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Abstract. In the present work we show some results on the effect of the Smagorinsky model on the stability of the associated
perturbation equation. We show that in the presence of a spectral gap, such that the flow can be decomposed in a large
scale with moderate gradient and a small amplitude fine scale with arbitratry gradient, the Smagorinsky model admits
stability estimates for perturbations, with exponential growth depending only on the large scale gradient. We then show
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estimates in the L2-norm for smooth flows in the pre-asymptotic high Reynolds number regime.
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1. Introduction

The modelling and accurate approximation of turbulent flows at high Reynolds numbers remain an
outstanding challenge. One of the earliest attempts at the design of a turbulence model is the one
attributed to Smagorinsky [36,37], where a nonlinear viscous term, with viscosity depending on the
symmetric gradient of the velocities, replaces the Reynolds stresses, thereby providing closure to the
filtered Navier-Stokes’ equations. The model is believed to be inspired by early work on shock capturing
methods for conservation laws due to Von Neumann and Richtmyer [39].

An appealing feature is that it has been shown that the Navier-Stokes’ equations regularized system
admits a unique solution [31], with enhanced regularity [5,6]. It has also been shown using scaling argu-
ments that away from boundary layers the dissipation rate matches the Kolmogorov decay rate [32] for
uniformly turbulent flows. On the other hand the Smagorinsky model is considered to be too dissipative,
in particular in the laminar zone. The parameter of the model has to be tuned differently to obtain the
best results depending the flow problem [22] and on the numerical method used [34], pointing to a subtle
interplay between the flow and the numerical method for the performance of the Smagorinsky model in
LES. Nevertheless, thanks to its simplicity and its physical consistency, the Smagorinsky model remains
an important tool for the modelling of turbulent high Reynolds flows.

The objective of the present work is to show some results on the effect of the Smagorinsky model
on the stability of the fluid dynamics and on numerical approximation. We show that in the presence
of a spectral gap, such that the flow can be decomposed in a large scale with moderate gradient and a
small amplitude fine scale with arbitrary gradient, the Smagorinsky model admits stability estimates with
exponential growth depending only on the large scale gradient. We then show in the context of stabilized
finite element methods that the same result carries over to the approximation and that in this context, for
suitably chosen finite element spaces the Smagorinsky model acts as a stabilizer yielding close to optimal
error estimates for smooth flows in the high Reynolds number regime. This gives some evidence that the
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Smagorinsky model is efficient in situations where the flow has a clearly defined spectral gap. This is not
in general the case for turbulent flows, but is believed to occur at high Reynolds number, near rough
surfaces or the atmospheric boundary layer [21], or more generally in atmospheric and geophysical flows
[20,35,40]. Interestingly, this is the context in which the Smagorinsky model was originally proposed [36].

The notion of Large Eddy Simulation (LES) is not very well defined. Depending on the context it is
considered either as a modelling issue or a numerical technique. In the first case the partial differential
equation is perturbed by adding terms that model the so-called Reynolds stress term expressing the effect
of unresolved scales, where the smallest length scale is a model parameter. The regularized model should
be well-posed and can then be discretized. The challenge here is on the modelling side: how can one
design a model that allows for a more stable representation of quantities of interest? Observe that to
distinguish this method from the situation where the turbulence model is used for numerical stability,
the model parameters should be fixed before discretization and not coupled to the mesh-size. In case
such a coupling is introduced it would need to be justified, in particular in the asymptotic limit. A
typical requirement is that the physically relevant solution, or a so-called “suitable” solution is obtained
in the limit [24]. For so called numerical LES, or implicit LES, on the other hand [9], the Navier-Stokes’
equations are considered, but a numerically stable discretization method is used ensuring that sufficient
dissipation is added for the numerical scheme to remain stable, but not so much that smooth structures of
the flow are destroyed. The underpinning idea is that any quantity of interest that has sufficient stability
properties will then be computable, if the numerical method resolves a sufficient range of scales so that
the effect of unresolved scales is negligible [10,27]. To be able to claim that an analysis of a LES method is
successful it is necessary to address the question of stability, but there appears to be no stability estimates
with moderate exponential growth for any quantity of interest for the Navier-Stokes equations in the high
Reynolds number regime. The best rigorous result of quantitative bound of perturbation growth in the
inviscid regime appears to be [1], where a two-dimensional flow is analyzed and the stability constant
grows with a double exponential in time.

Finite element analysis typically relies on the velocities having bounded gradients [26,30], with a slight
improvement possible in the two-dimensional case using parabolic regularization of the viscous scales [10].
Typically the stability constant is on the form exp(KT ), with K proportional to the maximum gradient
of the velocity in the flow and T the end time.

Main results and outline There appears to be very little known about the stability properties of the
Smagorinsky model, or for that matter its qualities as a stabilizing term for numerical methods for high
Reynolds flow in the laminar regime. In this paper we will consider the Smagorinsky model first as a
turbulence model and then, in a finite element method, as a stabilizing term. In the former case we prove
a stability result (Theorem 4.1) showing that the perturbation growth is independent of high frequency,
low amplitude oscillations in the solution and that as the perturbation error becomes larger, its growth
is moderated by the nonlinear feedback of the turbulence model.

On the other hand the use of the Smagorinsky model as a stabilizer in the framework of divergence
free affine finite elements, allows us to prove the classical L2 error estimates of order O(h

3
2 ) (where h

denotes the mesh-size), that are the best known estimates for stabilized finite element methods using
affine approximation for the Navier-Stokes’ equations in the high Reynolds laminar regime [12,26,29,30].
Indeed, if u denotes the solution to the Navier-Stokes equations and ûh denotes the finite element solution
stabilized using the Smagorinsky model with characteristic lengthscale O(h) and the flow is laminar in
the pre asymptotic regime where the mesh-size is larger than the viscosity, then there holds (Theorem
6.7)

‖(u − ûh)(T )‖L2(Ω) ≤ C(u)h
3
2 , T > 0

where C(u) is a constant that depends on Sobolev norms of the exact solution to the Navier-Stokes’
equations and time. In particular there are no inverse powers of the viscosity in C(u). The exponential
growth of the constant inherits the scale separation properties of the continuous equations.
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For the discussion below we will for simplicity consider the p-Laplacian model that acts on the whole
gradient instead of the symmetric gradient as in the Smagorinsky case. This regularization was introduced
in [33, Chap. 2, sec. 5], where also existence and uniqueness of solutions were studied. The below arguments
can however easily be extended to the more common versions of the Smagorinsky model using the rate
of deformation tensor. The only essential difference is the need to apply Korn’s inequality in Lp, see for
instance [16, Chapter 7] to get control of the gradient of the solution in Lp through the control of its
symmetric part.

Finally we show the performance of the Smagorinsky finite element method qualitatively on some
academic test cases, illustrating that the method returns a solution also in underresloved computations
where the standard Galerkin breaks down, but also that this solution is sensitive to the choice of the
parameter in the Smagorinsky model. A large parameter gives an overly diffusive approximation on coarse
meshes.

The main conclusion of this work is that the Smagorinsky model acts both on the level of stability of
perturbations and as a numerical stabilizer. This shows that the nonlinear viscosity can be interpreted
both as a turbulence model for LES and as an implicit LES model based on stable numerical approxi-
mation, provided the numerical method is chosen carefully to balance and complement the dissipation
properties. It also follows from the analysis that the Smagorinsky model will be too dissipative if a
polynomial approximation order larger than 1 is used.

2. Smagorinsky Model Problem

Let Ω ⊂ R
d, d = 2, 3, denote an open domain with smooth (or convex polyhedral) boundary ∂Ω. Consider

the time interval I = [0, T ] and denote the space time domain Ω×I by Q. We consider the Navier-Stokes-
Smagorinsky equations on the form

∂tû + (û · ∇)û + ∇p − μΔû − ∇ · ν̂(û)∇û = f in Q
∇ · û = 0 in Q.

(2.1)

The artificial viscosity matrix is diagonal with (ν̂(u))ii = ν(δ)|∇u|F , i = 1, . . . , d, where | · |F denotes the
Frobenius norm, i.e. |∇u|F = (

∑d
i=1 |∇ui|2)1/2, and ν : R+ �→ R

+ a monotonically increasing function
with ν(0) = 0 and δ a characteristic lengthscale. Below we will consider the choice ν(δ) := δ2 which
corresponds to the well-known Smagorinsky model [37], using the gradient instead of the deformation
tensor. Taking δ = 0 on the other hand results in the standard Navier-Stokes’ equations. The Smagorinsky
model is not dependent on a particular filter and the length scale δ can be allowed to vary in space and
time. As a consequence Van Driest wall damping [38] or Germano dynamic models can be included in the
arguments below. For simplicity we here consider constant δ and either homogeneous Dirichlet boundary
conditions or periodic boundary conditions for (2.1). We introduce the vectorial Bochner space

V := [L3(I;W 1,3(Ω)) ∩ L∞(I;L2(Ω))]d.

We will assume that the solution to the Navier-Stokes’ equations, u, has the additional regularity u ∈ V .
Since (2.1) results in an O(δ2) perturbation of the Navier-Stokes’ equations, it is reasonable to assume
that the convergence from the Smagorinsky-Navier-Stokes’ system to the Navier-Stokes’ system is at best
O(δ2) for a smooth enough solution (to the Navier-Stokes’ system). If the solution is not smooth enough
the effect of the perturbation will be larger. For instance, as shown below, if u ∈ V the perturbation due
to the model is O(δ). However, the error due to the inconsistency is not the whole story, indeed the error
can typically be written (see Theorem 4.1 below)

‖(u − û)(T )‖L2(Ω) ≤ C(u) exp(α(T ))δβ , (2.2)

where u is the solution to the Navier-Stokes’ equations, û is the solution to the Navier-Stokes’-Smagorinsky
equations (2.1), C(u) is a constant only dependent on Sobolev norms of u and α(T ) is a function, de-
pending on the exact solution, quantifying the stability of the nonlinear problem and β is the power of
the nonconsistency, typically in the interval (0, 2).
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The consequence of this for practical computation is that for the situation where δ coincides with the
cell-width of the computational mesh, improving the approximation order beyond that of affine finite
elements (formally giving an O(h2) L2-error bound) will not result in an improved approximation for
laminar flows: the consistency error O(δ2) of the Smagorinsky model will dominate.

For laminar flows where the flow field has small spatial variation also the coefficient α(T ), which
typically scales as |u|/ν

1
2 or

∫
I
‖∇u(·, t)‖L∞(Ω), is moderate and one can conclude that the perturbation

error is essentially determined by the size of δ in the right hand side. Decreasing δ will lead to a decrease
in the error and the natural (and trivial) choice is δ = 0 for which the error is zero, since the two solutions
coincide: there is no need for a model in laminar flows.

In the less regular case, u ∈ V , which seems to be the minimum requirement for a bound of the type
(2.2) to make sense, the situation is different. Now α can not be assumed small, so the right hand side
depends both on the coefficient δ and the exponential growth. Except for very short times the exponential
growth will make the bound meaningless.

We will show in the present paper that we can refine our definition of the coefficient α by letting it
implicitly depend on δ, so that an increase in δ, although it increases the consistency error, can lead to
a decrease in the exponential growth through the nonlinear feedback of the Smagorinsky operator. This
leads to a potential moderation of the error growth through an increase in δ, which can explain why this
behavior has been observed in computations [22]. Observe that this result depends on the structure of
the actual solution u, so it is not a general statement and only of qualitative nature. The analysis is also
done in the L2-norm which is too strong to be a reasonable target for turbulent flows. Unfortunately the
analysis of other target quantities appears to be very difficult due to the complexity of the linearized
adjoint to the Smagorinsky perturbation equation.

Nevertheless one can argue that if this stabilizing effect is visible already for the L2-norm it is likely
to be more accentuated for the approximation of averaged quantities where the effect of fluctuations is
expected to be less important due to cancellation.

2.1. Notation and Technical Results

To reduce the number of non-essential constants we will use the notation a � b for a ≤ Cb where C is an
O(1) constant independent of the viscosity μ, the parameter δ or the mesh parameter h.

We will use standard notations for most Sobolev spaces and norms. The space of divergence free
functions in V and [L2(Ω)]d will be denoted

V0 := {v ∈ V : ∇ · v = 0}
and

L0 := {v ∈ [L2(Ω)]d : ∇ · v = 0}.

To consider different boundary conditions we add a superscript 0 on spaces of functions with zero trace
on the domain boundary, for example V 0

0 . To simplify we define the L2-inner product for some subset
X ⊂ R

s, s = 1, . . . , d + 1, by

(u, v)X :=
∫

X

uv dx, ∀u, v ∈ L2(X),

with associated norm ‖ · ‖X := (·, ·) 1
2
X . With some abuse of notation we will not distinguish between the

inner product of scalar, vector or tensor valued functions in subscripts of norms and scalar products. The
vector valued case is defined by

(u,v)X :=
∫

X

u · v dx, ∀u,v ∈ [L2(X)]d,
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with u · v :=
∑d

i=1 uivi and the tensor valued case is defined by

(ξ, ζ)X :=
∫

X

ξ : ζ dx, ∀ξ, ζ ∈ [L2(X)]d×d,

where ξ : ζ :=
∑d

i,j=1 ξijζij . The tensor valued Lp norm will be defined by

‖ξ‖p
[Lp(X)]d×d :=

∫

X

|ξ|pF dx, p ∈ [2, 3], ξ ∈ [Lp(X)]d. (2.3)

The norm on C0(Ω̄) will be denoted,

‖v‖∞ := sup
x∈Ω̄

|v(x)|.

We also recall Hölders inequality and Young’s inequality that will be used repeatedly below. For p, q ∈
[1,∞] with p−1 + q−1 = 1 there holds

(u, v)X ≤ ‖u‖Lp(X)‖v‖Lq(X), u ∈ Lp(X), v ∈ Lq(X), (2.4)

ab ≤ p−1(a/ε)p + q−1(εb)q, a, b ∈ R, ε > 0. (2.5)

The following Poincaré-Friedrichs inequality holds for all 1 ≤ p < ∞.

Lemma 2.1. Let 1 ≤ p < ∞ then for all v ∈ W 1,p(Ω) with v|∂Ω = 0,

‖v‖W 1,p(Ω) ≤ c‖∇v‖Lp(Ω).

We will use the notation T for a quasi-uniform tesselation of Ω, consisting of simplices T with diameter
hT . We also introduce the global mesh parameter h = maxT∈T hT . We will denote the broken L2-scalar
product and norm over the elements of T by

(u, v)T :=
∑

T∈T

(u, v)T , ‖v‖T := (v, v)
1
2
T .

The set of internal faces of the triangulation T will be denoted F and we define the norm of a function
defined on the skeleton by

(u, v)F :=
∑

T∈T

(u, v)∂T\∂Ω, ‖v‖F := (v, v)
1
2
F.

The following monotonicity and contintuity results of the p-Laplacian will be useful for the analysis.

2.1.1. Properties of the p-Laplacian. For future reference we recall the following two properties:

Lemma 2.2 (Monotonicity). Let p ≥ 2 then for all ξ, ζ ∈ R
d×d,

|ξ − ζ|pF ≤ 2p−1(|ξ|p−2
F ξ − |ζ|p−2

F ζ, ξ − ζ)Rd×d . (2.6)

Proof. For the monotonicity in the vectorial case, see Glowinski and Marocco [23, Lemma 5.1] and [18,
Lemma 3.30]. In the context of the Smagorinsky type model considered here see [28, Lemma 8.88]. �

Lemma 2.3 (Continuity). For all ξ, η ∈ R
d×d there holds

||ξ|F ξ − |ζ|F ζ|F ≤ (|ξ|F + |ζ|F )|ξ − ζ|F . (2.7)

Proof. The result is elementary. Adding and subtracting ζ we have

||ξ|F ξ − |ζ|F ζ|F = ||ξ|F (ξ − ζ) − (|ζ|F − |ξ|F )ζ|F ≤ |ξ|F |ξ − ζ|F + ||ζ|F − |ξ|F ||ζ|F .

The claim then follows by applying the reverse triangle inequality ||ζ|F − |ξ|F | ≤ |ζ − ξ|F so that

||ξ|F ξ − |ζ|F ζ|F ≤ (|ξ|F + |ζ|F )|ζ − ξ|F .

�
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It follows from (2.6) that for u,v ∈ [W 1,3(Ω)]d there holds

‖∇(u − v)‖3
L3(Ω) ≤ 4(|∇u|F ∇u − |∇v|F ∇v,∇(u − v))Ω. (2.8)

Lemma 2.3 also implies the continuity

|(|∇u|F ∇u − |∇v|F ∇v,∇w)Ω| ≤ ((|∇u|F + |∇v|F )|∇u − ∇v|F , |∇w|F )Ω

≤ 2(|∇u|F |∇u − ∇v|F + |∇u − ∇v|2F , |∇w|F )Ω. (2.9)

3. Perturbation Equation and Scale Separation

We are interested in estimating the growth of perturbations in (2.1) quantified as the difference of the
solution û, with δ > 0 and the Navier-Stokes’ equation u, with δ = 0. To this end we will study the
perturbation equation obtained by taking the difference of the equation with δ > 0 and with δ = 0 on
weak form.

Let η = u − û, then η ∈ V0 and using (2.1) we see that

(∂tη,v)Ω + (û · ∇η,v)Ω + (η · ∇u,v)Ω + (ν∇η,∇v)Ω
+ (ν̂(u)∇u − ν̂(û)∇û,∇v)Ω = (ν̂(u)∇u,∇v)Ω (3.1)

for all v such that ∇ · v = 0.
A classical energy estimate can be obtained from this equation by testing with η. Clearly

(û · ∇η,η)Ω + (η · ∇u,η)Ω = (η · ∇u,η)Ω
which (as we shall see below) leads to exponential growth with coefficient

∫
I
‖∇u(t)‖L∞(Ω) using Gron-

wall’s estimate. The objective of the present contribution is to show that the large scale velocity that
drives the exponential growth can be taken over a much larger set than {u, û}. Indeed we will introduce
a scale separation property defining a set of fine and coarse scales. The coarse scales are dependent on
the Smagorinsky solution implicitly through the difference between the Navier-Stokes’ solution and the
Smagorinsky solution. Under the scale separation assumption, the exponential growth of perturbations
will only depend on the coarse scales. Any exact solution may be decomposed in a large scale component
ū and a fine scale fluctuation u′ so that

⎧
⎪⎨

⎪⎩

u = ū + u′,
ū ∈ [L1(I;W 1,∞(Ω))]d,

u′ ∈ {[L3(Q)]d | ∫
Q

((μ + ν̂(η))
1
2 − |u′|τ 1

2
L )φ ≥ 0, ∀φ ∈ L

3
2 (Q), φ ≥ 0}.

(3.2)

Here τL is a characteristic time scale of the large scales of the flow defined by

τL := (α(T ) + T−1)−1, with α(T ) := T−1

∫

I

‖∇ū(t)‖L∞(Ω) dt. (3.3)

For u ∈ [L1(I;W 1,∞(Ω))]d the relation always holds for the trivial case u′ = 0, leading to the classical
exponential growth with coefficient proportional to the full gradient of the fluid velocity. We say that the
flow is scale separated if the decomposition (3.2) exists with τL ∼ T .

Remark 3.1. Observe that the decomposition depends on ν̂(η) pointwise and that this quantity can be
very large for rough flows, since ∇u, which is not regularized, may be large locally without violating
the a priori regularity assumption. This is a favorable property: as the flow gets more rough the bound
defining admissible small scales is relaxed and the characteristic time of the resolved scales can increase,
leading to a reduction in the exponential growth of perturbations.

The rationale for the decomposition is that the constant in the estimates below will have exponential
growth depending only on T/τL. This shows that small amplitude, high frequency perturbations of scale
separated flows will not grow exponentially, even if ‖∇u‖L∞(Ω) is large. The following Lemma is a key
tool to quantify this observation.



JMFM Error Estimates for the Smagorinsky Turbulence Model Page 7 of 29     5 

Lemma 3.2. Let û ∈ V be the solution of (2.1) with δ > 0 and let u ∈ V be the solution with δ = 0.
Assume that u satisfies the scale separation property (3.2). Then, denoting η = u − û, there holds, for
all ε > 0,

((η · ∇)u,η)Q ≤ ε

2
‖μ

1
2 ∇η‖2

Q +
ε

2
ν(δ)‖∇η‖3

L3(Q) + ‖|(ε−1τ−1
L + |∇ū|F )

1
2 η‖2

Q.

Proof. Using the divergence theorem and the scale separation property we see that

((η · ∇)u,η)Q = (ū + u′, (η · ∇)η)Q = ((η · ∇)ū,η)Q + (u′, (η · ∇)η)Q.

Using the bound of (3.2) we see that, since by assumption (η · ∇)η ∈ [L
3
2 (Q)]d,

|(u′, (η · ∇)η)Q| ≤ |(τ− 1
2

L |η|, (μ + ν̂(η))
1
2 |∇η|)Q|.

By the definition of ν̂(η)

‖ν̂(η)
1
2 ∇η‖Q =

(∫

Q

ν(δ)|∇η|3F dxdt

) 1
2

= ‖ν(δ)
1
3 ∇η‖ 3

2
L3(Q).

An application of the Cauchy–Schwarz inequality followed by the inequality (2.5), with p = q = 2 then
shows that

|(τ− 1
2

L |η|, (μ + ν̂(η))
1
2 ∇η|)Q| ≤ ‖τ

− 1
2

L η‖Q‖(μ + ν̂(η))
1
2 ∇η‖Q

≤ 1
2ε

‖τ
− 1

2
L η‖2

Q +
ε

2
‖μ

1
2 ∇η‖2

Q +
ε

2
‖ν(δ)

1
3 ∇η‖3

L3(Q).

Collecting the above inequalities we have

((η · ∇)u,η)Q ≤ |((η · ∇)ū,η)Q| + (|η|, |u′||∇η|)Q

≤ (η|∇ū|,η)Q + ‖τ
− 1

2
L η‖Q(‖ν̂(η)

1
2 ∇η‖Q + ‖μ

1
2 ∇η‖Q)

≤ (η|∇ū|,η)Q +
1
ε
‖τ

− 1
2

L η‖2
Q +

ε

2
‖μ

1
2 ∇η‖2

Q +
ε

2
‖ν(δ)

1
3 ∇η‖3

L3(Q).

The result follows by noting that

(η|∇ū|,η)Q + ε−1‖τ
− 1

2
L η‖2

Q = ‖|(ετ−1
L + |∇ū|F )

1
2 η‖2

Q.

�

4. Perturbation Growth on the Continuous Level for Scale Separated Flows

We will first prove, using a perturbation argument on the continuous equations, that the perturbation
induced by the Smagorinsky term allows for an O(ν(δ)

1
2 ) error estimate in the L2-norm between the

Navier-Stokes’ solution and the Navier-Stokes-Smagorinsky solution. In case the solution is smooth this
bound can be improved to O(ν(δ)).

Theorem 4.1. Let u ∈ V be the solution to (2.1) with δ = 0 and let û be the solution of (2.1) with δ > 0.
Then there holds, with η := u − û

sup
t∈I

‖η(t)‖2
Ω + ‖μ

1
2 ∇η‖2

Q +
1
6
‖ν(δ)

1
3 ∇η‖3

L3(Q) ≤ e
14 T

τL
8
3
ν(δ)‖∇u‖3

L3(Q),

where τL is defined by (3.3). If in addition ∇ · (ν̂(u)∇)u ∈ [L2(Q)]d then there holds

sup
t∈I

‖η(t)‖2
Ω + ‖μ

1
2 ∇η‖2

Q +
1
6
‖ν(δ)

1
3 ∇η‖3

L3(Q) ≤ e
15 T

τL τLν(δ)2‖∇ · (|∇u|∇u)‖2
Q.
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Proof. Taking v = η in (3.1) we see that, using the skew symmetry of the convective term and the
monotonicity of the p-Laplacian, equation (2.8), we get

1
2

d

dt
‖η‖2

Ω + ((η · ∇)u,η)Ω + ‖μ
1
2 ∇η‖2

Ω +
1
4
‖ν(δ)

1
3 ∇η(t)‖3

L3(Ω) ≤ (ν̂(u)∇u,∇η)Ω. (4.1)

We can bound the right hand side using Hölders inequality (2.4) and Young’s inequality (2.5), with
p = 3/2 and q = 3,

(ν̂(u)∇u,∇η)Ω ≤ ‖ν̂(u)∇u‖
L

3
2 (Ω)

‖∇η‖L3(Ω)

≤ ν(δ)
2
3

(
1
4

)− 1
3

‖|∇u|F ∇u‖
L

3
2 (Ω)

(
1
4

) 1
3

ν(δ)
1
3 ‖∇η‖L3(Ω)

≤ 2
3

(
1
4

)− 1
2

ν(δ)‖∇u‖3
L3(Ω) +

1
3

(
1
4

)

ν(δ)‖∇η‖3
L3(Ω)

≤ 4
3
ν(δ)‖∇u‖3

L3(Ω) +
1
12

‖ν(δ)
1
3 ∇η‖3

L3(Ω). (4.2)

The second term in the right hand side is now absorbed by the fourth term in the left hand side of (4.1).
After integration in time we obtain

1
2
‖η(T )‖2

Ω + ‖μ
1
2 ∇η‖2

Q +
1
6
‖ν(δ)

1
3 ∇η(t)‖3

L3(Q) ≤ 4
3
ν(δ)‖∇u‖3

L3(Q) − ((η · ∇)u,η)Q.

Applying Lemma 3.2 we proceed to bound the second term in the right hand side which is the last term
that does not have sign.

1
2
‖η(T )‖2

Ω + ‖μ
1
2 ∇η‖2

Q +
1
6
‖ν(δ)

1
3 ∇η(t)‖3

L3(Q)

≤ 4
3
ν(δ)‖∇u‖3

L3(Q) + ‖(ε−1τ−1
L + |∇ū|F )

1
2 η‖2

Q +
ε

2
‖ν(δ)

1
3 ∇η‖3

L3(Q) +
ε

2
‖μ

1
2 ∇η‖2

Q.

Taking ε = 1/6 and multiplying through with 2 we obtain the bound

‖η(T )‖2
Ω + ‖μ

1
2 ∇η‖2

Q +
1
6
‖ν(δ)

1
3 ∇η(t)‖3

L3(Q) ≤ 8
3
ν(δ)‖∇u‖3

L3(Q) + 2‖(6τ−1
L + |∇ū|F )

1
2 η‖2

Q.

Rewriting this as

‖η(T )‖2
Ω + ‖μ

1
2 ∇η‖2

Q +
1
6
‖ν(δ)

1
3 ∇η‖3

L3(Q)

≤ 2
∫

I

(6τ−1
L + ‖∇ū(t)‖L∞(Ω))‖η(t)‖2

Ω dt +
8
3
ν(δ)‖∇u‖3

L3(Q),

we conclude by applying Gronwall’s inequality, leading to

‖η(T )‖2
Ω + ‖μ

1
2 ∇η‖2

Q dt +
1
6
‖ν(δ)

1
3 ∇η‖3

L3(Q) ≤ e
14 T

τL
8
3
ν(δ)‖∇u‖3

L3(Q),

where we used that 2
∫

I
(6τ−1

L + ‖∇ū‖∞) dt ≤ 14T/τL. This proves the first inequality. To prove the
second observe that proceeding by integration by parts we have instead of (4.2),

(ν̂(u)∇u,∇η)Ω ≤ (∇ · ν(u)∇u,η)Ω ≤ τLν(δ)2‖∇ · |∇u|∇u‖2
Ω + τ−1

L ‖η‖2
Ω. (4.3)

The conclusion once again follows using Gronwall’s Lemma. �

Remark 4.2. Writing out the bound on u′ of (3.2) pointwise, with ν(δ) = δ2 and μ = 0, leads to

|u′|2τL ≤ δ2|∇(u − û)|F .

From this it follows that increasing δ must have one (or a combination) of the following consequences:
(1) the error in ∇(u − û) decreases, the scale separation stays the same;
(2) the characteristic time τL increases and as a consequence the exponential growth decreases;
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(3) the small scale |u′| increases; which implicitly allows for a decrease in ū through the definition of
the scale separation and a possible increase in τL.

All these three possibilities point to the fact that either the error is reduced by the increase of the param-
eter, or the exponential coefficient in the estimate will decrease leading to a decrease in the exponential
growth. This effect can offset the effect of the increased consistency error introduced by increasing δ.
Another salient conclusion is that if δ is coupled to the mesh size, there may be flow configurations where
the computational error grows under mesh refinement. Although the consistency error decreases and nu-
merical resolution increases, the set of non-essential fine scale decreases leading to increased exponential
growth of perturbations. This hints at a resolution barrier for Smagorinsky LES beyond which a full DNS
is required to enhance accuracy further.

The result of Theorem 4.1 shows that the exponential growth of perturbations can be moderated by
the Smagorinsky term and hence the turbulence model indeed has a stabilizing effect, which was the first
objective of the present work.

5. The Smagorinsky Model as a Numerical Stabilizer

In this section we will consider the situation where the Smagorinsky term is not a physical model, but a
stabilizing term in a numerical method. We will consider a piecewise affine finite element method that fits
in a discrete de Rham complex, see for instance [14,25,41]. This means that the space has a divergence
free subspace with optimal approximation properties. Note that we here mean that the approximation
pointwise has divergence zero. It turns out that the discrete de Rham complex and piecewise affine ap-
proximation are exactly the properties that make the Smagorinsky model a stabilizing term, with well
balanced stability versus accuracy. The affine approximation order makes the consistency error of the
nonlinear viscosity similar to the accuracy of the approximation and the additional stability obtained
through the exact satisfaction of the divergence free condition reduces the need of stabilization so that
the second order Smagorinsky term is sufficiently large to control fluctuations inside elements. To counter
instabilities due to the lack of C1-continuity of the approximation space a penalty term is added on a
certain component of the jump of the streamline derivative. Observe that this latter stabilizing term
echos the early approach to stabilization of divergence free elements proposed in [13]. In this work how-
ever no improved convergence rate was obtained as a consequence of the stabilization. To the best of
our knowledge, the analysis below gives the first Reynolds number robust L2-error estimate with O(h

3
2 )

convergence for a piecewise affine H1-conforming finite element method, satisfying the incompressibility
constraint exactly. The analysis draws on recent results using Galerkin-Least Squares stabilization of the
vorticity equation [2]. The analysis presented there however does not carry over to the piece affine case
considered herein. For the corresponding result using Hdiv-conforming methods we refer to [4].

5.1. Approximation Space and Technical Results

For the purposes of the present paper it is sufficient to know that the space allows for a divergence free
subspace with optimal approximation properties in H1 and L2. The below analysis also uses that the space
is affine to achieve the error estimate. As discussed above, for higher order spaces the weak consistency of
the Smagorisky model is insufficient, even if the flow is laminar. We let Vh denote the velocity subspace of
piecewise affine vector functions in [H1(Ω)]d constructed such that it satisfies a discrete inf-sup condition
for the divergence free constraint using some pressure space Qh such that ∇ · Vh ∈ Qh. Observe that by
working in the divergence free space the pressure can be eliminated in the analysis, which we will make
use of to reduce the technical detail below and we will therefore not discuss Qh further but refer to [14,25].
Below we will assume that Ω ⊂ R

3 is a convex, simply connected, polyhedron. The two-dimensional case
is also covered by the analysis, but to reduce notation we omit it from the discussion.

The following classical inverse and trace inequalities are used frequently in the analysis:
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• Inverse inequalities,

|v|H1(T ) � h−1
T ‖v‖L2(T ) ∀v ∈ P1(T ). (5.1)

Here P1(T ) denotes the set of polynomials of degree less than or equal to 1 on the simplex T . For
p ≥ q ≥ 1, l = 0, 1, there holds

‖v‖W l,p(Ω) ≤ Ch
d
p − d

q ‖v‖W l,q(Ω) ∀v ∈ Vh. (5.2)

For a proof of (5.1) see [17, Section 1.4.3] and for (5.2) see [19, Corollary 1.141].
• Trace inequalities (see [17, Section 1.4.3]),

‖v‖L2(∂T ) ≤ C
(
h

− 1
2

T ‖v‖L2(T ) + h
1
2
T ‖v‖H1(T )

)
∀v ∈ H1(T ). (5.3)

5.1.1. Approximation Error Estimates. To simplify the analysis we introduce the divergence free space
with a homogeneous Dirichlet condition on the normal component,

V0n := {v ∈ V : ∇ · v = 0,v · n = 0 on ∂Ω}.

we also define the divergence free subspace of Vh

V0h := Vh ∩ V0n .

We introduce the L2-orthogonal projections π : [L2(Ω)]d �→ Vh and Π : L0 �→ V0h. By the quasi
uniformity of the mesh the following bounds hold using standard finite element approximation arguments

‖u − πu‖Lp(Ω) + h‖∇(u − πu)‖Lp(Ω) ≤ Ch|u|W 2,p(Ω), p ≥ 1, ∀u ∈ [W 2,p(Ω)]d, (5.4)

and

‖u − Πu‖Ω + h‖∇(u − Πu)‖Ω + h− 1
2 ‖u − Πu‖∂Ω ≤ Ch|u|H2(Ω) ∀u ∈ V0n ∩ [H2(Ω)]d. (5.5)

We also recall the Lp-stability of π, for p ≥ 1 there holds [15],

‖πv‖Lp(Ω) ≤ ‖v‖Lp(Ω) and ‖∇πv‖Lp(Ω) ≤ ‖∇v‖Lp(Ω). (5.6)

We will use the notation [[·]] for the jump of a quantity across an element boundary. In particular, for
every internal face F := T̄1 ∩ T̄2 between the neighbouring elements T1 and T2, we define

[[∇v]] |F := ∇v|∂T1∩F · n1 + ∇v|∂T2∩F · n2, [[v × n]] |F := v|∂T1∩F × n1 + v|∂T2∩F × n2, (5.7)

to be the jump over the face, where ni is the outward pointing normal of the element Ti. The jump of the
gradient tensor [[∇v]] is defined by applying the left inequality of (5.7) to each column vector. Observe
that it is an immediate consequence of (5.3) and (5.5) that for all v ∈ [H2(Ω)]d,

‖h [[∇Πv]] ‖F � h
3
2 |v|H2(Ω). (5.8)

To see this, note that using the regularity of v and a trace inequality (5.3) on each face F shared by
simplices T1 and T2, we have

‖ [[∇Πv]] ‖F = ‖ [[∇(Πv − v)]] ‖F ≤ C(h− 1
2 ‖∇(Πv − v)‖T1∪T2 + h

1
2 (|v|H2(T1) + |v|H2(T2))).

The following Lemma is an immediate consequence of (5.6).

Lemma 5.1. Let w = u + vh with u ∈ [W s,p(Ω)]d, s = 0, 1, and vh ∈ Vh. Then there holds for p ≥ 2,

‖w‖W s,p(Ω) ≤ ‖u − πu‖W s,p(Ω) + Ch
d(2−p)

2p ‖w‖Hs(Ω).

Proof. By the triangle inequality followed by an inverse inequality, (5.2) and the stability of the L2-
projection (5.6), we have

‖w‖W s,p(Ω) = ‖w − πw‖W s,p(Ω) + ‖πw‖W s,p(Ω)

≤ ‖u − πu‖W s,p(Ω) + Ch
d(2−p)

2p ‖w‖Hs(Ω).

�
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We will now prove some estimates in weaker norms that will be helpful in the analysis. We recall the
following surjectivity property of the curl operator on simply connected polyhedral domains Ω. For all
v ∈ V0n there exists ϕ ∈ V0(Ω)∩ [H1(Ω)]d such that ∇×ϕ = v in Ω, ϕ×nΩ = 0 on ∂Ω,

∫
∂Ω

ϕ ·nΩ = 0,
and satisfying the stability ‖∇ϕ‖Ω � ‖∇ × ϕ‖Ω [3, Theorem 3.17]. Using the above properties we now
introduce the regularized approximation error E ∈ L0(Ω) ∩ [H1(Ω)]d defined by

∇ × E = v − Πv in Ω, (5.9)

∇ · E = 0 in Ω, (5.10)

nΩ × E = 0 on ∂Ω, (5.11)
∫

∂Ω

E · nΩ ds = 0. (5.12)

Lemma 5.2. Let E be defined by (5.9)–(5.12) then

‖E‖Ω + ‖h
1
2 E‖F + h‖∇E‖Ω � h‖v − Πv‖Ω � h3|v|H2(Ω). (5.13)

Proof. By our assumptions on Ω there holds ‖∇E‖Ω � ‖∇×E‖Ω and there exists Ψ ∈ L0(Ω)∩ [H1(Ω)]d

and Ψ · n = 0 on ∂Ω such that ∇ × Ψ = E, with ‖∇Ψ‖Ω � ‖∇ × Ψ‖Ω [3, Theorem 3.12].
Using the E and Ψ we may bound the error in the following way

‖E‖2
Ω = (E,∇ × Ψ)Ω

= (v − Πv,Ψ − ΠΨ)Ω + (E,Ψ × nΩ)∂Ω
︸ ︷︷ ︸
=(E×nΩ,Ψ)∂Ω=0

� h‖∇Ψ‖Ω‖v − Πv‖Ω

� h‖E‖Ω‖v − Πv‖Ω.

We conclude that

‖E‖Ω � h‖v − Πv‖Ω. (5.14)

On each face we use the trace inequality (5.3)

‖E‖F � h− 1
2 ‖E‖T + h

1
2 ‖∇E‖T .

It follows that

‖E‖2
F � h−1‖E‖2

Ω + h|E|2H1(Ω) � h‖v − Πv‖2
Ω. (5.15)

Multiplying (5.15) by h and using approximation in the right hand sides of (5.14) and (5.15) leads to the
desired inequality. �

5.1.2. Vector Identity. For the analysis below the following elementary vector identity [4] will be useful.
For two 3×3 matrices A and B with rows Ai and Bi (i = 1, 2, 3) we define the vector quantity c := A×B
with the components c1 = A2 · B3 − A3 · B2, c2 = −(A1 · B3 − A3 · B1) c3 = A1 · B2 − A2 · B1. A simple
calculation then gives the following identity.

Lemma 5.3. For sufficiently smooth vectors β and v there holds

curl (β · ∇v) = β · ∇(curlv) + ((∇β)t × ∇v).

5.2. A Linear Model Problem

Since the approach to stabilization in the present work is non-standard we first consider the linear model
problem for inviscid flow introduced in [4]. The Smagorinsky bulk term is not strictly necessary for the
analysis in the linear case. Nevertheless we keep this term, since in this simplified context the stabilizing
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mechanisms become clear. The model problem takes the form, find a velocity u and a pressure p satisfying

∇ · (u ⊗ β) + σu + ∇p = f in Ω, (5.16a)

∇ · u = 0 in Ω, (5.16b)

u · nΩ = 0 on ∂Ω. (5.16c)

We think of u and β as column vectors and we set u ⊗ β = uβt. We assume that β ∈ [C1(Ω̄)]d ∩ V0n

and σ ∈ R+. To ensure uniqueness we assume σ sufficiently big compared to ‖∇β‖∞, for details see [4].
The numerical method we will analyze here reads: Find uh ∈ V0h such that

−(uh,β · ∇vh)Ω + (σuh,vh)Ω + γs(uh,vh) = (f ,vh)Ω ∀vh ∈ V0h (5.17a)

where γ > 0 is a dimensionless parameter. We define the stabilizing operator as a combination of a face
penalty operator and an artificial viscosity term in the bulk. In the fully nonlinear case the bulk viscosity
will be replaced by the Smagorinsky model,

s(uh,vh) := (δ2|∇β|F ∇uh,∇vh)Ω + (h2|β|−1 [[(β · ∇)uh × n]] , [[(β · ∇)vh × n]])F.

We define the stabilization semi-norm by |v|s := s(v,v)
1
2 and note that the following approximation

estimate holds.

Lemma 5.4. Let v ∈ [H2(Ω)]d and β ∈ [C1(Ω̄)]d then

|v − Πv|s � (δ‖∇β‖ 1
2∞ + h

1
2 ‖β‖ 1

2∞)h|v|H2(Ω).

If ‖∇β‖∞ � h−1‖β‖∞ and δ = O(h) then

|v − Πv|s � C‖β‖ 1
2∞h

3
2 |v|H2(Ω).

Proof. First note that for the linearized Smagorinsky term there holds by (5.5)

‖δ|∇β| 1
2
F ∇(v − Πv)‖Ω ≤ δ‖∇β‖ 1

2∞‖∇(v − Πv)‖Ω ≤ δ‖∇β‖ 1
2∞h|v|H2(Ω).

For the term on the faces on the other hand we have

‖|β|− 1
2 h [[(β · ∇)Πv × n]] ‖F ≤ h‖β‖ 1

2∞‖ [[∇Πv]] ‖F.

The first claim now follows using (5.8). The second claim is immediate from the first claim and the
assumptions. �

Clearly by taking vh = uh in (5.17), integrating by parts and using the properties of β and a Cauchy–
Schwarz inequality we have the a priori estimate

‖σ
1
2 uh‖Ω ≤ σ− 1

2 ‖f‖Ω. (5.18)

Thanks to equation (5.18) the problem (5.17) has a unique solution. Moreover, the method (5.17) is
weakly consistent; in fact, for (u, p) ∈ [L2(Ω)]d ×L2

0(Ω) solving (5.16) we have, using that (p,∇·vh)Ω = 0
for all vh ∈ V0h,

−(u,β · ∇vh)Ω + (σu,vh)Ω = (f ,vh)Ω ∀vh ∈ V0h. (5.19a)

Following the ideas of [4] we now prove an a priori error estimate in the L2-norm for the finite element
solution to (5.17).

Proposition 5.5. Let u ∈ L0 ∩ [H2(Ω)]d be the solution to (5.16), and uh ∈ V0h the solution to (5.17).
Also assume that γ = O(1) and δ = O(h). Then there holds

σ
1
2 ‖u − uh‖Ω + |u − uh|s � h

3
2 |u|H2(Ω)

where the hidden constant depends on ‖β‖∞, ‖∇β‖∞ and σ.
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Proof. Let η = u − uh and observe that since by definition ∇ · β = 0 and β · n = 0 on ∂Ω

‖σ
1
2 η‖2

Ω + γ|η|2s = −(η,β · ∇η)Ω + (ση,η)Ω + γs(η,η).

We can then use (5.17) and (5.19) and the divergence theorem to obtain

‖σ
1
2 η‖2

Ω + γ|η|2s = (β · ∇η,u − Πu)Ω + (ση,u − Πu)Ω
+ γs(u,η) − γs(u,u − Πu) + γs(η,u − Πu). (5.20)

For the second term on the right hand side we have

(ση,u − Πu)Ω = ‖σ
1
2 (u − Πu)‖2

Ω, (5.21)

and for the last three terms

s(u,η) − s(u,u − Πu) + s(η,u − Πu)

= −(δ2∇ · |∇β|∇u,η − u − Πu)Ω + (δ2|∇β|∇u · nΩ,η − u − Πu)∂Ω + s(η,u − Πu).

It follows using the Cauchy–Schwarz inequality and the arithmetic-geometric inequality that

− (δ2∇ · |∇β|∇u,η − u − Πu)Ω ≤ 2σ−1γ‖δ2∇ · |∇β|∇u‖2
Ω +

1
4
γ−1σ‖η‖2

Ω +
1
4
σγ−1‖u − Πu‖2

Ω,

(5.22)

and

s(η,u − Πu) ≤ 1
4
|η|2s + |u − Πu|2s. (5.23)

For the boundary term we use the Cauchy–Schwarz inequality followed by a global and a local trace
inequality and approximation to obtain

(δ2|∇β|∇u · nΩ,η − u − Πu)∂Ω ≤ Ch
3
2 ‖∇β‖∞‖∇u‖H1(Ω)h

1
2 (‖η‖∂Ω + ‖u − Πu‖∂Ω)

≤ Cσ−1h3γ‖∇β‖∞‖u‖2
H2(Ω) + σγ−1‖u − Πu‖2

Ω + σh2γ−1‖∇(u − Πu)‖2
Ω +

σ

4
γ−1‖η‖2

Ω.

For the second inequality we used that by (5.3), ‖u − Πu‖∂Ω � h− 1
2 ‖u − Πu‖Ω + h

1
2 ‖∇u − Πu‖Ω and

using also (5.1) it is straightforward to prove that

h
1
2 (‖η‖∂Ω + ‖u − Πu‖∂Ω) ≤ Ch

1
2 ‖η − Πη‖∂Ω

︸ ︷︷ ︸
=‖u−Πu‖∂Ω

+C‖Πη‖Ω + ‖u − Πu‖Ω + h‖u − Πu‖Ω

≤ C‖u − Πu‖Ω + Ch‖∇(u − Πu)‖Ω + C‖η‖Ω.

It only remains to bound the convective term. To this end we use the regularized error defined by (5.9)–
(5.11) and write

(β · ∇η,u − Πu)Ω = (β · ∇η,∇ × E)Ω

= (∇ × (β · ∇η),E)T +
1
2

∑

T

∫

∂T

([[β · ∇uh]] × n) · E × n ds. (5.24)

Using now that the finite element functions are affine per element and Lemma 5.3 we have

(∇ × (β · ∇η),E)T = (β · ∇(∇ × u),E)Ω + (∇β)t × ∇η,E)Ω. (5.25)

For the first term of the right hand side we see that

(β · ∇(∇ × u),E)Ω ≤ ‖(β · ∇(∇ × u)‖Ω‖E‖Ω. (5.26)

The second term of the right hand side of (5.25) is bounded in the following way, using the Cauchy–
Schwarz inequality, Young’s inequality and Lemma 5.2

((∇β)t × ∇η,E)Ω ≤ ‖∇β‖ 1
2∞‖δ|∇β| 1

2
F ∇η‖Ω‖δ−1E‖Ω ≤ 1

4
γ|η|2s + ‖∇β‖∞γ−1‖δ−1E‖2

Ω. (5.27)
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Finally for the last term of the right hand side of (5.24) we see that, since E × nΩ|∂Ω = 0,
∑

T

∫

∂T

([[β · ∇uh × n]]) · E × n ds ≤ |η|s‖β‖ 1
2∞h−1‖E‖F

≤ γ
1
4
|η|2s + γ−1‖β‖∞h−3‖h

1
2 E‖2

F. (5.28)

Applying the bounds of the equations (5.21)–(5.28) to the right hand side of (5.20) and including γ +γ−1

in the hidden constant leads to
1
2
‖σ

1
2 η‖2

Ω +
1
2
|η|2s � ‖σ

1
2 (u − Πu)‖2

Ω + |u − Πu|2s
+ Cσ−1h3‖∇β‖2

∞‖u‖2
H2(Ω) + σh2‖∇(u − Πu)‖2

Ω

+ ‖β · ∇(∇ × u)‖Ω‖E‖Ω + ‖∇β‖∞‖δ−1E‖2
Ω + γ−1‖β‖∞h−3‖h

1
2 E‖2

F. (5.29)

We finish the proof by applying (5.5), Lemmas 5.4 and 5.2 in the right hand side of (5.29). �

Remark 5.6. In the case of the linear model problem the addition of the linearized Smagorinsky term
is not strictly necessary to obtain the order h

3
2 in the estimate of Proposition 5.5. Indeed the bound of

equation (5.27) can be modified as follows to obtain the convergence with δ = 0.

((∇β)t × ∇η,E)Ω ≤ ‖∇β‖∞‖h∇η‖Ω‖h−1E‖Ω. (5.30)

Adding and subtracting πη, using the triangle inequality and the inverse inequality (5.1) gives

‖h∇η‖Ω ≤ ‖h∇(η − πη)‖Ω + ‖πη‖Ω.

Then by approximation and stability of the L2-projection,

‖h∇η‖Ω ≤ Ch2|u|H2(Ω) + ‖η‖Ω.

Using this in (5.30) followed by an arithmetic-geometric inequality leads to

((∇β)t × ∇η,E)Ω ≤ 1
4
σ‖η‖2

Ω + Ch4‖∇β‖∞|u|2H2(Ω) + ‖∇β‖∞(C + σ−1‖∇β‖∞)‖h−1E‖2
Ω.

The first term in the right hand side can now be absorbed by the zero order term in the left hand side and
the remaining terms are of order O(h4), by Lemma 5.2, which shows that they are sufficiently small by
a margin of O(h). In the nonlinear case below, β will be replaced by the discrete solution and it appears
no longer to be possible to balance the estimate to optimal order without the nonlinear stabilization. So
independent of the improved stability through scale separation, the nonlinear stabilization is of interest
for the finite element discretization of the Navier-Stokes’ equations.

6. Stabilized Finite Element Method for the Incompressible Navier-Stokes’ Equations

The finite element space semi-discretization for the approximation of (2.1) reads: find ûh ∈ V0h, with
ûh(0) = Πu(0) such that

(∂tûh,vh)Ω + ((ûh · ∇)ûh,vh)Ω + ((ν̂(ûh) + μ)∇ûh,∇vh)Ω
+ bc(ûh,vh) + s(ûh,vh) = (f ,vh)Ω ∀vh ∈ V0h. (6.1)

Here the term bc is a consistency term added due to the fact that only the normal component of the
velocity is set to zero in V0h defined by

bc(ûh,vh) := −(μ∇ûhnΩ, tvh)∂Ω − (μ∇vhnΩ, tûh)∂Ω,

where t = I−nΩ ⊗nΩ is the projection onto the tangential plane of the boundary of Ω. The stabilization
term s is defined by

s(ûh,vh) := s0(ûh,vh) + s1(ûh,vh)
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with

s0(ûh,vh) := γ0(h2(|ûh| + U)−1 [[(ûh · ∇)ûh × n]] , [[(ûh · ∇)vh × n]])F

and

s1(ûh,vh) := γ1(max(μh−1, U)tûh, tvh)∂Ω.

The parameters γi, i = 0, 1 are dimensionless, positive, real numbers and U = O(1) is some characteristic
velocity of the flow. For simplicity we will not track the dependence on U or the γi of the constants in
the estimates below.

The following Lemma is useful for the analysis in the presence of bc. We give the proof of this results
in appendix.

Lemma 6.1. For all vh ∈ V0h there holds

bc(vh,vh) ≤ Cγ−1
1 ‖μ

1
2 ∇vh‖2

Ω +
1
4
γ1 max(μh−1, U)‖tvh‖2

∂Ω.

For all v ∈ H2(Ω) + V0h there holds

bc(v,vh) ≤ Cγ−1
1 ‖μ

1
2 ∇v‖2

Ω + Cγ−1
1 h2μ‖v‖2

H2(Ω) +
1
4
γ1 max(μh−1, U)‖tvh‖2

∂Ω.

The formulation (6.1) corresponds to a dynamical system. It admits a unique solution as shown in the
following propositions.

Proposition 6.2. For γ1 large enough, a solution ûh to the system (6.1) satisfies the following stability
estimate for all T > 0,

sup
t∈I

‖ûh(t)‖Ω + ‖μ
1
2 ∇ûh‖Q + ‖δ

2
3 ∇ûh‖ 3

2
L3(Q) +

(∫

I

s(ûh, ûh) dt

) 1
2

�
∫

I

‖f‖Ω dt + ‖ûh(0)‖Ω, (6.2)

where the hidden constant is independent of T .

Proof. Testing (6.1) with vh = ûh yields,

(∂tûh, ûh)Ω + ((ûh · ∇)ûh, ûh)Ω
︸ ︷︷ ︸

=0

+((ν̂(ûh) + μ)∇ûh,∇ûh)Ω + bc(ûh, ûh) + s(ûh, ûh) = (f , ûh)Ω.

(6.3)

Noting that the second term is zero by skew-symmetry we have after integration on (0, r) for some r ∈ I
and using Lemma 6.1

‖ûh(r)‖2
Ω + ‖μ

1
2 ∇ûh‖2

Ω×(0,r) + δ2‖∇ûh‖3
Ω×(0,r) +

∫ r

0

s(ûh, ûh) dt

�
∫ r

0

(f , ûh)Ω dt + ‖ûh(0)‖2
Ω. (6.4)

Taking now the supremum over r ∈ I in the first term of the left hand side we see that

sup
r∈I

‖ûh(r)‖2
Ω � sup

r∈I
‖ûh(r)‖Ω(

∫

I

‖f‖Ω dt + ‖ûh(0)‖Ω)

and therefore

sup
r∈I

‖ûh(r)‖Ω �
∫

I

‖f‖Ω dt + ‖ûh(0)‖Ω.

Finally we see that

‖μ
1
2 ∇ûh‖2

Ω×(0,r) + δ2‖∇ûh‖3
Ω×(0,r) +

∫ r

0

s(ûh, ûh) dt �
∫ r

0

(f , ûh)Ω dt +
1
2
‖ûh(0)‖2

Ω
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≤ sup
r∈I

‖ûh(r)‖Ω

(∫

I

‖f‖Ω dt +
1
2
‖ûh(0)‖Ω

)

�
(∫

I

‖f‖Ω dt + ‖ûh(0)‖Ω

)2

which finishes the proof. �

Proposition 6.3. The system (6.1) admits a unique solution ûh ∈ V0h on the interval (0, T ], T > 0.

Proof. Let N = dim V0h, U : R �→ R
N , F : RN �→ R

N and let {ϕi} denotes a basis of V 0
0h. The system

(6.1) is equivalent to a dynamical system

M∂tU(t) + F (U) = 0,

with U(0) = U0 ∈ R
N

(M∂tU(t))i = (∂tûh,ϕi)Ω, i = 1, . . . , N

and

(F (U))i := ((ûh · ∇)ûh,ϕi)Ω + (μ∇ûh,∇ϕi)Ω + s(ûh,ϕi) − (f ,ϕi)Ω, i = 1, . . . , N.

The matrix M corresponds to the mass matrix of the velocity finite element basis, defined blockwise by
Mij := (ϕj ,ϕi)Ω.

By inspection the function F (U) is locally Lipschitz. Indeed, for all U ,Y ∈ R
N there holds

|F (U) − F (Y )|RN ≤ L(U ,Y )|U − Y |RN . (6.5)

To verify this we only need to consider the nonlinear terms. Let uh and yh denote the functions in V0h

associated to the vectors of unknowns U and V and let wh = uh − yh. Then we have

(F (U))i − (F (Y ))i = ((uh · ∇)uh,ϕi)Ω + (ν̂(uh)∇uh,∇ϕi)Ω + s(uh,ϕi)
−((yh · ∇)yh,ϕi)Ω − (ν̂(yh)∇yh,∇ϕi)Ω − s(yh,ϕi). (6.6)

The convective term and the face oriented contribution to the stabilization both are [C1(RN )]N and the
Lipschitz continuity follows from the mean value theorem. For the Smagorinsky term on the other hand
it is immediate by the inequality (2.9). It follows that for every h > 0 there exists a T > 0 such that
(6.1) admits a unique solution on (0, T ]. To extend this to arbitrary time intervals we need a bound on
‖uh‖L∞(Ω). We apply an inverse inequality ‖uh(·, T )‖L∞(Ω) ≤ Ch− d

2 ‖uh(·, T )‖Ω. Recalling Lemma 6.2
it follows that for fixed h the solution is globally bounded. This proves the claim. �

Remark 6.4. A consequence of the error analysis below is that the L∞-bound on the discrete solution
actually holds independently of h provided the exact solution is smooth. For details see Corollary 6.8

6.1. Error Analysis with Exponential Growth Moderated Through Scale Separation

We will now prove an error estimate for the approximation of the regularized equation. We are interested
in underresolved flow so in what follows we assume that μ ≤ Uh. Observe that the arguments are valid
also for μ = 0, but in this case the no-slip condition must be relaxed on the continuous level. Moreover
the same analysis may be used to prove an optimal estimate of O(h) in the H1-norm if μ ≥ Uh. To
moderate the exponential growth we use a scale separation argument similar to that of Sect. 4.

6.1.1. Scale Separation for the Finite Dimensional Approximation. When a finite dimensional space is
used for the Smagorinsky-Navier-Stokes’ model we can introduce a scale separation argument similar to
(3.2), but here the nonlinear feedback in the second equation of (3.2) takes place through the computa-
tional error. As the computational error grows, the exponential growth of the error is moderated. More
precisely define ū and u′ by (3.2) with η defined by η := u − ûh. We also note that then the result of
Lemma 3.2 holds with η redefined to be the approximation error. Below we will refer to these results
assuming that η is redefined as above.
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6.1.2. Error Estimates. First we prove a Lemma that is needed to estimate the consistency error of the
stabilization term to the right order.

Lemma 6.5. For vh ∈ V0h, and f ∈ L3(I) there holds, for all v ∈ V and for all 0 < ε < 1,
∫

I

‖vh(t)‖L∞(Ω)|f(t)|2 dt

≤ εδ2‖∇(v − vh)‖3
L3(Q) + C

1
ε
δ−1h− 1

2

∫

I

|f(t)|3 dt + C

∫

I

‖v‖W 2,3(Ω)|f(t)|2 dt.

Proof. Let w := v − vh and wπ := v − πv. First we add and subtract πv to obtain

‖vh(t)‖L∞(Ω) ≤ ‖vh(t) − πv‖L∞(Ω) + ‖πv‖L∞(Ω).

Then using Sobolev injection [19, Corollary B.43] followed by an inverse inequality (5.2) and Lemma 2.1
we see that for all 3 < p,

‖vh(t) − πv‖L∞(Ω) ≤ Cph
3−p

p (‖∇w(t)‖L3(Ω) + ‖wπ(t)‖W 1,3(Ω)).

Using also the stability of the L2-projection on quasi-uniform meshes we have

‖vh(t)‖L∞(Ω) ≤ Cph
3−p

p (‖∇w(t)‖L3(Ω) + ‖wπ(t)‖W 1,3(Ω)) + C‖v‖L∞(Ω).

It follows using (2.5) with p = 3 and q = 3/2 that
∫

I

‖vh(t)‖L∞(Ω)|f(t)|2 dt ≤
∫

I

(Cph
3−p

p (‖∇w(t)‖L3(Ω) + ‖wπ(t)‖W 1,3(Ω)) + C‖v‖L∞(Ω))|f(t)|2 dt

≤ ε2δ2‖∇w(t)‖3
L3(Q) + Cε−1δ−1h

3(3−p)
2p

∫

I

|f(t)|3 dt

+
∫

I

(Cph
3−p

p ‖wπ(t)‖W 1,3(Ω) + C‖v‖L∞(Ω))|f(t)|2 dt.

The claim now follows by taking p = 9/2, so that 3(3−p)
2p = −1/2, and observing that ε2 < ε and

h− 1
3 ‖wπ(t)‖W 1,3(Ω) ≤ Ch

2
3 |v|W 2,3(Ω) and ‖v‖L∞(Ω) ≤ ‖v‖W 2,3(Ω). �

One application of the previous lemma is the following consistency bound for the stabilizing term

Lemma 6.6. The stabilizing term satisfies the bound
∫

I

s(Πu,Πu) dt ≤ εδ2‖∇(u − ûh)‖3
L3(Q) + C max(μh−1, U)h3‖u‖2

L2(I;H2(Ω)) + Ch3‖u‖3
L3(I;W 2,3(Ω)).

Proof. By the definition of the stabilization term we have the bound

s(Πu,Πu) ≤ γ0‖ûh‖L∞(Ω)‖h [[∇Πu]] ‖2
F + γ1 max(μh−1, U)‖tΠu‖2

∂Ω.

Then by Lemma 6.5, s admits the bound
∫

I

s(Πu,Πu) dt ≤ εδ2‖∇(u − ûh)‖3
L3(Q) + Cδ−1h− 1

2

∫

I

‖h [[∇Πu]] ‖3
F dt

+C

∫

I

‖u‖W 2,3(Ω)‖h [[∇Πu]] ‖2
F dt + γ1 max(μh−1, U)

∫

I

‖tΠu‖2
∂Ω dt. (6.7)

Using (5.8), and |u|H2(Ω) � ‖u‖W 2,3(Ω) we have

Cδ−1h− 1
2

∫

I

‖h [[∇Πu]] ‖3
F dt + C

∫

I

‖u‖W 2,3(Ω)‖h [[∇Πu]] ‖2
F

≤ Ch− 3
2 h

9
2 |u|3L2(I;H2(Ω)) + Ch3‖u‖3

L3(I;W 2,3(Ω))

The no-slip condition satisfied by u, the trace inequality (5.3) and the approximation (5.5) may be applied
to control the second term,

γ1 max(μh−1, U)‖tΠu‖2
∂Ω ≤ C max(μh−1, U)(h−1‖u − Πu‖2

Ω + h‖∇(u − Πu)‖2
Ω)
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≤ C max(μh−1, U)h3‖u‖2
L2(I;H2(Ω)).

The claim follows by collecting the above bounds. �

Theorem 6.7. Let u ∈ V and that u in addition has sufficient regularity so that C(u) < ∞ if we define,

C(u)2 := h(τL‖∇ × u‖L2(I;L∞(Ω)) + 1)|u|2L∞(I;H2(Ω))

+‖u‖3
L3(I;W 2,3(Ω)) + ‖u‖4

L4(I;W 2,3(Ω)) + h‖∇ · |∇u|F ∇u‖2
Q. (6.8)

Assume that the parameter δ = O(h) and μ ≤ Uh, and that the hypothesis of Theorem 6.2 hold. Then
there holds

sup
t∈I

‖(u − ûh)(t)‖Ω + |‖u − ûh‖| � C(u)ec(T/τL)h
3
2 , c ∈ R+

where

|‖u − ûh‖| := ‖μ
1
2 ∇(u − ûh)(t)‖Q + τ

1
2
L h‖∇(u − ûh)‖3/2

L3(Q) + τ
1
2
L

(∫

I

s(ûh, ûh) dt

) 1
2

.

The coefficient τL in the exponential is defined by (3.3) where ū this time is the large scale component of
the solution defined by (3.2), with η = u − ûh. The hidden constant has at most polynomial growth in T .

Proof. The proof follows the ideas of the result for the linear model problem Proposition 5.5, but the
nonlinearity of the equation and the stabilization adds a layer of technicality. We proceed in 4 steps.

Step 1. Perturbation equation Let η = u − ûh, ηΠ = u − Πu and ηπ = u − πu. Similarly as in the
perturbation argument for the Smagorinsky model we have, since ∇ · ûh = 0 and ûh · n|∂Ω = 0,

1
2

d

dt
‖η‖2

Ω + ((η · ∇)u,η)Ω + μ‖∇η‖2
Ω +

1
4
δ2‖∇η‖3

L3(Ω) + s(ûh, ûh)

≤ (∂tη,η)Ω + ((η · ∇)u,η)Ω + ((ûh · ∇)η,η)Ω + (μ∇η,∇η)Ω
+ (ν̂(u)∇u − ν̂(ûh)∇ûh,∇η) + s(ûh, ûh).

Using the definition of the finite element method (6.1) we have the consistency relation

(∂tη,η)Ω + ((η · ∇)u,η)Ω + ((ûh · ∇)η,η)Ω + (μ∇η,∇η)Ω + (ν̂(u)∇u − ν̂(ûh)∇ûh,∇η) + s(ûh, ûh)

= (∂tη,ηΠ)Ω + ((η · ∇)u,ηΠ)Ω + ((ûh · ∇)η,ηΠ)Ω + (μ∇η,∇ηΠ)Ω − bc(η,Πη)

+ (ν̂(u)∇u,∇Πη)Ω + (ν̂(u)∇u − ν̂(ûh)∇ûh,∇ηΠ)Ω + s(ûh,Πu).

Integrating in time over the interval I and applying the monotonicity (2.8) yields

1
2
‖η(T )‖2

Ω + ((η · ∇)u,η)Q + ‖μ
1
2 ∇η‖2

Q +
1
4
δ2‖∇η(t)‖3

L3(Q) +
1
2

∫

I

s(ûh, ûh) dt

≤ (∂tη,ηΠ)Q + ((η · ∇)u,ηΠ)Q + ((ûh · ∇)η,ηΠ)Q + (μ∇η,∇ηΠ)Q

+ (ν̂(u)∇u − ν̂(ûh)∇ûh,∇ηΠ)Q − (ν̂(u)∇u,∇Πη)Q

+
1
2
‖ηΠ(0)‖2

Ω +
∫

I

(−bc(η,Πη) + s(ûh,Πu)) dt. (6.9)

Step 2. Continuity and approximation properties of the right hand side of the perturbation equation We
now bound the terms in the right hand side. There are two different main difficulties involving nonlin-
earities. The material derivative and the viscous term on the one hand and the nonlinear stabilization on
the other.
2.1. Material derivative and viscous term. The following term will be bounded in this paragraph.

(∂tη,ηΠ)Q + ((η · ∇)u,ηΠ)Q + ((ûh · ∇)η,ηΠ)Q + (μ∇η,∇ηΠ)Q.

First for the time derivative observe that using the orthogonality of the approximation error ηΠ,

(∂tη,ηΠ)Q = (∂tηΠ,ηΠ)Q ≤ Ch4|u|2L∞(I;H2(Ω))
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and for the linear viscous term

(μ∇η,∇ηΠ)Q ≤ 1
8
‖μ

1
2 ∇η‖2

Q + 2‖μ
1
2 ∇ηΠ‖2

Q ≤ 1
16

‖μ
1
2 ∇η‖2

Q + Cμh2|u|2L2(I;H2(Ω)).

For the convective part we write

((η · ∇)u,ηΠ)Q + ((ûh · ∇)η,ηΠ)Q = I + II. (6.10)

For the first term I we use similar arguments as those for Lemma 3.2 to get the bound

I ≤ 1
2
‖(τ−1

L + |∇ū|F )
1
2 η‖2

Q +
1
32

δ2‖∇η‖3
L3(Q) + C‖μ

1
2 ∇ηΠ‖2

L2(Q) + Cδ2‖∇ηΠ‖3
L3(Q).

In particular note that

(|u′|, (η · ∇)ηΠ)Q ≤ ‖τ
− 1

2
L η‖Q‖|(μ + ν̂(η))

1
2 ∇ηΠ‖Q

≤ 1
2
‖τ

− 1
2

L η‖2
Q +

1
32

δ2‖∇η‖3
L3(Q) + C‖μ

1
2 ∇ηΠ‖2

L2(Q) + Cδ2‖∇ηΠ‖3
L3(Q). (6.11)

By Lemma 5.1 we may write the last term in the right hand side

δ2‖∇ηΠ‖3
L3(Q) � δ2‖∇ηπ‖3

L3(Q) + δ2h− 3
2 ‖∇ηΠ‖3

L2(Q).

Since δ2h− 3
2 = h

1
2 and |u|H2(Ω) ≤ |u|W 2,3(Ω) we have using approximation that,

I ≤ 1
2
‖(τ−1

L + |∇ū|F )
1
2 η‖2

Q +
1
32

δ2‖∇η‖3
L3(Q) + μh2|u|2L2(I;H2(Ω)) + h

7
2 |u|3L3(I;W 2,3(Ω)).

For the second term of the right hand side of (6.10) we first use that there exists E according to (5.9)–
(5.11) to write using partial integration

II = ((ûh · ∇)η,∇ × E)Q =
∫

I

([[(ûh · ∇)η × n]] ,E × n)F
︸ ︷︷ ︸

IIa

dt

+
∫

I

((ûh · ∇)(∇ × η),E)T
︸ ︷︷ ︸

IIb

dt +
∫

I

((∇ûh)t × ∇η),E)T dt

︸ ︷︷ ︸
IIc

.

For the first term IIa we use Cauchy–Schwarz inequality followed by the arithmetic-geometric inequality

IIa ≤
(∫

I

s0(ûh, ûh) dt

) 1
2

(

γ−1
0

∫

I

(‖ûh‖L∞(Ω) + U)‖h−1E‖2
F dt

) 1
2

≤ 1
8

∫

I

s0(ûh, ûh) dt + 2γ−1
0

∫

I

(‖ûh‖L∞(Ω) + U)‖h−1E‖2
F dt.

Applying now Lemma 6.5 to the right hand side we have for 0 < ε < 1,

IIa ≤ 1
8

∫

I

s0(ûh, ûh) dt + Cεδ2‖η‖3
L3(I;W 1,3(Ω))

+
C

ε
δ−1h− 1

2

∫

I

‖h−1E‖3
F dt + C

∫

I

(‖u‖W 2,3(Ω) + U)‖h−1E‖2
F dt

≤ 1
8

∫

I

s0(ûh, ûh) dt

+ Cεδ2‖η‖3
L3(I;W 1,3(Ω)) +

C

ε
(h−9/2h15/2

︸ ︷︷ ︸
=h3

+h3)(U3 + ‖u‖3
L3(I;W 2,3(Ω))).

Here we used the bounds

δ−1h− 1
2

∫

I

‖h−1E‖3
F dt � h−9/2h15/2‖u‖3

L2(I;H2(Ω)) � h3‖u‖3
L3(I;W 2,3(Ω))
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and

∫

I

(‖u‖W 2,3(Ω) + U)‖h−1E‖2
F dt � (‖u‖L3(I;W 2,3(Ω)) + T 1/3U)h3‖u‖2

L3(I;H2(Ω)

� h3(TU3 + ‖u‖3
L3(I;W 2,3(Ω))).

For the second term IIb we use the fact that ûh is piecewise affine, add and subtract u and then integrate
by parts

IIb = ((u · ∇)(∇ × u),E)Q − ((η · ∇)(∇ × u),E)Q

≤
∫

I

‖u‖L∞(Ω)|u|H2(Ω)‖E‖Ω dt +
∫

I

‖η‖Ω‖∇ × u‖L∞(Ω)‖∇E‖Ω dt

≤ 1
4
τ−1
L ‖η‖2

Q + Ch3(|u|3L3(I;H2(Ω)) + hτL‖∇ × u‖2
L2(I;L∞(Ω))|u|2L∞(I;H2(Ω))).

Where we used that
∫

I

‖u‖L∞(Ω)|u|H2(Ω)‖E‖Ω dt � ‖u‖2
L3(I;H2(Ω)‖E‖L3(I;L2(Ω)) � h3‖u‖3

L3(I;H2(Ω))

and
∫

I

‖η‖Ω‖∇ × u‖L∞(Ω)‖∇E‖Ω dt � τ
−1/2
L ‖η‖Qτ1/2‖∇ × u‖L2(I;L∞(Ω))h

2|u|L∞(I;H2(Ω))

≤ 1
4
τ−1
L ‖η‖2

Q + Ch4τL‖∇ × u‖2
L2(I;L∞(Ω))|u|2L∞(I;H2(Ω)).

For IIc we add and subtract u and πη,

IIc = ((∇ûh)t × ∇η,E)Q = −((∇η)t × ∇η,E)Q + ((∇u)t × ∇η,E)Q

= −((∇η)t × ∇η,E)Q + ((∇u)t × ∇(η − πη),E)Q + ((∇u)t × ∇πη,E)Q. (6.12)

Observing that η−πη = u−πu it follows, using Hölder’s inequality, Sobolev injection and approximation,
that

((∇u)t × ∇(η − πη),E)Ω ≤ ‖∇u‖L4(Ω)‖∇(u − πu)‖L4(Ω)‖E‖Ω

� ‖∇u‖2
L4(Ω)‖E‖Ω � ‖u‖2

W 2,3(Ω)h
3|u|H2(Ω) ≤ h3‖u‖3

W 2,3(Ω).

Once again adding and subtracting πη we have

((∇η)t × ∇η,E)Ω ≤ C‖∇(u − πu)‖2
L4(Ω)‖E‖Ω + C‖∇πη‖2

L4(Ω)‖E‖Ω).

Using an inverse inequality (5.2) and the stability of the projection π we see that

‖∇πη‖2
L4(Ω) ≤ Ch− 1

6 ‖∇η‖2
L3(Ω).

Consequently

‖∇πη‖2
L4(Ω)‖E‖Ω ≤ Ch− 1

6 ‖∇η‖2
L3(Ω)‖E‖Ω ≤ 1

32
δ2‖∇η‖3

L3(Ω) + Ch− 1
2 δ−4‖E‖3

Ω︸ ︷︷ ︸
∗

.

The term marked (∗) needs to scale as O(h3). Since ‖E‖3
Ω = O(h9) we see that we need h− 1

2 δ−4 ≤ h−6,
which is satisfied for δ = O(h). We arrive at the following bound for IIc,

IIc ≤ 1
32

δ2‖∇η‖3
L3(Q) + Ch3‖∇u‖3

L3(I;W 2,3(Ω))

where we used the bound

h− 1
2 δ−4‖E‖3

Ω � h−9/2h9|u|3H2(Ω) � h9/2|u|3W 2,3(Ω).

Collecting the above bounds for the terms I and II and using that μ ≤ Uh, we see that

(∂tη,ηΠ)Q + ((η · ∇)u,ηΠ)Q + ((ûh · ∇)η,ηΠ)Q + (μ∇η,∇Πη)Q
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≤ 1
2

∫

I

τ−1
L ‖η‖2

Ω dt +
1
16

‖μ
1
2 ∇η‖2

Q +
1
16

δ2‖∇η‖3
L3(Q) +

1
8

∫

I

s0(ûh, ûh) dt + C(u)2h3. (6.13)

2.2. Smagorinsky nonlinear viscosity. We proceed to bound terms due to the Smaginsky nonlinear vis-
cosity, i.e. the fifth and sixth terms on the right hand side of (6.9):

(ν̂(u)∇u − ν̂(ûh)∇ûh,∇ηΠ)Q − (ν̂(u)∇u,∇Πη)Q.

Considering first the first of these two term we obtain using (2.9) followed by the generalised Hölder
inequality ‖abc‖L1(Ω) ≤ ‖a‖L6(Ω)‖b‖L2(Ω)‖c‖L3(Ω),

(ν̂(u)∇u − ν̂(ûh)∇ûh,∇ηΠ)Q ≤ δ2(2|∇u||∇η| + |∇η|2, |∇ηΠ|)Q

≤ Cδ2
(∫

I

ε
− 3

2
0 ‖∇u‖ 3

2
L6(Ω)‖∇ηΠ‖ 3

2
L2(Ω) dt + (ε30 + ε

3
2
1 )‖∇η‖3

L3(Q) + ε−3
1 ‖∇ηΠ‖3

L3(Q)

)

for all ε0, ε1 ∈ R
+. Then observe that using Sobolev injection,

‖∇u‖ 3
2
L6(Ω)‖∇ηΠ‖ 3

2
L2(Ω) ≤ C‖u‖ 3

2
W 2,3(Ω)‖∇ηΠ‖ 3

2
Ω ≤ Ch

3
2 ‖u‖ 3

2
W 2,3(Ω)|u| 3

2
H2(Ω) ≤ Ch

3
2 ‖u‖3

W 2,3(Ω)

and by applying Lemma 5.1,

‖∇ηΠ‖L3(Ω) ≤ ‖u − πu‖W 1,3(Ω) + Ch− 1
2 ‖ηΠ‖1,Ω ≤ Ch(|u|W 2,3(Ω) + h− 1

2 |u|H2(Ω)).

Collecting these bounds and choosing ε0 and ε1 small so that

C(ε30 + ε
3
2
1 ) ≤ 1

16
we have the bound

(ν̂(u)∇u − ν̂(ûh)∇ûh,∇ηΠ)Q ≤ 1
16

δ2‖∇η‖3
L3(Q) + Ch

7
2 ‖u‖3

L3(I;W 2,3(Ω)). (6.14)

Now we consider the fifth term in the right hand side of (6.9), that quantifies the consistency error. We
note that by partial integration and Cauchy–Schwarz inequality followed by Young’s inequality, (2.5) and
the stability of the L2-projection Π, we have

−(ν̂(u)∇u,∇Πη)Ω = (ν̂(u)∇u,∇(η − Πη))Ω + (∇ · ν(u)∇u,η)Ω + (ν(u)∇u · nΩ, tûh)∂Ω

≤ Ch3‖∇u‖3
W 2,3(Ω) +

1
4
τ−1
L ‖η‖2

Ω + CτLδ4‖∇ · |∇u|F ∇u‖2
Ω

+ Ch3(γ1 max(μh−1, U))−1‖∇u‖4
W 2,3(Ω) +

1
16

s1(ûh, ûh),

where for the first term of the right hand side we used, that by the Cauchy–Schwarz inequality and (5.5)
there holds

(ν̂(u)∇u,∇(η − Πη))Ω � δ2h‖∇u‖2
L4(Ω)|u|H2(Ω) � δ2h‖∇u‖3

W 2,3(Ω).

For the boundary term we applied Hölders inequality with p = 3/2 and q = 3 inequality followed by a
global trace inequality and the inverse inequality (5.2) on ∂Ω,

(ν(u)∇u · n, tûh)∂Ω ≤ δ
3
2 (γ1 max(μh−1, U))−1‖∇u‖2

L3(∂Ω)γ1 max(μh−1, U)δ
1
2 ‖tûh‖L3(∂Ω)

≤ Ch3(γ1 max(μh−1, U))−2‖u‖4
W 2,3(Ω) +

1
16

s1(ûh, ûh).

This completes the bound of the Smagorinsky terms. Collecting the different contributions we get

(ν̂(u)∇u − ν̂(ûh)∇ûh,∇ηΠ)Q − (ν̂(u)∇u,∇Πη)Ω

≤ 1
4
τ−1
L ‖η‖2

Ω +
1
16

δ2‖∇η‖3
L3(Q) +

1
16

∫

I

s1(ûh, ûh) dt + C(u)2h3. (6.15)
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2.3. Terms related to boundary conditions and stabilization. These are the last three terms of the right
hand side of (6.9).

1
2
‖ηΠ(0)‖2

Ω +
∫

I

(−bc(η,Πη) + s(ûh,Πu)) dt.

The first term, related to approximation of initial data is bounded using approximation

‖ηΠ(0)‖2
Ω � h4‖u(0)‖2

H2(Ω).

For the bc form related to boundary conditions we apply the second inequality of Lemma 6.1 to obtain
∫

I

bc(η,Πη) dt ≤ Cγ−1
1 ‖μ

1
2 ∇η‖2

Q + Cμh2|u|2L∞(I;H2(Ω))

+
1
4

∫

I

(s1(ûh, ûh) + s1(Πu,Πu)) dt.

For the stabilization term finally we proceed using the Cauchy–Schwarz inequality followed by the arith-
metic geometric inequality

∫

I

s(ûh,Πu)) dt ≤ 1
8

∫

I

s(ûh, ûh) dt + 2
∫

I

s(Πu,Πu) dt.

Applying Lemma 6.6 we conclude that
1
2
‖ηΠ(0)‖2

Ω +
∫

I

(−bc(η,Πη) + s(ûh,Πu)) dt

≤ 1
16

δ2‖∇η‖3
L3(Q) + Cγ−1

1 ‖μ
1
2 ∇η‖2

Q +
1
8

∫

I

s(ûh, ûh) dt +
1
4

∫

I

s1(ûh, ûh) dt + C(u)2h3.

(6.16)

Step 3. Application of scale separation argument. Collecting the above bounds (6.13), (6.15) and (6.16)
and applying them to (6.9) we get, for γ1 sufficiently large

1
2
‖η(T )‖2

Ω +
1
8
‖μ

1
2 ∇η‖2

Q +
1
16

δ2‖∇η(t)‖3
L3(Q) +

1
16

∫

I

s(ûh, ûh) dt

≤ τ−1
L ‖η‖2

Q dt − ((η · ∇)u,η)Q + C(u)2h3. (6.17)

A naive application of Gronwall’s lemma at this stage results in exponential growth with a coefficient
proportional to the maximum of the velocity gradient. Instead recall the inequality proven in Lemma
3.2,

((η · ∇)u,η)Q ≤ ε

2
‖μ

1
2 ∇η‖2

Q +
ε

2
ν(δ)‖∇η‖3

L3(Q) + ‖(ε−1τ−1
L + |∇ū|F )

1
2 η‖2

Q.

Applying this inequality, with ε = 1/16 in the right hand side of (6.17) we obtain

‖η(T )‖2
Ω +

1
8
μ‖∇η‖2

Q +
1
16

δ2‖∇η‖3
L3(Q) +

1
8

∫

I

s(ûh, ûh) dt ≤ 2
∫

I

(17τ−1
L + |∇ū|F )‖η‖2

Ω dt + C(u)2h3

(6.18)

where

C(u)2 � U |u|2L2(I;H2(Ω)) + U3 + h(τL‖∇ × u‖L2(I;L∞(Ω)) + 1)|u|2L∞(I;H2(Ω))

+‖u‖3
L3(I;W 2,3(Ω)) + ‖u‖4

L4(I;W 2,3(Ω)) + h‖∇ · |∇u|F ∇u‖2
Q.

Assuming U bounded by ‖u‖L3(I;W 2,3(Ω)), we can absorb the first two terms in the right hand side in the
‖u‖3

L3(I;W 2,3(Ω)) term.

Step 4. Application of Gronwall’s Lemma. Applying Gronwall’s inequality on integral form [8] to (6.18)
we see that for all t ∈ I

‖η(t)‖2
Ω ≤ e36(t/τL)C(u)2h3
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and as a consequence, using (6.18),

1
8
μ‖∇η‖2

Q +
1
16

δ2‖∇η‖3
L3(Q) +

1
8

∫

I

s(ûh, ûh) dt ≤ 2
∫

I

(17τ−1
L + ‖∇ū‖L∞(Ω))e36(t/τL) dtC(u)2h3

≤ CTτ−1
L e36(T/τL)C(u)2h3

leading to the bound,

sup
t∈I

‖(u − ûh)(t)‖2
Ω +

1
8
T−1τLμ‖∇(u − ûh)‖2

Q

+ T−1τLδ2‖∇(u − ûh)‖3
L3(Q) + T−1τL

∫

I

s(ûh, ûh) dt � e36(T/τL)C(u)2h3. (6.19)

This concludes the proof. �

Corollary 6.8. Under the same assumption as for Theorem 6.7, the solution to (6.1) satisfies the following
bound

‖ûh‖L∞(Q) � C(u)(1 + e18(T/τL)).

Proof. Observe that under the regularity assumptions of Theorem 6.7 u ∈ L∞(Q). It then follows that

‖ûh‖L∞(Q) ≤ ‖ûh − πu‖L∞(Q) + C‖u‖L∞(Q) ≤ Ch− d
2 ‖ûh − πu‖L∞(I;L2(Ω)) + C‖u‖L∞(Q).

The claim follows using that ‖u‖L∞(Q) � ‖u‖L∞(I;H2(Ω)) and

‖ûh − πu‖L∞(I;L2(Ω)) ≤ ‖ûh − u‖L∞(I;L2(Ω)) + ‖u − πu‖L∞(I;L2(Ω))

� C(u)e18(T/τL)h
3
2 + h2|u|L∞(I;H2(Ω)).

�

7. Numerical Examples

In the numerical examples below we use the minimal compatible element of [14] with piecewise affine
velocity and piecewise constant pressure on macro elements (see [11] for implementation details and
application to linear incompressible problems), together with the backwards differentiation formula BDF2
for time stepping. On each time step we use a linearized formula, using the solution from the previous
time step, and solve only once. We use only Smagorinsky stabilization and impose boundary conditions
strongly, i.e., we set γ0 = γ1 = 0 in (6.1). The Smagorinsky term is set by ν := γ |T | |∇u|F where |T | is
the element area and γ controls the amount of dissipation in the model.

7.1. Shear Layers

We shall first consider an example using the Euler equations, i.e., μ = 0 in (2.1), the double shear layer
problem [7]. The computational domain is Ω) = (0, 2π) × (0, 2π) and initial conditions

uy(x, 0) = δ sin (x), ux(x, 0) =
{

tanh ((y − π/2)/ρ), y ≤ π
tanh ((3π/2 − y)/ρ), y > π

(7.1)

which gives two horizontal shear layers perturbed by a small vertical velocity. We take ρ = π/15 and
δ = 0.05 and apply periodic boundary conditions. The problem is solved on a Union Jack (macro element)
mesh of 100 × 100 (boundary) nodes using a timestep size k = 1/100.

In Figs. 1, 2 and 3 we show the effect of dissipation on vorticity by increasing γ from zero to 10−1.
The unstabilized solution shows oscillations in the solution which worsen with time, whereas the choice
γ = 10−1 compares well with [7].
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Fig. 1. Vorticity contours for the double shear layer at time t = 6 and t = 12, γ = 0

Fig. 2. Vorticity contours for the double shear layer at time t = 6 and t = 12, γ = 10−2

Fig. 3. Vorticity contours for the double shear layer at time t = 6 and t = 12, γ = 10−1

Fig. 4. Mesh used for vortex shedding computation
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Fig. 5. Relative streamlines at time t = 10, γ = 0,γ = 10−1, γ = 1 from top

7.2. Vortex Shedding

The second example shows the effect of dissipation on von Karman vortex shedding around a cylider.
We used μ = 3 × 10−4 (which is close to the limit for stable solutions with γ = 0 on this mesh). The
outer domain is (−1/2, 2) × (−1/, 1/2), and the cylinder has center at the origin and radius r = 1/10.
The boundary conditions are u = 0 at y = ±1/2 and at the cylinder, homogeneous Neumann conditions
at x = 2, and u = (3/2 − 6y2, 0) at x = −1/2. The initial conditions correspond to the stationary Stokes
solution, and the timestep size k = 1/100. The computational (macro) mesh is shown in Fig. 4, and the
solution at time t = 10 is shown in Fig. 5 for increasing γ. We note that too much dissipation severely
affects the shape of the vortex street, whereas smaller amounts of dissipation only serve to stabilize the
solution.

In Fig. 6 we show that the method without stabilization can be unstable for high Reynolds numbers.
We used μ = 10−6 and show the instability evolving for t = 0.15, t = 0.2 and t = 0.3 with γ = 0. In
Fig. 7 we show the corresponding stabilized solution with γ = 10−1. The velocities are shown in the nodes
of the macro mesh. Finally, in Fig. 8 we show the relative streamlines at time t = 10 for the stabilized
model.

8. Conclusion

We have considered a p-Laplacian Smagorinsky model for high Reynolds flow problems. We showed using
a scale separation argument that the Smagorinsky model has stability properties that only depend on the
large scales of the flow, provided a spectral gap exists for the particular flow configuration. The set of non-
essential fine scales grows as the perturbation due to the Smagorinsky model increases, hence moderating
the exponential growth. In a second part we considered the Smagorinsky model as a stabilizing term in a
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Fig. 6. Velocities after 15, 20, and 30 timesteps, from top, μ = 10−6, γ = 0

Fig. 7. Velocities after 15, 20, and 30 timesteps from top, μ = 10−6, γ = 10−1
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Fig. 8. Relative streamlines at time t = 10, μ = 10−6, γ = 10−1.

low order finite element method and we showed that the resulting stabilized method has close to optimal
properties for smooth solutions in the laminar high Reynolds number regime. The stabilized finite element
method also inherits the reduced exponential growth through scale separation from the continuous case.

To the best of our knowledge these results are the first that give quantitative evidence that the
Smagorinsky model enhances both the accuracy and the stability for computations of high Reynolds
number flows.
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Appendix

Proof of Lemma 6.1

The first inequality is a classical bound for Nitsche’s method. It follows using the Cauchy–Schwarz
inequality, followed by (2.5) with p = q = 2, the trace inequality (5.3) on each element face subset of ∂Ω
together with (5.1)

bc(vh,vh) ≤ 2γ−1
1 h‖μ

1
2 ∇vh‖2

∂Ω +
1
8
γ1 max(μh−1, U)‖tûh‖2

∂Ω

≤ Cγ−1
1 ‖μ

1
2 ∇vh‖2

Ω +
1
8
γ1 max(μh−1, U)‖tûh‖2

∂Ω.

The second inequality follows from this result by adding and subtracting the projection πv,

bc(v,vh) = bc(πv,vh) + bc(v − πv,vh) = I + II.

Using the same previous inequality followed by the H1-stability of π we have

I ≤ Cγ−1
1 ‖μ

1
2 ∇v‖2

Ω +
1
8
γ1 max(μh−1, U)‖tvh‖2

∂Ω.

http://creativecommons.org/licenses/by/4.0/
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Similar arguments as before also show that

II ≤ Cγ−1
1 (‖μ

1
2 ∇(v − πv)‖2

Ω + h2μ‖v‖2
H2(Ω) +

1
8
γ1 max(μh−1, U)‖tvh‖2

∂Ω.

We conclude by using approximation in the first term of the right hand of this inequality side and then
sum the bounds for I and II.
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