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ABSTRACT
Atomic transport properties of liquid iron are important for understanding the core dynamics and magnetic field generation of terrestrial
planets. Depending on the sizes of planets and their thermal histories, planetary cores may be subject to quite different pressures (P) and
temperatures (T). However, previous studies on the topic mainly focus on the P–T range associated with the Earth’s outer core; a systematic
study covering conditions from small planets to massive exoplanets is lacking. Here, we calculate the self-diffusion coefficient (D) and visco-
sity (η) of liquid iron via ab initio molecular dynamics from 7.0 to 25 g/cm3 and 1800 to 25 000 K. We find that D and η are intimately related
and can be fitted together using a generalized free volume model. The resulting expressions are simpler than those from previous studies
where D and η were treated separately. Moreover, the new expressions are in accordance with the quasi-universal atomic excess entropy (Sex)
scaling law for strongly coupled liquids, with normalized diffusivity D⋆ = 0.621 exp(0.842Sex) and viscosity η⋆ = 0.171 exp(−0.843Sex). We
determine D and η along two thermal profiles of great geophysical importance: the iron melting curve and the isentropic line anchored at
the ambient melting point. The variations of D and η along these thermal profiles can be explained by the atomic excess entropy scaling law,
demonstrating the dynamic invariance of the system under uniform time and space rescaling. Accordingly, scale invariance may serve as an
underlying mechanism to unify planetary dynamos of different sizes.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0062081

I. INTRODUCTION

Terrestrial planets often possess iron-dominant cores that are
partially or completely molten.1–4 Dynamic behavior of its liquid
core plays a prominent role in shaping the planet’s overall fea-
tures. For instance, the rapid fluidic motion inside the liquid core
is believed to be responsible for the planet’s magnetic field.5–7 The
viscous friction between the liquid core and the solid mantle is
one of the main mechanisms for core–mantle coupling.8 More-
over, the gradual cooling of the liquid core provides the ultimate
energy source driving the movements of the mantle and crust.9
To better understand the dynamics and thermal evolution of the
liquid core, precise knowledge on its transport properties is essen-
tial. Here, we focus on atomic transport properties, namely, the
self-diffusivity (D) and viscosity (η). These properties have been
investigated before;10–15 however, they are mostly conducted under

the pressure (P) and temperature (T) conditions of the Earth’s
outer core (136–330 GPa, 4000–6000 K). With increased interest
in planets such as Mars2 and Mercury4 where the core pressures
are tens of GPa, as well as the discovery of exoplanets where the
core pressures may exceed 2 TPa,16 it would be desirable to expand
the investigation to a greater range, so as to determine how the
dynamic behavior of the core may be affected by the varying P–T
conditions.

At first sight, one may not expect that the dynamic behavior of
a system at one P–T condition can be intimately related to that of
another. Yet a connection has been discovered by Rosenfeld in the
form of the atomic excess entropy scaling law.17,18 According to this
law, a system will exhibit identical (up to a uniform time and space
rescaling) dynamic behavior at different P–T conditions, insofar as
they share the same atomic excess entropy (Sex). As such, both D
and η can be normalized and expressed as functions of Sex only. The
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atomic excess entropy scaling law has been validated successfully in
many systems.19 Cao et al.20 examined the atomic excess entropy
scaling law for liquid iron using classical molecular dynamics (MD)
at the P–T conditions of the Earth’s outer core. The normalized dif-
fusivity and viscosity were found to be D⋆ = 0.383 exp(0.707Sex) and
η⋆ = 0.412 exp(−0.688Sex), respectively. These results are promis-
ing, yet further consideration may be still needed: iron is a metal. Its
electronic thermal excitations are significant under the P–T condi-
tions of planetary cores. Unfortunately, such excitations are absent
in classical MD, leading to substantially lower total entropies than
those predicted from ab initio simulations.21 Moreover, the atomic
excess entropy used in the work was not the exact Sex, but a two-body
approximation (S2) derived from pair distribution functions. As the
difference between S2 and Sex can reach 15% or more,22 it remains to
be seen how the transport properties of liquid iron scale with respect
to the exact Sex.

Here, we run ab initio MD (AIMD) to calculate D and η of liq-
uid iron from 7.0 to 25 g/cm3, with T ranging from 1800 to 25 000 K.
The substantially wider range allows us to identify the density and
temperature dependences of transport properties more clearly. We
use a recently developed ab initio thermodynamic integration (TI)
scheme to determine the absolute entropy of the system, from which
we extract the exact Sex and verify the atomic excess entropy scaling
law. We further determine D and η along two temperature profiles of
great geophysical significance: the iron melting curve and the isen-
tropic line anchored at the ambient melting point (0 GPa, 1811 K).
The atomic excess entropy scaling law is then applied to explain the
observed pressure dependence.

II. METHODS
We ran AIMD simulations in the projected-augmented-

wave (PAW) formalism23,24 using the Vienna Ab initio
Simulation Package (VASP).25,26 The generalized-gradient
approximation (GGA) parameterized by Perdew, Burke, and
Ernzerhof (PBE)27 was chosen to describe the electron–electron
exchange–correlation interaction. The PAW pseudopoten-
tial (“Fe_sv”) contains 16 valence electrons (3s23p63d74s1),
as previous studies21,28 have shown that including the 3s and 3p
electrons as valence is crucial to get accurate physical properties of
liquid iron in the high P–T regime. Although this pseudo-potential
has a core radius (1.9 a.u.) 15% greater than one-half of the mean
interatomic distance at 25 g/cm3, the predictions it makes agree well
with those from all-electron calculations29 and two PAW pseudo-
potentials with 16 valence electrons and smaller core-radii (1.6 a.u.30

for VASP and 1.5 a.u. for Quantum Espresso31). We therefore con-
clude that the difference in the core-radii is inconsequential among
these Fe pseudo-potentials with 16 valence electrons and “Fe_sv”
is appropriate for our purpose (see the supplementary material for
details). The kinetic energy cutoff for the plane wave expansion
was set to be 650 eV, and the Brillouin zone sampling was limited
to the Γ-point. As such, the energy and stress were converged
to 3.4 meV/atom and 1.4 GPa at 7.0 g/cm3 and 6.0 meV/atom
and 5.8 GPa at 25 g/cm3; the mean errors in ionic forces were
0.01 eV/Å at 7.0 g/cm3 and 0.1 eV/Å at 25 g/cm3, respectively. Errors
of such magnitude are typical among AIMD simulations32 and are
adequate for the present study. The cubic simulation cell contained
108 iron atoms, with the ionic temperature controlled by using a

Nosé thermostat.33 The electronic thermal excitations were treated
by minimizing the Mermin functional.34 Each simulation first ran
0.5–1 ps for thermal equilibration and then another 10 ps for pro-
duction (see the supplementary material for convergence tests). The
time step was set to be 1 fs, which corresponds to 1/15 of the shortest
vibrational period35 at the highest density (25 g/cm3). A shorter
time step (0.5 fs) was found to have little influence on the final
results.

To overcome the uncertainties associated with GGA, we intro-
duce a temperature-independent pressure correction36 in the form
of a sigmoid function as

ΔP(ρm) =
17.38

1 + exp((ρm − 11.395) ⋅ 1.341) , (1)

where the unit of ΔP is GPa and the unit of ρm is g/cm3. This correc-
tion is significant at low densities (about 17 GPa between 7.0 and
9.0 g/cm3) yet becomes less than 1 GPa beyond 13.5 g/cm3. The
resulting thermal equation of state P(ρm, T) is in excellent agree-
ment with experiments.37

The self-diffusion coefficient of a liquid can be evaluated via
two methods: One is from the long time slope of the mean square
displacement (MSD),38

D = lim
t→∞

1
N

N

∑
i=1

⟨∣ri(t) − ri(0)∣2⟩
6t

, (2)

where N is the total number of atoms, ri(t) represents the trajectory
of the ith iron atom at time t, and ⟨⋅ ⋅ ⋅⟩ stands for the ensemble aver-
age. The error in the diffusivity is estimated by evaluating the stan-
dard deviation of the long time slopes of the MSD among individual
atoms and then dividing it by

√
N. Alternatively, D is determined

through the power spectrum (vibrational density of states, VDoS)
of the velocity autocorrelation function (VACF). The VACF Cvv(t)
and its power spectrum F(ν) are defined as35,39

Cvv(t) =
1

3(N − 1)
N

∑
i=1

m⟨vi(0) ⋅ vi(t)⟩, (3)

F(ν) = 12
kBT∫

∞

0
Cvv(t) cos(2πνt)dt, (4)

where m is the mass of the atom, vi(t) denotes the velocity of the ith
atom at time t, kB is the Boltzmann constant, and T is the tempera-
ture. The diffusivity D is proportional to the VDoS at zero frequency
F(0) as40,41

D = kBT
12m

F(0). (5)

The viscosity of a liquid is determined from the linear-response
Green–Kubo formula as

η = ∫
∞

0
Cσσ(t)dt,

with Cσσ(t) being the stress autocorrelation function (SACF). For an
isotropic system, Cσσ(t) can be evaluated via

Cσσ(t) =
V

5kBT

5

∑
s=1
⟨σs(0)σs(t)⟩, (6)

J. Chem. Phys. 155, 194505 (2021); doi: 10.1063/5.0062081 155, 194505-2

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0062081
https://www.scitation.org/doi/suppl/10.1063/5.0062081


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

where V is the volume of the system and σs represents the five inde-
pendent components of the shear stress tensor: σxy, σyz , σzx, and
1
2(σxx − σyy), and 1

2(σyy − σzz).10 The error in the viscosity is esti-
mated by evaluating the standard deviation of the time integral of
the SACF among different stress components and then dividing the
standard deviation by

√
5. Besides the formally exact linear-response

approach, the viscosity of liquid iron has also been determined
approximately from diffusivity using the Stokes–Einstein relation.42

However, this relation may break down,43 even for a simple liquid
such as Al.44 It is therefore preferable to first evaluate the viscosity
and diffusivity as independent quantities and then verify whether
they satisfy the Stokes–Einstein relation. This is the approach we
take in the present study.

III. RESULTS
A. MSD, VDoS, and SACF

The fundamental quantities for evaluating the diffusivity are
the MSD and the VDoS. Figure 1 shows the MSDs and the VDoS
at representative temperatures and densities. The linear increase in
MSDs with time and the non-zero F(0) of VDoS indicate that the
system is in the fluid state. Moreover, the self-diffusivities deter-
mined from the long time slope of MSD and F(0) differ by less than
5%, validating both approaches.

The basic quantity for determining shear viscosity is the SACF
Cσσ(t). As shown in Fig. 2, Cσσ(t) decays rapidly when t is small.
It decays more slowly when t grows larger, making direct numer-
ical integration ∫ ∞0 Cσσ(t)dt hard to converge. To overcome this

problem, we first fit Cσσ(t) with the following function:

Cσσ(t) = G∞[(1 − α)sech2(t/τ1) + αe−t/τ2], (7)

where τ1 and τ2 are relaxation times, α is the partition factor, and
G∞ is related to Cσσ(t) as G∞ ≡ Cσσ(0). The shear viscosity η can
then be determined analytically as

η = G∞[(1 − α)τ1 + ατ2]. (8)

Compared to direct numerical integration, this analytic integration
approach45 is less sensitive to the statistical noise whose magnitude
is comparable to or even greater than Cσσ(t) at large t, leading to
more accurate η.

B. Transport properties
Figure 3 shows the discrete D and η results from AIMD. The

numerical values are listed in Table I. Our aim is to construct a suit-
able model from these data so as to get D and η for arbitrary density
and temperature. A model frequently employed in prior studies15,20

is the Arrhenius model,

DArrh(V , T) = D0 exp[QD(V , T)], (9)

ηArrh(V , T) = η0 exp[Qη(V , T)], (10)

where D0 and η0 are pre-exponential constants, QD and Qη are
activation energies normalized to the thermal energy kBT. The
Arrhenius model is closely related to the transition state theory of

FIG. 1. (a) Mean square displacements (MSDs) and (b) vibrational density of states (VDoS) of liquid iron at representative densities and temperatures.

J. Chem. Phys. 155, 194505 (2021); doi: 10.1063/5.0062081 155, 194505-3

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 2. Stress autocorrelation functions (SACFs) of liquid iron at representative (a) densities and (b) temperatures. The solid lines denote AIMD results, and the dashed
lines are the numerical fits using Eq. (7).

statistical mechanics and is widely used in describing atomic diffu-
sion of solids. However, there is little theoretical justification to apply
it to liquids where the local environment is constantly fluctuating.46

An alternative model describing the diffusivity of liquids is the free
volume model (FVM),50

DFVM(V , T) = ρ−1/3√kBT/mCD exp [vD(V , T)], (11)

where ρ ≡ N/V is the number density, m is the mass of the atom,
CD is a constant, and vD is the normalized activation volume
for diffusivity. The key difference between the Arrhenius model
and the free volume model lies in their pre-exponential factors:
the pre-exponential factor in the Arrhenius model is a constant
D0 with the dimension of diffusivity, whereas the pre-exponential
factor in the free volume model is a dimensionless constant CD

FIG. 3. Diffusivity and viscosity of liquid iron as a function of (a) temperature and (b) density. The open circles represent the calculated results, and the solid (dotted) lines
denote fittings according to the extended free volume model (Arrhenius model).

J. Chem. Phys. 155, 194505 (2021); doi: 10.1063/5.0062081 155, 194505-4

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE I. Diffusivity (D) and viscosity (η) of liquid iron from non-spin-polarized AIMD simulations.

ρ (g/cm3) T (K) D (10−8 m2/s) η (mPa s) ρ (g/cm3) T (K) D(10−8 m2/s) η (mPa s)

7.0 1 800 0.63(0.04) 1.92(0.16) 12.13 7 500 0.88(0.03) 6.27(0.63)
7.0 5 000 2.70(0.10) 1.24(0.23) 12.13 10 000 1.46(0.06) 5.23(0.48)
7.0 7 500 4.07(0.15) 1.29(0.30) 12.13 15 000 2.73(0.10) 4.63(1.12)
7.0 10 000 5.46(0.24) 1.26(0.27) 12.13 20 000 3.94(0.14) 3.22(0.22)
7.0 15 000 7.34(0.33) 1.43(0.25) 12.13 25 000 5.20(0.21) 3.53(0.13)
7.0 20 000 10.37(0.38) 1.25(0.05) 13.3 7 000 0.51(0.02) 8.77(1.72)
7.0 25 000 11.26(0.40) 1.40(0.08) 13.3 10 000 1.15(0.05) 6.29(1.33)
9.54 3 000 0.33(0.01) 5.52(0.55) 13.3 15 000 2.47(0.10) 5.38(0.71)
9.54 5 000 0.95(0.04) 3.84(0.54) 13.3 20 000 3.46(0.13) 4.82(0.19)
9.54 7 500 2.01(0.08) 2.59(0.21) 13.3 25 000 4.61(0.18) 4.21(0.70)
9.54 10 000 2.68(0.12) 2.44(0.76) 15.6 9 000 0.51(0.01) 13.01(3.20)
9.54 15 000 4.68(0.21) 2.12(0.20) 15.6 10 000 0.64(0.02) 10.12(1.71)
9.54 20 000 5.66(0.19) 2.12(0.07) 15.6 15 000 1.61(0.07) 7.00(0.90)
9.54 25 000 7.35(0.27) 2.26(0.22) 15.6 20 000 2.60(0.11) 6.88(0.44)
10.7 4 000 0.34(0.01) 6.31(0.60) 15.6 25 000 3.37(0.13) 5.87(0.64)
10.7 5 000 0.56(0.02) 5.42(0.49) 20 12 000 0.49(0.02) 19.21(1.58)
10.7 7 500 1.33(0.05) 4.12(0.40) 20 15 000 0.82(0.04) 15.78(0.71)
10.7 10 000 2.43(0.08) 2.91(0.19) 20 20 000 1.46(0.06) 12.07(0.69)
10.7 15 000 3.51(0.13) 2.89(0.50) 20 25 000 2.07(0.09) 10.07(0.84)
10.7 20 000 5.42(0.20) 3.05(0.11) 25 17 000 0.49(0.02) 30.66(2.72)
10.7 25 000 6.22(0.22) 2.90(0.25) 25 20 000 0.82(0.03) 23.76(1.32)
12.13 5 000 0.30(0.01) 9.76(1.64) 25 25 000 1.33(0.04) 19.06(1.05)

times ρ−1/3√kBT/m. ρ−1/3 corresponds to the interatomic spacing.√
kBT/m corresponds to the thermal velocity of the atom. Similarly,

one may define the viscosity in the FVM as

ηFVM(V , T) = ρ2/3√mkBTCη exp[vη(V , T)], (12)

where Cη is a dimensionless constant and vη is the normalized acti-
vation volume for viscosity. We assume that the exponents QD,
Qη, vD, and vη follow the functional form (a0 + a1 f + a2 f 2)tα with
f ≡ V0/V and t ≡ T/T0 (V0 = 6.97 Å3/atom and T0 = 10 000 K). The
coefficients a0, a1, a2, and α are determined by fitting the AIMD
results and listed in Tables II and III. As shown in Fig. 3, both
the Arrhenius model and the free volume model fit the data well,
with fitting errors 0.20 × 10−8 and 0.23 × 10−8 m2/s for D, 0.53 and
0.47 mPa s for η. The main advantage of the free volume model,
however, is that it reveals an inherent connection between D and
η. As shown in Fig. 4, except for the difference in sign, vD(V , T)
and vη(V , T) are very similar. In fact, one could simply assume
that vD(V , T) = −vη(V , T) and fit D and η simultaneously. The

TABLE II. Arrhenius model parameters for D [Eq. (9)] and η [Eq. (10)].

D0(m2/s)
or η0(Pa s) a0 a1 a2 α

D 3.844 × 10−7 −0.136 −4.273 0.776 −0.465
η 0.208 × 10−3 −1.444 3.384 −0.264 −0.418

resulting fitting errors are comparable to those of vD and vη fitted
independently: 0.23 × 10−8 vs 0.18 × 10−8 m2/s for D and 0.47 vs
0.46 mPa s for η. We, therefore, prefer the free volume model with
vD(V , T) = −vη(V , T) to describe transport properties of liquid iron
as it is simpler. Moreover, it uncovers the connection between D and
η, which otherwise would be unnoticed.

A natural consequence of vD(V , T) = −vη(V , T) is that the
product of D and η satisfies the Stokes–Einstein relation,51

Dη
ρ1/3kBT

= const. (13)

This relation has been found to be valid under the pressure–
temperature conditions of the Earth’s outer core.10,15,20 Here, we
show that it holds to even higher P–T conditions corresponding to
the cores of massive exoplanets.

To compare our results with prior studies,11,15,46,49,52 we convert
above D(V , T) and η(V , T) into D(P, T) and η(P, T) using the ther-
mal equation of state of liquid iron. The results are shown in Fig. 5.
Good agreement validates our approach and lends supports to our

TABLE III. Free volume model parameters for D [Eq. (11)] and η [Eq. (12)].

CD or Cη a0 a1 a2 α

D 0.347 −0.755 2.764 −0.168 −0.678
η 0.313 0.755 −2.764 0.168 −0.678
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FIG. 4. Normalized activation volumes in the free volume model as functions of (a) temperature and (b) density. The solid (dashed) lines represent simultaneous
(independent) fittings of D and η, respectively.

predictions at even higher pressures and temperatures, which are yet
to be systematically studied.

C. Atomic excess entropy scaling
Atomic transport properties under different P–T conditions are

related by the atomic excess entropy scaling law. To check the valid-
ity of this law, we first rescale the length and time in the units of ρ−1/3

and ρ−1/3√m/kBT. The self-diffusion coefficient and viscosity then
become

D⋆ = ρ1/3(m/kBT)1/2D, (14)

η⋆ = ρ−2/3(mkBT)−1/2η. (15)

We then calculate the exact atomic excess entropy by

Sex ≡ S − Sele − Sig, (16)

where S is the total entropy of the system, Sele is the electronic
entropy, and Sig is the entropy of the ideal atomic gas. We apply
a recently developed thermodynamic integration (TI) approach21

to determine the total entropy S. At ρm = 7.0 g/cm3 and 1800 K,
our calculated entropy is 12.13kB/atom, in excellent agreement with
the experimental value (12 kB/atom).53 Sele and Sig are determined
from the standard entropy formula for the free electron gas and
the ideal atomic gas, respectively. The results are shown in Fig. 6.
Note that Sex does not follow the same temperature dependence as
the total entropy S: Sex rises slowly at high temperatures, resem-
bling a hard sphere gas whose Sex is temperature independent. By
contrast, the total entropy S depends on T more strongly due to
its Sel and Sig components. This feature will have interesting conse-
quences when considering transport properties along geophysically
important thermal profiles.

The atomic excess entropy scaling law states that D⋆ and η⋆
are explicit functions of Sex only. Density and temperature will not

FIG. 5. Comparisons of (a) diffusivity and (b) viscosity at low pressures with experiments (D02,46 M19,47 R02,48 and A0649) and other theoretical calculations (A00,11

K07,13 and I1515).
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FIG. 6. Various entropy components of liquid iron at ρm = 7.0 g/cm3. The excess
entropy Sex does not follow the same temperature dependence as the total
entropy S.

play direct roles. We find that, indeed, this is the case up to 25 g/cm3

and 25 000 K. As shown in Fig. 7, D⋆ = 0.621 exp(0.842Sex) and η⋆
= 0.171 exp(−0.843Sex), respectively. These expressions are very
close to the quasi-universal scaling law found by Rosenfeld18

for strongly coupled fluids, with D⋆ ≈ 0.6 exp(0.8Sex) and η⋆
≈ 0.2 exp(−0.8Sex). By contrast, Cao et al.20 found D⋆

= 0.383 exp(0.707Sex) and η⋆ = 0.412 exp(−0.688Sex). Cao et al.20

conducted simulations with classical molecular dynamics and
used the pair correlation entropy S2 to approximate Sex, both of
which may contribute to the discrepancy. In principle, the relation
established by AIMD and exact Sex should be more realistic.

The aforementioned results were obtained with non-spin-
polarized AIMD simulations, yet liquid iron is paramagnetic at low
pressures and temperatures.54–56 It is therefore important to under-
stand how atomic transport properties of liquid iron may be affected
by magnetism. To this end, we ran a collinear spin-polarized57,58

AIMD simulation at 7.0 g/cm3 and 1800 K. Following the work
of Desjarlais,59 we applied the two-phase thermodynamic model
with a memory function correction (2pt-mf) to evaluate the ionic
entropy Sion and then determined Sex as Sion − Sig. Tests on the
non-spin-polarized case indicate that the entropy predicted by the
2pt-mf method is accurate within 1% (0.1kB/atom). To get the total
entropy Stot for the spin-polarized case, we also included the mag-
netic entropy Smag = kB(1 + ⟨δm2

s ⟩1/2), where ⟨δm2
s ⟩1/2 is the stan-

dard deviation of the local magnetic moment evaluated over all iron

FIG. 7. (a) Reduced diffusivity D⋆ and (b) viscosity η⋆ of liquid iron as functions
of the excess entropy Sex. The vertical axis is plotted on a logarithmic scale. The
open circles represent the non-spin-polarized AIMD results, which are fitted by the
solid lines. The closed circles represent spin-polarized AIMD results at 7.0 g/cm3,
1800 K. Apparently, they follow the same atomic excess entropy scaling law as
the non-spin-polarized results. The dashed lines represent the scaling law found by
Cao et al.,20 where D⋆ = 0.383 exp(0.707Sex) and η⋆ = 0.412 exp(−0.688Sex).
The results of the present study satisfy the quasi-universal scaling law found
by Rosenfeld18 for strongly coupled fluids where D⋆ ≈ 0.6 exp(0.8Sex) and η⋆
≈ 0.2 exp(−0.8Sex).

atoms and AIMD steps. The results are summarized in Table IV. The
diffusivity predicted by spin-polarized AIMD is 0.44 × 10−8 m2/s,
∼43% lower than the value from non-spin-polarized simulation.
The viscosity from spin-polarized AIMD is 2.95 mPa s, ∼35%
higher. While such variations are notable, they are within the dif-
ferences among experimental measurements. Korell et al.55 calcu-
lated the electronic transport properties of liquid iron using collinear
spin-polarized and non-spin-polarized simulations. Near the

TABLE IV. Thermal properties of liquid iron at 7.0 g/cm3 and 1800 K predicted by non-spin-polarized (“non-spin”) and spin-polarized (“spin”) AIMD simulations. “Expt.” denotes
experimental data at the ambient melting point (7.019 g/cm3, 1811 K).

P (GPa) Sele(kB) Sion(kB) Smag(kB) Stot(kB) Sex(kB) D(10−8 m2/s) η (mPa s)

Non-spin −16.7(3) 1.22(1) 10.91(4) 12.13(5) −2.91(4) 0.63(4) 1.92(16)
Spin −3.9(3) 0.70(1) 10.51(4)a 1.02(1) 12.23(5) −3.27(4) 0.44(2) 2.95(28)
Expt. 12.053 0.8346 2.3648

0.2847 5.4449

a2pt-mf.
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ambient melting point, the electrical conductivity determined from
spin-polarized simulations is ∼20% lower than non-spin-polarized
simulations. Here, we see that atomic transport properties are
affected by magnetism to a similar extent. More interestingly, even
though D and η predicted by spin-polarized and non-spin-polarized
simulations differ in value, they follow the same atomic excess
entropy scaling law as the differences in D and η get compensated by
the change in Sex. This indicates that liquid planetary iron cores may
share the same form of atomic excess entropy scaling law, regardless
of their magnetic status.

A comparison between Eqs. (14) and (15) and Eqs. (11) and
(12) reveals that the excess entropy scaling law and the free vol-
ume model are closely related. Indeed, D⋆ equals CD exp [vD(V , T)]
and η⋆ equals Cη exp[vη(V , T)]. The vD = −vη relation identi-
fied in Sec. III B is not a coincidence, but a consequence of
the fact that D⋆ and η⋆ satisfy the atomic excess entropy scaling
law.

IV. DISCUSSION
With D(ρ, T) and η(ρ, T) determined in Sec. III, we now exam-

ine the diffusivity and viscosity at conditions of liquid planetary
cores. There are two temperature profiles requiring careful consid-
eration: one is the iron melting curve. For a planet possessing a solid
inner core and a liquid outer core, its transport properties near the
inner-core boundary (ICB) would correspond to those of iron near
the melting curve; the other is the isentropic line, which corresponds
to the temperature profile of a liquid core under active convection.
For Earth, the pressure associated with the isentropic line starts from
136 GPa at the core–mantle boundary (CMB) to 330 GPa at the ICB.
For other planets, the relevant pressures differ substantially from
tens of GPa for planets such as Mercury and Mars2,4 to a few TPa
for massive exoplanets.16 Here, we consider from the ambient pres-
sure to 2.5 TPa so as to establish how atomic transport properties of
planetary cores may be affected by varying P–T conditions.

Figure 8 summarizes transport properties along the iron melt-
ing curve, determined by Bouchet et al.60 as Tm = 1811(P/31.3
+ 1)1/1.99, where Tm is given in Kelvin and P is given in GPa.
We see that D decreases rapidly at low pressures from 0.52
× 10−8 m2 s−1 at 0 GPa to 0.45 × 10−8 m2 s−1 at 40 GPa. It then
starts to increase slowly, reaching 0.61 × 10−8 m2 s−1 at 2.5 TPa.
By contrast, η increases rapidly when P < 40 GPa. At higher pres-
sures, it continues to increase although at a much slower rate. The
change in the pressure dependence indicates that one cannot simply
extrapolate experimental data obtained at low pressures to high pres-
sures. Such extrapolations may lead to substantial overestimation
of η.61

The observed pressure dependence can be understood from
the atomic excess entropy scaling law. As shown in Fig. 8(a), the
atomic excess entropy Sex drops sharply from the ambient pressure
to 150 GPa, and it then becomes nearly pressure independent along
the melting line. Accordingly, D⋆ (η⋆) decreases (increases) rapidly
at low pressures and then becomes constant, as shown in Fig. 8(c).
Since D and η are related to D⋆ and η⋆ as

D = D⋆

ρ1/3(m/kBT)1/2 , (17)

FIG. 8. Atomic transport properties along the iron melting curve. (a) Melting tem-
perature60 and atomic excess entropy. (b) Diffusivity and viscosity. (c) Reduced
diffusivity and viscosity.

η = η⋆

ρ−2/3(mkBT)−1/2 , (18)

the rapid drop (rise) in D (η) at low P is mainly caused by the drop
in Sex. Above 150 GPa, Sex remains constant; thus, D and η are con-
trolled solely by their respective normalization factors. Recall that
the melting curve can be approximated by Lindemann’s law as62

Tm = T0(
ρ
ρ0
)

2(γ−1/3)
, (19)

where T0 is the melting temperature at density ρ0 and γ is the ther-

mal Grüneisen parameter: one finds that D∝ T
3γ−2

2(3γ−1)
m when D⋆ is

constant. Similarly, η∝ T
3γ+1

2(3γ−1)
m when η⋆ is constant. Since γ of liq-

uid iron is above one, both D and η increase along the melting curve
even when D⋆ and η⋆ remain constant. As the exponent associated
with η is greater than that of D, the relative increase in η is larger.
Indeed, from 150 GPa to 2.5 TPa, η increases by more than a factor
of two, whereas D increases by 20%.
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We now consider D and η along the isentropic line. Follow-
ing the work of Anderson and Ahrens,63 we start with the ambi-
ent melting point (1811 K, 0 GPa) and then integrate according
to the concurrent adiabatic slope (∂T/∂P)s. Choosing a different
starting point with higher temperatures will not change the overall
trends.

Figure 9(a) shows the resulting isentropic line, with D and η
shown in Fig. 9(b). We see that D decreases along the isentropic line,
whereas η increases. Unlike the melting curve case where D exhibits
non-monotonic behavior, here, both D and η vary monotonically.
Nevertheless, the changes are rapid at low P yet become sluggish at
high P, which again excludes simple extrapolations.

Such pressure dependences can also be explained from the
atomic excess entropy scaling law. Interestingly, while the total
entropy is constant along the isentropic line, the excess entropy
decreases. Accordingly, D and η are controlled by the joint effects
of D⋆, η⋆, and their respective normalization factors. Recall that the
isentropic line is related to the Grüneisen parameter γ as63

Ts = T0(
ρ
ρ0
)

γ

, (20)

FIG. 9. Atomic transport properties along the iron isentropic line anchored at the
ambient melting point (0 GPa, 1811 K). (a) Temperature profile and excess entropy.
(b) Diffusivity and viscosity. (c) Reduced diffusivity and viscosity.

and we have D∝ D⋆T
1
2− 1

3γ
s and η∝ η⋆T

1
2+ 2

3γ
s . Since γ of liquid iron

is above one, D⋆ and the associated normalization factor T
1
2− 1

3γ
s vary

in opposite directions along the isentropic line, yet the effect of nor-
malization factor is weaker and the temperature dependence of D is
predominated by that of D⋆. As D⋆ decreases along the isentropic
line, so does D. By contrast, both η⋆ and its normalization factor

T
1
2+ 2

3γ
s increase along the isentropic line, causing η to increase even

faster. The eventual outcome is that the relative increase in η along
the isentropic line is much greater than that of D. From 0 GPa to
2.5 TPa, η increases by more than one order of magnitude, whereas
D decreases by merely 50%.

From the above analysis, we see that atomic transport proper-
ties are subject to competing effects of pressure and temperature.
Increasing pressure tends to hamper diffusion and causes a rise in
viscosity, whereas increasing temperature has an opposite effect.
Overall, liquid cores of massive exoplanets may have diffusivities
40%–50% lower than that of the Earth’s outer core and viscosities an
order of magnitude higher. While such differences are notable, they
are unlikely to cause paradigm shifts in the fluid dynamics of liquid
cores. Viscous forces are likely to be negligible compared to other
major players such as the Coriolis force and the Lorentz force.42

Diffusion is sufficiently fast such that the core remains well-mixed
without major stratifications.64

Moreover, the present work shows that the atomic excess
entropy scaling law is valid for liquid iron up to the TPa regime. This
indicates that the system is dynamically invariant under uniform
time and space rescaling.19 With the discovery of exoplanets with
distinct masses and radii, there is much interest in finding scaling
laws for planetary dynamos of different sizes.7,65 The fact that flu-
idic cores are dynamically invariant under time and space rescaling
may provide an underlying mechanism for those more macroscopic,
phenomenological scaling laws describing planetary dynamos. From
this perspective, it would be interesting to investigate whether elec-
tronic transport properties, such as electrical conductivity and ther-
mal conductivity, also satisfy some form of scaling laws. This, how-
ever, is beyond the scope of the present work and may be of interest
for future studies.

V. CONCLUSION
We have calculated atomic transport properties of liquid iron

from the ambient melting point up to the pressures and temper-
atures of massive exoplanets. We find that D and η can be fitted
simultaneously using a generalized free volume model. This leads to
simpler expressions than prior studies and reveals the intimate con-
nection between D and η. In addition, we find that liquid iron satis-
fies the quasi-universal atomic excess entropy scaling law of strongly
coupled liquids up to the TPa regime. We evaluate transport prop-
erties along geophysically important temperature profiles and find
that they can be understood by the atomic excess entropy scaling
law. Aside from providing useful material property data for model-
ing a wide range of planetary cores, the present work also bridges two
renowned theories of liquids: the free volume model and the atomic
excess entropy scaling law. Moreover, it indicates that the dynam-
ics of liquid iron is scale-invariant. Assuming that other quantities
involved in the dynamics of liquid planetary iron cores (not fully
captured by the present simulations) do not affect our results, scale
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invariance may provide an underlying mechanism for establishing
macroscopic scaling laws of planetary dynamos.

SUPPLEMENTARY MATERIAL

See the supplementary material for (a) the accuracy of the PAW
pseudo-potential; (b) convergences with respect to the size of the
simulation cell, kinetic energy cutoff for plane wave expansion, and
k-mesh sampling; and (c) comparisons of the non-spin-polarized
and spin-polarized results.
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