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ABSTRACT
Background  Patients with anti-aquaporin-4 antibody 
seropositive (AQP4-IgG+) neuromyelitis optica spectrum 
disorders (NMOSDs) frequently suffer from optic neuritis 
(ON) leading to severe retinal neuroaxonal damage. 
Further, the relationship of this retinal damage to a 
primary astrocytopathy in NMOSD is uncertain. Primary 
astrocytopathy has been suggested to cause ON-
independent retinal damage and contribute to changes 
particularly in the outer plexiform layer (OPL) and outer 
nuclear layer (ONL), as reported in some earlier studies. 
However, these were limited in their sample size and 
contradictory as to the localisation. This study assesses 
outer retinal layer changes using optical coherence 
tomography (OCT) in a multicentre cross-sectional 
cohort.
Method  197 patients who were AQP4-IgG+ and 
32 myelin-oligodendrocyte-glycoprotein antibody 
seropositive (MOG-IgG+) patients were enrolled in 
this study along with 75 healthy controls. Participants 
underwent neurological examination and OCT with 
central postprocessing conducted at a single site.
Results  No significant thinning of OPL (25.02±2.03 
µm) or ONL (61.63±7.04 µm) were observed in patients 
who were AQP4-IgG+ compared with  patients who 
were MOG-IgG + with comparable neuroaxonal damage 
(OPL: 25.10±2.00 µm; ONL: 64.71±7.87 µm) or healthy 
controls (OPL: 24.58±1.64 µm; ONL: 63.59±5.78 µm). 
Eyes of patients who were AQP4-IgG+ (19.84±5.09 µm, 

p=0.027) and MOG-IgG + (19.82±4.78 µm, p=0.004) 
with a history of ON showed parafoveal OPL thinning 
compared with healthy controls (20.99±5.14 µm); this 
was not observed elsewhere.
Conclusion  The results suggest that outer retinal layer 
loss is not a consistent component of retinal astrocytic 
damage in AQP4-IgG+ NMOSD. Longitudinal studies are 
necessary to determine if OPL and ONL are damaged 
in late disease due to retrograde trans-synaptic axonal 
degeneration and whether outer retinal dysfunction 
occurs despite any measurable structural correlates.

INTRODUCTION
Neuromyelitis optica spectrum disorders 
(NMOSDs) are relapsing autoimmune disor-
ders affecting the central nervous system (CNS).1 
Common clinical attacks in NMOSD include optic 
neuritis (ON), acute myelitis and area postrema 
syndrome.2 Serum autoantibodies to aquaporin-4 
(AQP4-IgG) are detectable in 60%–80% of patients 
with NMOSD .3 4

AQP4 is an astrocytic water channel in the CNS.5 
In the retina, astrocytes are mainly located in the 
inner neuroaxonal layers of the retina, but AQP4 
is additionally highly expressed in retinal Müller 
cells.6 These glial cells have diverse functions, such 
as regulation of water homeostasis and neurotrans-
mitter recycling, and are located around the fovea 
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spanning the entire thickness of the retina.7 Of particular interest 
is also the Henle Fibre outer nuclear layer (ONL) boundary of 
the parafovea where AQP4 channels are highly expressed.8

A primary and attack-independent astrocytopathy in NMOSD 
has been suggested to contribute to retinal neurodegeneration 
and to Müller cell-associated parafoveal changes.9–13 Recent 
studies suggested potential astrocytopathy-related outer retinal 
layer (ORL) thinning in AQP4-IgG seropositive NMOSD but 
were limited in their sample size and in parts contradictory 

on the exact layers in which these changes occur.8 11 It thereby 
remains unclear if ORLs, especially the ONL are also potentially 
affected by primary retinal astrocytopathy in AQP4-IgG sero-
positive NMOSD.

Representing the largest international NMOSD dataset 
collected so far, the CROCTINO study (Collaborative Retro-
spective Study on retinal optical coherence tomography (OCT) 
in Neuromyelitis Optica) overcomes one of the common weak-
nesses of NMOSD studies—being limited to small and homog-
enous sample populations.14 15 Using OCT data from over 20 
centres worldwide, reliable quantitative and qualitative retinal 
assessment becomes possible, and controversial questions such 
as ORL changes in AQP4-IgG seropositive NMOSD can be clar-
ified. Apart from patients who were AQP4-IgG seropositive, the 
CROCTINO cohort also includes patients with antibodies to 
myelin-oligodendrocyte-glycoprotein (MOG-IgG); a group that 
is now believed to be a distinct disease entity.14 16–18 While clini-
cally similar and undergoing comparable retinal neurodegenera-
tion after ON, MOG-IgG-associated disease (MOGAD) lacks an 
identifiable astrocytopathy component and is thereby an appro-
priate diseased control group for patients who were AQP4-IgG 
seropositive when investigating astrocytic changes.10 19

In this study, we investigated if ORL thinning, specifically 
in the foveal and macular ONL, occurs in patients who were 
AQP4-IgG seropositive compared with healthy controls (HCs) 
and with patients with MOGAD as a diseased control group.

METHODS
Cohort design
A total of 539 patients with NMOSD were recruited between 
2000 and 2018 as part of CROCTINO (stratified data of centres 
by device type and number of patients are summarised in the 
online supplemental file 1).14 Patients with (1) diseases poten-
tially confounding OCT analyses (including glaucoma, diabetic 
retinopathy, retinal surgery and ametropia greater than ±6 
diopters), (2) a history of ON within the last 6 months before 
baseline, (3) no evidence of seropositivity for AQP4-IgG or 
MOG-IgG20 21 and (4) no macular OCT data were excluded. 
Cell-based assays were used for the detection of AQP4-IgG and 
MOG-IgG antibodies in serum samples from all patients. Clin-
ical data (antibody serology, disease duration, frequency of ON, 
location of ON, date of ON, Expanded Disability Standard Scale 
and treatment received) were collected from all patients. We also 
included 75 HCs (recruited from Barcelona, Isfahan, Mangalore 
and Berlin), who were neither age nor sex matched to either 
cohort.

Optical coherence Tomography
Retinal examinations were conducted at each centre using the 
following OCT devices: Spectralis SD-OCT, Heidelberg Engi-
neering, Heidelberg, Germany (Spectralis), Cirrus HD-OCT, 
Carl Zeiss Meditec Inc, Dublin, California, USA (Cirrus) and 
Topcon 3D-OCT, Topcon Corp, Tokyo, Japan (Topcon). With 
respect to each device and each centre, two scans were collected: 
(1) a 3.4 mm diameter peripapillary ring scan around the optic 
nerve head for Spectralis SD-OCT (for Cirrus and Topcon 
devices: extracted from optic disc volume scans), and (2) a 
macular volume scans, centred on the fovea.14 Scans were cate-
gorised and uploaded onto a central server to be accessed for 
further processing.

All OCT images fulfilled the OSCAR-IB criteria22 23 (see 
figure  1—images from 29 patients not fulfilling these criteria 
were excluded) and results were presented in line with the 

Figure 1  Cohort design and exclusion criteria: from the original 539 
patients recruited in the CROCTINO cohort, 108 patients were excluded 
due to missing macular data. Of the remaining 431 patients in the 
segmentation cohort, a further 40 patients were excluded due to anomalies 
in their OCT scans (OSCAR-IB criteria; primarily due to low image 
quality (26 patients) or the presence of microcysts (3 patients) or other 
pathologies) or due to data corruption (11 patients). We also excluded 
patients with unknown antibody status (90 patients). Of the remaining 
301 patients, the cohort was split based on AQP4-IgG or MOG-IgG 
seropositivity and a further set of exclusion criteria were applied based on 
age (being ≥65 years), ophthalmological comorbidities (eg, glaucoma) and 
in instances where follow-ups occurred within 6 months of an ON attack. 
AQP4-IgG, anti-aquaporin-4 antibody; HC, healthy control; MOG-IgG, 
anti-myelin-oligodendrocyte-glycoprotein antibody; OCT, optical coherence 
tomography; ON, optic neuritis.
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APOSTEL V.2.0 recommendations.24 Peripapillary retinal nerve 
fibre layer (pRNFL) thickness was derived using a device-specific 
protocol and centred around the optic nerve head. Segmentation 
of all layers in macular volume scans were performed semiauto-
matically and processed with an in-house proprietary software 
(SAMIRIX).25 For the purposes of this study, the macular retinal 

layers were segmented in the following layers: macular retinal 
nerve fibre layer (mRNFL), ganglion cell and inner plexiform 
layer (GCIP), inner nuclear layer (INL), outer plexiform layer 
(OPL), ONL, the outer plexiform and nuclear layer (OPNL), 
photoreceptor layer (PR, inner photoreceptor segments to 
Bruch’s membrane) and the total retinal thickness (RT, calcu-
lated as the thickness consisting of the RNFL (defined as layer 
no. 3 per Staurenghi et al26) to the Bruch’s membrane (layer 
no. 14). All scans were checked and, where necessary, manual 
correction of the automatic segmentation was conducted using 
SAMIRIX by experienced raters (FCO, CB and SS for ring 
scans, HZ, FCO and AL for macular scans) at a single site at the 
Charité—Universitätsmedizin Berlin. To assure comparability 
with previously published data on ORL changes in NMOSD, 
the macular volume data were further segregated into one of 
three export protocols: (1) a 5 mm diameter cylinder omitting 
a 1 mm diameter around the fovea (5 mm study), (2) a 3 mm 
diameter cylinder omitting a 1 mm diameter around the fovea (3 
mm study) and (3) a 1 mm mean thickness around the fovea (1 
mm study). Results are reported for the 5 mm study on Spectralis 
devices; confirmatory results based on the 3 mm and 1 mm study 
as well as for Cirrus and Topcon devices are set out in the online 
supplemental file 1.

Statistical methods
Data were stratified in cohorts by (1) antibody status and (2) ON 
history (contralateral eyes of patients with a history of unilateral 
ON are classified not fulfilling the ON history criteria). The data 
were further bifurcated by OCT device (Spectralis, Cirrus or 
Topcon) to mitigate any device-specific aberrations. For contin-
uous cohort data (age, average age at onset and disease dura-
tion) on each of the AQP4-IgG, MOG-IgG and HC cohorts, the 
Student’s t-test was employed. Cross-sectional group compar-
isons of the OCT values were conducted using linear mixed-
effect models with age and sex as fixed and centre and patient-ID 
as random effects; where necessary, models were corrected for 
age and sex. Marginal and conditional coefficients of determi-
nation for the models were estimated by pseudo-R2 for mixed-
effect models. Significance was established at p<0.05. Statistical 

Table 1  Demographic overview
HC AQP4-IgG MOG-IgG

Subjects
(N)

75 197 32

Number of eyes
(N)

148 317 55

Age
(years, mean±SD)

32.3±9.6 41.8±12.1 36.5±13.7

Sex
(male, N (%))

25 (33.8) 24 (12.2) 10 (31.2)

EDSS
(median (IQR))

– 3.5 (2.0–5.0) 2.0 (1.5–2.5)

Average age at onset 
(years, median (IQR))

– 32.9 (24.9–42.4) 30.0 (17.6–42.5)

Patients with a history 
of ON
(N (%))

– 142 (72.1) 24 (75.0)

Median number of ON 
episodes (median, IQR)

– 1.00 (0.00–3.00) 2.00 (1.00–4.00)

Disease duration
(years, mean±SD)

– 7.1±6.7 4.8±7.8

Ethnicity
(N (%))

White (57 (761))
Asian (16 (21.3))
Hispanic (1 (1.3))
Other (1 (1.3))

White (105 (53.3)
Asian (56 (28.4))
African American (11 (5.6))
Other (25 (12.7))

White (19 (59.4))
Asian (13 (40.6))

Current treatment
(N (%))

Rituximab (51 (25.9))
Azathioprine (42 (21.3))
Mycophenolate Mofetil 
(31 (15.7))
Methotrexate (4 (2.0))
Other or missing (69 (35.0))

Rituximab (6 (18.8))
Azathioprine (6 (18.8))
Prednisone (6 (18.8))
Mycophenolate 
mofetil (5 (15.6))
Other or missing (9 
(28.1))

OCT device (N (%)) Spectralis (75 
(100))

Spectralis (139 (70.6))
Cirrus (38 (19.3))
Topcon (20 (10.2))

Spectralis (25 (78.1))
Cirrus (3 (9.4))
Topcon (4 (12.5))

Cirrus: Cirrus HD-OCT, Carl Zeiss Meditec Inc, Dublin, California, USA; Spectralis: SD-OCT, Heidelberg 
Engineering, Heidelberg, Germany;Topcon: Topcon 3D-OCT, Topcon Corp, Tokyo Japan.
AQP4-IgG, anti-aquaporin-4 antibody; EDSS, Expanded Disability Standard Scale; HCs, healthy controls; 
MOG-IgG, anti-myelin-oligodendrocyte-glycoprotein antibody; N, number of subjects; ON, optic neuritis.

Table 2  Group comparison between HC and patients who were AQP4-IgG and MOG-IgG seropositive at baseline (Spectralis devices only)

HC AQP4-IgG MOG-IgG

AQP4-IgG vs HC AQP4-IgG vs MOG-IgG MOG-IgG vs HC

B SE P B SE P B SE P

Number of eyes 148 317 55

pRNFL in
µm (mean±SD)

99.17±9.76 78.46±24.13 74.33±23.44 −20.22 2.86 <0.001 0.34 4.33 0.937 −29.40 2.75 <0.001

mRNFL in
µm (mean±SD)

35.25±3.13 28.09±6.60 27.62±5.43 −6.12 0.69 <0.001 −0.15 1.38 0.913 −6.98 0.66 <0.001

GCIP in
µm (mean±SD)

80.62±6.14 65.81±13.03 66.16±11.85 −14.74 1.45 <0.001 −2.18 2.95 0.461 −15.16 1.33 <0.001

INL in
µm (mean±SD)

39.64±2.51 39.85±3.57 41.55±4.14 0.34 0.39 0.384 −1.93 0.87 0.028 1.79 0.53 0.001

OPL in
µm (mean±SD)

24.58±1.64 25.02±2.03 25.10±2.00 0.28 0.24 0.241 −0.21 0.44 0.634 −0.01 0.29 0.986

ONL in
µm (mean±SD)

63.59±5.78 61.63±7.04 64.71±7.87 −0.01 0.83 0.993 −1.77 1.80 0.327 0.69 0.93 0.457

OPNL in
µm (mean±SD)

89.23±6.95 86.65±7.21 89.81±8.61 −0.41 0.85 0.634 −1.54 1.85 0.406 −0.14 0.93 0.878

PR in
µm (mean±SD)

80.80±2.38 80.35±2.94 81.49±3.59 −0.30 0.33 0.363 −0.07 0.68 0.923 0.20 0.39 0.610

RT in
µm (mean±SD)

324.47±13.24 300.76±20.11 306.6±17.99 −20.16 2.37 <0.001 −6.61 4.77 0.169 −18.91 2.49 <0.001

AQP4-IgG, anti-aquaporin-4 antibody; B, estimate; GCIP, ganglion cell and inner plexiform layer; HC, healthy control; INL, inner nuclear layer; MOG-IgG, anti-myelin-oligodendrocyte-glycoprotein antibody; mRNFL, 
macular retinal nerve fibre layer; ONL, outer nuclear layer; OPL, outer plexiform layer; OPNL, outer plexiform and nuclear layer; PR, photoreceptor layer; pRNFL, peripapillary retinal nerve fibre layer; RT, total retinal 
thickness.
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analyses were conducted using R (V.4.0.0) (RStudio Inc, Boston, 
Massachusetts, USA).27

RESULTS
Cohort description
In total, 197 patients who were AQP4-IgG seropositive fulfilled 
the inclusion criteria (figure  1, table  1). We also included 75 
unmatched HCs and 32 patients who were MOG-IgG seroposi-
tiveas control groups.

Neuroaxonal damage measured by pRNFL, mRFNL and 
GCIP was comparable in patients who were AQP4-IgG sero-
positive (pRNFL: 78.46±24.13 µm, mRNFL: 28.09±6.60 
µm, GCIP: 65.81±13.03 µm) and MOG-IgG seropositive 
(pRNFL: 74.33±23.44 µm, mRNFL: 27.62±5.43 µm, GCIP: 
66.16±11.85 µm) making MOGAD a highly relevant compara-
tive disease control group for our investigation of ORLs (table 2).

Limited outer retinal changes in AQP4-IgG seropositive 
NMOSD
No significant thinning of macular OPL and ONL in patients 
who were AQP4-IgG seropositive (irrespective of ON status) 
were observed compared with HC or patients who were MOG-
IgG seropositive using the 5 mm diameter macular data (table 2, 
figure 2). No significant changes were observed when the OPL 
and ONL values were analysed as the combined OPNL. Previous 
studies described ORL thinning only in the foveal and parafoveal 
area as a sign of AQP4-IgG-induced Müller cell damage.8 11 We 
therefore repeated our analyses in both 3 mm and the 1 mm 
diameter volumes around the fovea, but these narrower volumes 
showed again no relevant OPL or ONL thinning in patients who 
were AQP4-IgG seropositive compared with HC or patients who 
were MOG-IgG seropositive (see online supplemental data). 
Additionally, while these previous studies reported changes in 
the inner segment layer of the photoreceptors, this was not seen 
in our study.8 11

After a previous description11 of ORL changes in patients who 
were AQP4-IgG seropositive with a history of ON, we also exam-
ined ORL differences separately in eyes with a history of ON. 

AQP4-IgG seropositive eyes with a history of ON (AQP4-ON) 
did not display any thinning of ONL and OPL compared with 
patients without a history of ON (AQP4-NON) or HC, despite 
severe neuroaxonal loss measured by pRNFL and GCIP layer 
(table 3, figure 3). Comparing patients who were AQP4-IgG and 
MOG-IgG seropositive, both groups had a comparable neuro-
axonal loss (pRNFL, GCIP)—in the whole group as well as in 
respect of ON and non-ON eyes (table 2, figure 2). AQP4-ON 
(B=−1.54, SE=0.69 µm, p=0.027) as well as MOG-ON 
(B=−2.51, SE=0.87 µm, p=0.004) showed an OPL thinning in 
the fovea (1 mm diameter) compared with HC, but no difference 
was observed between AQP4-ON and MOG-ON (p=0.100). 
Also, no significant correlation between ethnicity and current 
therapies on outer retinal thickness was found (data not shown).

DISCUSSION
Our study suggests that neither macular OPL nor ONL loss 
occurs in AQP4-IgG seropositive NMOSD, regardless of ON 
phenotype, as compared with HC and patients who were MOG-
IgG seropositive. The MOG-IgG cohort presented a unique 
opportunity to contrast our AQP4-IgG seropositive cohort with 
a highly relevant comparator group, which most likely has no 
astrocytopathy-component.28

Our results differ from those published by You et al in 20198 and 
Filippatou et al in 2020.11 In both studies, thinning was observed 
in the ONL and the inner segment of the photoreceptor layers. In 
the case of You et al, who utilised Spectralis SD-OCT devices for 
the image acquisition, foveal thinning was observed along with a 
reduction in b-wave amplitudes in full-field electroretinography 
(ERG) suggestive of Müller cell dysfunction.8 Filippatou et al, 
who employed Cirrus-SD-OCT for the image acquisition, also 
described thinning of the fovea in the 5 mm diameter macular 
area around the fovea.11 Both studies suggested the ORL changes 
to be caused by a primary retinal astrocytopathy with AQP4-IgG 
associated glial dysfunction in Müller cells.29 These pathological 
responses could account for the associated thinning observed 
in the ONL in these studies. However, other exogenous factors 

Figure 2  Group comparison of HC and patients who were AQP4-IgG and MOG-IgG seropositive at baseline: boxplots of mean OCT values with 
individual eyes (jitter) in HC (left, green), patients with AQP4-IgG (middle, yellow) and patients with MOG-IgG (right, blue). (A) pRNFL; (B) GCIP; (C) INL; 
(D) OPL; (E) ONL; and (F) PR. AQP4, aquaporin-4; HC, healthy control; GCIP, ganglion cell and inner plexiform layer; INL, inner nuclear layer; MOG, myelin-
oligodendrocyte-glycoprotein; OCT, optical coherence tomography; ONL, outer nuclear layer; OPL, outer plexiform layer; PR, photoreceptive layer; pRNFL, 
peripapillary retinal nerve fibre layer
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cannot be ruled out as contributory, such as cohort composition 
and study methodologies.

On a cohort level, our population is larger (197 patients who 
were AQP4-IgG seropositive vs 22 and 51 by You et al and Filip-
patou et al, respectively)8 11 and more diverse than prior studies, 
which minimises potential type I errors. While You et al did 
not specify the ethnic composition of their cohort, the cohort 
in Filippatou et al had a relatively even distribution between 
Caucasian Americans (43%) and African Americans (53%) 
with a minor subset of Asian Americans (4%)—describing a 
pronounced ONL thinning in African Americans. African Amer-
ican patients with multiple sclerosis (MS) are also known to suffer 
from faster and often more aggressive disease course in general, 
which could also be true for other neuroinflammatory diseases 
like NMOSD.30 31 Our AQP4-IgG seropositive cohort included 
an ethnically diverse dataset acquired worldwide with a lower 
African American patient composition (5.6%), which might have 
contributed to the less profound foveal ONL changes.11 32

Recently, it has been hypothesised that the neuroplastic char-
acteristics of the INL may act as a barrier to retrograde (but not 
anterograde) trans-synaptic axonal degeneration—rectified to 
the ORLs—in patients with MS following ON.33 This limited 
neuroplastic ability is hypothesised to rest with the bipolar, 
amacrine and horizontal cells, which feed into the synaptic tree 
at the level of the INL, and raises questions as to whether such 
protective mechanisms may also play a limited part in NMOSD 
and whether it remains so as we age.33 The average age of partic-
ipants in the two other studies were relatively older (mean age 
for both being 47 years), whereas for our AQP4-IgG cohort it 
was 42 years. Previously reported studies concerning cohorts of 
similar demographic distribution to ours reported no significant 
correlation between age and retinal thickness.34 35 However, age-
related changes in the retina cannot be ruled out and ORLs may 
be more susceptible to change with increasing age and/or disease 
duration. It is well-known that the plasticity of the CNS mark-
edly reduces over time, and as a corollary, the regenerative prop-
erties of the INL may also be affected thereby diminishing its 
protective effects in reducing retrograde (trans-synaptic) axonal 
degeneration.36 The retina is also a vascularised organ, particu-
larly at the interface between inner and outer retina, where the 
deep vascular plexus intercepts the boundary between the INL 
and OPL.37 Should the blood–retina barrier be compromised 
in the boundary between the INL and OPL, it is conceivable 
that the protective abilities of the INL may be circumvented 
and thereby mediating glial dysfunction in the Müller cells. 
This may have been what was observed in the OPL from the 1 
mm AQP4-ON and MOG-ON cohort given the relative loca-
tion of the OPL to the INL. To that end, while disease duration 
did not reveal to any correlates with OPL (p=0.805) or ONL 
(p=0.835) values, we cannot exclude time-dependent effects in a 
cross-sectional analysis. We believe that this area warrants more 
research to quantify if (1) age is a factor, (2) ON damages the 
barrier function and (3) the INL does indeed play a role as a dam 
to retrograde axonal degeneration in NMOSD.

A strength of our study rests on its cohort size and compo-
sition, which mirrors that of a global population. This result 
derives from a consortium of expert NMOSD researchers 
enabling the enrolment of participants through a multicentre 
strategy. This approach was designed to overcome many of the 
earlier NMOSD study limitations, for example small and homo-
geneous sample populations. Additionally, the use of differing 
OCT devices compounds complexities in OCT comparisons and 
a high degree of caution is needed in order to rely on differing 
platforms interchangeably.38 Thus, our study focuses on use of Ta
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three widely available OCT devices, and obtained confirmatory 
results with each of them; of these, two were also employed 
respectively in the studies by You et al8 and Filippatou et al.11

Limitations of the current study should also be considered. 
First, the HCs and patients with MOGAD were not matched, 
which makes it difficult to rule out age-related and gender-
related affects. Notably, retinal thickness decreases with age and 
males generally exhibit higher GCIP and RT.25 Also, no ERG or 
functional visual pathway assessments were conducted, which 
could have potentially shown more subtle functional impairment 
of ORLs without associated tissue loss. Outer retinal studies are 
additionally complicated by Henle Fibre morphologies as OCT 
beam placement plays a major role in how this layer is depicted; 
the high level of irregularity and variability in these morphol-
ogies add a level of subjectiveness in the quantification and 
correction of outer layer segmentation and analyses.39 Finally, 
Cirrus and Topcon measurements could not be utilised as confir-
matory cohorts as there lacked sufficient HCs examined with 
these devices. Nonetheless, the current findings provide insights 
into relationships between retinal layer changes and axonal 
damage that have not previously been recognised; as no ORL 
changes can be observed on account of a primary astrocytopathy 
in NMOSD, it potentially alleviates the burden of monitoring 
the ORLs when tracking disease progression and reinforces 
the need to focus primarily on the inner layers, particularly the 
RNFL and the GCIP layer.

CONCLUSION
Our results show no evidence of macular ORL changes as a major 
component of retinal damage in patients who were seropositive 
AQP4-IgG NMOSD and patients with MOGAD. Further studies 
will be necessary to clarify (1) if OPL and ONL are damaged in 
late disease stages due to retrograde trans-synaptic axonal degen-
eration across the damaged INL barrier and (2) if outer retinal 
dysfunction without a measurable structural correlate occurs. 
Longitudinal studies could help quantify changes in the ORLs 
alongside disease progression.
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Supplement 

 

Center Number of Patients Device type 

Bangkok, Thailand 25 Cirrus 

Barcelona, Spain 13 Cirrus and Spectralis 

Belo Horizonte, Brazil 57 Spectralis 

Berlin, Germany 76 Spectralis 

Düsseldorf, Germany 11 Spectralis 

Goyang; Korea 50 Topcon 

Isfahan, Iran 40 Spectralis 

Istanbul, Turkey 8 Cirrus 

Lyon, France 8 Spectralis 

Mangalore, India 40 Spectralis 

Maracaibo, Venuzuela  3 Spectralis 

Michigan, USA 5 Spectralis 

Milan, Italy 30 Spectralis 

Munich, Germany 11 Spectralis 

New York City, USA 6 Cirrus and Spectralis 

Odense, Denmark 9 Spectralis 

Oxford, United Kingdom 48 Spectralis 

Petah Tikva, Israel 25 Cirrus 

Sao Paolo, Brazil 9 Spectralis 

Seattle, USA 30 Cirrus 

Strasbourg, France 25 Spectralis 

Total 539 

Table 1:  Participating centers with number of patients included in this study and the devices used for 

the OCT imaging 

 

 HC AQP4

-IgG 

MOG-

IgG 

AQP4-IgG vs HC AQP4 -IgG vs MOG-IgG MOG-IgG vs HC 

B SE p B SE p B SE  p 

Number of eyes 148 317 55 

mRNFL  µm  

(mean±SD) 

17.42±

2.33 

17.59±

2.22 

17.56±2.

60 

-1.39 0.27 <0.001 -0.45 0.41 0.262 -1.58 0.42 <0.001 

GCIP µm  

(mean±SD) 

66.30±

19.47 

64.81±

21.53 

64.76±17

.87 

-20.62 2.24 <0.001 -4.52 4.01 0.261 -22.67 2.43 <0.001 

INL µm 

(mean±SD) 

40.98±

6.55 

39.54±

6.04 

41.02±7.

18 

-0.75 0.71 0.295 -3.19 1.19 0.007 0.36 1.11 0.746 

OPL µm  

(mean±SD) 

27.24±

6.86 

27.08±

7.72 

27.12±7.

26 

-1.18 0.98 0.226 -1.39 1.32 0.293 -0.74 1.41 0.601 

ONL µm  

(mean±SD) 

78.61±

11.37 

77.85±

11.83 

79.10±13

.98 

2.91 1.43 0.043 -0.66 2.43 0.787 4.18 2.36 0.079 

OPNL µm 

(mean±SD) 

105.86

±9.15 

104.93

±9.35 

106.22±1

1.86 

1.81 1.07 0.091 -1.34 2.05 0.514 3.00 1.61 0.064 

PR µm  

(mean±SD) 

87.89±

3.51 

87.82±

3.71 

88.41±3.

05 

-0.54 0.42 0.203 -0.24 0.75 0.750 0.03 0.60 0.953 

RT µm 

(mean±SD) 

318.50

±23.80 

314.70

±25.27 

318.12±2

5.86 

-20.80 2.73 <0.001 -10.37 4.72 0.030 -24.46 3.52 <0.001 

 

Table 2: 3mm Study - Cross-sectional OCT results (Spectralis devices only). Abbreviations: mRNFL, 

macular retinal nerve fiber layer; GCIP, ganglion cell and inner plexiform layer; INL, inner nuclear layer; OPL, 

outer plexiform layer; ONL, outer nuclear layer; OPNL, outer plexiform and nuclear layer; PR, photoreceptor 
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layer; RT, total retinal thickness; HC, healthy control, AQP4-IgG, aquaporin-4 immunoglobulin G; MOG-IgG, 

myelin oligodendrocyte glycoprotein immunoglobulin-G.  

 

 

 
 HC AQP4-

IgG 

MOG-

IgG 

AQP4-IgG vs HC AQP4 -IgGvs MOG-IgG MOG-IgG vs HC 

B SE p B SE p B SE  p 

Number of 

eyes 

148 317 55 

mRNFLµm  

(mean±SD) 

13.38±

1.57 

13.09±

1.48 

13.03±

1.55 

-0.05 0.18 0.758 0.12 0.27 0.648 -0.53 0.21 0.012 

GCIP µm  

(mean±SD) 

32.43±

10.68 

25.13±

10.45 

24.93±

9.28 

-6.97 

 

1.22 <0.001 -1.59 1.97 0.420 -7.23 1.50 <0.001 

INL µm  

(mean±SD) 

18.95±

5.36 

18.93±

4.77 

19.66±

4.76 

-0.53 0.57 0.353 -1.51 0.95 0.114 0.43 0.75 0.567 

OPL µm  

(mean±SD) 

20.99±

5.14 

20.49±

5.49 

19.90±

4.60 

-1.30 0.64 0.044 -0.92 0.99 0.334 -1.64 0.73 0.002 

ONL µm  

(mean±SD) 

88.66±

8.67 

89.45±

10.25 

90.73±

14.31 

0.64 1.23 0.600 -1.71 2.33 0.463 1.65 1.66 0.321 

OPNL µm  

(mean±SD) 

109.74

±9.23 

109.94

±10.26 

110.63

±14.57 

-0.72 1.15 0.530 -2.69 2.19 0.221 -0.19 1.58 0.904 

PR µm  

(mean±SD) 

94.31±

2.95 

93.53±

3.37 

93.66±

3.20 

-0.63 0.39 0.106 -0.06 0.69 0.934 -0.43 0.46 0.348 

RT µm   

(mean±SD) 

268.70

±23.45 

260.55

±20.91 

261.76

±23.82 

-9.21 2.40 <0.001 -6.09 4.06 0.135 -8.99 3.11 <0.001 

 

Table 3: 1mm Study - Cross-sectional OCT results (Spectralis devices only). Abbreviations: mRNFL, 

macular retinal nerve fiber layer; GCIP, ganglion cell and inner plexiform layer; INL, inner nuclear layer; OPL, 

outer plexiform layer; ONL, outer nuclear layer; OPNL, outer plexiform and nuclear layer; PR, photoreceptor 

layer; RT, total retinal thickness; HC, healthy control, AQP4-IgG, aquaporin-4 immunoglobulin G; MOG-IgG, 

myelin oligodendrocyte glycoprotein immunoglobulin-G.  

 

 AQP4-ON AQP4-

NON 

AQP4-ON vs. AQP4-

NON 

 

AQP4-ON vs HC AQP4-NON vs 

HC 

B SE p B SE p B SE p 

Number of 

eyes 

232 85 

mRNFL  µm  

(mean±SD) 

17.20±2.44 18.32±2.83 -1.09 0.31 <0.001 -1.64 0.30 <0.001 -0.71 0.45 0.116 

GCIP  µm  

(mean±SD) 

59.33±16.2

1 

76.21±15.9

8 

-21.67 2.69 <0.001 -27.35 2.34 <0.001 -1.00 2.24 0.655 
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INL  µm  

(mean±SD) 

42.12±6.98 38.68±7.20 0.75 0.95 0.433 0.07 0.76 0.923 -1.26 1.33 0.348 

OPL  µm  

(mean±SD) 

27.08±7.41 27.21±7.12 0.47 1.09 0.662 -0.61 1.04 0.562 -1.59 1.56 0.313 

ONL  µm  

(mean±SD) 

83.28±12.4

3 

70.32±13.2

2 

3.52 1.89 0.066 3.70 1.62 0.024 -0.01 2.09 0.995 

OPNL  µm  

(mean±SD) 

110.35±10.

22 

97.53±10.4 3.88 1.57 0.141 3.02 1.22 0.014 -1.17 1.60 0.469 

PR  µm  

(mean±SD) 

88.67±2.90 87.84±3.34 0.91 0.63 0.148 -0.40 0.47 0.391 -1.49 0.61 0.170 

RT µm  

(mean±SD) 

317.90±22.

87 

318.58±31.

96 

-16.88 3.51 <0.001 -25.27 2.98 <0.001 -6.15 4.07 0.134 

 

Table 4: 3mm Study - Cross-sectional AQP4-ON vs AQP4-NON OCT results (Spectralis devices only). 

Abbreviations: mRNFL, macular retinal nerve fiber layer; GCIP, ganglion cell and inner plexiform layer; INL, 

inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; OPNL, outer plexiform and nuclear 

layer; PR, photoreceptor layer; RT, total retinal thickness; HC, healthy control, AQP4-IgG, aquaporin-4 

immunoglobulin G; MOG-IgG, myelin oligodendrocyte glycoprotein immunoglobulin-G.  

 

 AQP4-ON AQP4-

NON 

AQP4-ON vs. AQP4-

NON 

 

AQP4-ON vs. HC AQP4-NON vs HC 

B SE p B SE p B SE p 

Number of 

eyes 

232 85 

mRNFL  µm  

(mean±SD) 

13.10±1.54 13.05±1.36 -0.05 0.22 <0.001 0.06 0.20 0.764 -0.33 0.20 0.135 

GCIP  µm  

(mean±SD) 

22.45±9.56 30.79±10.1

1 

-6.91 1.49 <0.001 -7.86 1.30 <0.001 -2.58 1.64 0.116 

INL  µm  

(mean±SD) 

18.99±5.06 18.99±5.06 0.24 0.77 0.756 0.30 0.62 0.625 -1.62 0.81 0.047 

OPL  µm  

(mean±SD) 

21.30±5.75 21.30±5.75 -1.38 0.83 0.100 -1.54 0.69 0.027 -0.60 0.87 0.494 

ONL  µm  

(mean±SD) 

87.96±8.81 87.96±8.81 3.41 1.77 0.056 1.76 1.38 0.204 -0.98 1.49 0.513 

OPNL  µm 

(mean±SD) 

109.26±9.1

2 

109.26±9.1

2 

-3.94 3.25 0.227 0.21 1.30 0.872 -1.76 1.45 0.225 

PR  µm  

(mean±SD) 

93.93±3.07 93.39±3.07 0.45 0.56 0.427 -0.67 0.43 0.118 -0.75 0.50 0.132 

RT µm   

(mean±SD) 

265.42±21.

79 

265.42±21.

79 

-3.95 3.25 0.227 -8.21 2.65 0.002 -7.58 3.37 0.025 

 

Table 5. 1mm Study - Cross-sectional AQP4-ON vs AQP4-NON OCT results (Spectralis devices only). 

Abbreviations: mRNFL, macular retinal nerve fiber layer; GCIP, ganglion cell and inner plexiform layer; INL, 

inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; OPNL, outer plexiform and nuclear 

layer; PR, photoreceptor layer; RT, total retinal thickness; HC, healthy control, AQP4-IgG, aquaporin-4 

immunoglobulin G; MOG-IgG, myelin oligodendrocyte glycoprotein immunoglobulin-G.  

 

 

 

 MOG-ON MOG-

NON 

MOG-ON vs. MOG-

NON 

 

MOG-ON vs. HC MOG-NON vs HC 

B SE p B SE p B SE p 

Number of eyes 43 12 

mRNFL  µm  

(mean±SD) 

13.15±1.51 12.79±1.65 -0.15 0.44 0.729 0.62 0.25 0.013 -0.36 0.30 0.237 

GCIP  µm  

(mean±SD) 

22.40±7.43 30.26±10.6

5 

-12.20 2.49 <0.001 -11.84 1.69 <0.001 -0.64 2.22 0.773 

INL  µm  

(mean±SD) 

20.05±4.50 18.84±5.30 0.05 1.14 0.968 0.35 0.90 0.384 0.42 1.14 0.711 

OPL  µm  

(mean±SD) 

19.82±4.78 20.05±4.30 -2.00 1.28 0.127 -2.51 0.87 0.004 -0.15 1.09 0.887 

ONL  µm  

(mean±SD) 

95.38±10.6

9 

80.95±16.2

3 

17.53 3.44 <0.001 5.73 1.69 0.001 -6.46 2.35 0.007 
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OPNL  µm  

(mean±SD) 

115.20±11.

64 

101.00±15.

67 

15.86 2.06 <0.001 3.03 1.69 0.075 -6.21 2.28 0.007 

PR  µm  

(mean±SD) 

93.85±2.70 93.26±4.12 1.72 0.90 0.063 -0.14 0.52 0.793 -0.96 0.73 0.191 

RT µm   

(mean±SD) 

264.52±19.

08 

255.95±31.

41 

5.35 5.66 0.352 -10.04 3.56 0.005 -7.76 4.89 0.114 

 

Table 6. 1mm Study - Cross-sectional MOG ON vs MOG-NON OCT results (Spectralis devices) 

Abbreviations: mRNFL, macular retinal nerve fiber layer; GCIP, ganglion cell and inner plexiform layer; INL, 

inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; OPNL, outer plexiform and nuclear 

layer; PR, photoreceptor layer; RT, total retinal thickness; HC, healthy control, AQP4-IgG, aquaporin-4 

immunoglobulin G; MOG-IgG, myelin oligodendrocyte glycoprotein immunoglobulin-G; ON, optic neuritis; 

NON, non-optic neuritis. 

 

 Cirrus 

 

Topcon 

 AQP4-IgG MOG-IgG AQP4-IgG MOG-IgG 

Number of eyes 47 5 36 8 

mRNFL µm  

(mean±SD) 

25.40±6.82 23.16±3.94 25.37±5.30 28.05±5.85 

GCIP µm  

(mean±SD) 

65.98±11.14 68.00±6.39 65.61±10.94 67.28±10.46 

INL µm  

(mean±SD) 

42.01±3.54 44.72±3.92 38.45±2.69 38.73±0.97 

OPL µm  

(mean±SD) 

24.13±1.86 26.10±2.55 26.22±1.46 27.07±1.10 

ONL µm  

(mean±SD) 

64.30±6.01 65.82±9.67 56.51±5.35 65.79±9.02 

PR µm  

(mean±SD) 

78.32±2.36 79.25±2.11 83.34±2.13 86.68±3.40 

RT µm 

(mean±SD) 

300.14±18.63 307.06±18.29 295.51±13.78 313.60±10.57 

 

Table 7. 5mm Study - Cross-sectional OCT results (Topcon and Cirrus devices) Abbreviations: mRNFL, 

macular retinal nerve fiber layer; GCIP, ganglion cell and inner plexiform layer; INL, inner nuclear layer; OPL, 

outer plexiform layer; ONL, outer nuclear layer; PR, photoreceptor layer; RT, total retinal thickness; HC, 

healthy control, AQP4-IgG, aquaporin-4 immunoglobulin G; MOG-IgG, myelin oligodendrocyte glycoprotein 

immunoglobulin-G.  
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