good future re-

sults. Additionally, private unpredictability ensures that participants stay online for

the duration of the protocol as they may miss their turns otherwise. This could be

helpful, for example, for detecting and slashing malicious behaviour or for specific

use-cases, such as Filecoin1 that is based on Proof-of-Space and where an adver-

sary could cheat the protocol by faking their storage if they are aware of their own

eligibility ahead of time.

Lastly, fairness requires that each honest committed participant is selected as

leader equally often. While for the sake of simplicity our definition considers equal

weighting of participants, it can easily be extended to consider participants with

respect to some other distribution (e.g., in a proof-of-stake application, participants

may be selected as leader in proportion to their represented “stake” in the system).

Definition 4.2.3 (Fairness). A leader election protocol is fair if for all PT adver-

saries A the probability that one honest leader is selected as leader is nearly

uniform; i.e., for all rnd, stpriv, stpub (where again stpub has been produced by

Update with the possible participation of A), and txrev produced by an honest party,

Pr[Verify(stpub, txrev) = 1]≈ 1/n.

4.2.3 Blockchain-based consensus

As with the leader election, each participant maintains some private state stpriv and

some view of the public state stpub. We consider the following set of algorithms run

by participants:

stpriv
$←− Setup(1λ) is used to establish the initial state: a public view of the

blockchain (that is the same for every player) and their private state. This includes

the Commit phase of the leader election protocol.

π
$←− Eligible(B,stpriv) is run by each participant to determine if they are eligible to

place a bet on a block B. If so, the algorithm outputs a proof π (and if not it outputs

1https://filecoin.io/

https://filecoin.io/

4.2. Modelling Blockchain Consensus 53

⊥), that other participants can verify using Verify(stpub,π). The Verify algorithm

is the same as the one used in the leader election protocol, where π=txrev.

B
$←− Bet(stpriv) is used to create a new block and bet on some previous block.

B← FCR(G) defines the fork-choice rule that dictates which block altruistic play-

ers should bet on. To do so, it gives an explicit score to different chains, and

chooses the tip of the chain with the biggest score.

0/1← VerifyBlock(G,B) determines whether or not a block is valid, according to

the current state of the blockDAG.

M← Label(G) defines a function Label : G→M that takes a view of the blockDAG

and associates with every block a label in {winner, loser,neutral}. This is crucial

for incentivization, and is used to determine the reward that will be associated with

every block. With each map Label, and player i, we associate a utility function

uLabeli that takes as input a blockDAG and outputs the utility of player i for that

blockDAG. We will write uLabeli = ui if the label function is clear from context.

The list of winning blocks constitutes a chain, which we call the main chain. Every

chain of blocks that is not the main chain is called a fork.

We would like a blockchain consensus protocol to satisfy a few security prop-

erties. Unlike with the leader election, these have been carefully considered in

the cryptographic literature [10, 11]. Pass et al. defined four desirable properties

of blockchain consensus protocols [11]: consistency, future self-consistency, chain

growth, and chain quality.

Chain growth [10] corresponds to the concept of liveness in distributed sys-

tems, and says the chain maintained by honest players grows with time. Consis-

tency (also called common prefix [10]) and future self-consistency both capture the

notion of safety traditionally used in the distributed systems literature. Consistency

states that any two honest players should agree on their view of the chain except for

the last Y blocks, and future self-consistency states that a player and their “future

self” agree on their view of the chain except for the last Y blocks (the idea being

that a player’s chain will not change drastically over time). Here, we consider not

4.2. Modelling Blockchain Consensus 54

just a blockchain-based consensus protocol, but in fact one based on a blockDAG.

Participants thus do not keep only the longest chain, but all the blocks they receive,

which makes it difficult to use these definitions as is. Instead, we use the notion of

convergence, which states that after some time, player converges towards a chain,

meaning that no two altruistic players diverge on their view of the main chain except

perhaps for the last blocks, and that a block that is in the main chain at some time

τ0 will still be in the main chain for any time t > τ0. We also ask that this condition

holds for a chain of any length, thus capturing the chain growth (or liveness) in the

same definition. More formally we define convergence as follows:

Definition 4.2.4 (Convergence). For every k0 ∈N, there exists a chain C0
k0

of length

k0 and time τ0 such that: for all altruistic players i and time t > τ0: C0
k0
⊆ Ci,t ,

except with negligible probability, where Ci,t denotes the main chain of i at time t.

Chain quality [10] corresponds to the notion of fairness, and says that honest

players contribute some meaningful fraction of all blocks in the chain.

Definition 4.2.5 (Chain quality). Chain quality, parameterized by µ , says that an

adversary controlling a fraction fB of Byzantine players can contribute at most a

fraction 1−µ of the blocks in the main chain, except with small probability.

Finally, we define a relatively unexplored property in blockchain consensus,

ε-robustness, that explicitly captures the incentivization mechanism. The security

notion is not considered by any consensus protocols (except [78] that states that they

leave the proof for future work) and is paramount to capture the security of systems

where incentives are at the core.

Definition 4.2.6 (ε-robustness). A protocol is ε-robust if given some fractions

(fB, fA, fR) of BAR players, following the protocol is a ε-(fR, fB)-robust equilib-

rium.

A couple of remarks are in order: convergence and chain quality consider a

Byzantine adversary. These are the more traditional security definitions that do not

consider incentives or rationality.

4.3. Caucus: A Leader Election Protocol 55

As for robustness, the resiliency property considers a coalition of fR rational

players (while the rest of the players are altruistic). The immunity property, on the

other hand, considers a coalition of fB of Byzantine players, while the rest of the

players are altruistic. It is hence worth noting that the treatment of rational and

Byzantine adversaries is decoupled and they are not considered at the same time

in any of our security definitions. Only the resiliency property considers explicit

rational players while the other properties consider Byzantine vs altruistic players.

Treating Byzantine and rational players simultaneously is an open problem however

we note that having a protocol that is (k, t)−robust allows us to state that following

the protocol is the rational thing to do and hence that rational players behave hon-

estly (and are indistinguishable from honest users). This is why we state that our

protocol works in the BAR setting, even though the different types of players are

never considered simultaneously in any of our properties.

4.3 Caucus: A Leader Election Protocol
In this section, we present Caucus, a leader election protocol with minimal coor-

dination that satisfies fairness, liveness, and strong notions of unpredictability. We

note that this part of the protocol is modular and that any leader election that verifies

the same security properties could work. Let’s note that like other leader elections

in PoS protocols [46, 38], an adversary controlling many winning candidates could

choose which one they reveal and thus influence the leader election, at least among

the players they control. We discuss this problem at the end of the section. We also

note that our security properties do not require uniqueness of the leader election,

i.e., there could be more than one leader elected at each round.

4.3.1 Our construction

The full Caucus protocol is summarized in Figure 4.2. We use a leader election

that is similar to the one used in Algorand [38] (cryptographic sortition). We, how-

ever, use Verifiable Delay Functions (VDF) to achieve liveness. VDF also allows

us to avoid synchronized clocks, like Algorand does. They ensure that every player

waits the same time when no leader is elected, even if they don’t have synchronized

4.3. Caucus: A Leader Election Protocol 56

Commit: A participant commits to their VRF secret key sk by creating a

Commit transaction txcom that contains the VRF public key pk. Each

broadcast commitment is added to a list c maintained in stpub, and that

participant is considered eligible to be elected leader after some fixed

number of rounds have passed.

Update: Once enough participants are committed, participants run a secure

coin-tossing protocol to obtain a random value R1. They output a new

stpub = (c,R1). This interactive protocol is run only for rnd= 1.

Reveal: For rnd > 1, every participant verifies their own eligibility by check-

ing if H(yrnd)< target, where yrnd = Gsk(Rrnd) and target = Hmax/nrnd.

(Here nrnd is the number of eligible participants; i.e., the number of par-

ticipants that have committed a sufficient number of rounds before rnd

and possibly have not been elected leader in the previous rounds.) The el-

igible participant, if one exists, then creates a transaction txrev with their

data yrnd and proof prnd = psk(Rrnd) and broadcasts it to their peers.

Verify: Upon receiving a transaction txrev from a participant i, partici-

pants extract yrnd and prnd from txrev and check whether or not

VerifyVRF(Rrnd,yrnd, prnd) = 1. If these checks pass, then the public ran-

domness is updated as Rrnd+1← yrnd and they output 1, and otherwise the

public state stays the same and they output 0.

Figure 4.2: The Caucus protocol.

clocks.

We assume participants have generated signing keypairs and are aware of the

public key associated with each other participant (which can easily be achieved at

the time participants run Commit). We omit the process of generating keys from

our formal descriptions.

To be considered as potential leaders, participants must place a security de-

posit, which involves creating a commitment to a Verifiable Random Function’s

4.3. Caucus: A Leader Election Protocol 57

(VRF) secret key. We choose a VRF that maintains its pseudo-randomness property

even when an adversary maliciously computes their key pairs as has been proposed

in [38, 46]. The Commit function runs GenVRF and returns the VRF secret key

as the private state of the participant and the VRF public key (incorporated into a

transaction) as the transaction to add to a list of commitments c in the public state.

In the first round, participants must interact to establish a shared random value.

This can be done by running a coin-tossing protocol [114] to generate a random

value R1. We suggest using SCRAPE [114], due to its low computational complex-

ity and compatibility with public ledgers. Any solution that instantiates a publicly

verifiable secret sharing (PVSS) scheme, however, would also be suitable. The only

requirement is that the PVSS should output a value that is of the same type as the

value output by the VRF function G.

For each subsequent round, participants then verify whether or not they are el-

igible to fold their randomness into the global value by checking if H(Gsk(Rrnd))<

target, where the value of target depends on the number of expected leaders per

round (for example, we choose target = Hmax/nrnd in order to have on expecta-

tion one leader per round). If this holds, then they reveal yrnd = Gsk(Rrnd) and

prnd = psk(Rrnd) to the other participants, who can verify that the inequality holds

and that VerifyVRF(Rrnd,yrnd, prnd) = 1. If the participant is in fact eligible, then

they are deemed to be the leader for that round and the global randomness is up-

dated as Rrnd+1← yrnd.

To fully achieve security, we describe two necessary alterations to the basic

protocol as presented thus far. First, in order to maintain unpredictability, par-

ticipants should become eligible only after some fixed number of rounds have

passed since they ran Commit. This means updating Verify to also check that

rndjoined > rnd− x (where rndjoined is the round in which the participant broad-

cast txcom and x is the required number of interim rounds). This has the effect that

an adversary controlling fB participants cannot privately predict that they will be

elected leader for a few rounds and then grind through potential new secret key

values to continue their advantage via new commitments, as the probability will be

4.3. Caucus: A Leader Election Protocol 58

sufficiently high that at least one honest participant will be elected leader between

the time they commit and the time they participate.

Second, it could be the case that in some round, no participant is elected leader.

It could also be the case that an adversary is the only elected leader and does not

reveal their proof of eligibility and abort. To maintain liveness, we alter the pro-

tocol so that if no participant reveals txrev, we “update” the random beacon as

Rrnd ← F(Rrnd), where F is a deterministic function that acts as a Verifiable De-

lay Function [115, 50]. When an honest player is not eligible on the winning block,

they start computing the VDF and if by the time it is computed no leader has been

revealed, they check their eligibility with the updated beacon F(Rrnd). One can

think of this as re-drawing the lottery after some delay. This allows participants to

continue the protocol (and, since it is purely deterministic, is different from proof-

of-work). In this study we will ignore the cost of running the VDF in our incentive

analysis (as well as the cost of running the rest of the protocol). We consider this

cost to be negligible compared to the rewards associated with being part of the pro-

tocol that we present in the next section. This is a limitation of Fantômette and we

leave a deeper analysis including the price of running the VDF as an open problem.

Moreover we make the assumptions that the time δ that it takes to compute the VDF

is much bigger than the parameter ∆ of our semi-synchronous model.

It could also be the case, however, that there are two or more winners in a

round. In a setting such as proof-of-stake, being elected leader comes with a

financial reward, and conflicts may arise if two winners are elected (such as the

nothing-at-stake problem discussed in Section 2.2.3). One potential solution (also

suggested by Algorand [38]) for electing a single leader is to require all participants

to submit their winning values yrnd and then select as the winner the participant

whose pre-image yrnd has the lowest bit value. This problem is investigated in Sec-

tion 4.4, where we present the full Fantômette protocol. In this section, we simply

allow for multiple leaders to be elected at the same round.

Finally, we describe a third, optional alteration designed to improve fairness

by forcing more rotation amongst the leaders. To be elected, we require that a

4.3. Caucus: A Leader Election Protocol 59

participant has not acted as leader in the past (nrnd− 1)/2 rounds, which can be

implemented by adding a condition in the Verify function and using (nrnd+1)/2 in

place of nrnd in the computation of the value target.

Value of target We have chosen target such that one leader is elected on ex-

pectation. However this value could be changed to have more leaders elected on

expectation if we want to rely on the VDF less often for example.

Accounting for a non-flat model By setting target = Hmax/nrnd, each par-

ticipants has a probability 1/n of being elected. The probability of being elected

leader for a coalition that comprises nC participants is, thus, 1− (1− 1
n)

nC as they

are tossing a coin for each of the participants in the coalition. In order to have a

non-flat model, i.e., where a participant could own more than one fraction of stake,

we could simply replace target = Hmax/nrnd by target = Hmax× (1− (1− 1
n)

nC),

where nC is the amount owned by the participant and n is the total amount staked

by all participants. This means that here the parameter target will be different for

every participant. This change would not affect our protocol (whether Caucus or

Fantômette), so we stick to the flat model for ease of exposition.

4.3.2 Security

In order to argue the security of Caucus as a whole, we first argue the security of

its implicit random beacon. We note that because there are no incentives within

Caucus, here we simply consider altruistic and Byzantine players (as is the case

with traditional cryptography).

In terms of the fraction fB of malicious participants that we can tolerate, as long as

unpredictability and liveness are concerned, it is t/n, where t is the threshold of the

PVSS scheme used to initialize the random beacon. As explained before, however,

unbiasability of the random beacon is harder to argue for when the adversary con-

trols many players as they could choose which of their winning shares to reveal or

to hide. We investigate this in the next section, where we present the full Fantômette

protocol. However, one key point here is that even if an adversary biases the leader

election and random beacon by choosing which of their shares to reveal, the other

4.3. Caucus: A Leader Election Protocol 60

players still have a uniform probability of being elected leader and thus the leader

election still satisfies our notion of fairness. Even if the adversary chooses the ran-

dom beacon that they prefer, this does not reduce the probability of another player

being elected leader (our leader election protocol accepts more than one leader).

Thus we argue unbiasability of the random beacon in the case where the adver-

sary controls one participant but argue for fairness even if an adversary controls t

participants and is able to choose its prefered value of the random beacon.

Lemma 4.3.1. If H is a random oracle and R is initialized using a secure coin-

tossing protocol, then the random beacon Rrnd is also secure; i.e., it satisfies live-

ness (Definition 4.1.1) and unbiasability (Definition 4.1.3) with fB = t/n, and un-

predictability (Definition 4.1.2) with fB = 1/n for every subsequent round.

Argument. For liveness, we observe that after initialization, no coordination is re-

quired, so any online participant can communicate their own eligibility to other

online participants, allowing them to compute the new random value. The excep-

tion is the case where no participant is elected leader, in which case participants can

update their random value by Rrnd← F(Rrnd) until a leader reveals themselves.

For unpredictability, we must show that, unless the adversary is itself the

next leader, it is hard to learn the value of Rrnd before it receives txrev. We have

Rrnd= yrnd−1 =Gsk(Rrnd−1), where Rrnd−1 is assumed to be known. In the protocol,

the adversary sees pk as part of the commitment of the relevant honest participant,

and if that participant has run Reveal before it may have also seen y′rnd = Gsk(R′rnd)

for rnd′< rnd. If the adversary could produce better than a random guess about Rrnd

then they would also produce better than a random guess about Gsk(Rrnd) which

contradicts its pseudo-randomness.

For unbiasability, we need to show that Rrnd is computationally indistinguish-

able from a random string. By the assumption that Rrnd is unpredictable, as shown

previously, and thus unknown at the time an adversary commits to their secret

key, Gsk(Rrnd) is also computationally indistinguishable from a random string due

to the pseudo-randomness property of G (even under maliciously generated keys)

and the fact that the adversary could not have grind through secret keys to bias

4.3. Caucus: A Leader Election Protocol 61

Gsk(Rrnd).

Theorem 4.3.2. If H is a random oracle and R is initialized as a uniformly random

value, then Caucus is a secure leader election protocol; i.e., it satisfies liveness,

fairness, delayed unpredictability (where barrier is the step at which the elected

leader reveals their proof), and private unpredictability (where barrier is the step at

which the randomness Rrnd is fixed) with fB = t/n.

Argument. For liveness, a participant is elected if they broadcast a valid transaction

txrev such that H(yrnd) < target. If Update satisfies fB-liveness then an adversary

controlling fB participants cannot prevent honest participants from agreeing on Rrnd.

In the case where no participants produce a value yrnd such that H(yrnd) < target,

we update the value of Rrnd as described above until one participant is elected.

Similarly as in the proof of Lemma 4.3.1, the protocol thus achieves liveness.

For fairness, a participant wins if H(Gsk(Rrnd))< targetrnd. In the case where

the adversary was not elected leader in the previous round, Rrnd is unbiasable (with

the same argument used in the previous theorem) and thus uniformly distributed; we

can thus argue that yrnd = Gsk(Rrnd) is uniformly distributed. This implies that the

probability that the winning condition holds is also uniformly random, as desired.

In the case where an adversary could choose which of their winning shares

to reveal, an honest user still has probability 1/n of being elected leader. To

see this, let’s assume that the adversary has a choice between random beacons

Ra1, · · · ,Ran. If the adversary wants to make sure that an honest leader does not

have a probability 1/n of being elected leader, they need to choose Rai such that

for that participants H(Gsk(Rai)) is not uniformly distributed (for example such that

H(Gsk(Rai))> target with probability more than 1−1/n). By the unpredictability

of the hash (that we model as a random oracle), the adversary cannot predict any

such property unless it knows Gsk(Rai) which then contradicts the pseudorandom-

ness of G, as the adversary does not know the secret keys of the honest users. Thus

the protocol is fair even in this case.

The argument for delayed unpredictability is almost identical to the one in The-

orem 4.3.1: even when Rrnd is known, if A has not formed yrnd itself then by the

4.3. Caucus: A Leader Election Protocol 62

pseudo-randomness of G it cannot predict whether H(Gsk(Rrnd))< targetrnd. (If it

could then the adversary could use that to distinguish Gsk(Rrnd) from random with

an advantage.) Finally, private unpredictability follows from the unpredictability of

Rrnd.

Even if the initial value was some constant instead of a randomly generated

one, we could still argue that the protocol is fair after the point that the randomness

of at least one honest participant is incorporated into the beacon. This assumption is

weakened the longer the beacon is live, so works especially well in settings where

the leader election protocol is used to bootstrap from one form of consensus (e.g.,

PoW) to another (e.g., PoS), as discussed for Ethereum [51].

4.3.3 Grindability

As already pointed out at the beginning of this section, Caucus is vulnerable to

a form of grinding. An adversary controlling many eligible players could choose

which player will reveal their proof of eligibility, and thus bias the outcome of the

beacon.

One way of dealing with this problem, which has been presented in Ouroboros

Praos [46], is to have one random beacon per epoch, i.e., one beacon used for a

specified number of consecutive rounds instead of having a new random beacon at

each round.

As in Caucus, players still output one value Rrnd per round but now the bea-

con that they use to check their eligibility is a value Repoch, which is computed as

Repoch = Ri||Ri+1|| · · · ||R j. The values (i, j) correspond to rounds far in the past

chosen such that the j− i+1 values that are concatenated ensure that each beacon

Repoch includes at least one random number Ri+k from an honest participant. An

adversary that chooses which of their own values to reveal would thus have less

impact on the final value of the beacon Repoch. Furthermore, since the value Repoch

is used for many rounds (the length of the epoch) the adversary is less likely to

find a beacon that would give them an advantage on many consecutive round. The

longer the epoch is, the less impact the grinding will have on the adversary’s future

eligibility.

4.4. Fantômette: A Consensus Protocol 63

This solution could be applied to Fantômette in order to provide stronger guar-

antees against grinding, but this would mean losing the private unpredictability

property. If the random beacon is fixed for many rounds, any player is able to

predict well in advance when they are going to be elected leader and disconnect the

rest of the time. Therefore, we instead consider the simpler random beacon Caucus

presented above. This means that the protocol is more vulnerable to grinding, which

we deal with at the price of considering a more limited adversary than the one in

Ouroboros Praos, while maintaining the desirable property of private unpredictabil-

ity.

Dealing with grindability for a non-specific adversary while maintaining pri-

vate unpredictability is an open problem.

4.4 Fantômette: A Consensus Protocol

In this section, we present Fantômette, our full blockchain consensus protocol. Our

focus is on incentives, and in particular on enforcing good behavior even in settings

where no natural incentives or investments exist already.

Briefly, Fantômette works as follows: participants bet on the block that has the

strongest score, according to their view of the blockDAG. They also reference all

the leaves (i.e., the most recent blocks) of which they are aware, to “prove” that

they are well connected and following the rules. A block is valid if among all of its

references, it is indeed betting on the one with the higher score. We argue for its

security more extensively in the next section, but give here some intuition for how

it addresses the challenges presented in the PoS setting introduced in Section 2.2.3.

First, Fantômette solves the nothing-at-stake problem by strongly punishing play-

ers who do not reference their own blocks, and ensuring that players bet only on

the strongest chain they see. As it is not possible for two chains to appear as the

strongest at the same time, this prevents players from betting on multiple chains.

The grinding attack is quantified according to a specific adversary that we de-

tail in Section 4.5.1. A more general adversary could be considered, with a trade-off,

as discussed in Section 4.3.3, but we leave this analysis as an open problem.

4.4. Fantômette: A Consensus Protocol 64

Finally, long-range attacks are thwarted by Fantômette’s finality rule, which

acts as a form of decentralized checkpointing.

4.4.1 Protocol specification

We specify how to instantiate the algorithms required for a consensus protocol spec-

ified in Section 4.2.3. The Setup and Eligible algorithms are as described for Caucus

in Section 4.3. Before presenting the rest of the algorithms, we give some additional

definitions associated with finality in blockDAGs.

In order to make the following definitions, we assume a static set of players.

We then present how to handle a dynamic set. Let’s also recall that thanks to the

deposit, the set of players is known to everyone. A candidate block is a block, as

its name suggests, that is a candidate for finality. The initial list of candidate blocks

consists of every block betting on the genesis block; i.e., every block that uses this

as its parent Bprev. We say that a block B received two-thirds of bets if two-thirds

of the players have bet on block B. More formally, we say that block B received

two-thirds of bets if

|{B′.snd ; B′ such that B ∈ Ancestors(B′)}|> 2/3|P|

Whenever a block has in its past two-thirds of bets on a candidate, this block acts

as a witness to the finality of that block, so is called a witness block. More formally

block B1 is a witness for B0 if:

|{Bi.snd ;Bi ∈ Past(B1) and B0 ∈ Ancestors(B1)}|> 2/3|P|

If a block B1 is a witness for B0 and B2 is a witness for B1, we say that B2 is an

attestor of B0. Finally, candidate blocks belong to a given rank, which we denote

by rk. The first set of candidate blocks (after the genesis block) belong to rk = 1.

After this every block that bets on an attestor block of rank rk and has a distance

of w with this block is a candidate for rank rk+1. The above process constitutes a

decentralized checkpointing. The parameter w represents a period where the check-

pointing is paused in order to handle a dynamic set of players. Once a block is

4.4. Fantômette: A Consensus Protocol 65

finalized (i.e. once there exists at least one attestor block) we allow for a window

of w blocks for the players to leave or join the protocol. At the end of this period,

the set of players is fixed and the decentralized checkpointing resumes with, as new

candidate blocks, all blocks that have a distance w with an attestor block for rank

rk. We leave as important future work a solution that would allow players to leave

and join the protocol even during the checkpointing.

Using the sample blockDAG in Figure 4.1, for example, and assuming four

players and w= 0, the initial list of candidate blocks is {A,B,C,D} (which all have

rank rk = 1). Block E then bets on A, as does block H (since A is an ancestor of

H), so, assuming that block A, E and H were all created by different players, H

can be considered as a witness block for A. Similarly, I acts as a witness block

for C (assuming that C, G and I were all created by different players). Since this

now constitutes two-thirds of the participants, A and C become justified [51]. If in

turn two-thirds of participants place bets on the associated witness blocks, then the

justified block becomes finalized. With w = 0, the attestor blocks are added to the

candidate list accordingly, but at rank rk= 2.

Fork choice rule We present a formal specification of our fork choice rule FCR in

Algorithm 4.4.1. Intuitively, the algorithm chooses blocks with more connections

to other blocks. Accordingly, we compute the score of a leaf block B by counting

the number of outgoing references for every block in its past. We do not count,

however, blocks that have been created by an adversary using the same eligibility

proof multiple times. We denote as Double the set of all blocks that contains the

same proof of eligibility but different content. The score of a chain whose tip is B is

then the number of edges in the subgraph induced by Past(B)\Double, and we pick

as a “winner” the leaf with the highest score. If there is a tie (i.e., two leaf blocks

have the same score), we break it by using the block with the smallest hash.2

Betting To place a bet, a participant first identifies the latest winning block as B←

FCR(Gpub). They then check their latest attestor block (if they have one) and verify

2It is important, to avoid grinding attacks, to use the hash as defined in Caucus, or something

else similarly unbiasable.

4.4. Fantômette: A Consensus Protocol 66

Algorithm 4.4.1: Fork-choice rule (FCR)
input : a DAG G

output: a block B representing the latest “winner”

if (G= Genesis Block) then
return G

w← /0

for B ∈ Leaves(G) do
w[B] = |B[Bleaf]|

for B′ ∈ Past(B)\Double do
w[B]+ = |B′[Bleaf]|

CW← argmaxB∈Leaves(G)w[B]

// if there is a tie choose block with smaller hash

B← argminB∈CWH(B)

return B

that at least one candidate block associated with it is also in Ancestors(B) (i.e. they

verify that the block was not created maliciously as part of a long range attack).

They then check to see if they are eligible to act as a leader by computing π
$←−

Eligible(B,stpriv). If they are (i.e., if π 6= ⊥), then they form a block with B as the

parent, with all other blocks of which they are aware as the leaf blocks, and with

their proof of eligibility π and set of transactions.

Block validity We now define the rules that make a block valid; i.e., the checks

performed by VerifyBlock(G,B). Intuitively, a valid block must be betting on the

block chosen by the fork-choice rule, and its creator must be eligible to bet on that

block. If a player is aware of a justified block, then they must bet on either that

block or another witness block, but cannot prefer a non-justified block to a justified

one.

More formally, a new block B = (Bprev,Bleaf ,π, txset) is valid only if the fol-

lowing hold:

1. The creator is eligible to bet: Eligible(Bprev,stB.sndpriv) 6=⊥.

2. It is betting on the block chosen by the fork choice rule for the blocks of which it

is aware; i.e., Bprev = FCR(Past(B)).

4.4. Fantômette: A Consensus Protocol 67

3. If it references a witness block then it is betting on a witness block; i.e., if there

exists a witness block in Past(B) then there exists a witness block in Ancestors(B).

Intuitively, this means that if a player is aware of a justified block, they cannot

prefer a non-justified block over a justified block.

4. If it references an attestor block, then it is betting on a block in the past of that block:

if there exists a second witness block Bs ∈Past(B), then Ancestors(B)∩Past(Bs) 6=

/0. We will prove in section 4.5.2 that once an attestor block exists, all the altruistic

players agree on the set of candidate blocks, so this ensures that this set does not

grow (i.e., if a player reveals their block too late in the future, after an attestor block

already exists for the candidate blocks at that height, this block will not be added

to the chain).

4.4.2 Incentives

Label We present a specification of our Label function in Algorithm 4.4.2. Intu-

itively, if a block is chosen by the FCR it is labelled winner and so are all of its

ancestors. Blocks that bet on winners are labeled neutral. Following the techniques

in PHANTOM [56], all winning and neutral blocks form a subset of the DAG called

the blue subset, denoted by blue. Every block whose anticone intersects with fewer

than k blocks in the blue set is labeled neutral, and otherwise it is labeled loser.

The parameter k is called the inter-connectivity parameter, and means that a block

is allowed to be “unaware” of k winning blocks, but not more (as, e.g., these blocks

may have been created at roughly the same time).

Utility functions At the end of the game, which is of length T , as defined

in Section 4.2, we take the BCPD and apply the Label function to it, in order to

associate each block with a state. For every winning block that a player has added

to the BCPD, they win a reward of rwd(B), and for every losing block they lose

pun. In addition, if a player creates a block that does not reference one of their own

blocks, we add a bigger punishment bigpun (for example, blocks that belong to the

set Double defined previously will add this punishment). This punishment is bigger

because a player is obviously aware of all of their own blocks, so if they do not

4.4. Fantômette: A Consensus Protocol 68

Algorithm 4.4.2: Label
input : A DAG G

output: A labelling of the blocks in the DAG M

set B← FCR(G)

blue←{B}

M(B) = winner

for Bi ∈ Ancestors(B) do
blue← blue∪{Bi}

M(Bi) = winner

for B j ∈ DirectFuture(Bi)\Ancestors(B) do
blue← blue∪{B j}

M(B j) = neutral

for Bi ∈ G\blue do

// Here we assume that the blocks in G are ordered

by increasing height. If there are multiple

blocks at one height, they are ordered by

increasing hash.

if |Anticone(Bi)∩blue| ≤ k then
blue← blue∪{Bi}

M(Bi) = neutral

else
M(Bi) = loser

return M

4.4. Fantômette: A Consensus Protocol 69

reference one it is an obvious form of misbehavior (whereas a block might end up

being labelled a loser for other reasons).

More formally, we define the following utility function:

ui(BCPD) =
∑

B∈BCPD s.t.
B.snd=i and
M(B)=winner

rwd(B) − (
∑

B∈BCPD s.t.
B.snd=i and
M(B)=loser

pun + bigpun × |Ni|) (4.1)

where M = Label(BCPD) and Ni = {(B j,Bk) s.t. B j.snd = i ∧ Bk.snd = i ∧B j /∈

Past(Bk) ∧ Bk /∈ Past(B j)}.

The reward function is proportional to the connectivity of a block; i.e., a block

that references many blocks receives more than a block that references only one

other block. The reason is that we want to incentivize players to exchange blocks

between each other, rather than produce blocks privately (as in a selfish mining

attack). In this paper we consider a simple function rwd(B) = |Bleaf |× c for some

constant c, and treat pun and bigpun as constants. We leave the study of more

complex reward and punishment mechanisms as an interesting open problem.

One of the difficulties of dealing with blockchain-based consensus, compared

to traditional protocols, is that the enforcement of the payoff is achieved only by

consensus; i.e., the utilities depend on whether or not enough players enforce them.

In order to enforce the payoff, we thus assume that participants can give a reward to

themselves in forming their blocks (similarly to Bitcoin), but that evidence of fraud

can be submitted by other players. If another player submits evidence of fraud, the

subsequent punishment is taken from the security deposit of the cheating player.

4.4.3 Compound effect

A phenomenon discussed in the context of proof-of-stake is the “rich get richer”

effect [116]. The intuition is that if participants are rewarded proportionally to their

stake, someone richer will be rewarded more often, and thus will be able to reinvest

their stake to be rewarded even more often. This is an undesirable effect, as ideally

we would like the proportion of stake to stay constant over time for a fixed set of

participants. In Fantômette, this compounding effect is mitigated because players

need to wait before being able to reinvest their stake in the betting protocol. This is

4.5. Security of Fantômette 70

due to the limitations introduced in Section 4.3 where players have to wait before

depositing or taking out stake. This way the reward is not immediately reintroduced

and this leaves enough time such that on average, the rewards received will be fairly

distributed. We omit the full proof of this and leave it as an open problem.

4.5 Security of Fantômette
In this section, we start by defining a type of adversary (Section 4.5.1) and we argue

that Fantômette is secure against this adversary, according to the model defined in

Section 4.2. We support our arguments with a simulation of the protocol as a game

played between Byzantine, rational and altruistic players in Section 4.5.3 where

Byzantine and rational players follow our adversary specification. In this section, to

ease the notation, we write p the probability for one player to be elected leader (for

example when choosing one leader elected on expectation we have p = 1/|P| =

1/n) and nC the number of players controlled by the adversary (nC = b fB×nc).

4.5.1 Adversary Specification

We first discuss the different strategies available to a coalition of players, whether

Byzantine or rational. They can take any deviation possible from the game. We

do assume, however, that they create valid blocks, as otherwise passive players will

simply ignore their chains (as discussed in Section 4.2).

If an adversary withholds its blocks, it can gain an advantage in subsequent

leader elections. To see this, consider that after each block each player has a prob-

ability 1/n of being elected leader. Being a leader does not guarantee a winning

block, however, as only the block with the smallest hash wins. For each block, the

number of subsequent players k that are elected leader follows a binomial distribu-

tion parameterized by n and 1/n. Assuming the leader election is secure, each of

these leaders is equally likely to have the winning block, so each player has proba-

bility 1/(kn) of being the winner. By not revealing a block, this probability goes up

to 1/n for each player controlled by the adversary (since other players are simply

not aware of it, they cannot verify their eligibility and create blocks that would com-

pete with the adversary). By keeping their chain private an adversary can raise their

4.5. Security of Fantômette 71

chance of having a winning block. We thus assume that both Byzantine and rational

players withhold their blocks and grind through all possible subsequent blocks in

order to maximize their advantage.

In terms of the space that players grind through, the main option they have

when elected leader is whether to place a bet or not. The protocol dictates that they

must bet on the fork-choice rule only, but they may wish to bet on a different block

(doing so could increase their chances of being elected leader in the future). In or-

der to maintain the validity of their blocks, they must eliminate references in their

set Bleaf so that their chosen block appears as the fork-choice rule (in accordance

with the first check in VerifyBlock). Players are, however, always better off includ-

ing as many blocks as possible in their references, as it increases the score of their

block. Thus, they remove enough references to blocks that have higher scores to

make their block appear as the fork-choice rule, but not more.

For rational players, there is a trade-off between not revealing their block

(which raises their chance of having more winning blocks, as argued above) and

revealing their block, which reduces their chance of having more winning blocks

but increases their reward because it allows their block to have more references.

Our simulation investigates this trade-off. Regardless, the strategy of rational play-

ers is to grind through all possible blocks and broadcast the chain that maximizes

their utility. Byzantine players, in contrast, do not try to maximize their profit, but

instead play irrationally, i.e., they are not deterred by punishment. In both cases,

Byzantine and rational, the grinding stops whenever the players in the coalition are

not elected leaders. We do not consider the case where players use the VDF func-

tion sequentially until they are elected leader again since doing so will result in a

attack that takes a long time. As we will explain in our security arguments, our

decentralized checkpointing mechanism prevents long forks from happening; this

motivates this additional assumption although it limits the generality of our model.

To summarize, our Byzantine adversary follows the below strategy. Whenever

it is elected leader, it grinds through all the possible valid blocks it can create and

stops whenever it is not elected leader anymore without running the VDF. More

4.5. Security of Fantômette 72

precisely, the grinding works as follows: the adversary checks which of its players

is elected leader in the first round of grinding. If there is at least one player elected,

then the adversary creates a block for each elected player, without broadcasting it to

the other players and continues grinding. For each block created in the first round

of grinding, the adversary will check again if one of its players is eligible to create

a block and if it is, it will do so, without broadcasting it and so on and so forth. The

adversary thus grows multiple subDAGs at the same time, as long as it can. Since

the randomness on each block created will be different, according to our leader elec-

tion, each subchain or subDAG will potentially have a different number of blocks.

When the adversary no longer has a player elected, it stops grinding (as long as the

adversary controls a limited fraction of the participants this will happen quickly, as

we will see in Theorem 4.5.3). We then look at the worst possible subDAG created,

according to the security property considered, and assume that the adversary broad-

casts this chain to the rest of the players. For example, for immunity the adversary

chooses to broadcast the subDAG with the most blocks, as this is the most likely

to harm honest players (we will detail why in the argument for t−immunity). For

convergence, the adversary chooses to broadcast the subDAG with the most refer-

ences as this is the one that is the most likely to make honest players switch chains

(as honest players choose the heaviest chain). For chain quality as we are only

concerned with the blocks that are included in the main chain, we assume that the

adversary broadcasts the sub-DAG that contains the longest chain but assume that

this subDAG will always be included in the chain, regardless of its score. A rational

coalition will operate in the same way, except they will broadcast the sub-DAG that

maximize their revenue.

In both cases we assume this grinding stops whenever the coalition is not

elected leader anymore without using the VDF as specified in Section 4.3 and thus

the adversary broadcasts its subDAG as soon as it is not elected leader anymore

on any of the blocks it has created as part of the grinding. Once the adversary has

broadcast its chain, honest miners can start mining on it, and as soon as the adver-

sary is eligible again, they will go on and grind again. The above adversary is quite

4.5. Security of Fantômette 73

limited and specific. Specifically, we consider a short-term adversary that stops its

grinding attack when having to run the VDF, although we also consider the specific

long-range attack discussed in Section 2.2.3. Considering a more general medium-

term adversary would require to trade-off the private unpredictability of the random

beacon, to some extent, as discussed in Section 4.3.3. In this thesis, we made the

choice of limiting our adversary, instead, and investigate the security achieved under

this limited grinding adversary. We leave as an open problem the study of security

under a more general class of adversaries and we believe that the methods used in

this thesis could be helpful in doing so.

4.5.2 Security arguments

According to the security properties in Section 4.2.3, we need to argue three things:

convergence, chain quality, and robustness. We support these security properties

with our simulation in Section 4.5.3. We leave formal proofs as an open problem.

All of the security arguments and simulations stand with respect to the Byzantine

and rational behaviours detailed in the previous section, unless specified otherwise.

Before arguing each security property, we first argue some general results

about the protocol. We call the strongest chain the chain with the highest score

according to a hypothetical oracle node that collates the views of the blockDAG

maintained by all participants.

Claim 4.5.1. For any altruistic, rational or Byzantine players following their re-

spective strategies defined in Section 4.5.1, a block added to the strongest chain will

have a higher score than a block added on a weaker chain.

Genesis
block

A

B

C

D

E

F

Figure 4.3: Example of two blocks added on competing chains.

4.5. Security of Fantômette 74

Argument. As a reminder, the score of a chain whose tip is B is the number of edges

in Past(B). Since the blocks that have the same leader at the same epoch (denoted

previously as the set Double) do not count for the score, we simply ignore them for

this proof. We consider two blocks B1 and B2 that are the tips of two chains C1 and

C2 of scores, respectively, S1 and S2. We assume that C1 is the stronger one, i.e., B1

is the block chosen by the fork choice rule. This implies that S1 ≥ S2.

A player that is creating a block betting on block B1 will include all the blocks

they are aware of. This is true whether the player is altruistic or not as (as specified

in section 4.5.1) a rational or Byzantine player will always include all the leaves

that they can when creating a block. On the other hand, a player creating a block

betting on B2 will have to ignore at least block B1 in order to create a valid block

(according to our block validity rules). This is, intuitively, why we get our result

(see Figure 4.3 for a visual representation). Below we detail the argument in the

case of exactly two chains to choose from and explain how it extends to the case of

multiple chains.

We consider two different cases: the one where B1[Bleaf] = B2[Bleaf] (i.e., B1

and B2 reference the same set of blocks) and one where B1[Bleaf] 6= B2[Bleaf]. We

note B′1 and B′2 the blocks betting on B1 and B2 respectively.

First case: B1[Bleaf] = B2[Bleaf].

In this case it is straightforward that S1 = S2 (since Past(B1) and Past(B2) have the

same number of edges). Additionally, B′1 references both B1 and B2 while B′2 cannot

reference B1. The number of edges in Past(B′1) is thus the sum of (1) the number

of edges in Past(B1) (which is S1 by definition); (2) B2[Bleaf] since B′1 references

B2 all of the reference from B2 to B2[Bleaf] are also included in Past(B′1); (3) two

since B′1 adds two edges by referencing both B1 and B2. Hence the score of B1 will

be: S′1 = S1 +2+B2[Bleaf].

B′2 on the other hand is not referencing B1 so its score is S′2 = S2 +1 = S1 +1,

since S1 = S2. It is thus clear that B1 has a higher score than B2.

Second case: B1[Bleaf] 6= B2[Bleaf].

The number of edges in Past(B′1) is the sum of (1) the number of edges in

4.5. Security of Fantômette 75

Past(B1)
⋃
Past(B2) (2) two because B′1 adds two edges by including both B1 and

B2. Thus the score of B′1 is S′1 = |Edges(Past(B1)
⋃
Past(B2))|+2.

B′2 on the other hand is not referencing B1. Additionally, it could be the case

that S1 > S2 and hence B′2 may need to ignore more than one block in order to be

valid (according to our block validity rule 2). Since B′2 is betting on B2, the other

blocks that it references must have a score of at most S2. This means that B′2 will

trim Past(B1) in order to include only the blocks that have a score of at most S2. The

score of B′2 is thus the sum of: (1) the sum of the edges in Past(B2)
⋃
Past(B1)

trim

where Past(B1)
trim is a strict subset of Past(B1); (2) one because B′2 adds one

more edge by referencing B2 (the edges that B2 add by referencing blocks in

Past(B1) are counted in Past(B1)
trim since these blocks were already referenced

in Past(B1)). Thus the score of B′2 is S′2 = |Edges(Past(B2)
⋃
Past(B1)

trim)|+ 1.

Since Past(B2)
⋃
Past(B1)

trim is strictly included in Past(B2)
⋃
Past(B1), it is

straightforward that B′1 will have a higher weight than B′2.

If there are m > 2 chains then the argument works the same way except that

instead of having two edges added for B′1 there will be m edges added (for ref-

erencing all the tips of the chains) and for B′2 instead of having one edge added

there will be, at most, m− 1 as B′2 has to ignore at least B1 (and potentially more

blocks if they have a score higher than B2). Additionally, instead of considering

Past(B1)
⋃
Past(B2) for B′1 we consider Past(B1)

⋃
Past(B2)

⋃ · · ·⋃Past(Bm) and

a strict subset of this union for B′2.

We show in Theorem 4.5.2 that for a given rank, all attestors share the same

set of candidate blocks provided that fB < 1/3 (the rest of the players are altruis-

tic). The idea is that whenever a block is finalized, all players have agreed on the

current set of candidate blocks, and thus they should not accept any other candidate

blocks at that rank (as required by the betting algorithm stated in Section 4.4). The

following theorem considers a general adversary.

Theorem 4.5.2 (Finality). If fB < 1/3 and fA = 1− fB, then once a block at rank

4.5. Security of Fantômette 76

Genesis
block

X1

X2

Y1

Y2

Z1

Z2

2/3+

2/3+

. . .

. . .

. . .

. . .

Figure 4.4: A visual sketch of the proof of Theorem 4.5.2. A participant placing a bet

between x2 and y2, and y1 and z1 must have placed their bet on x2 first, thus z1 references

x2.

rk is finalized, players agree on a list of candidate blocks for rank rk, i.e., this list

cannot grow anymore.

Argument. Assume there exist two finalized blocks x1 and x2. Denote by yi the

witness block for xi, and by zi the attestor block for xi. By the definition of finality,

it must have been the case that more than two-thirds of participants placed bets

on x1 and x2, which in turn implies that more than a third of them placed bets on

both x1 and x2. Since only a third of participants are Byzantine, this means that at

least one non-Byzantine player placed a bet on both blocks. (Recall that during the

decentralized checkpointing the set of players is fixed.) Altruistic players always

reference their own block; this means that there is one of the witnesses blocks yi

that references “across the chains”; i.e., such that x1,x2 ∈ Past(yi).

Without loss of generality, assume that x1,x2 ∈ Past(y2). This means that x1 ∈

Past(z2) and thus x1,x2 ∈ Past(z2). Since more than two-thirds of the participants

bet on y1, by a similar reasoning as above this means that at least one altruistic player

placed a bet on both y1 and x2 (before y2). Thus, either (1) z1 references x2 or (2) y2

references y1. Because of the third check in VerifyBlock, however, this second case

is not possible: since y1 is a witness block, y2 cannot reference it without betting on

a justified block, and x2 is not justified before y2. We refer the reader to graph 4.4

for a visual intuition of this. Thus, it must be the case that z1 references x2. Thus zi

references both xi and x j for i 6= j.

For a set of candidate blocks, all the attestor blocks thus reference all candidate

blocks (applying the previous analysis to all the candidate blocks pair-wise). So,

4.5. Security of Fantômette 77

after a candidate block is finalized, players must agree on the set of candidate blocks

for that rank.

We now show our main theorems, starting with chain quality. A player is

unlikely to be elected winner for many consecutive blocks and here we quantify the

advantage that the adversary that we defined in Section 4.5.1 can gain by grinding.

A reminder that since chain quality captures the maximum fraction of blocks that an

adversary can contribute, without any notion of incentive, here we consider only a

Byzantine adversary against altruistic players. This theorem depends on a security

parameter pα ∈]0,1[to be chosen by protocol designers.

Theorem 4.5.3 (Chain quality). For every security parameter pα ∈]0,1[, there

exists µ > 0 such that a coalition fB < 1/3 of Byzantine adversaries that follows

the strategy defined in Section 4.5.1 cannot contribute to a fraction of more than

1−µ of the blocks in the main chain except with probability pα (µ depends on the

value of pα).

Argument. Recall that, as per the assumptions described in Section 4.5.1, we con-

sider an adversary that tries to grind as many blocks as they can privately, stopping

when they are no longer elected leaders (without using the VDF).

We now move on to compute the probability that the adversary can keep on

grinding for ` consecutive rounds. In order to grind for ` consecutive rounds, the

adversary needs to have one of its players winning at each height for ` consecu-

tive rounds (otherwise grinding stops). We denote xi the total number of successful

leaders controlled by the adversary at each round i of grinding. In round 1 the ad-

versary must have 1≤ x1 ≤ nC leaders in order to continue grinding. This happens

with probability
∑nC

x1=1

(
nC
x1

)
px1(1− p)(nC−x1). (This follows from the Binomial dis-

tribution with parameter nC and p.) Then in the second round the adversary will

be able to toss nC coins for each of the successes of round 1 thus the adversary

tosses nC × x1 coins that each succeeds with probability p (as all the tosses are in-

dependent). On round 2, for a fixed x1 the probability that the adversary has exactly

x2 ≥ 1 successes is
(

x1nC
x2

)
px2(1− p)(nCx1−x2) (following the Binomial distribution

with parameter nC× x1 and p) and again to have the probability of two consecutive

4.5. Security of Fantômette 78

successes we must sum the above probabilities for all values of 1 ≤ x1 ≤ nC and

1≤ x2 ≤ x1nC . Then in round 3 the adversary can toss nC× x2 coins and so on and

so forth. Summing over all the possible combination of (x1, · · · ,x`) gives us that the

probability of grinding for at least ` rounds is

∑
x1,...,x`∈S`

(
nC
x1

)
. . .

(
nCx`−1

x`

)
p
∑`

i=1 xi(1− p)nC(1+
∑`−1

i=1 xi)−
∑`

i=1 xi

where S` = {x1, . . . ,x` : 1≤ x1 ≤ nC ;∀i > 1 1≤ xi ≤ xi−1nC}.

For every `, we note the above probability P`. It is straightforward that the

probability of grinding for `+ 1 consecutive rounds is strictly less than that of

grinding for ` rounds. Succeeding in grinding for `+ 1 rounds implies succeed-

ing in grinding for ` rounds.

Since ` 7→ P` is strictly decreasing and bounded from below by zero, it has

a limit when `→ ∞. We show that this limit is equal to zero. For the sake of

contradiction, we assume this limit to be strictly positive, which we denote λ0.

This means that for every `, P` > λ0 (since ` 7→ P` is decreasing). Denote X the

random variable capturing the exact number of rounds that the adversary grinds

through. We have P` = Pr[X ≥ `] =
∑

∞
i=`Pr[X = i]. We thus have, for every `:∑

∞
i=`Pr[X = i] > λ0. Additionally we have

∑
∞
i=0 Pr[X = i] = 1, which implies that

1−∑`−1
i=0 Pr[X = i] > λ0 for every `. However since

∑
∞
i=0 Pr[X = i] = 1, we have

1−∑`−1
i=0 Pr[X = i]→`→∞ 0 and hence there exist some `0 such that for every `≥ `0

we have: 0≤ 1−∑`−1
i=0 Pr[X = i]< λ0. This is a contradiction and hence it must be

that λ0 = 0.

Thus, for every λ > 0, there exists an `0 such that for every `≥ `0:

P` < λ

An appropriate choice of λ ensures that the probability of grinding for ` rounds

is small enough to assume that the grinding will stop after ` blocks.

It could be the case that there is more than one block on which the adversary

can start grinding (e.g., if two honest leaders were elected at that round the adversary

could start grinding on both blocks). Since each honest player creates at most one

block at each round, the maximum number of honest blocks created at one round is

4.5. Security of Fantômette 79

n−nC . Hence, following standard results on Binomial distribution with parameter

P` and n− nC , none of the potential n− nC grinding opportunities in a round will

last for longer than ` rounds except with probability p0 = 1− (1−P`)
n−nC . We

have that: p0 < 1− (1−λ)n−nC ≈ (n−nC)λ , for a small λ .

After the grinding stops, as per our assumption, the adversary broadcasts its

chain to the honest players. We now consider a worst-case scenario where the

grinded blocks broadcast by the adversary are always included in the main chain

and where the adversary grinds at each round ` blocks. By definition, the adversary

is not elected leader at the end of its grinded chain (since the adversary broad-

casts its chain as soon as it is not elected leader). The honest players thus con-

tribute the next block with probability ph = 1−Pr[honest player have no leader] =

1− ((1− p)n−nC), following standard results on Binomial distribution. If the hon-

est players are not elected leaders then everyone will compute the VDF on top of

the last block and the grinding can start again. Thus after at least k iterations of

grinding, following standard results on Binomial distribution, the honest players

contribute a block with probability

1− (1− ph)
k = 1− ((1− p)n−nC)k = 1− (1− p)k×(n−nC).

Since the above probability tends to 1 as k→ ∞, for every probability p1, choosing

k big enough ensures that after k iterations of grinding, the honest players contribute

at least one block with overwhelming probability, i.e., with probability 1− p1.

Above we have proved that for each round the probability of the adversary

grinding more than ` blocks is p0. Thus over k independent iterations of grinding

at different rounds, the probability that every single iteration contains less than `

blocks is (1− p0)
k. Since p0 is chosen to be close to zero, we approximate this

probability to 1− p0k. We notice that the probability that the adversary contributes

more than k× ` blocks over k iterations of grinding is strictly less than p0k (at least

one of the grinding would need to have more than ` blocks).

For k and ` big enough we have the following: the honest players contribute at

least one block every k iterations of the grinding (except with probability p1) and

over these k iterations the adversary contributes at most k× ` blocks (except with

4.5. Security of Fantômette 80

probability less than pk
0). Combining these two probabilities, we conclude that out

of every k× `+1 blocks, the honest players contribute at least one block (and thus

the adversary at most k× `) with probability at least:

(1− (1− p)k×(n−nC))(1− p0k) = 1− kp0− (1− p)k×(n−nC)+ kp0(1− p)k×(n−nC).

Since (1− p)k×(n−nC) and kp0(1− p)k×(n−nC) tend to 0 as k→ ∞ and p0 can

be chosen as small as possible, for every pα we can find appropriate p0 and k such

that pα ≥ kp0 +(1− p)k×(n−nC)− kp0(1− p)k×(n−nC).

One example is to choose p0 = 1/k2, in which case the above inequalities be-

comes pα ≥ 1/k+(1− p)k×(n−nC)−1/k(1− p)k×(n−nC) and choosing k big enough

ensures this inequality holds. In that case the value of k will determine the value

` (other combinations of (k, `) may satisfy the inequality). This proves that, for

our choice of pα , there exists a µ = 1− k× ` such that the fraction of total blocks

contributed by the adversary is at most 1−µ except with probability pα .

Numerical evaluation To illustrate the above argument, we compute the probability

P`, p0 and ph for specific values of n, nC and `. Using n = 15 and nC = 4, we have

that P8 ' 10−5 and hence p0 ' 10−4. For k = 15 we have 1− (1− p)k×(n−nC) '

1− 10−5. This would translate to pα ' 10−3, and at least one honest block every

15×8 = 120 rounds.

This result may sound like a very loose bound. We highlight, however,

that comparable work (Ouroboros Praos [46]) gives a similarly very loose bound.

Specifically, they ensure that over any period of k blocks the probability that the

adversary contributed a fraction more than 1− µ blocks with µ = 1/k is no more

than exp(ln(R)−Ω(k)), where R is a length of an epoch, i.e., a sequence of blocks

where the random beacon is not updated as explained in Section 4.3.3. In a subse-

quent paper [117], the value of k considered ranges from 50 to 1000 (for example

the value of k for pα ' 10−3 is around 100).

As we have argued, our proof considered a worst-case adversary and the re-

sults of our simulations will be much tighter. One way to tighten the bound in our

4.5. Security of Fantômette 81

proof would be to consider the maximum number of blocks that an adversary can

contribute over k iterations of the grinding (instead of considering that at each round

the adversary grinds ` blocks). To the best of our knowledge, there is no closed-form

formula for this number.

Next, we argue for robustness. The main reason this holds is that, by following

the protocol in betting on the FCR, a block gets more references and thus has a

higher score than a block not following the protocol. A coalition of players can

gain a small advantage by grinding through all the blocks that they can create, but

when doing so they keep their chain private and thus prevent other players from

referencing it. This in turn reduces the rewards associated with these blocks.

Theorem 4.5.4 (Robustness). Given a security parameter pα ∈]0,1[, the utility

function in Equation 4.1, considering a interconnectivity parameter k≥ 3 and fR <

1/3, fB < 1/3, following the protocol is an ε-(fR, fB)-robust equilibrium against

the attacks specified in Section 4.5.1, except with probability pα , with

ε = min(
fR

1−µ
,1− pun ·α3

c
)

where µ is a parameter that depends on pα , α3 is defined as:

α3 = 1− [(1− p)nC +nC p(1− p)2nC−1 +

(
nC
2

)
p2(1− p)3nC−2+

(nC p(1− p)nC−1)2(1− p)nC +

(
nC
3

)
p3(1− p)4nC−3 +

(
nC
2

)
nC p3(1− p)3nC−2+(

nC
2

)
2nC p3(1− p)4nC−3 +(nC p(1− p)(nC−1))3(1− p)nC]

with nC = b|P|× fBc and p = 1/|P|.

Argument. In the following argument, we limit ourselves to the type of strategies

described in Section 4.5.1. In order to get an intuition behind the argument, we first

argue that following the protocol is a Nash equilibrium. Recall that the possible

choices when elected leader are: (1) whether to bet or not, (2) which leaves to in-

clude, and (3) when to broadcast their blocks. We show that for each of these, if

other players follow the protocol then a player is incentivized to follow the proto-

col. If the player is elected leader on the FCR, we want to show that betting on it

4.5. Security of Fantômette 82

gives them a higher probability of being a winner. This is because, by definition of

the FCR (Algorithm 4.4.1), betting on it means betting on the stronger chain. As

argued in Claim 4.5.1, this will lead to a higher score than any other block created,

and thus by the definition of the FCR it has a higher probability of being the next

block chosen by the FCR. (It could still, however, lose against another bet on the

FCR that has a smaller hash, but even in this case the Label function still labels it as

neutral.) This establishes (1).

To create a block on top of a weaker chain, a player needs to ignore the stronger

chain, which means referencing fewer blocks, i.e., ignoring blocks of which they

are aware. This means that their block will have worse connectivity, and thus has a

higher chance of being labelled loser and getting a punishment. This is because, by

the definition of the anticone, worse connectivity means a bigger anticone, which

in turns means a bigger intersection with the blue set and thus, by the definition of

Label (Algorithm 4.4.2), a higher chance of being labelled loser. This establishes

(2).

To argue about (3), we now show why a rational player is incentivized to reveal

their block as soon as possible. By broadcasting their block as soon as they created

it, their blocks can get more references (since other players follow the protocol),

which again increases the probability of being a winner, and the expected accompa-

nying reward. (A single player has nothing to grind through.)

Now, in order to show that the protocol is ε-robust, we show that a coalition

of rational players that deviate from the protocol to raise their utility, can only do

so by ε (resiliency). We next show that a Byzantine adversary cannot decrease the

utility of honest players by more than 1/ε (immunity).

Resilience We consider a coalition of a fraction fR of rational players. As a re-

minder for resilience we want to verify that following the protocol is an equilibrium

even when a coalition is allowed to form. We thus assume that every player outside

of the coalition follows the protocol and verify that, in this condition, it is also an

ε-best strategy for the coalition to follow the protocol. Because it is free to cre-

4.5. Security of Fantômette 83

ate blocks, a rational coalition can clearly gain an advantage by grinding through

all the blocks they can create in order to find a subDAG that increases their utility.

However due to the restrictions imposed on our adversary (see Section 4.5.1) the

advantage they can gain is limited. As shown in Theorem 4.5.3, for a probability

pα , there exists a parameter µ such that the maximum fraction of blocks contributed

by an adversary that adopts a grinding strategy is 1−µ (except with probability pα)

versus fR for a coalition that follows the rule. Rational participants can thus increase

their gain from fR× c to at most (1− µ)× c. We thus achieve ε-robustness with

ε = fR/(1−µ).

Immunity For immunity, we need to show that even in the case where a fraction

t of players behave completely irrationally, the outcome for the rest of the players

who follow the protocol stays unchanged. According to the utility functions defined

in Section 4.4, there are three independent components to the utility function that an

adversary could try to influence to harm altruistic players: (1) the rwd term (2) the

pun term and (3) the bigpun term. To harm the honest players, an adversary could

try: (1) preventing an honest player from contributing blocks to the main chain;

(2)-(3) increasing the number of blocks from the honest players that get punished

by pun or bigpun. The adversary cannot incur any bigpun to the altruistic players

since they cannot force them to ignore their own block, thus we only focus on cases

(1) and (2). To do (1) an adversary cannot indeed prevent players from creating

blocks but once they produce it, they can try and create an alternative blockDAG so

that the altruistic player’s block does not make it to the main chain. To do (2), the

adversary could create an alternative blockDAG that does not reference altruistic

players’ blocks to try and incur a punishment to their blocks. (Following the Label

function defined in Section 4.4, a block gets a punishment if its anticone intersects

the blue set for more than k blocks and a block that has fewer connections to other

blocks has a bigger anticone.) In both cases the Byzantine adversary harms a player

the most when creating the biggest alternative blockDAG that does not reference

altruistic players’ blocks.

To incur a punishment to the altruistic players Byzantine players need to create

4.5. Security of Fantômette 84

a subDAG of more than k blocks on their own, where k is the interconnectivity

parameter. Indeed if they do so then these k blocks will be in the anticone of an

altruistic player that contributed a block at that same time and will be labeled a

loser according to the Label algorithm in Section 4.4.1. When choosing k = 3, as

suggested by [56], and using similar probabilities as in Theorem 4.5.3, one can

compute that the probability of creating a subDAG of more than 3 blocks is α3 :=

1−P[creating a subDAG of 0,1,2 or 3 blocks].

Additionally, we have

P[creating a subDAG of 0,1,2 or 3 blocks] =
3∑

i=0
P[creating a subDAG of i blocks].

We can compute each term separately as follows. For i = 0, following traditional

results on Binomial distribution we have:

P[creating a subDAG of exactly 0 blocks] = (1− p)nC .

For i = 1, the only subDAG possible is to have exactly one leader in the first round

(which could be any of the nC players and hence happens with probability nC p(1−

p)nC−1) and then zero leader elected after this (which happens with probability (1−

p)nC). This gives:

P[creating a subDAG of exactly 1 blocks] = nC p(1− p)2nC−1.

For i = 2, the adversary could have one leader elected in the first round and one in

the second round and then zero or two leaders elected in the first round and then

zero. The former happens with probability (nC p(1− p)nC−1)2(1− p)nC and the

latter with probability
(

nC
2

)
p2(1− p)nC−2× (1− p)2nC because after the first round,

the adversary that grinds can now toss 2×nC coins as it has two leaders in the first

round. This gives us:

P[creating a subDAG of exactly 2 blocks] =
(

nC
2

)
p2(1− p)3nC−2+

(nC p(1− p)nC−1)2(1− p)nC .

For i = 3, similarly we consider all the possible combinations of subDAGs

with exactly three blocks. The adversary could have 3 leaders in the first round

4.5. Security of Fantômette 85

and then zero with probability
(

nC
3

)
p3(1− p)nC−3× (1− p)3nC . (As before, in the

second round the adversary tosses 3nC coins as it has three leaders in the first round.)

The adversary could also have one leader in the first round, then two leaders and

then zero with probability
(

nC
2

)
nC p3(1− p)3nC−2 or two then one then zero with

probability
(

nC
2

)
2nC p3(1− p)4nC−3 and finally one then one then one and then zero

with probability (nC p(1− p)(nC−1))3(1− p)nC . Putting all of this together gives the

following probability

P[creating a subDAG of 0,1,2 or 3 blocks] = (1− p)nC +nC p(1− p)2nC−1+(
nC
2

)
p2(1− p)3nC−2 +(nC p(1− p)nC−1)2(1− p)nC +

(
nC
3

)
p3(1− p)4nC−3+(

nC
2

)
nC p3(1− p)3nC−2 +

(
nC
2

)
2nC p3(1− p)4nC−3 +(nC p(1− p)(nC−1))3(1− p)nC

In turn we can compute α3 = 1−P[creating a subDAG of 0,1,2 or 3 blocks].

So at each round the adversary has a probability α3 of incurring a punishment to

the honest players by creating an alternative subDAG and publishing it right away.

Since at each round, each player is equally likely to have the winning block, the

expected utility of every player at each round is 1/n · c. Hence a fraction fB of

Byzantine players will reduce the payoff of an honest player on average from 1/n ·

c (expected payoff at each round without adversary) to (c− punα3)/n (expected

payoff when a financial punishment is incurred with probability α3). This proves

that the protocol is ε3−immune against a coalition of fB with ε3 = (c−punα3)/n
1/n·c =

1− pun·α3
c .

In the case of k > 3, it is straightforward to argue that the protocol is

εk−immune with εk = 1− pun·αk
c where αk = P[creating a subDAG of more than k].

Since αk <α3, εk≥ ε3 and hence the protocol is also ε3−immune against a coalition

of fB.

This proves that the protocol is ε3−immune, for every k≥ 3 against a coalition

of fB with ε3 = 1− pun·α3
c .

If ε3 is smaller than the ε derived from resiliency, then we set ε = ε3 in order

to obtain ε-robustness. We thus obtain ε-robustness with ε = min(fR/(1−µ),1−

4.5. Security of Fantômette 86

pun·α3
c .

Finally, we argue for convergence. Intuitively, the main argument here is that

if an adversary tries to grow multiple chains to prevent altruistic players from agree-

ing on a main chain, altruistic players are still very likely to agree on a chain, since

the score of the main chain grows more than the score of other chains. Additionally,

since an adversary is unlikely to be elected leader for consecutive blocks, it is un-

likely that other players will revert their main chain once they have agreed on one.

Even if the adversary somehow manages to build their own private chain, e.g., by

using the VDF or bribing old participants in a long-range attack, the decentralized

checkpointing mechanism in Fantômette provides a notion of finality for blocks.

Thus, by the time they succeed in mounting such an attack, it will be too late and

other participants will not accept their chain.

As explained in Section 4.2, for convergence we consider a coalition of

fB < 1/3 Byzantine players and fA = 1− fB altruistic players. For this argument, we

extend the adversarial behaviour defined in Section 4.5.1 to consider (1) an abort-

ing adversary that is trying to prevent the DAG from growing (2) an adversary that

managed to privately create a fork that lasts over a period longer than the check-

pointing mechanism (by, for example, mounting a long-range attack as explained in

Section 2.2.3).

Theorem 4.5.5 (Convergence). Given a coalition fB < 1/3 of Byzantine players

defined as above and fA = 1− fB, we have that for every k0 ∈ N, there exists a

chain C0
k0

of length k0 and time τ0 such that for all altruistic players i and times

t > τ0: C0
k0
⊆ Ci,t , except with negligible probability, where Ci,t is the main chain of

player i at time t.

Argument. We start by showing that the length of the longest chain in the DAG,

indeed grows. This is relatively straightforward, and follows from the discussion

around liveness in Section 4.4.1. To summarize, even if a Byzantine player is the

only leader and chooses not to publish a block, after some delay players will “re-

draw” the lottery and an altruistic player will be chosen eventually. We now calcu-

4.5. Security of Fantômette 87

late the worst-case growth rate of the main chain, which happens when the adversary

simply aborts. If an adversary controls nC players, no honest leader is elected with

probability (1− p)|P|−nC . This means that after each block, the chain will grow

normally with probability 1− (1− p)|P|−nC and will grow with a delay of δ (where

δ is the delay in the VDF) with probability (1− p)|P|−nC . Moreover since a block is

propagated with a maximum delay of ∆, we have that the worst rate at which a block

is created is (1−(1− p)|P|−nC) ·∆+((1− p)|P|−nC) ·(∆+δ) =∆+δ ·(1− p)|P|−nC .

However it could be the case that more than one chain grows in the DAG. We now

move on to prove the core of the proof.

Let k0 be an integer. Due to the previous argument about the growth of the

chain and the semi-synchrony assumption (all players receive a block before ∆

slots), there exists a time τ1 such that every honest player has in their DAG at least

one chain Ck0 of length k0. Let’s assume that there exists two such chains Ck0 and

C′k0
. We show that, with high probability, after some time τ0 one will be “dropped”

and thus for the remaining one we will have that for every t > τ0, C0
k0
⊆ Ci,t .

Let’s assume that players start creating blocks on both chains. After some time

less than or equal to ∆ players will be aware of the other chain and thus can start

referencing it (∆ is smaller than δ). Then it has to be the case that the score of

one chain will grow more than the other one as shown in Claim 4.5.1 (even if both

chains keep growing, they will not grow at the same rate). Now, we argue why it is

unlikely that both chains keep growing indefinitely. The weaker chain grows only if

the leader on that chain is either Byzantine or has not heard of the latest blocks on

the other chain. For every altruistic player, for two chains of the same score created

at the same time, there is a probability 1/2 that they receive the weaker chain first

due to the unbiasability and uniform distribution of the random beacon. Thus for

an altruistic player there is half a chance that they extend the weaker chain. Even

an adversary that would try to delay some of its blocks on purpose to increase the

number of forks would not be able to choose on which candidate to delay which

block due to the private unpredictability of the leader election (e.g., the adversary

could not try to delay the block on the stronger chain to the leader on the weaker

4.5. Security of Fantômette 88

chain but not the leader on the stronger chain to ensure that both are extended).

On the other hand, the stronger chain grows even if the elected leader re-

ceived the weaker one first (as long as they are not eligible on it, which hap-

pens with probability 1− 1/n). More formally, in the case where altruistic play-

ers are leaders on both chains, the stronger one will be extended with probability

(1−1/n)+1/n ·0.5 = 1−0.5 ·1/n and the probability that the weaker chain grows

is 0.5. Thus it is more likely for an altruistic player to extend the stronger chain.

This explains why the strongest chain grows with a higher probability.

Thus with high probability, there exists a time τ0 such that altruistic players

will stop extending the weaker chain.

After this time τ0 it is very unlikely that players will revert their main chain

to another chain. Indeed an adversary that tries to revert the main chain does not

succeed except with negligible probability. Let’s assume that at time τ0, the differ-

ence between the main chain and the chain that the adversary is trying to extend

is m. To revert the chain, they need to create a competitive DAG with at least m

references within the fork faster than the main chain grows. As m gets bigger, the

adversary will need to create more blocks privately and this attack becomes less

likely to succeed as the probability of creating ` blocks privately decreases with `

(this probability is similar to the probability in the proof of Theorem 4.5.3).

Finally, as explained in Section 2.2.3, we must consider long-range attacks,

where an adversary re-writes the history by bribing old participants. Although this

behaviour does not fall within our adversary specifications, we still consider it, as it

is a well-known attack within PoS systems. Because we add a decentralized check-

pointing, this attack will not succeed. Let’s assume that an adversary has bought

old keys from previous participants and re-wrote the history of the blockchain with

those. When they receive this new chain, altruistic players are already aware of at

least one attestor block (the reconfiguration period has to start after an attestor block

as explained in Section 4.4.1). According to the betting rule in Section 4.4.1 once

altruistic players know of an attestor block, they will not bet on a block that does

not bet on an associated candidate block. Thus altruistic players will never bet on

4.5. Security of Fantômette 89

the new adversarial chain. This is also true for rational players since when they see

this new chain, they would have to start ignoring all the blocks they have created

in order to bet on it (due to the fourth check in VerifyBlock), thus losing most of

their deposit. Thus the chain created with old keys will not be accepted by current

participants.

We have argued that after time τ0, altruistic players have agreed on the main

chain Ck0 and that it is very unlikely they will revert to another main chain. This

proves the result.

4.5.3 Simulations

0 10 20 30 40 50
Number of Byzantine players

4

5

6

7

8

9

10

11

12

Lo
n
g
e
st

 f
o
rk

(a) The length of the longest fork, in the

presence of a coalition of Byzantine play-

ers.

0 10 20 30 40 50
Number of Byzantine players

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
w

in
n
in

g
 b

lo
ck

s

(b) The fraction of winning blocks belong-

ing to altruistic (blue) and Byzantine (red)

players.

0 10 20 30 40 50
Number of Byzantine players

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

P
a
y
o
ff

s

(c) The payoff for altruistic players (blue)

and a coalition of rational players (red).

0 10 20 30 40 50
Number of Byzantine players

2

1

0

1

2

3

4

P
a
y
o
ff

s

(d) The payoff for altruistic players (blue)

in the presence of a coalition of Byzantine

players (red).

Figure 4.5: Results from our simulation, averaged over 150 runs and considering up to 50

non-altruistic players (out of a total of 150).

We next present our simulations that support the arguments above. As stated

4.5. Security of Fantômette 90

in Section 4.2, we consider three types of players: Byzantine, altruistic, and ra-

tional. Byzantine and rational players are limited to the behaviours described in

Section 4.5.1. We simulate the game using different fractions of different types of

players. Our simulation is written in Python, and consists of roughly 1,000 lines

of code. All players start with the same deposit. To model network latency, we

add random delays between the propagation of blocks amongst players. Following

Decker and Wattenhofer [118], this random delay follows an exponential distribu-

tion. Each simulation that we run has 150 players and lasts for 5,000 time slots. All

our results are averaged over 150 runs of the simulation.

In addition to the balance of the types of players, there are several different

parameters we need to consider: k, the inter-connectivity parameter; c, the constant

in the reward in Equation 4.1; pun, the punishment; and bigpun, the big punishment.

We chose k = 3, c = 1, pun= 6, and bigpun= 10. We also define the initial deposit

of all players to be 0, but allow for payoffs to go below zero. We stress that all

these values are relatively arbitrary, as we are more interested in the ratio between

them and their evolution rather than their specific values. Different parameters do,

however, result in different effects on the protocol. For example, decreasing the

value of the punishment would increase the immunity of the protocol, but would

also weaken its resilience (since a coalition would be able to gain a bigger profit).

We leave a more in-depth exploration of this trade-off as an open problem.

Because we do not use our simulation to support our argument for the growth

of the chain, we do not implement the VDF function discussed at the end of Sec-

tion 4.3.1 (as it is crucial only for liveness).

Strategies As explained in Section 4.5.1, the strategy followed by rational players

is to create all the blocks they can privately and then grind through all the subDAG

to find the one that increases their expected utility and broadcast this subDAG only.

For the Byzantine players, we are interested in capturing the worst type of adver-

sary in terms of (1) decreasing the payoff of altruistic players (this will capture the

immunity property) and (2) the biggest fork they can create (to capture the conver-

gence property). We explained in the proof of Theorem 4.5.4 that the biggest harm

4.6. Limitations 91

Byzantine players can incur to altruistic players is by creating the biggest subDAG

possible. Thus we consider Byzantine adversaries that create as many blocks as

possible until they are no longer elected and broadcast them.

Results We measured the length of the longest fork; the results are in Figure 4.5a.

For a maximum number of 49 Byzantine players, the longest fork is 12 blocks. As

in this PoS setting blocks are created instantaneously, unlike PoW, this value is ac-

ceptable, so the simulation supports our argument that the protocol converges.

In Figure 4.5b the maximum fraction of blocks contributed by a fraction of up

to one-third of non-altruistic players is 0.36 compared to an expected contribution

of 49/150 = 0.327 if that coalition was honest, meaning that grinding through all

the blocks they are eligible to produce allows an adversary to contribute 3.3% more

blocks on average. This shows the chain quality property with µ = 1−0.36 = 0.64.

(This result is, as expected, better than what was discussed in the argument of secu-

rity, which was a loose bound.)

For resilience, we see in Figure 4.5c that a coalition of up to one-third of ra-

tional players increases their payoff up to 3.8 compared to 3.5 when not forming a

coalition. We thus achieve ε-resiliency with ε = 1.086. To quantify the harm that

a Byzantine coalition can do to others, we compute for each simulation the payoff

of altruistic players in the case of a fraction t of Byzantine players trying to harm

the players. Figure 4.5d shows the payoffs for both altruistic and Byzantine players.

The payoffs of altruistic players are unaffected even in the presence of a quarter

of Byzantine players, but start decreasing after the coalition becomes larger. We

thus achieve immunity for coalitions up to a quarter, but do observe here that the

payoff of the Byzantine coalition is much more negatively affected than that of the

altruistic players.

4.6 Limitations
Our work proposes a new consensus protocol, Fantômette, as well as new security

considerations for consensus protocols but still suffers from some limitations that

we highlight here.

4.6. Limitations 92

1. We did not consider a general form of adversary and have limited our adver-

sary to the specific strategy that we have explained in Section 4.5.1. Although

this limits the generality of our work, this allowed us to keep the private un-

predictability property of the random beacon. We also constructed a new type

of argument that we hope can be built upon in a more general setting. Dif-

ferent avenues to incorporate a more general adversary could be considered;

e.g., we could consider a model similar as the one presented in Ouroboros

Praos [46] and lose our private unpredictability property as explained in Sec-

tion 4.3.3. We leave them as open problems.

2. We presented only arguments, supported by simulations, to claim security and

not formal proofs. One reason for doing so is that the field of blockchain con-

sensus protocols is a rather new one and no proof techniques have been well

established and widely adopted in this community. We hope this work can

contribute to the establishment of a new framework for consensus protocols.

3. We considered only the incentives related to block rewards as we believe

other costs to be negligible compared to the rewards associated with running

the consensus protocol. Specifically:

• We ignored the application layer of the protocol, more precisely we did

not consider the impact of transactions (nor transaction fees) within our

analysis.

• We did not include the cost of running a VDF in our treatment of incen-

tives.

• We ignored the network layer, e.g., costs of propagating blocks and

transactions.

• We did not analyze the complexity of our Label algorithm.

4. In our security arguments, we did not consider the three types of players

(Byzantine, altruistic and rational) simultaneously. Although we explained

4.7. Conclusions 93

that having the robustness property could be used to argue that rational play-

ers were acting altruistically.

We leave a more thorough analysis of our protocol without the limitations

above as an interesting open problem and believe that, although limited, our ar-

guments for security present a novel approach that could help build a new security

model for blockchains. We also believe the novel design of our protocol brings

some new interesting ideas, such as considering different types of pointers (refer-

ences and bets) that other protocol designers could be inspired by.

4.7 Conclusions
We presented Fantômette, a PoS consensus protocol composed of: a leader elec-

tion protocol, Caucus, a scheme for incentivization and a decentralized checkpoint-

ing mechanism. The protocol satisfies convergence and chain quality in a semi-

synchronous setting (without synchronized clocks) against a coalition consisting of

up to a third of participants subject to our specific adversarial model, and achieves

finality via decentralized checkpointing. Additionally, Fantômette satisfies game

theoretic properties (within our specified adversarial model): (fR, fB)− ε robust-

ness.

While Fantômette makes some important first steps in treating incentives as a

first-class concern, there are other avenues to consider. In terms of evaluation, exist-

ing literature analyzing incentives in PoW-based systems has used techniques like

Markov Decision Processes [64] or no-regret learning [13] in order to justify more

formally the best rational strategy. These techniques would be much more difficult

to apply in a setting with PoS, but it would nevertheless be useful to better justify

the Byzantine strategy used in our simulations.

Finally, we currently treat all bets as being of equal value (one block is one

bet), but it may be interesting to consider bets of variable size, in which players that

are more confident about the blocks on which they place bets (for example, because

those blocks are highly connected) could attempt to gain a higher reward by placing

a bet of higher value.

Chapter 5

Egalitarian Society or Benevolent

Dictatorship: The State of

Cryptocurrency Governance

L’autorité repose d’abord sur la raison. Si tu ordonnes à ton peuple

d’aller se jeter à la mer, il fera la révolution. J’ai le droit d’exiger

l’obéissance parce que mes ordres sont raisonnables.

Antoine de Saint-Exupéry - Le Petit Prince (1943)

In the previous chapter, we constructed a decentralized consensus protocol. As

we have seen, the designers of a cryptocurrency necessarily make numerous deci-

sions regarding the security of both the high-level protocol and the implementation

itself. The governance is indeed an inherent central bottleneck of any decentralized

currency.

Before the cryptocurrency community even begins to address the question of

designing an effective decentralized governance structure, we need a way to com-

pare and evaluate any proposed solution. With this question in mind, this chapter

aims to analyze the level of decentralization in the governance of the two most

prominent cryptocurrencies [23]: Bitcoin and Ethereum. As we have highlighted

in our literature review in Section 3.5, most of the work on the centralization of

the governance structure of cryptocurrencies is rather theoretical. Similarly, gover-

nance structures in open-source systems have been largely studied from a social

95

science point of view [119, 120]. This chapter, on the other hand, proposes a

quantitative analysis. There exists a large body of work on code repository min-

ing [121, 122, 123] but they are mostly looking at the content of the repositories

(e.g., finding patterns or detecting bugs) whether our work is focused on the con-

tributors. Specifically, we are interested in the number of contributors and their

level of contributions (for example in terms of the number of comments) and in

ways to quantify the centralization of the governance process. For example, the

ideal decentralized system would have a large number of contributors where all

contributors contribute uniformly (i.e., the same amount). More realistically, no

contributors should have a disproportionate amount of contributions as this would

indicate a centralized trend. As it is not always meaningful to have an absolute

quantification for decentralization, we use our metrics primarily to compare Bitcoin

and Ethereum.

Our Contributions

In this chapter, we study the centralization in the existing governance structures

of Bitcoin and Ethereum by looking at their GitHub repositories. We would like

to verify that their GitHub contributions are truly decentralized in the sense that

a sufficient number of people are contributing and their contributions are roughly

uniformly distributed, i.e., without one, or a handful of contributors, doing the bulk

of the work. In order to determine whether our results are as expected in any open

source software, we also conduct our study on two popular open-source program-

ming languages: Clojure and Rust. We measure two different properties of the data:

the number of developers per file in each of the codebases; and the number of com-

menters in the issues and pull requests. We then compute some centrality metrics,

to verify whether each contributor contributes roughly the same or whether contri-

butions are centralized, meaning that a few percentages of all contributors do most

of the work. According to these centrality metrics, Bitcoin is consistently more

decentralized than Ethereum, but has a similar level of decentralization to Clojure

and Rust. The median and interquartile range of contributors per file on the main

code-base was 2 and 5 for Bitcoin, 1 and 1 for Ethereum, 2 and 5 for Rust and 2 and

5.1. Methodology 96

4 for Clojure. We then verify how similar Bitcoin and Ethereum contributions are

compared to Clojure and Rust. Using the bootstrap Kolmogorov-Smirnov test, we

found that the number of contributors per file all came from different distributions.

Furthermore, by plotting the number of main commenters on the main codebases

over time, we found that for all the systems we studied, no more than 10 contrib-

utors accounted for at least 51% of the total comments, suggesting, generally, low

decentralization.

To evaluate the decision-making infrastructure in Bitcoin and Ethereum, we

look into who creates and comments on improvement proposals. The mean and

interquartile mean of the number of comments per author was 11.4 and 6.5 for

Bitcoin and 9.1 and 5 for Ethereum, indicating a centralization trend.

Finally, we compare the communities behind Bitcoin and its fork Bitcoin Cash,

and Ethereum and its fork Ethereum Classic, to see whether these forks bring in new

people or split the initial community. We use the Sørensen-Dice index to measure

the intersection of contributors in the main code base and contributors on the im-

provement proposals. Intuitively a Sørensen-Dice index of 0 means that the two

sets have an empty intersection and thus that the contributors of the forking cryp-

tocurrencies were not contributing to the forked cryptocurrency while an index of

1 means the sets are identical. We got a value of 0.069 for Bitcoin and 0.108 for

Ethereum meaning that the contributors in Bitcoin Cash and Ethereum Classic were

mostly new. All the measurements in this chapter were made in October 2017,

before Bitcoin Gold [32] and Bitcoin SV [33] existed, and come from [21].

5.1 Methodology

5.1.1 Comparison with programming languages

To determine whether the governance structures of Bitcoin and Ethereum are as de-

centralized as should be expected, we compare them against those of open-source,

general-purpose programming languages. We chose programming languages as,

similarly to cryptocurrencies, they tend to have a large amount of participation from

their user communities. For an even closer comparison, we sought out programming

5.1. Methodology 97

languages that: (1) have existed for a similar length of time to the cryptocurrency;

(2) have a similar number of users (which we measured according to the number

of watchers and stars on the GitHub codebase [124]); and (3) are decentralized in

the sense that they are maintained by an online community rather than a private

company or government. We could not find programming languages that fully sat-

isfied each of these properties, but we decided that a relatively fair comparison was

between Bitcoin and Clojure, and Ethereum and Rust.

Bitcoin and Clojure were both proposed by individuals (or a set of individuals)

and were both released in 2009 (Bitcoin in January, and Clojure in May). While

Bitcoin has a much larger userbase than Clojure (close to 2000 watchers and 18k

stars, as opposed to roughly 700 watchers and 7k stars), we ultimately decided to

stick with this comparison rather than use a programming language like Go, which

does have a larger userbase, as Go is closely tied to Google.

Ethereum and Rust were both released in 2015 (Ethereum in July, and Rust in

May), and are both tied to not-for-profit foundations (Ethereum with the Ethereum

Foundation, and Rust with Mozilla). Rust has a larger, but not incomparable, user-

base than Ethereum: roughly 1500 vs. 900 watchers, and 24k vs. 8k stars.

5.1.2 Data collection

To quantitatively measure the level of centralization in the maintenance of Bitcoin

and Ethereum, we analyze their codebases and the extent to which these codebases

are produced and maintained in a decentralized fashion. We obtained copies of the

open-source repositories for Bitcoin, Bitcoin Cash, Ethereum, Ethereum Classic,

Rust, and Clojure. A summary of the locations of these repositories is in Table 5.1.

One notable property of these platforms is that Bitcoin has only one refer-

ence client, whereas the others tend to have many. For Ethereum, we collected

the repositories for all the clients as listed in the Ethereum documentation.1 For

Ethereum Classic, we considered the Go, C++, and Python clients, as the ones

for JavaScript, Java, and Ruby were not listed. The Parity client supports both

1http://ethdocs.org/en/latest/ethereum-clients/

choosing-a-client.html#why-are-there-multiple-ethereum-clients

http://ethdocs.org/en/latest/ethereum-clients/choosing-a-client.html#why-are-there-multiple-ethereum-clients
http://ethdocs.org/en/latest/ethereum-clients/choosing-a-client.html#why-are-there-multiple-ethereum-clients

5.1. Methodology 98

Name Repository URL

Bitcoin https://github.com/bitcoin/bitcoin

Bitcoin Cash (ABC) https://github.com/Bitcoin-ABC/bitcoin-abc

Clojure https://github.com/clojure/clojure

Ethereum https://github.com/ethereum/

Parity https://github.com/paritytech/parity

Ethereum JS https://github.com/ethereumjs/ethereumjs-lib

Ethereum Ruby https://github.com/cryptape/ruby-ethereum

Ethereum Classic https://github.com/ethereumproject

Rust https://github.com/rust-lang/rust

Table 5.1: The open-source repositories for the various cryptocurrencies we consider. For

Ethereum and Ethereum Classic, the listed repositories contain the code for the Go, C++,

and Python versions of the client. Parity is compatible with both Ethereum and Ethereum

Classic.

Ethereum and Ethereum Classic. For Bitcoin Cash, we picked the most popular one

in terms of watchers and stars, which was Bitcoin ABC.

Since contribution to the protocol is also captured through discussions in ad-

dition to lines of codes written, we also scraped all the discussion threads for pull

requests and issues (both open and closed). The discussions of Improvement Pro-

posals were not included in the Bitcoin and Ethereum repositories themselves, so

we also scraped the main pages, pull requests, and issues on the respective GitHub

repositories for Bitcoin (BIPS) [28] and Ethereum (EIPS) [125].

5.1.3 Centrality metrics

Table 5.2 lists some of the centrality metrics we use. In addition to these, we also

use the mean and the median. The interquartile range (IQR) represents where the

bulk of values lie and is computed as the difference between the 75% and the 25%,

and the interquartile mean (IQMean) is the mean of the data in the IQR. The benefit

of using the IQMean (as compared to the regular mean) is that, as with the median,

it is not affected by outliers.

https://github.com/bitcoin/bitcoin
https://github.com/Bitcoin-ABC/bitcoin-abc
https://github.com/clojure/clojure
https://github.com/ethereum/
https://github.com/paritytech/parity
https://github.com/ethereumjs/ethereumjs-lib
https://github.com/cryptape/ruby-ethereum
https://github.com/ethereumproject
https://github.com/rust-lang/rust

5.2. Data Analysis 99

Centrality metric Usage

Interquartile range (IQR) Measure of spread

Interquartile mean (IQMean) Mean of the data in the IQR

Kolmogorov-Smirnov test See if two vectors have the same probability distribution

Nakamoto index Minimum # of contributors making 51% of the data

Satoshi index Minimum % of contributors making 51% of the data

Sørensen-Dice index Measure of similarity of two sets

Table 5.2: Centrality metrics used.

To confirm the statistical significance of our findings, we use a two-sample

Kolmogorov-Smirnov test [126, 127], which determines whether or not two vectors

of values have the same probability distribution. More specifically, it quantifies the

distance between the empirical distribution functions of the two samples. The p-

value, used to determine the statistical significance of the test, must be under 0.05

in order to reject the null hypothesis (i.e., in order to show that the two vectors have

a different distribution). We used the Bootstrap version of the Kolmogorov-Smirnov

test [128], which is designed to work on discrete distributions.

The Nakamoto index, introduced by Srinivasan and Lee [84], represents the

minimum number of contributors to a dataset needed to get 51% of the data. We

refer to the normalized version of this index as the Satoshi index, which represents

the minimum percentage of all contributors needed to get 51% of the data. Finally,

the Sørensen-Dice index [129, 130] captures the similarity of two sets. It is defined

as SD(X ,Y) = 2|X∩Y |
|X |+|Y | , so in particular has a value of 1 for sets that are equal and 0

for sets that are disjoint.

5.2 Data Analysis

5.2.1 Contributors to the main codebase

To capture the number of people collaborating together, for each repository, we col-

lected all non-hidden files and measured how many distinct authors had contributed

to that file throughout its lifetime (in terms of Git commits). In a decentralized sys-

5.2. Data Analysis 100

1 2 3 4 5+
Number of authors

F
ra

ct
io

n
of

 fi
le

s
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Bitcoin
Bitcoin ABC
Clojure
Ethereum
Ethereum Classic
Rust

Figure 5.1: The coverage of each file in a given repository, as determined by the number

of authors that have contributed to that file. Different clients are grouped according to the

cryptocurrency they support.

tem we could expect to see a lot of collaboration, and thus for most of the files to

have several contributors and very few files being single-authored. The results of

this measurement can be seen in Figure 5.1. While the number of contributors to

the Bitcoin and Bitcoin Cash codebases follows a fairly similar pattern, the number

of contributors to the Ethereum Classic codebase follows a different distribution to

that of the Ethereum codebase, even though Ethereum Classic is a fork of Ethereum.

Both Clojure and Rust seem to follow a fairly similar pattern to that of Bitcoin.

For Bitcoin, 30% of all files were written by a single author, and 24% of these

files were written by the same author, Wladimir van der Laan. This means that one

author wrote 7% of the files. In Ethereum, 55% of all files were written by a single

author, and 36% of these files were written by the same author, Tomasz Drwiega.

This means that one author wrote 20% of the files.

Table 5.3 contains the mean, median, IQR, and IQMean for each of the repos-

itories. We see relatively similar metrics for Bitcoin (and Bitcoin Cash) and both of

the programming languages, and see that Ethereum and Ethereum Classic are both

lower for all metrics. The median confirms the low level of collaboration on all

these repositories.

5.2. Data Analysis 101

Authors per file # Comments per author

Repository Mean Median IQR IQMean Mean Median IQR IQMean

Bitcoin 5.03 2 5 2.66 27.2 2 4 2.4

Bitcoin Cash 5.48 2 6 2.94 3.8 2 2 1.8

Ethereum 2.04 1 1 1.27 13.5 2 3 2.0

Ethereum Classic 2.27 1 2 1.78 11.1 2 3 1.8

Clojure 4.03 2 4 2.41 1.9 1 1 1.3

Rust 5.17 2 5 2.79 69.8 3 8 3.5

Table 5.3: Centrality metrics for the number of contributors per files in the repositories and

the number of comments per author in the pull requests and issues

We perform a Kolmogorov-Smirnov test to confirm the statistical significance

of our comparative findings; the resulting p-values are in Table 5.4. We see that

the results are statistically significant for all the comparisons except for Bitcoin and

Bitcoin Cash, indicating that the respective numbers of codebase authors are drawn

from different distributions, except for Bitcoin and Bitcoin Cash. This is expected

as Bitcoin Cash is a very recent fork of Bitcoin.

Bitcoin Cash Clojure Ethereum Ethereum Classic Rust

Bitcoin 0.4749 0.001 < 10−16 < 10−16 0.001

Bitcoin Cash 0.003 < 10−16 < 10−16 0.002

Clojure < 10−16 < 10−16 0.028

Ethereum < 10−16 < 10−16

Ethereum Classic < 10−16

Table 5.4: p-values for the Kolmogorov-Smirnov test on the number of authors per file.

We acknowledge, however, that measuring levels of centralization by looking

at the codebase is limited in some respects, as it is not practical — or even neces-

sarily important for accountability — to have many people contributing to the same

files, and there are likely people looking over and discussing files in ways that are

not reflected in Git commits. This is why we look next at the discussion around the

5.2. Data Analysis 102

Jul
 20

10

Jan
 20

11

Jul
 20

11

Jan
 20

12

Jul
 20

12

Jan
 20

13

Jul
 20

13

Jan
 20

14

Jul
 20

14

Jan
 20

15

Jul
 20

15

Jan
 20

16

Jul
 20

16

Jan
 20

17

Jul
 20

17
0.0

0.2

0.4

0.6

0.8

1.0

Sa
to

sh
i i

nd
ex

eth-all
btc
rust

(a) Satoshi index

Jul
 20

10

Jan
 20

11

Jul
 20

11

Jan
 20

12

Jul
 20

12

Jan
 20

13

Jul
 20

13

Jan
 20

14

Jul
 20

14

Jan
 20

15

Jul
 20

15

Jan
 20

16

Jul
 20

16

Jan
 20

17

Jul
 20

17

2

4

6

8

10

12

14

Na
ka

m
ot

o
in

de
x

eth-all
btc
rust

(b) Nakamoto index

Figure 5.2: The evolution of the Satoshi and Nakamoto indexes over time. The values for

Ethereum are in blue, for Bitcoin in red, and for Rust in green.

code and how decentralized it looks.

5.2.2 Commenters on the main code base

To get a feeling for the evolution of the distribution of comments over the life of

a cryptocurrency, we compute the Nakamoto and Satoshi indexes over time in Fig-

ure 5.2, using the discussion threads in the pull requests and issues of the GitHub

repository. These graphs exclude Clojure, as ultimately we believed the dataset was

too small to get any real insights. For example, there were only 72 pull requests, as

compared to 11,604 for Bitcoin. Similarly, since Bitcoin Cash and Ethereum Clas-

sic are relatively recent forks, and thus have a far smaller level of discussion so far,

we also exclude them from this analysis.

Intuitively, in a decentralized system we would expect the Satoshi index to be

around 0.5 (i.e., if the distribution is uniform, half of the commenters should con-

tribute, roughly, for half of the comments) and a Nakamoto index to be high (i.e.,

there is a large number of commenters making half of the comments as opposed to a

handful). In Figure 5.2, we see that in all the repositories there is a strong tendency

towards centralization in the number of commenters, with a handful of people con-

tributing to most of the comments. The Nakamoto indexes for the codebases of

Bitcoin, Rust, and Ethereum are consistently relatively low, as every month there

are no more than 10 authors contributing to half of the comments for Bitcoin and

Rust and 15 for Ethereum. When normalized by the total number of commenters

5.2. Data Analysis 103

per month, for Bitcoin and Ethereum this is less than a quarter of the commenters

each month (as seen in Figure 5.2a).

10 20 30 40 50 60 70 80 90 100

Bitcoin 1 1 3 5 8 13 21 41 239 2443

Clojure 2 5 9 15 23 33 45 65 85 104

Ethereum 2 5 8 12 18 29 49 127 467 3139

Rust 1 1 1 2 4 10 21 43 181 3882

Table 5.5: Minimal number of commenters that contribute to x% of all the comments.

To see whether it was the same people making most of the comments each

month or different people every time (which would indicate more decentralization),

we plot in Figure 5.3 the number of comments per author every month. For Bit-

coin and Rust, we see that there is one commenter that accounts for most of the

comments each month (for Bitcoin, Wladimir van der Laan is the top commenter

with 13,923 comments in total, followed by Jonas Schnelli with 4,409 comments),

and for Ethereum there is a small handful of commenters who stand out from the

rest (the top three are Gavin Wood with 3,352 total, Péter Szilágyi with 2,242, and

Jeffrey Wilcke with 2,230). Overall for Bitcoin there are only eight people con-

tributing to half of all the comments, which represents 0.3% of all commenters. For

Ethereum there are 18 people (or 0.6% of all commenters), and for Rust there are

four (or 0.1%). These results are summarized in Table 5.5.

This centralized trend is confirmed by the values in Table 5.3, as we see that the

mean is much greater than the IQMean or median, which are values that typically

ignore outliers. The mean is one order of magnitude higher than the IQMean for

Bitcoin, Ethereum, and Rust. This means that the tails of the distribution (i.e., the

top 25% of the distribution) differ a lot from the value in the main range. This can

also be confirmed by looking at the number of comments for the top commenters,

compared to the average number of comments per author. Generally, this confirms

that a handful of people (less than 10) contribute to most of the comments. As this

is true for all the repositories, we conclude that this is potentially a common (and

5.2. Data Analysis 104

Dec
 2

01
0

Ju
n

20
11

Dec
 2

01
1

Ju
n

20
12

Dec
 2

01
2

Ju
n

20
13

Dec
 2

01
3

Ju
n

20
14

Dec
 2

01
4

Ju
n

20
15

Dec
 2

01
5

Ju
n

20
16

Dec
 2

01
6

Ju
n

20
17

Dec
 2

01
7

0

50

100

150

200

250

300

350

400

(a) Bitcoin

Oct
 2

01
0

Apr
 2

01
1

Oct
 2

01
1

Apr
 2

01
2

Oct
 2

01
2

Apr
 2

01
3

Oct
 2

01
3

Apr
 2

01
4

Oct
 2

01
4

Apr
 2

01
5

Oct
 2

01
5

Apr
 2

01
6

Oct
 2

01
6

Apr
 2

01
7

Oct
 2

01
7

0

1

2

3

4

5

6

7

8

(b) Clojure

Ja
n

20
14

Ju
l 2

01
4

Ja
n

20
15

Ju
l 2

01
5

Ja
n

20
16

Ju
l 2

01
6

Ja
n

20
17

Ju
l 2

01
7

0

100

200

300

400

500

600

700

800

900

(c) Ethereum

Ju
n

20
10

Dec
 2

01
0

Ju
n

20
11

Dec
 2

01
1

Ju
n

20
12

Dec
 2

01
2

Ju
n

20
13

Dec
 2

01
3

Ju
n

20
14

Dec
 2

01
4

Ju
n

20
15

Dec
 2

01
5

Ju
n

20
16

Dec
 2

01
6

Ju
n

20
17

Dec
 2

01
7

0

500

1000

1500

2000

2500

3000

3500

(d) Rust

Figure 5.3: Number of comments per commenters per month.

somewhat natural) feature in open-source systems.

We also compute, in Table 5.6, a Kolmogorov-Smirnov test on the total number

of comments per author. We see that the number of comments per author from

Bitcoin, Ethereum, and Rust are drawn from different distributions. In the next

two sections, we will focus on Bitcoin and Ethereum, looking more closely at the

improvement proposals process in Section 5.2.3 and comparing the communities

behind the main codebases, the improvement proposals, and forks in Section 5.2.4.

5.2.3 Improvement Proposals for Bitcoin and Ethereum

In this section, we look at the improvement proposal (IP) process. Together with

pull requests, this is the main road to contributing to the design and development of

the currency. For improvement proposals, just as for comments, we would expect to

see a high number of proposers in a decentralized system. Similarly we would ex-

pect the number of proposal per author to be somewhat uniform, to conclude a high

5.2. Data Analysis 105

Bitcoin ABC BIPS Clojure Ethereum Ethereum Classic EIPS Rust

Bitcoin 0.045 0.04 0.113 0.029 0.583 0.414 < 10−16

Bitcoin ABC 0.008 0.142 0.027 0.12 0.041 < 10−16

BIPS 0.015 0.434 0.958 0.285 0.712

Clojure 0.033 0.043 0.07 0.021

Ethereum 0.857 0.536 < 10−16

Ethereum Classic 0.854 0.873

EIPS 0.044

Table 5.6: p-values for the number of comments per author

level of decentralization. For each author we count how many improvement pro-

posals they made to Ethereum and Bitcoin, and what states these proposals were in

(i.e., if they were accepted, rejected, or under review). In Figure 5.4a, we notice that

only a handful of people are contributing to Bitcoin improvement proposals (BIPS).

In Figure 5.4b, there is mostly just one person, Vitalik Buterin, that is contributing

to Ethereum improvement proposals (EIPS).

There are usually many people contributing to the discussion for every pro-

posal, so we measure the level of centrality in terms of the number of comments

in pull requests for each user in the BIPS and EIPS repositories. The results are in

Table 5.7. The trend here is similar to the one observed in the previous section: the

datasets contain many outliers, corresponding to the top 25% of commenters who

comment significantly more than the rest. Just as before, these results do not align

with our expectations of an ideal decentralized system.

5.2.4 Diversity of communities

In this section, we look at whether or not the same people contribute to the dis-

cussion in the main codebase and in the improvement proposals, and whether or not

there is any similarity between the community behind a cryptocurrency and its fork;

i.e., any resemblance between Bitcoin and Bitcoin Cash and between Ethereum and

Mean Median IQR IQMean

BIPS 11.41 2.0 6.5 2.95

EIPS 9.16 2.0 5.0 2.56

Table 5.7: Centrality metrics for the number of comments per author.

5.2. Data Analysis 106

1 4 7 11 16 21 26 31 36 41 46 51 56 61
Participant ID

N
um

be
r

of
 IP

s
0

2
4

6
8

10
12

Final
Replaced
Active
Withdrawn
Deferred
Proposed
BIP num allocated
Rejected
Draft

(a) The authors of BIPs, identified by a unique numeric value, along with the number of

proposals they have created and the respective status of those proposals. The top five con-

tributors are Gavin Andresen (with 12 proposals and 9 accepted) and Pieter Wuille (12 pro-

posals, 4 accepted), Luke Dashjr (11 proposals), Eric Lombrozo (6 proposals), and Johnson

Lau (6 proposals).

1 2 3 4 5 6 7 8 9 11 13 15 17 19 21
Participant ID

N
um

be
r

of
 IP

s
0

2
4

6
8

10
12 Accepted

Draft
Final
Deferred

(b) The authors of EIPs, identified by a unique numeric value, along with the number of

proposals they have created and, if in the main set of EIPs, the status of those proposals.

The top three contributors are (1) Vitalik Buterin, with 13 proposals, 11 of which were

accepted or finalized; (2) Alex Beregszaszi, with 6 proposals; and (3) Nick Johnson, with 4

proposals.

Figure 5.4: Improvement Proposals for Bitcoin and Ethereum.

Ethereum Classic. Because Ethereum Classic does not have a separate implementa-

tion for every client, we focus in this section only on the Go client for each platform,

5.3. Discussion 107

as it is the most popular. The ability to fork is one of the most important features of a

decentralized system and comparing a cryptocurrency and its fork helps understand

the dynamics behind the communities contributing in both.

To do this, we first compute the Sørensen-Dice index on the set of the 30 top

commenters, which accounts for roughly 75% of all the comments in the relevant

repositories (see Table 5.5). As we see in Table 5.8, the set of main commenters

in the main Bitcoin repository and in the BIPS repository overlap, with a Sørensen-

Dice index of 0.5. This means that out of the 30 main commenters of Bitcoin and

BIPS, 15 are in both communities. This is much more than for Ethereum compared

to EIPs, with 7 commenters in both sets.

To include all commenters, we use a weighted version of the whole set of

commenters. To do so, we weight commenters by their number of comments and

then compute the Sørensen-Dice index on these augmented sets. The results are in

Table 5.8. Taking the weight (and all the commenters) into account, the similar-

ity between Ethereum and EIPS is still meaningful, with an index of 0.108. The

value for Bitcoin vs BIPS, however, drops to 0.069. Therefore, although half of the

main commenters for Bitcoin also comment on BIPS, they do not write as many

comments in the BIPS repository.

The overlap in the communities of Bitcoin and Bitcoin Cash, and Ethereum and

Ethereum Classic, is small. The Sørensen-Dice index was 0.033 for both. Hence

only one of the top commenters of the main repository is also a commenter in the

forked one. This low value shows that the forked currency is really the formation of

a new community rather than a separation of the initial one.

5.3 Discussion

According to our metrics on the number of contributors per file in the codebases, we

found that Bitcoin, Rust, and Clojure were all more decentralized than Ethereum,

even given the fact that Ethereum has many more reference clients. The distribu-

tions of the number of authors for all the codebases was different except for Bitcoin

and Bitcoin Cash, which is not surprising given that Bitcoin Cash is a recent fork

5.3. Discussion 108

Sørensen-Dice Coefficient

Repositories Top 30 All (weighted)

Bitcoin and BIPS 0.50 0.0686

Ethereum and EIPS 0.23 0.1077

Bitcoin and Bitcoin Cash 0.03 0.0050

Ethereum and Ethereum Classic 0.03 0.0030

Table 5.8: Sørensen-Dice Coefficient for the 30 most commenters and Weighted Sørensen-

Dice Coefficient for all the commenters

of Bitcoin and thus their codebases are very similar. Interestingly, while Ethereum

Classic is a fork of Ethereum, the number of authors on these two codebases is

still quite different. However, this fork happened a longer ago and there have been

numerous changes to the Ethereum Classic codebase since the fork occurred. Our

data imply that one cannot necessarily assume a natural pattern for the number of

authors on an open source code base.

There was a greater number of participants in the Bitcoin improvement pro-

posals than in those of Ethereum. Although the distribution of the number of com-

ments on the Bitcoin codebase was different from the one on the BIPS, the distri-

bution from Ethereum was similar to EIPS (Table 5.6). The intersection between

the main commenters on Bitcoin’s main codebase and the commenters on the BIPS

was greater than the intersection between the commenters on Ethereum’s main code

base and the commenters on the EIPS. However, when considering the weighted in-

tersection, we found the opposite applied. Generally there are very few people that

account for most of the comments for Bitcoin, whereas for Ethereum this number

is higher.

Finally, both the Bitcoin and Ethereum communities seem relatively unaffected

by the hard forks. The number of people commenting was not significantly different

before and after the forks, and there was little intersection between the people par-

ticipating in the original codebases and the forked codebases. This implies that the

forks did not split the communities, and that a large proportion of the community

5.4. Conclusions 109

decided to stay with the original codebases. However in our discussion we only

considered Bitcoin ABC, the most popular client for Bitcoin Cash, which could

limit our results. We leave as an open problem the study of all the Bitcoin Cash

clients. Our data implies that there could feasibly be a natural pattern in the number

of comments per author in cryptocurrencies.

5.4 Conclusions
In this chapter we compared the centralization of Bitcoin and Ethereum using their

GitHub repositories and their IP GitHub repositories. In part, we looked at whether

the contributions were uniformly distributed or whether there were a handful of

people that disproportionately contributed compared to others.

Measuring levels of centralization by looking at the codebase or by looking at

specific sources is inherently limited. While our measurements captured the num-

ber of people writing code changes and commenting on the GitHub files, they do

not capture the number of people voting on whether or not changes should be ac-

cepted. We also did not capture conversations appearing in other places such as on

Reddit, the main forums, or the mailing lists. We considered only two main cryp-

tocurrencies, but there is a multitude of other ones, and it would be interesting to see

whether similar patterns appear in these other cryptocurrencies, or indeed in other

open-source projects in general. Also, in traditional governance structures there is

typically a concern over representation: is there a variety in the demographics of

the people making the rules? This is potentially a concern in cryptocurrencies as

well, and it would be interesting to measure the demographics of the authors and

commenters on the codebases.

We are aware of two projects that aim to tackle the centralization in governance

structures of cryptocurrencies: Tezos [131], a decentralized system that incorpo-

rates governance into the consensus protocol, and Steemit [132], a decentralized

social media platform in which users are incentivized to post and curate content by

receiving a reward in the native cryptocurrency. However, we are not aware of any

studies that analyze these solutions.

Chapter 6

Who Am I? Secure Identity

Registration on Distributed Ledgers

In the previous chapters we have looked at the decentralization of blockchains at the

protocol level (Chapter 4) and at the governance level (Chapter 5). We now look at

another level, that of applications that can be built on top of distributed ledgers.

As a more involved example, we consider the case of governments admin-

istering pensions or benefits on a distributed ledger; the argument that has been

made for doing this is that it could provide recipients with better visibility into their

spending and reduce fraud [133], but such programs have come under significant

scrutiny [134, 135] due to the fact that they allow the government to identify its

recipients on the ledger and thus track and monitor their spending.

Our focus in this chapter is on the role that registration of identity can play

in public distributed ledgers and on ways to maintain a degree of decentralization

when doing so. While certain settings such as the ones described above might

require a centralized registration protocol (e.g., only the government can decide

whether or not a user is eligible for a pension), we also consider more informal

notions of registration such as the so-called “web of trust.” The web-of-trust concept

has historically been used solely within the setting of certificate issuance, wherein

users sign each others’ PGP identity certificates to vouch for their authenticity, but

has recently been discussed for the more general concept of identity in distributed

ledgers. These decentralized settings are particularly appealing, as they remove the

111

need for a single trusted party and provide an opportunity to improve privacy and

availability for users.

Our contributions

In this chapter, we propose methods for achieving registration in decentralized set-

tings — such as the web of trust — in which multiple entities, in potentially flexible

configurations, can act to validate attributes of a user’s identity. We consider the

registration of users’ pseudonyms, unless stated otherwise.

Before presenting these methods, we give in Section 6.1 some additional back-

ground on cryptographic primitives that we use in this chapter, as well as on the

web-of-trust. Then in Section 6.2 we consider both the functional and security

properties that we hope to achieve. In particular, we consider how to provide pri-

vacy for users, so that even the registrar who sees their real-world identity and signs

off on their attributes cannot subsequently link that identity to the pseudonyms that

the user goes on to adopt within the ledger.

We begin with a registration protocol in the style of the web of trust (but again,

leveraging some of the key properties of distributed ledgers), and then build off of

it to achieve protocols that provide better privacy and overall security.

Finally, in Section 6.4, we present an implementation of a decentralized regis-

tration protocol — that most closely resembles the web of trust, but allows for the

blinding of attributes — as an Ethereum smart contract. In this setting, users can

publish certain attributes (e.g., their Twitter handle) associated with their Ethereum

address. Other users or institutions can then publish a signature on these attributes,

reflecting a certain belief in its veracity. For attributes that the user may not want

to directly link to their real-world identity (e.g., a particular Bitcoin or other cryp-

tocurrency address), we provide a blind signing protocol in which users can publish

blinded attributes on the blockchain and other users can sign them (and then the

user can unblind them locally).

This chapter is based on [15].

6.1. Background 112

6.1 Background
In this section, we give some additional background on cryptographic primitives

used in the rest of this chapter.

6.1.1 Public-key encryption

Some of our decentralized registration protocols use public-key encryption; here we

denote the appropriate generic algorithms as c $←− Enc(pk,m) (for encryption) and

m← Dec(sk,c) (for decryption). In order to maintain compatibility with Bitcoin

and Ethereum, the Elliptic Curve Integrated Encryption Scheme (ECIES) provides

an encryption scheme that is compatible with ECDSA; i.e., one that allows for the

encryption of ECDSA secret keys.

6.1.2 Blind signatures

As initially defined by Chaum [136], a blind signature provides an interaction — de-

noted U(pk,m)↔ S(sk)— wherein a user U obtains a signature from a signer S on

a message without the signer learning anything about the message. One commonly

used construction is the RSA blind signature [137], which we use in our construc-

tions due to the lack — to the best of our knowledge — of any provably secure blind

signatures that are compatible with ECDSA.

Very quickly, RSA blind signatures work as follows. First, the signer generates

an RSA keypair, which consists of a secret key d and a public key (e,N). To obtain a

signature on a message m, the user generates a random value r $←− Z∗N and computes

m′← H(m)re mod N, where H is a hash function. The user then sends this value

m′ to the signer, who computes σ ′ ← (m′)d. To unblind this, the user computes

σ ← σ ′

r = H(m)d, which is a valid RSA signature on m.

6.1.3 The web of trust

The web of trust is a public-key authentication system established by PGP. In this

setting, if Alice trusts that a certain key belongs to Bob (e.g., they have met in

person), she can demonstrate this by signing his public key. The more signatures

associated with Bob’s public key, the more confident another user can be that this

public key does indeed belong to him and not to someone who wants to impersonate

6.2. Definitions and Threat Model 113

him in order to intercept his communications.

In this system, one must of course be careful that it achieves some notion of

Sybil resistance; i.e., that an adversary has not simply created alternate identities

in order to vouch for their own impersonated key. To do this, users in the web of

trust can form a trust path. For example, if Alice trusts Bob’s public key, and Bob

trusts Dave’s public key, then there is a trust path from Alice to Dave and she can

have added confidence in Dave’s public key (as Bob’s public key, which she trusts,

was used to sign it). The shorter the trust path, the stronger the trust can be in the

associated public keys.

The web of trust model can then be thought of as a directed graph whose ver-

tices are users’ PGP keys and the directed edges are signatures on keys. The distance

between two vertices is then the length of the shortest trust path between the two

users they represent. In order to make the system Sybil resistant one could then

consider having some weighting scheme such that Alice would only trust Bob if

Bob’s weight is higher than some threshold t.

6.2 Definitions and Threat Model

We consider a setting in which users maintain attributes about themselves and re-

quire registrars to vouch for these attributes. For example, in order to register the at-

tribute “over 18 years old,” a user reveals their identity to the government, who ver-

ifies their age. If they are over 18, the government registers the user’s pseudonym,

and they are now able to use it directly on the blockchain. For Bitcoin, we consider

only the registration of pseudonyms, but in Ethereum, we consider the registration

of more general types of attributes. Confirmation that the user possesses a given

pseudonym may in turn be carried out by verifiers in order for the user to gain ac-

cess to a particular service; i.e. for the users to interact with the service using their

registered pseudonyms (e.g., use it to receive a pension from the government). We

break this system down into four phases: (1) setup, in which various actors may ini-

tialize certain information about themselves (e.g., keys); (2) registration, in which

the user interacts with the registrar(s) to register their pseudonym(s) and receive

6.2. Definitions and Threat Model 114

some evidence of this; (3) verification, in which the user interacts with the verifier

to convince them that certain pseudonyms have been registered; and (4) revocation,

in which either the registrar or (in some cases) the user revokes the registration of

their pseudonym.

In order for the system to function, we must have a way for verifiers to check

certain information about users without the intervention of the registrar. Let’s as-

sume, for example, that the user wants to register as an attribute the fact that they are

over 18 years old so they can use a gambling service. If the registrar must intervene

in order to confirm this attribute — as in the recently proposed brokered identifica-

tion systems proposed in the US and UK [138, 139, 140] — then the registrar must

be online at all times and can link the user’s identity with their usage of certain

services, neither of which is desirable. If instead this information is stored on a

blockchain, then the verification step can happen in a non-interactive, or passive,

fashion, as the verifier can simply check for themselves if the user’s pseudonym has

been registered or not. If evidence of the registration is not stored on the ledger, or

if additional information is needed to “unlock” it (e.g., it is encrypted), then it may

be necessary for the user to send additional information to — or otherwise interact

with — the verifier. We capture these two functional properties as follows:

Definition 6.2.1 (Passive/active verification). The verification process is passive if

any verifier with access to the shared ledger can determine whether or not a given

user has registered a particular attribute. The verification process is instead active

if verifiers require additional information beyond what is available on the shared

ledger.

In order for the system to be secure, we would like to ensure that users are able

to register only accurate attributes about themselves; e.g., they can register only for

services, such as a pension scheme, that they are eligible to use. We must also en-

sure that the individual identities of users are protected and cannot be impersonated

by anyone else. Once the user has completed the registration process and is inter-

acting within the system using only their registered pseudonyms (e.g., their Bitcoin

address), we should be able to ensure privacy; i.e., that the registrar cannot link the

6.3. Decentralized Registration 115

user’s real-world and “on-chain” identifiers (even across separate attributes). We

consider the different types of security we would like to achieve as follows:

Definition 6.2.2 (Attribute integrity). Attribute integrity holds if attributes are reg-

istered only to those users to whom they belong; i.e., in the presence of an honest

registrar, malicious users are unable to either register a fake attribute or one that

otherwise does not belong to them, and malicious registrars are unable to imper-

sonate an individual honest user.

Definition 6.2.3 (Availability). Availability holds if malicious registrars are unable

to deny an individual user the right to register an attribute that they possess.

Definition 6.2.4 (Attribute privacy). Attribute privacy holds if malicious entities

(i.e., registrars and verifiers who are allowed to collude) are unable to link the

attributes a user claims within the system to their identity. In particular, after the

registration process is complete, malicious registrars are unable to distinguish the

behavior of two users within the system that have different real-world identities but

the same set of attributes.

As we will see in our constructions, while revocation is useful and often neces-

sary — as keys are frequently compromised or lost — it also tends to require active

verification, as registrations cannot be deleted from the ledger (because it is im-

mutable) and it is difficult to efficiently prove the absence of a revocation entry

while maintaining privacy. To thus separate out these complexities, we analyze our

protocols separately in the cases where revocation is and isn’t supported.

6.3 Decentralized Registration
In any centralized setup, we cannot satisfy availability, as the centrality of the reg-

istrar always allows it to deny users access to the system. To thus provide this

property, and open the process up to more ad-hoc forms of registration, we consider

a decentralized setup in which users interact with multiple registrars, and may even

pick these registrars themselves.

For example, the “web of trust” reputation system can be considered a de-

centralized registration process in which any user can act as a registrar. The more

6.3. Decentralized Registration 116

Verification Attribute integrity Privacy

passive active

Basic web of trust G#

Blinded web of trust (with revocation) G# G#

Blinded web of trust (without) G#

Multi-Casascius

Mix-network

Table 6.1: The different properties of a blockchain-based registration protocol and whether

or not they are satisfied by our various constructions. No circle indicates that the property is

not satisfied, a filled circle indicates it is, and a partially filled circle indicates it is partially

satisfied.

signatures one accumulates for a particular attribute, the more trusted that attribute

can be considered. In the PGP web of trust, however, the system still uses a cen-

tral website to provide the lookup and signing services. In our constructions below,

we use the blockchain to provide these two services. We also consider additional

decentralized protocols that provide more robust properties or are useful in settings

outside of the web of trust. In a similar way, trust in one’s identity can be reinforced

by a diverse set of authorities — e.g., universities and governments — who might

issue different types of official documents that a user can then maintain in a single

portfolio on the ledger. This type of system has been proposed recently using an

approach analogous to the issuance of digital certificates [93].

6.3.1 Basic web of trust

One simple way of translating the web of trust into the setting of blockchains is

to have users create transactions that vouch for each others’ attributes. This can

be done either individually or — if a user knows in advance which other users will

vouch for their attribute — as a multi-input transaction.

6.3. Decentralized Registration 117

6.3.1.1 Construction

In the setup phase, the user optionally chooses a set of peers to validate their at-

tribute and act as registrars. We assume each registrar creates and publishes an

on-chain identity addrR.

In the registration phase, the user sends their identity id and address addrid to

each registrar, who determines if the address belongs to id (or just if id is a valid

identity), using some off-chain mechanisms that we omit here. If it does, each

registrar Ri creates a revocation keypair (pk(i)rev,sk(i)rev)
$←− Sig.KeyGen(1λ), and pub-

lishes to the blockchain a transaction tx(addr(Ri)→ {addrid,addr(pk(i)rev)}). In a

basic system like Bitcoin this could involve sending a specific amount of bitcoins

to both the attribute and revocation addresses, while in a more sophisticated system

like Ethereum it could be a registration smart contract. Alternatively, if the set of

registrars is fixed ahead of time, a user can create an n-input n+ 1-output trans-

action tx(addr(R1), . . . ,addr(Rn)→ addrid,addr(pk(1)rev), . . . ,addr(pk(n)rev)) and, after

collecting signatures on it from each registrar, publish it to the blockchain.

In the verification phase, when the user wishes to prove that they have regis-

tered the pseudonym, the verifier checks for the existence of these transactions in

the blockchain, and that the output address addr(pkrev) has not spent its contents.

(While this may seem inefficient, if we associate with the ledger a list of unspent

transaction outputs, or UTXOs, then it becomes significantly faster.)

Our approach to revocation here and in what follows is inspired by the ap-

proach of the MIT Digital Certificates project [93]. In the revocation phase, a reg-

istrar Ri can revoke their registration by spending the contents of addr(pk(i)rev).

6.3.1.2 Security analysis

Verification is passive, as the verifier needs to check only whether or not certain

transactions are in the blockchain.

Attribute integrity is partially satisfied: restricting ourselves to the setting of on-

chain pseudonyms, no registrar is able to impersonate the user, as they don’t know

the private key corresponding to a user’s addrid. We could strengthen integrity by

requiring the user to also send a signature to prove its ownership of addrid. Be-

6.3. Decentralized Registration 118

cause the user can pick its own set of registrars, however, we cannot unilaterally

guarantee that a user cannot register a fake attribute, as a malicious coalition of

users could act to register each other’s fake identities or attributes. This is the

same problem faced in the web of trust, however, and it can be mitigated by hav-

ing the verifier place trust only in registrars with whom they can create a trust

path of a certain (short) length (see Section 6.1.3). If malicious registrars can

place themselves along this trust path with a certain proximity to the verifier, this

is analogous to launching a Sybil attack, which can be prevented or detected in a

variety of ways [141]. Thus, if the verifier sets a low threshold for the required

length of the trust path and a high threshold for the number of registrars required

to have registered the attribute, we can argue that the probability that malicious

users can register fake attributes is low.

Privacy is not satisfied, as every registrar sees both id and addrid at the same time.

6.3.2 Blinded web of trust

One of the problems of the previous method is that it provides no privacy. To achieve

this, we provide a blinded version of the web of trust in which the user collects blind

signatures from a set of nodes and the verifier then verifies the unblinded signatures.

In Section 6.4, we present the results of an implementation and deployment of this

approach on Ethereum.

6.3.2.1 Construction

In the setup phase, each registrar maintains as before a public on-chain identity

addrR linked to a public signing key pkR.

In the registration phase, the user sends their identity id to a registrar, who de-

termines whether or not they believe the user is eligible for the service. If they do,

the user and registrar engage in the blind signing protocol U(addrR, pk)↔R(skR) at

the end of which the user obtains a signature σ such that Sig.Verify(pkR, pk,σ) = 1

and the registrar learns nothing about pk. The registrar also creates a revocation

key pair (pkrev,skrev)
$←− Sig.KeyGen(1λ), sends it to the user, publishes to the

blockchain a transaction tx(addrR→ addr(pkrev)), and maintains the mapping from

6.3. Decentralized Registration 119

id to pkrev. The user repeats this process with every registrar.

In the verification phase, the verifier verifies the unblinded signatures, and the

user proves they control the revocation address pkrev by signing a message using

skrev. The verifier verifies this signature, checks the existence of the revocation

transaction in the blockchain, and checks that addr(pkrev) has not yet spent its con-

tents.

In the revocation phase, the registrar spends the contents of addr(pkrev).

6.3.2.2 Security analysis

Verification is active, as the user must provide the signatures to the verifier. To

allow for passive verification without revocation, the user could, after some de-

lay, send pk and σ back to the registrar. The registrar would then check its

own signature and, if it verifies, publish to the ledger a transaction of the form

tx(addrR → addr(pk)). The verifier would, in this case, simply check for the

transaction tx(addrR → addr(pk)) in the blockchain to verify the registration,

making it passive.

If we require revocation, however, we cannot achieve passive verification. The

user would need to prove to the verifier that the coins in their revocation address

are unspent, but to do that they would still need to prove that they know the secret

key associated with their revocation address — as otherwise they could find and

use any revocation address in the ledger — which requires active participation.

Attribute integrity is partially satisfied, as malicious registrars cannot imperson-

ate users since they do not know the private key associated with the public key

they register. While the unforgeability of the blind signature guarantees that a

malicious user cannot fake the approval of an honest registrar, we cannot guaran-

tee that malicious users and registrars cannot collude to register fake attributes.

Instead, we can diminish the probability of this by requiring short trust paths and

numerous registrars.

Privacy is satisfied, as the unlinkability of the blind signature means that malicious

registrars are unable to link id and pk. If we consider malicious verifiers as well,

6.3. Decentralized Registration 120

however, then the verifier could collude with the registrar and use pkrev to de-

anonymize the user. If we ignore revocation then privacy is (fully) satisfied.

6.3.3 Multi-Casascius

In this setting, we assume that the registrar consists of several entities (e.g., different

certificate authorities) that are assumed to have some level of trust in each other; in

particular, one registrar must be trusted by the others to correctly verify the identity

of the user. As an improvement over the previous construction, these multiple enti-

ties make the registration process anonymous and provide passive verification, even

in the case where revocation is necessary.

Our solution is based on the two-factor key generation protocol used to gen-

erate physical Casascius coins [16]. In this process, the manufacturer (Casascius)

encodes on a physical coin a public key and a share of the associated secret key.

(Traditional Casascius coins have the full secret key, meaning the manufacturer

knows it and is able to spend the contents in the same way as the person who bought

it.) The user who purchases the product can then fold in their own share of the secret

key (which has been communicated to Casascius in the obfuscated form of an “in-

termediate code”), which yields the full secret key needed to spend the coins stored

in the public key; thus, only the user and not the manufacturer can spend the coins.

Our solution attempts to retain this property, which allows for attribute integrity, but

provides a decentralized version for use in a wider variety of settings.

6.3.3.1 Construction

In the setup phase, each registrar Ri establishes some on-chain identity addrRi as-

sociated with a public key pki, and the user creates a keypair (pkpub,skpub)
$←−

Sig.KeyGen(1λ). The user chooses a set of registrars with whom they want to reg-

ister, as well as the order in which the registrars will proceed. (This can be thought

of as either a property of the system, or as a choice made by the user that they

communicate to the registrars.)

The registration phase proceeds in two phases, which are depicted in Fig-

ure 6.1. First, the user sends pkpub and their real world identity id to R1. This

6.3. Decentralized Registration 121

registrar verifies that the user is legitimate; if so, it picks a random secret key sk1,

sends pk1← (pkpub)
sk1 to R2, and keeps (for use in the second phase) the mapping

sk1 7→ pkpub. Now, for all i, 2 ≤ i < n, registrar Ri picks a random secret key ski,

sends pki← (pki−1)
ski to registrar Ri+1, and keeps the mapping ski 7→ pki−1. Upon

receiving pkn−1, registrar Rn also picks a random secret key skn and forms pkn←

(pkn−1)
skn . It then creates a revocation keypair (pkrev,skrev)

$←− Sig.KeyGen(1λ)

and publishes a transaction tx(addrRn → {addr(pkn),addr(pkrev)}) that acts as a

registration.

In the second phase, the registrars create an onion [142] to send the secret

keys back to the user. In particular, Rn encrypts skn using pkn−1 and sends cn
$←−

Enc(pkn−1,(skn,⊥)) to Rn−1. Now, for all i, n > i≥ 2, Ri folds their own secret key

into the onion by sending ci
$←− Enc(pki−1,(ski,ci+1)) to Ri−1. At the end, R1 creates

c1
$←− Enc(pkpub,(sk1,c2)) and sends this to the user. The user can now recover all

the individual ski values by computing (ski,ci+1)←Dec(ski−1,ci) for all i, 1≤ i≤ n

(where sk0 = skpub), and can thus reconstruct the public key pkn as

pkn← (pkpub)
∏n

i=1 ski,

and the private key as skn← skpub ·
∏n

i=1 ski.

In the verification phase, the verifier checks for the existence of the transac-

tion tx(addrRn → {addr(pkn),addr(pkrev)}) in the blockchain, and verifies that the

contents of pkrev are unspent.

In the revocation phase, R1 is the only registrar that can initiate revocation (as

it is the only one that knows id), but Rn is the only registrar that can spend the

contents of addr(pkrev). Thus, R1 starts by sending a revocation request for key pk1

to R2. In turn, using the mapping ski 7→ pki+1, Ri sends a revocation request for key

pki to Ri+1 for all i, 2 ≤ i < n. When the request reaches Rn, they can revoke the

registration by spending the coins in addr(pkrev).

The previous protocol is summarized in Figure 6.1.

6.3. Decentralized Registration 122

User R1 · · · Ri · · · Rn Blockchain
pkpub,id //

checks id is valid

sk1
$←− [n]

pk1← pksk1
pub

pk1 //

...

pki−1 // ski
$←− [n]

pki← pkski
i−1

pki //

...

pkn−1 // skn
$←− [n]

pkn← pkskn
n−1

tx(Rn→pkn) //

cn
$←− Enc(pkn−1,(skn,⊥))

cnoo

...

ci
$←− Enc(pki−1,(ski,ci+1))

cioo ci+1oo

...

c1
$←− Enc(pkpub,(sk1,c2))

c1oo c2oo

(ski,ci+1)←Dec(ski−1,ci) ∀i

skn← skpub ·
∏n

i=1 ski

pkn← pk

∏n

i=1
ski

pub

return (pk,sk)

Figure 6.1: The Multi-Casacius protocol from Section 6.3.3; for ease of exposition we

present a version of the protocol that does not support revocation. The dashed line denotes

the separation between the first phase (the formation of the key) and the second phase (the

formation of the onion) of the protocol.

6.3.3.2 Security analysis

Verification is passive, as the verifier needs to check only whether or not certain

transactions exist in the blockchain.

Attribute integrity is satisfied. The first registrar R1 checks for the validity of

id, so a user cannot register a fake or ineligible identity as long as R1 is honest.

6.3. Decentralized Registration 123

Similarly, because the user sends a value pkpub to the registrar that involves a

partial secret key skpub known only to them, even if all the registrars collude the

user is still the only entity who knows the full secret key associated with pkn,

which means they cannot be impersonated. As in Section 6.3.1, We could require

the user to send a signature under skpub to additionally prove their ownership of

pkpub.

Privacy is satisfied, as long as at least one registrar is honest. For all i, 2 ≤ i ≤ n,

each registrar Ri knows the mapping between pki−1 and pki, and R1 knows the

mapping between id and pk1. If all the registrars collude, they can thus learn the

mapping between id and pkn, but as long as one registrar doesn’t collude with the

others and n≥ 3, the user cannot be de-anonymized. Assuming that R1 does not

know which node is acting as Rn, which is plausible as it communicates directly

only with R2, R1 cannot de-anonymize the user by observing the transactions

published in the blockchain. Timing attacks can be mitigated by adding some

random delays in the publication of the registration transaction. Our next protocol

will completely thwart this attack.

6.3.4 Mix-network

While the blinded web of trust protocol in Section 6.3.2 and the multi-Casascius

protocol in Section 6.3.3 provide strong privacy guarantees, the former has the

drawback that verification requires active participation on behalf of the user, and

the latter has the drawback that all registrars must trust the initial one to verify the

identities and allows timing attacks. Here, we try to maintain the advantages of

these protocols but eliminate these drawbacks.

Without adopting the time delay from our protocol in Section 6.3.2, we can-

not achieve passive verification unilaterally. Instead, we consider how to provide

passive verification in a setting in which multiple users register at the same time

through the same set of nodes (e.g., voter registration), which also allows us to

provide each registrar with the ability to verify the set of identities for themselves

without violating privacy. As we will see, if k users register at the same time then

6.3. Decentralized Registration 124

this provides each user with an anonymity set of size k.

6.3.4.1 Construction

In the setup phase, each user j creates a keypair (pk(j)
pub,sk(j)

pub)
$←− Sig.KeyGen(1λ),

and each registrar Ri maintains some on-chain identity addrRi . The order of regis-

trars is determined beforehand.

The registration phase is similar to the two-phase process in Section 6.3.3.

First, each user j sends its public key pk(j)
pub and id(j) to R1. This first registrar

then verifies that all the identities are legitimate; if not it drops the illegitimate

identities and waits to receive a legitimate set of k users. For each user, R1 then picks

a random secret key sk(j)
1 , computes pk(j)

1 ← (pk(j)
pub)

sk(j)
1 , and keeps the mapping

sk(j)
1 7→ pk(j)

pub. It then performs a permutation π1 on the identities and sends the

public keys {pk(j)
1 }k

j=1 and the permuted identities π1({id(j)}k
j=1) to R2. For all i,

2≤ i < n, Ri verifies for itself the set of identities and, if they are eligible, picks for

each user j a random secret key sk(j)
i , computes

pk(j)
i ← (pk(j)

i−1)
sk(j)

i ,

and keeps the mapping sk(j)
i 7→ pk(j)

i−1. It then applies its own permutation πi to

the mapping and sends the public keys {pk(j)
i }k

j=1 and the permuted identities πi ◦

· · ·π1({id(j)}k
j=1) to Ri+1. Finally, Rn creates k revocation keypairs (pk(j)

rev,sk(j)
rev)

$←−

Sig.KeyGen(1λ) and k transactions

tx({addrR1, . . . ,addrRn}→ {addr(pk(j)
n),addr(pk(j)

rev)}). (6.1)

It signs each transaction tx(j) of this form with its private key.

In the second phase, the registrars must now jointly create the transactions to

publish to the blockchain, and create an onion (as in Section 6.3.3) to send the keys

back to the users. So, Rn first signs each transaction tx(j) of the form specified in

Equation 6.1 with its private key. It then encrypts sk(j)
n with pk(j)

n−1 to form c(j)
n

$←−

Enc(pk(j)
n−1,(sk(j)

n ,⊥)) and sends the set {tx(j),c(j)
n }k

j=1 to Rn−1.

For all i, n > i ≥ 2, Ri incorporates its own signature into the transactions

tx(j), encrypts sk(j)
i with pk(j)

i−1 to form c(j)
i

$←− Enc(pk(j)
i−1,(sk(j)

i ,ci+1)), and sends

{tx(j),c(j)
i }k

j=1 to Ri−1.

6.3. Decentralized Registration 125

Finally, R1 incorporates its own signature into the transactions tx(j) and, now

that they have the full set of signatures needed for validity, publishes these transac-

tions to the blockchain. It also creates c(j)
1

$←− Enc(pk(j)
pub,(sk(j)

1 ,c(j)
2)) and sends c(j)

1

to each user j.

At the end, user j recovers the secret key shares sk(j)
i in the same manner as in

in Section 6.3.3; i.e., they compute (sk(j)
i ,c(j)

i+1)←Dec(sk(j)
i−1,c

(j)
i) for all i, 1≤ i≤ n

(using sk0 = skpub), and computes the secret key as sk(j)
n ← sk(j)

pub ·
∏n

i=1 sk(j)
i and the

public key as

pk(j)
n ← (pk(j)

pub)
∏n

i=1 sk(j)
i .

In the verification phase, the verifier checks for the existence of the transaction

in the blockchain and verifies that the contents of pk(j)
rev are unspent.

As in Section 6.3.3, the revocation request can be initiated only by R1, but

revocation can be carried out only by Rn. R1 can initiate the process by sending a

revocation request for pk(j)
1 (which represents id(j)) to R2. In turn, Ri transmits the

revocation request to Ri+1 using their partial key pk(j)
i and their knowledge of the

mapping pk(j)
i−1 7→ pk(j)

i . Once this reaches Rn, it can spend the coins in pk(j)
rev to

revoke the registration.

6.3.4.2 Security analysis

Verification is passive, as the verifier needs to check only whether or not certain

transactions exist in the blockchain.

Attribute integrity is satisfied, as long as one registrar is honest: every registrar

verifies the set of identities {id(j)}k
j=1 for themselves, so if one registrar is honest

then it will drop any fake identities and users cannot register fake ones. As in our

previous protocols, malicious registrars cannot impersonate a user as they do not

have access to the private key.

Privacy is satisfied, as k-anonymity is provided as long as one registrar is honest.

In particular, Ri knows only the mapping between pk(j)
i−1 and pk(j)

i , and only R1

knows the mapping between id(j) and pk(j)
1 . Thus, as long as not all registrars

collude, id(j) and pk(j)
n are unlinkable.

6.4. Implementation and Deployment 126

6.4 Implementation and Deployment
We now present an implementation of the decentralized registration systems de-

scribed in Sections 6.3.1 and 6.3.2; i.e., a system that allows for decentralized reg-

istration in both a standard (in which no privacy is achieved) and blinded (in which

privacy is achieved) fashion. Our implementation is built on top of SCPKI [143],

which implements a basic web of trust system on the Ethereum blockchain. We

extended SCPKI to support a blinded web of trust.

6.4.1 Overview

We have developed an identity management system based on blind signatures and

deployed it on the Ethereum blockchain as a smart contract. The system allows

users to sign the attributes of other users in a web of trust, and also allows a more

official registration authority to sign a user attribute when needed (e.g., a public

key signed by an identity registrar). In addition to the standard signing of generic

attributes, public key attributes can also be signed in an anonymous way using blind

signatures.

As in SCPKI, each user has their own identity on the blockchain that corre-

sponds to an Ethereum address. Using the methods of the smart contract, users can

add attributes to their Ethereum address, sign attributes, and revoke signatures. The

system also provides a way for users to search and retrieve attributes, by producing

Ethereum events, which allow clients to efficiently watch the blockchain for new

changes by a smart contract.

Due to the expensive fees of Ethereum data storage, data associated with at-

tributes may be stored off the blockchain but authenticated on the blockchain.

This can be done by adding an address (e.g., a URI) for the location of the data

instead of the data itself along with its cryptographic hash if necessary for au-

thenticity. The smart contract allows for the ability to store data using IPFS

(https://ipfs.io/) where the cryptographic hash of the data is also its ad-

dress.

The signing and verification of signature validity is performed client-side. As

described in Section 6.3.2, when checking a signature, the client must also look

https://ipfs.io/

6.4. Implementation and Deployment 127

for the existence of a revocation transaction as well as check the optional signature

expiry date. Because of the incompatibility discussed in Section 6.3.2 between

revocation and privacy, our implementation does not allow for the revocation of

blind signatures — only standard signatures can be revoked.

6.4.2 Technical specification

The smart contract is written in Solidity, a high-level language for writing Ethereum

contracts, and the client is written in Python. Our open-source implementation,

based on SCPKI, consists of 1502 lines of Python and Solidity code. The client is a

command line console application and provides access to the smart contract’s meth-

ods and functionality to search for user attributes, retrieve attributes, retrieve signa-

tures, and verify signatures. The smart contract sets the rules on the blockchain for

the management and storage of identity attributes and keys (e.g., only the owner of

a signature can publish a revocation for it). The smart contract, which consists of

46 lines of Solidity code, can be found on Github.1 For the blind signature, we use

the RSA blind signature scheme (as described in Section 6.1.2) with 2048-bit RSA

keys.

Simple signing

In the setup phase, the user generates their own Ethereum address. To obtain a

simple signature the user first adds an attribute to their Ethereum address, by calling

the method addAttribute and specifying the attribute type and data. This creates an

AttributeAdded event on the blockchain containing the attribute properties, which

can be detected by the client. Because Ethereum events are indexable, the client can

easily search for attributes. In the registration phase, the registrar signs the attribute

by calling the method signAttribute and specifying the ID of the attribute to sign

and optionally an expiry date of its signature. This creates an AttributeSigned

event containing the signature properties, including the Ethereum address of the

signer. Because only the owner of the private key of an Ethereum address can

create transactions originating from that address, this cryptographically proves that

1https://github.com/musalbas/trustery/tree/master/contract

https://github.com/musalbas/trustery/tree/master/contract

6.5. Conclusion 128

a specific Ethereum address signed an attribute. In the verification phase, the verifier

checks the published signature on the user’s attributes, checking that there are no

revocations and that the signature has not expired.

Blind signing

If a user wants to obtain a blind signature in order to anonymously register a public

key, they first publish a blinded public key attribute using the method addBlinde-

dAttribute, providing the data for the blinded key and specifying the ID of the

registrar’s public key attribute on the blockchain that the key is blinded for; i.e.,

specifying which registrar the user wants to blindly sign the key. This creates a

BlindedAttributeAdded event that can be detected by the owner of the signing

public key attribute. To blindly sign an attribute, the registrar calls the method sign-

BlindedAttribute on the blinded public key attribute previously added by the user,

providing the data of the signature, this is done client-side. This creates a Attribute-

BlindSigned event. On receiving the event, the user can then unblind the signature

client-side. In the verification phase, the user shows the unblinded signature to the

verifier (as described in Section 6.3.2).

6.4.3 Costs

In Ethereum, every operation has a cost paid using gas. As of May 2017, this

cost could be translated into ether and USD using the exchange rate of 1 gas =

0.00000002 ether, and 1 ether = $192.00.

Table 6.2 shows the cost of each operation when data is stored on and off the

blockchain. Aside from the observation that operations are relatively cheap — pub-

lishing the contract is the most expensive step, at about $3, and all of the operations

involving individual attributes cost a few cents — we also see that the operations

that involve adding and signing attributes are significantly cheaper when the data

representing attributes and blind signatures is stored on IPFS.

6.5 Conclusion
We have proposed different methods for achieving registration in public distributed

ledgers. We presented a decentralized setting, where registration is potentially flex-

6.5. Conclusion 129

operation gas ether USD

publish contract 786,586 0.0157 3.01

add standard RSA attribute 70,952 0.0014 0.27

add standard RSA attribute (IPFS) 40,713 0.0008 0.15

sign standard attribute 49,904 0.001 0.19

revoke standard attribute 28,514 0.0006 0.12

add blinded RSA attribute 60,173 0.0012 0.23

add blinded RSA attribute (IPFS) 38,303 0.0008 0.15

sign blinded RSA attribute 58,012 0.0012 0.23

sign blinded RSA attribute (IPFS) 36,079 0.0007 0.13

Table 6.2: Cost for operations, where all data is stored on the blockchain.

ible and can be done by several entities. For each case we presented the trade-offs

between security (in the form of privacy and integrity), usability (in the form of

passive or active verification), and efficiency. Moreover, all our solutions use only

lightweight cryptographic primitives, as opposed to approaches that adopt zero-

knowledge proofs or other advanced cryptography. We have also implemented a

decentralized registration process that operates on the Ethereum blockchain and

evaluated its costs and efficiency.

Our system does not provide a mechanism for key recovery, but we view this

as an important open problem and an avenue for future research, especially in the

setting in which a user has accumulated many signatures on an attribute and built

up a robust on-chain identity.

Chapter 7

Conclusion and Open problems

A decentralized system that has one of its components centralized (e.g., governance)

is still at risk of suffering similar abuse as centralized systems. For example, if the

three biggest Bitcoin mining pools were to collude, they could decide to censor

some transactions (or decide other arbitrary rules), putting the other miners and

users in a situation where they either abide by those rules or fork the currency,

which would require many efforts and the need to re-create a new community. To

be truly decentralized, a system should have all of its components decentralized.

As such a cryptocurrency where the consensus protocol has a high barrier to entry,

where the decision-making process is not fully open or transparent or where the

applications built on top of it require central authorities cannot really be considered

decentralized.

In this thesis, we looked at cryptocurrencies and their level of

(de)centralization. First, we noted that centralization can occur on different

levels: (1) the consensus level; (2) the governance and (3) the application layer

(for additional use cases). In order to solve (1), we presented in Chapter 4 a new

consensus protocol, Fantômette, based on proof-of-stake. Because the barrier to

entry to proof-of-stake is cheaper than proof-of-work and does not require physical

investment, it is by nature less prone to centralization. Furthermore, it is signifi-

cantly more energy-efficient than Bitcoin. To study (2), we presented in Chapter 5 a

quantitative analysis of the centralization of the governance structure of Bitcoin and

Ethereum. This allows us to meaningfully compare the two cryptocurrencies and

131

understand the dynamic of the discussion behind their decision-making. Finally

(3), motivated by additional applications built on top of decentralized ledgers that

may require registration of pseudonyms, we presented in Chapter 6 decentralized

registration protocols.

The topic of decentralization of cryptocurrencies is a far-flung one and there

are many avenues for future work for this thesis. On the topic of consensus for

example, the problem of how to incorporate external incentives to the design of

cryptocurrencies is, as of this writing, an open problem. Indeed as many different

cryptocurrencies currently exist (more than two thousand as of this writing [23])

this creates some additional vectors of attack [71]. On the topic of governance a

similar quantitative study as ours but on a different medium (e.g., Reddit, mail-

ing lists, IRC) could be interesting. Additionally, let’s note that the governance of

more traditional open-source systems has been extensively studied in the social sci-

ences literature from a theoretical point-of-view [144, 145, 146, 147]. However the

economic component of cryptocurrencies makes their governance structure quite

different as economic incentives are explicitly at stake. It would be interesting to

have some theoretical and empirical comparative studies. Finally, on the applica-

tion layer of blockchains there is the topic of how blockchains can be used to help

provide transparency to systems that inherently have some central component.

Bibliography

[1] Alyssa Hertig. Major Blockchains Are Pretty Much Still Central-

ized, Research Finds, 2018. https://www.coindesk.com/

major-blockchains-pretty-much-still-centralized-research-finds.

[2] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[3] Andy Greenberg. Visa, Mastercard move to

choke WikiLeaks, December 2010. http://www.

forbes.com/sites/andygreenberg/2010/12/07/

visa-mastercard-move-to-choke-wikileaks/.

[4] Peter Oborne. Why did HSBC shut down bank accounts? https://www.

bbc.co.uk/news/magazine-33677946, 2015.

[5] Jasmin Klofta and Tom Wills. Financial surveillance. https://media.

ccc.de/v/34c3-9070-financial_surveillance, 2017.

[6] Carmela Troncoso, Marios Isaakidis, George Danezis, and Harry Halpin.

Systematizing decentralization and privacy: Lessons from 15 years of re-

search and deployments. Proceedings on Privacy Enhancing Technologies,

2017(4):404 – 426, 2017.

[7] Leslie Lamport. Paxos made simple. pages 51–58, December 2001.

[8] Miguel Castro, Barbara Liskov, et al. Practical Byzantine fault tolerance. In

OSDI, volume 99, pages 173–186, 1999.

https://www.coindesk.com/major-blockchains-pretty-much-still-centralized-research-finds
https://www.coindesk.com/major-blockchains-pretty-much-still-centralized-research-finds
http://www.forbes.com/sites/andygreenberg/2010/12/07/visa-mastercard-move-to-choke-wikileaks/
http://www.forbes.com/sites/andygreenberg/2010/12/07/visa-mastercard-move-to-choke-wikileaks/
http://www.forbes.com/sites/andygreenberg/2010/12/07/visa-mastercard-move-to-choke-wikileaks/
https://www.bbc.co.uk/news/magazine-33677946
https://www.bbc.co.uk/news/magazine-33677946
https://media.ccc.de/v/34c3-9070-financial_surveillance
https://media.ccc.de/v/34c3-9070-financial_surveillance

Bibliography 133

[9] John R. Douceur. The sybil attack. In Revised Papers from the First In-

ternational Workshop on Peer-to-Peer Systems, IPTPS ’01, pages 251–260.

Springer-Verlag, 2002.

[10] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone

protocol: Analysis and applications. In Annual International Conference on

the Theory and Applications of Cryptographic Techniques, pages 281–310.

Springer, 2015.

[11] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain

protocol in asynchronous networks. In Annual International Conference on

the Theory and Applications of Cryptographic Techniques, pages 643–673.

Springer, 2017.

[12] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal selfish

mining strategies in bitcoin. In Jens Grossklags and Bart Preneel, editors,

Financial Cryptography and Data Security, pages 515–532, Berlin, Heidel-

berg, 2017. Springer Berlin Heidelberg.

[13] Miles Carlsten, Harry Kalodner, S. Matthew Weinberg, and Arvind

Narayanan. On the instability of bitcoin without the block reward. In CCS

’16.

[14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian

Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous

payments from Bitcoin. In Proceedings of the IEEE Symposium on Security

and Privacy, 2014.

[15] Sarah Azouvi, Mustafa Al-Bassam, and Sarah Meiklejohn. Who am I?

Secure identity registration on distributed ledgers. In Data Privacy Man-

agement, Cryptocurrencies and Blockchain Technology, pages 373–389.

Springer, 2017.

[16] Mike Caldwell and Aaron Voisine. Passphrase-protected private key, 2016.

Bibliography 134

[17] Sarah Azouvi, Mary Maller, and Sarah Meiklejohn. Egalitarian Society

or Benevolent Dictatorship: The State of Cryptocurrency Governance. In

22nd International Conference on Financial Cryptography and Data Secu-

rity, 2018.

[18] Sarah Azouvi, Alexander Hicks, and Steven J Murdoch. Incentives in Secu-

rity Protocols. In Cambridge International Workshop on Security Protocols,

pages 132–141. Springer, 2018.

[19] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick

McCorry, Sarah Meiklejohn, and George Danezis. Consensus in the age of

blockchains. In Advances in Financial Technologies, 2019.

[20] Sarah Azouvi, Patrick McCorry, and Sarah Meiklejohn. Betting on

blockchain consensus with fantomette. arXiv preprint arXiv:1805.06786,

2018.

[21] Sarah Azouvi, Patric McCorry, and Sarah Meiklejohn. Winning the cau-

cus race: Continuous leader election via public randomness. arXiv preprint

arXiv:1801.07965, 2018.

[22] Sarah Azouvi and Alexandre Hicks. SoK: Tools for Game Theoretic Models

of Security for Cryptocurrencies. arXiv preprint arXiv:1905.08595, 2019.

[23] CoinMarketCap. Cryptocurrency market capitalizations. https://

coinmarketcap.com/. Accessed: 2018-01-15.

[24] Blockstream. https://blockstream.com/.

[25] Pete Rizzo. Blockstream raises $55 million to build out Bit-

coin’s blockchain, February 2016. http://www.coindesk.com/

blockstream-55-million-series-a/.

[26] A next-generation smart contract and decentralized application plat-

form, 2014. https://github.com/ethereum/wiki/wiki/

White-Paper.

https://coinmarketcap.com/
https://coinmarketcap.com/
https://blockstream.com/
http://www.coindesk.com/blockstream-55-million-series-a/
http://www.coindesk.com/blockstream-55-million-series-a/
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper

Bibliography 135

[27] Parity. https://parity.io/.

[28] Bips github. github.com/bitcoin/bips.

[29] Cecille De Jesus. The dao heist undone: 97% of eth holders

vote for the hard fork, July 2016. https://futurism.com/

the-dao-heist-undone-97-of-eth-holders-vote-for-the-hard-fork/.

[30] Ethereum classic. https://ethereumclassic.github.io/.

[31] Bitcoin cash. https://www.bitcoincash.org/.

[32] Bitcoin gold. https://bitcoingold.org.

[33] Bitcoin sv. https://bitcoinsv.io/.

[34] https://bitcointalk.org/index.php?topic=27787.0,

2011.

[35] Sunny King and Scott Nadal. PPCoin: Peer-to-peer crypto-currency with

proof-of-stake, 2012. https://peercoin.net/assets/paper/

peercoin-paper.pdf.

[36] Vlad Zamfir. Introducing Casper “the friendly ghost”,

August 2015. blog.ethereum.org/2015/08/01/

introducing-casper-friendly-ghost/.

[37] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman

Oliynykov. Ouroboros: A provably secure Proof of stake blockchain pro-

tocol. In Annual International Cryptology Conference, pages 357–388.

Springer, 2017.

[38] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai

Zeldovich. Algorand: Scaling byzantine agreements for cryptocurrencies. In

Proceedings of the 26th Symposium on Operating Systems Principles, 2017.

[39] Alexander Chepurnoy. Interactive proof-of-stake. CoRR, abs/1601.00275,

2016.

https://parity.io/
github.com/bitcoin/bips
https://futurism.com/the-dao-heist-undone-97-of-eth-holders-vote-for-the-hard-fork/
https://futurism.com/the-dao-heist-undone-97-of-eth-holders-vote-for-the-hard-fork/
https://ethereumclassic.github.io/
https://www.bitcoincash.org/
https://bitcoingold.org
https://bitcoinsv.io/
https://bitcointalk.org/index.php?topic=27787.0
https://peercoin.net/assets/paper/peercoin-paper.pdf
https://peercoin.net/assets/paper/peercoin-paper.pdf
blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/
blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/

Bibliography 136

[40] Arthur Gervais, Ghassan Karame, Srdjan Capkun, and Vedran Capkun. Is

bitcoin a decentralized currency? In IEEE Security and Privacy, 2014.

[41] Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert van Renesse, and

Emin Gün Sirer. Decentralization in bitcoin and ethereum networks. Fi-

nancial Cryptography and Data Security: 22nd International Conference,

2018.

[42] Tyler Moore and Nicolas Christin. Beware the middleman: Empirical analy-

sis of Bitcoin-exchange risk. In Proceedings of Financial Cryptography and

Data Security, pages 25–33, 2013.

[43] Rainer Böhme, Nicolas Christin, Benjamin Edelman, and Tyler Moore. Bit-

coin: Economics, technology, and governance. The Journal of Economic

Perspectives, 29(2):213–238, 2015.

[44] Carla L Reyes, Nizan Geslevich Packin, and Benjamin P Edwards. Dis-

tributed governance, 2016.

[45] Neil Gandal and Hanna Halaburda. Can we predict the winner in a market

with network effects? competition in cryptocurrency market. Games, 7(3):1–

21, 2016.

[46] Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell.

Ouroboros Praos: An adaptively-secure, semi-synchronous proof-of-stake

protocol. In Proceedings of Eurocrypt, 2018.

[47] Iddo Bentov, Rafael Pass, and Elaine Shi. Snow white: Provably secure

proofs of stake. IACR Cryptology ePrint Archive, Report 2016/919, 2016.

https://eprint.iacr.org/2016/919.

[48] Lars Brünjes, Aggelos Kiayias, Elias Koutsoupias, and Aikaterini-Panagiota

Stouka. Reward sharing schemes for stake pools. arXiv preprint

arXiv:1807.11218, 2018.

https://eprint.iacr.org/2016/919

Bibliography 137

[49] Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In Proceedings

of the ACM Symposium on Principles of Distributed Computing, pages 315–

324. ACM, 2017.

[50] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay

functions. In Proceedings of Crypto, 2018.

[51] Vitalik Buterin. Incentives in Casper the friendly finality gadget, 2017.

[52] BlackCoin. https://blackcoin.co/.

[53] NeuCoin. http://www.neucoin.org/.

[54] Tendermint. https://tendermint.com/.

[55] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. SPECTRE: A

fast and scalable cryptocurrency protocol. IACR Cryptology ePrint Archive,

2016.

[56] Yonatan Sompolinsky and Aviv Zohar. PHANTOM: A scalable blockdag

protocol. Cryptology ePrint Archive, Report 2018/104, 2018.

[57] Snowflake to Avalanche: A Novel Metastable Consensus

Protocol Family for Crypto. https://ipfs.io/ipfs/

QmUy4jh5mGNZvLkjies1RWM4YuvJh5o2FYopNPVYwrRVGV.

[58] Lucianna Kiffer, Rajmohan Rajaraman, and abhi shelat. A better method to

analyze blockchain consistency. In Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security, CCS ’18, pages

729–744, New York, NY, USA, 2018. ACM.

[59] Joshua A. Kroll, Ian C. Davey, and Edward W. Felten. The economics of

Bitcoin mining, or Bitcoin in the presence of adversaries. In Proceedings of

WEIS 2013, 2013.

[60] Ittay Eyal and Emin Gun Sirer. Majority is not enough: Bitcoin mining is

vulnerable. In Financial Cryptography and Data Security, 2013.

https://blackcoin.co/
http://www.neucoin.org/
https://tendermint.com/
https://ipfs.io/ipfs/QmUy4jh5mGNZvLkjies1RWM4YuvJh5o2FYopNPVYwrRVGV
https://ipfs.io/ipfs/QmUy4jh5mGNZvLkjies1RWM4YuvJh5o2FYopNPVYwrRVGV

Bibliography 138

[61] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stubborn min-

ing: Generalizing selfish mining and combining with an eclipse attack. In Se-

curity and Privacy (EuroS&P), 2016 IEEE European Symposium on, pages

305–320. IEEE, 2016.

[62] Christian Badertscher, Juan Garay, Ueli Maurer, Daniel Tschudi, and Vassilis

Zikas. But why does it work? a rational protocol design treatment of bitcoin.

Cryptology ePrint Archive, Report 2018/138, 2018.

[63] Juan Garay, Jonathan Katz, Ueli Maurer, Bjoern Tackmann, and Vassilis

Zikas. Rational protocol design: Cryptography against incentive-driven

adversaries. Cryptology ePrint Archive, Report 2013/496, 2013. http:

//eprint.iacr.org/2013/496.

[64] Arthur Gervais, Ghassan O. Karame, Karl Wüst, Vasileios Glykantzis, Hu-

bert Ritzdorf, and Srdjan Capkun. On the security and performance of proof

of work blockchains. In CCS ’16, CCS ’16, pages 3–16. ACM, 2016.

[65] Loi Luu, Jason Teutsch, Raghav Kulkarni, and Prateek Saxena. Demystifying

incentives in the consensus computer. In Computer and Communications

Security, CCS ’15, pages 706–719, New York, NY, USA, 2015. ACM.

[66] Itay Tsabary and Ittay Eyal. The gap game. In Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security, CCS ’18,

pages 713–728, New York, NY, USA, 2018. ACM.

[67] Joseph Bonneau. Why buy when you can rent? In Financial Cryptography

and Data Security, pages 19–26. Springer, 2016.

[68] Kevin Liao and Jonathan Katz. Incentivizing blockchain forks via whale

transactions. In International Conference on Financial Cryptography and

Data Security, pages 264–279. Springer, 2017.

http://eprint.iacr.org/2013/496
http://eprint.iacr.org/2013/496

Bibliography 139

[69] Yaron Velner, Jason Teutsch, and Loi Luu. Smart contracts make bitcoin

mining pools vulnerable. In International Conference on Financial Cryptog-

raphy and Data Security, pages 298–316. Springer, 2017.

[70] Jason Teutsch, Sanjay Jain, and Prateek Saxena. When cryptocurrencies

mine their own business. In International Conference on Financial Cryp-

tography and Data Security, pages 499–514. Springer, 2016.

[71] Patrick McCorry, Alexander Hicks, and Sarah Meiklejohn. Smart contracts

for bribing miners. In International Conference on Financial Cryptography

and Data Security, pages 3–18. Springer, 2018.

[72] Joseph Bonneau. Hostile blockchain takeovers (short paper). In Bit-

coinâĂŹ18: Proceedings of the 5th Workshop on Bitcoin and Blockchain

Research, 2018.

[73] F. Ritz and A. Zugenmaier. The impact of uncle rewards on selfish mining

in ethereum. In 2018 IEEE European Symposium on Security and Privacy

Workshops (EuroS PW), pages 50–57, April 2018.

[74] Jianyu Niu and Chen Feng. Selfish mining in ethereum. arXiv preprint

arXiv:1901.04620, 2019.

[75] Vitalik Buterin. Uncle rate and transaction fee analysis.

[76] Eric Budish. The economic limits of bitcoin and the blockchain. Technical

report, National Bureau of Economic Research, 2018.

[77] Sunoo Park, Krzysztof Pietrzak, Albert Kwon, JoÃńl Alwen, Georg Fuchs-

bauer, and Peter GaÅ¿i. SpaceMint: A cryptocurrency based on proofs

of space. Cryptology ePrint Archive, Report 2015/528, 2015. https:

//eprint.iacr.org/2015/528.

[78] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander

Spiegelman. Solidus: An incentive-compatible cryptocurrency based on per-

missionless Byzantine consensus. CoRR, abs/1612.02916, 2016.

https://eprint.iacr.org/2015/528
https://eprint.iacr.org/2015/528

Bibliography 140

[79] Primavera De Filippi and Benjamin Loveluck. The invisible politics of bit-

coin: governance crisis of a decentralised infrastructure. Internet Policy Re-

view, 5, 2016.

[80] Cathy Barrera and Stephanie Hurder. Blockchain upgrade as a coordination

game. 2018.

[81] Marcella Atzori. Blockchain technology and decentralized governance: Is

the state still necessary?, 2015.

[82] Wessel Reijers, Fiachra O’Brolcháin, and Paul Haynes. Governance in

blockchain technologies and social contract theories. Ledger, 1(0):134–151,

2016.

[83] Vili Lehdonvirta. The blockchain paradox: Why distributed ledger technolo-

gies may do little to transform the economy, 2016. www.oii.ox.ac.uk/

the-blockchain-paradox-why-distributed-ledger-technologies-may-do-little-to-transform-the-economy/.

[84] Balaji Srinivasan and Leland Lee. Quantifying de-

centralization, 2017. https://news.earn.com/

quantifying-decentralization-e39db233c28e.

[85] Conner Fromknecht, Dragos Velicanu, and Sophia Yakoubov. A decen-

tralized public key infrastructure with identity retention. IACR Cryptology

ePrint Archive, Report 2014/803, 2014. http://eprint.iacr.org/

2014/803.pdf.

[86] David Basin, Cas Cremers, Tiffany Hyun-Jin Kim, Adrian Perrig, Ralf Sasse,

and Pawel Szalachowski. ARPKI: Attack Resilient Public-Key Infrastruc-

ture. In Proceedings of ACM CCS 2014, pages 382–393, 2014.

[87] David Chaum. Security without identification: Transaction systems to make

big brother obsolete. Communications of the ACM, 28(10):1030–1044, 1985.

[88] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-

transferable anonymous credentials with optional anonymity revocation. In

www.oii.ox.ac.uk/the-blockchain-paradox-why-distributed-ledger-technologies-may-do-little-to-transform-the-economy/
www.oii.ox.ac.uk/the-blockchain-paradox-why-distributed-ledger-technologies-may-do-little-to-transform-the-economy/
https://news.earn.com/quantifying-decentralization-e39db233c28e
https://news.earn.com/quantifying-decentralization-e39db233c28e
http://eprint.iacr.org/2014/803.pdf
http://eprint.iacr.org/2014/803.pdf

Bibliography 141

Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages

93–118, Innsbruck, Austria, May 6–10, 2001. Springer, Heidelberg, Ger-

many.

[89] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous

credentials from bilinear maps. In Matthew Franklin, editor, CRYPTO 2004,

volume 3152 of LNCS, pages 56–72, Santa Barbara, CA, USA, August 15–

19, 2004. Springer, Heidelberg, Germany.

[90] Christina Garman, Matthew Green, and Ian Miers. Decentralized anonymous

credentials. In Proceedings of the NDSS Symposium 2014, 2014.

[91] Thomas Hardjono and Alex (Sandy) Pentland. Verifiable anonymous identi-

ties and access control in permissioned blockchains, 2016. http://www.

mit-trust.org/s/ChainAnchor-Identities-04172016.

pdf.

[92] Consensys. uport: The wallet is the new

browser. https://medium.com/@ConsenSys/

uport-the-wallet-is-the-new-browser-b133a83fe73.

Accessed: 2016-08-04.

[93] Philipp Schmidt. Certificates, Reputation, and the Blockchain, 2015.

[94] Hyperledger indy. https://www.hyperledger.org/projects/

hyperledger-indy.

[95] Alberto Sonnino, Mustafa Al-Bassam, Shehar Bano, Sarah Meiklejohn,

and George Danezis. Coconut: Threshold issuance selective disclo-

sure credentials with applications to distributed ledgers. arXiv preprint

arXiv:1802.07344, 2018.

[96] Manuel Blum. Coin flipping by telephone a protocol for solving impossible

problems. SIGACT News, 15(1):23–27, January 1983.

http://www.mit-trust.org/s/ChainAnchor-Identities-04172016.pdf
http://www.mit-trust.org/s/ChainAnchor-Identities-04172016.pdf
http://www.mit-trust.org/s/ChainAnchor-Identities-04172016.pdf
https://medium.com/@ConsenSys/uport-the-wallet-is-the-new-browser-b133a83fe73
https://medium.com/@ConsenSys/uport-the-wallet-is-the-new-browser-b133a83fe73
https://www.hyperledger.org/projects/hyperledger-indy
https://www.hyperledger.org/projects/hyperledger-indy

Bibliography 142

[97] Michael Ben-Or and Nathan Linial. Collective coin flipping, robust voting

schemes and minima of banzhaf values. In 26th FOCS, pages 408–416, Port-

land, Oregon, October 21–23, 1985. IEEE Computer Society Press.

[98] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly, Li-

nus Gasser, Ismail Khoffi, Michael J. Fischer, and Bryan Ford. Scalable bias-

resistant distributed randomness. In Proceedings of the IEEE Symposium on

Security & Privacy, 2017.

[99] M. Rabin. Transaction protection by beacons. Technical Report 29-81, Aiken

Computation Laboratory, Harvard University, 1981.

[100] Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. On bitcoin as a public

randomness source. Cryptology ePrint Archive, Report 2015/1015, 2015.

https://eprint.iacr.org/2015/1015.

[101] S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. In 40th An-

nual Symposium on Foundations of Computer Science (Cat. No.99CB37039),

pages 120–130, 1999.

[102] Dan Boneh, Benedikt Bünz, and Ben Fisch. A survey of two verifiable delay

functions. Cryptology ePrint Archive, Report 2018/712, 2018. https:

//eprint.iacr.org/2018/712.

[103] Debraj Ray. An infinite extensive form, 2006. https://www.econ.

nyu.edu/user/debraj/Courses/GameTheory2006/Notes/

infinite.pdf.

[104] Ittai Abraham, Danny Dolev, Rica Gonen, and Joe Halpern. Distributed com-

puting meets game theory: Robust mechanisms for rational secret sharing

and multiparty computation. In Proceedings of the Twenty-fifth Annual ACM

Symposium on Principles of Distributed Computing, PODC ’06, pages 53–

62, New York, NY, USA, 2006. ACM.

https://eprint.iacr.org/2015/1015
https://eprint.iacr.org/2018/712
https://eprint.iacr.org/2018/712
https://www.econ.nyu.edu/user/debraj/Courses/GameTheory2006/Notes/infinite.pdf
https://www.econ.nyu.edu/user/debraj/Courses/GameTheory2006/Notes/infinite.pdf
https://www.econ.nyu.edu/user/debraj/Courses/GameTheory2006/Notes/infinite.pdf

Bibliography 143

[105] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the

presence of partial synchrony. J. ACM, 35(2):288–323, April 1988.

[106] Amitanand S. Aiyer, Lorenzo Alvisi, Allen Clement, Mike Dahlin, Jean-

Philippe Martin, and Carl Porth. BAR Fault Tolerance for cooperative ser-

vices. SIGOPS Oper. Syst. Rev., 39(5):45–58, October 2005.

[107] Ittai Abraham, Lorenzo Alvisi, and Joseph Y. Halpern. Distributed comput-

ing meets Game Theory: Combining insights from two fields. SIGACT News,

42(2):69–76, June 2011.

[108] R. Palmieri. Leaderless consensus: The state of the art. In 2016 IEEE

International Parallel and Distributed Processing Symposium Workshops

(IPDPSW), pages 1307–1310, May 2016.

[109] Michael Saks. A robust noncrytographic protocol for collective coin flipping.

SIAM J. Discret. Math., 2(2):240–244, May 1989.

[110] Alexander Russell and David Zuckerman. Perfect information leader election

in log*n+o(1) rounds. J. Comput. Syst. Sci., 63(4):612–626, December 2001.

[111] Uriel Feige. Noncryptographic selection protocols. In Proceedings of the

40th Annual Symposium on Foundations of Computer Science, FOCS ’99,

pages 142–, Washington, DC, USA, 1999. IEEE Computer Society.

[112] Rafail Ostrovsky, Sridhar Rajagopalan, and Umesh Vazirani. Simple and

efficient leader election in the full information model. In Proceedings of the

Twenty-sixth Annual ACM Symposium on Theory of Computing, STOC ’94,

pages 234–242, New York, NY, USA, 1994. ACM.

[113] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Scalable leader

election. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium

on Discrete Algorithm, SODA ’06, pages 990–999, Philadelphia, PA, USA,

2006. Society for Industrial and Applied Mathematics.

Bibliography 144

[114] Ignacio Cascudo and Bernardo David. Scrape: Scalable randomness attested

by public entities. In Applied Cryptography and Network Security, Cham,

2017.

[115] Benedikt Bünz, Steven Goldfeder, and Joseph Bonneau. Proofs-of-delay and

randomness beacons in Ethereum. In Proceedings of the IEEE S&B Work-

shop, 2017.

[116] Giulia Fanti, Leonid Kogan, Sewoong Oh, Kathleen Ruan, Pramod

Viswanath, and Gerui Wang. Compounding of wealth in proof-of-stake cryp-

tocurrencies. arXiv preprint arXiv:1809.07468, 2018.

[117] Erica Blum, Aggelos Kiayias, Cristopher Moore, Saad Quader, and Alexan-

der Russell. The combinatorics of the longest-chain rule: Linear consistency

for proof-of-stake blockchains. In Proceedings of the Fourteenth Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 1135–1154. SIAM,

2020.

[118] C. Decker and R. Wattenhofer. Information propagation in the bitcoin net-

work. In IEEE P2P 2013 Proceedings, pages 1–10, Sept 2013.

[119] M Lynne Markus. The governance of free/open source software projects:

monolithic, multidimensional, or configurational? Journal of Management

& Governance, 11(2):151–163, 2007.

[120] Christoph Lattemann and Stefan Stieglitz. Framework for governance in

open source communities. In Proceedings of the 38th annual Hawaii in-

ternational conference on system sciences, pages 192a–192a. IEEE, 2005.

[121] Miltiadis Allamanis and Charles Sutton. Mining source code repositories at

massive scale using language modeling. In 2013 10th Working Conference

on Mining Software Repositories (MSR), pages 207–216. IEEE, 2013.

Bibliography 145

[122] Chadd C Williams and Jeffrey K Hollingsworth. Automatic mining of source

code repositories to improve bug finding techniques. IEEE Transactions on

Software Engineering, 31(6):466–480, 2005.

[123] Ralph Peters and Andy Zaidman. Evaluating the lifespan of code smells

using software repository mining. In 2012 16th European Conference on

Software Maintenance and Reengineering, pages 411–416. IEEE, 2012.

[124] Yan Hu, Jun Zhang, Xiaomei Bai, Shuo Yu, and Zhuo Yang. Influence anal-

ysis of github repositories. SpringerPlus, 5(1):1268, 2016.

[125] Eips github. github.com/ethereum/EIPs.

[126] Richard Simard, Pierre LâĂŹEcuyer, et al. Computing the two-sided

kolmogorov-smirnov distribution. Journal of Statistical Software, 39(11):1–

18, 2011.

[127] S. Mehta. Statistics Topics. Createspace Independent Pub, 2014.

[128] Jasjeet S. Sekhon. Multivariate and propensity score matching software with

automated balance optimization: The Matching package for R. Journal of

Statistical Software, 42(7):1–52, 2011.

[129] T.âĂL’A. Sø rensen. Sørensen tj. a method of establishing groups of

equal amplitude in plant sociology based on similarity of species and its

application to analyses of the vegetation on danish commons. biologiske

skrifter/kongelige danske videnskabernes selskab 5: 1-34. 5:1–34, 01 1948.

[130] Lee R. Dice. Measures of the amount of ecologic association between

species. Ecology, 26(3):297–302, 1945.

[131] Tezos. tezos.com.

[132] Steemit. steemit.com.

[133] Lis Evenstad. Dwp trials blockchain technology for benefit pay-

ments. http://www.computerweekly.com/news/450300034/

github.com/ethereum/EIPs
tezos.com
steemit.com
http://www.computerweekly.com/news/450300034/DWP-trials-blockchain-technology-for-benefit-payments

Bibliography 146

DWP-trials-blockchain-technology-for-benefit-payments.

Accessed: 2016-08-04.

[134] Rory Cellan-Jones. Blockchain and benefits - a dangerous mix? http:

//www.bbc.com/news/technology-36785872. Accessed: 2016-

08-04.

[135] Gill Plimmer. Use of bitcoin tech to pay UK benefits

sparks privacy concerns. http://www.ft.com/cms/s/0/

33d5b3fc-4767-11e6-b387-64ab0a67014c.html.

[136] David Chaum. Blind signatures for untraceable payments. In David Chaum,

Ronald L. Rivest, and Alan T. Sherman, editors, CRYPTO’82, pages 199–

203, Santa Barbara, CA, USA, 1982. Plenum Press, New York, USA.

[137] Shafi Goldwasser and Mihir Bellare. Lecture notes on cryptography. http:

//cseweb.ucsd.edu/~mihir/papers/gb.pdf, 2000.

[138] United States Postal Service. Federal cloud credential exchange

(fccx), August 2013. https://www.fbo.gov/spg/USPS/SSP/

HQP/1B-13-A-0003/listing.html.

[139] UK Cabinet Office and Government Digital Service. Introducing GOV.UK

Verify, September 2015. https://www.gov.uk/government/

publications/introducing-govuk-verify.

[140] Luís T. A. N. Brandão, Nicolas Christin, George Danezis, and Anonymous.

Towards mending two nation-scale brokered identification systems. In Pro-

ceedings on Privacy Enhancing Technologies, 2015.

[141] Lorenzo Alvisi, Allen Clement, Alessandro Epasto, Silvio Lattanzi, and

Alessandro Panconesi. SoK: The evolution of sybil defense via social net-

works. In 2013 IEEE Symposium on Security and Privacy, pages 382–396,

Berkeley, CA, USA, May 19–22, 2013. IEEE Computer Society Press.

http://www.computerweekly.com/news/450300034/DWP-trials-blockchain-technology-for-benefit-payments
http://www.computerweekly.com/news/450300034/DWP-trials-blockchain-technology-for-benefit-payments
http://www.bbc.com/news/technology-36785872
http://www.bbc.com/news/technology-36785872
http://www.ft.com/cms/s/0/33d5b3fc-4767-11e6-b387-64ab0a67014c.html
http://www.ft.com/cms/s/0/33d5b3fc-4767-11e6-b387-64ab0a67014c.html
http://cseweb.ucsd.edu/~mihir/papers/gb.pdf
http://cseweb.ucsd.edu/~mihir/papers/gb.pdf
https://www.fbo.gov/spg/USPS/SSP/HQP/1B-13-A-0003/listing.html
https://www.fbo.gov/spg/USPS/SSP/HQP/1B-13-A-0003/listing.html
https://www.gov.uk/government/publications/introducing-govuk-verify
https://www.gov.uk/government/publications/introducing-govuk-verify

Bibliography 147

[142] David Goldschlag, Michael Reed, and Paul Syverson. Onion routing. Com-

munications of the ACM, 42(2):39–41, 1999.

[143] Mustafa Al-Bassam. SCPKI: A smart contract-based PKI and identity sys-

tem. In Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies

and Contracts, BCC ’17, pages 35–40, New York, NY, USA, 2017. ACM.

[144] Sonali K Shah. Motivation, governance, and the viability of hybrid forms in

open source software development. Management science, 52(7):1000–1014,

2006.

[145] Paul B De Laat. Governance of open source software: state of the art. Journal

of Management & Governance, 11(2):165–177, 2007.

[146] Siobhán O?Mahony. The governance of open source initiatives: what does it

mean to be community managed? Journal of Management & Governance,

11(2):139–150, 2007.

[147] Robert Viseur. Forks impacts and motivations in free and open source

projects. International Journal of Advanced Computer Science and Appli-

cations, 3(2):117–122, 2012.

	Introduction
	Problem statement
	List of Papers

	Background Definitions and Notation
	Cryptographic Primitives and Notation
	Digital signatures
	Hash functions

	Blockchains and Cryptocurrencies
	Bitcoin and Ethereum
	Centralization
	Proof-of-stake

	Literature Review and Related Work
	Blockchain Centralization
	Proof of Stake Consensus Protocols
	BlockDAGs
	Blockchain Security and Incentives
	Governance
	Identity Management on Blockchains

	Betting on Blockchain Consensus with Fantômette
	Background
	Additional Cryptographic Primitives
	BlockDAGs
	Consensus as a game

	Modelling Blockchain Consensus
	Assumptions
	A model for leader election
	Blockchain-based consensus

	Caucus: A Leader Election Protocol
	Our construction
	Security
	Grindability

	Fantômette: A Consensus Protocol
	Protocol specification
	Incentives
	Compound effect

	Security of Fantômette
	Adversary Specification
	Security arguments
	Simulations

	Limitations
	Conclusions

	Egalitarian Society or Benevolent Dictatorship: The State of Cryptocurrency Governance
	Methodology
	Comparison with programming languages
	Data collection
	Centrality metrics

	Data Analysis
	Contributors to the main codebase
	Commenters on the main code base
	Improvement Proposals for Bitcoin and Ethereum
	Diversity of communities

	Discussion
	Conclusions

	Who Am I? Secure Identity Registration on Distributed Ledgers
	Background
	Public-key encryption
	Blind signatures
	The web of trust

	Definitions and Threat Model
	Decentralized Registration
	Basic web of trust
	Blinded web of trust
	Multi-Casascius
	Mix-network

	Implementation and Deployment
	Overview
	Technical specification
	Costs

	Conclusion

	Conclusion and Open problems
	Bibliography

