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Cold and heterogeneous T cell repertoire is
associated with copy number aberrations and loss
of immune genes in small-cell lung cancer
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Small-cell lung cancer (SCLC) is speculated to harbor complex genomic intratumor hetero-

geneity (ITH) associated with high recurrence rate and suboptimal response to immu-

notherapy. Here, using multi-region whole exome/T cell receptor (TCR) sequencing as well

as immunohistochemistry, we reveal a rather homogeneous mutational landscape but

extremely cold and heterogeneous TCR repertoire in limited-stage SCLC tumors (LS-SCLCs).

Compared to localized non-small cell lung cancers, LS-SCLCs have similar predicted

neoantigen burden and genomic ITH, but significantly colder and more heterogeneous TCR

repertoire associated with higher chromosomal copy number aberration (CNA) burden.

Furthermore, copy number loss of IFN-γ pathway genes is frequently observed and positively

correlates with CNA burden. Higher mutational burden, higher T cell infiltration and positive

PD-L1 expression are associated with longer overall survival (OS), while higher CNA burden

is associated with shorter OS in patients with LS-SCLC.
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Small-cell lung cancer (SCLC) accounts for ~15% of all newly
diagnosed lung cancers, leading to ~30,000 deaths in the
United States annually1. SCLC is a highly aggressive cancer

characterized by rapid growth and high rates of early local and
distant metastases2,3. At initial diagnosis, around one-third of
SCLC patients present with cancer confined to one hemithorax,
defined as limited-stage disease (LS) that can be treated with
chemotherapy combined with radiotherapy or surgical resection,
while the remaining patients present with extensive-stage disease
(ES) exhibiting extensive lymph node involvement and/or distant
metastases usually treated with palliative chemotherapy with or
without immune checkpoint blockade (ICB) therapy4–6.
Although most SCLC patients experience an initial response,
nearly all patients recur with rapidly progressing disease resistant
to late-line treatments. Despite extensive research, only modest
advances have been achieved in the treatment of SCLC over the
past 30 years with median survival less than a year and 5-year
overall survival (OS) below 7% for ES-SCLC1,7,8. Recently, the
addition of ICB to chemotherapy has become a new standard of
care for advanced SCLC, although it confers only an improve-
ment of 2–3 months in survival6. The National Cancer Insti-
tute (NCI) has identified SCLC as a recalcitrant malignancy1.
Translational studies to understand the mechanisms underlying
recurrence and therapeutic resistance remain an unmet need to
design novel therapeutic strategies.

Tumors are composed of cancer cells and stromal cells of
distinct molecular and phenotypic features, a phenomenon
termed intratumor heterogeneity (ITH). Evolutionary theory
suggests that populations of high genetic variation have survival
advantages9. Similarly, tumors of complex ITH may be difficult to
eradicate. Higher levels of molecular ITH have been demon-
strated to associate with inferior outcome of cancer patients10–12.
We and others have previously delineated the ITH architecture of
non-small cell lung cancers (NSCLCs) at genomic, epigenetic and
gene expression levels utilizing multiregional sequencing and
demonstrated that complex ITH was associated with inferior
survival10,12–17. It has been speculated that SCLC has an extre-
mely complex ITH architecture that leads to poor prognosis18.
Another plausible explanation for the poor outcome is that SCLC
is associated with an immunosuppressive tumor microenviron-
ment, particularly T cell responses19,20. In localized NSCLC, our
recent work has revealed that a cold and heterogeneous T cell
receptor (TCR) repertoire is associated with inferior survival13,21.
The genomic and TCR ITH architecture of SCLC and their
potential clinical impact have not been well studied, largely due to
lack of adequate tumor specimens22–25 as surgical resection is not
the standard of care for the majority of SCLC patients.

In this study, through international collaboration, we conduct
multi-region whole-exome sequencing (WES) and TCR sequen-
cing of 50 tumor samples from 19 resected LS-SCLCs to depict
the immunogenomic ITH architecture of SCLC and compare
these LS-SCLCs with localized NSCLCs and assess the impact of
immunogenomic attributes on patient survival. We demonstrate
that despite a homogeneous genomic landscape, SCLC exhibits a
cold and heterogeneous T-cell infiltration associated with higher
chromosomal copy number aberration (CNA) burden and loss of
essential immune genes, potentially leading to ineffective anti-
tumor immune surveillance and inferior survival.

Results
Overall homogeneous genomic landscape in SCLC. A total of
50 spatially separated tumor regions (hereafter referred to as
region) from 19 resected LS-SCLC tumors (hereafter referred to
as tumor) with adequate tissue available were subjected to WES
(Supplementary Fig. 1, Supplementary Fig. 2, Supplementary

Data 1). All patients underwent upfront surgery without pre-
operative chemotherapy or radiation therapy. In total, 3773
nonsilent (nonsynonymous, frameshift, stop-gain, and stop-loss)
mutations were identified from these 50 tumor regions (Supple-
mentary Data 2) with a median nonsilent tumor mutational
burden (TMB) of 4.69/Mb (interquartile (25th–75th) range:
2.66–6.43/Mb). TMB varied substantially between patients, but
was similar between different regions within the same tumors
(Supplementary Fig. 3).

We constructed phylogenetic trees of 18 SCLCs for which
multi-region WES data were available (P13 only had one tumor
region and was excluded from this analysis) to depict the genomic
ITH and the evolutionary trajectory of these SCLCs12. A median
of 80.1% (28–93%) (interquartile (25th–75th) range: 72–84%) of
mutations were mapped to the trunks of these 18 SCLCs (Fig. 1a)
representing ubiquitous mutations present in all regions within
the same tumors, compared with 72% (8–99.6%) (interquartile
(25th–75th) range: 55–84%) trunk mutations in 100 early-stage
NSCLC in TRACERx cohort (p= 0.218)14. Considering that the
number of regions per tumor may introduce bias into the
proportion of trunk mutations, we calculated the mutational
Jaccard index (JI) between each pair of specimens within the same
tumors that is not influenced by number of regions (Supplemen-
tary Fig. 4) in 18 SCLCs (Supplementary Fig. 5a). The results
demonstrated that genomic JI was comparable in the cohort of
SCLC and NSCLC from the TRACERx cohort (Supplementary
Fig. 5b, 0.83 vs. 0.82, p= 0.6058).

Next, we assessed the chromosomal copy number aberrations
(CNAs) in this cohort of LS-SCLC using a gene-based
CNA analysis algorithm26 for WES data that compares the
CNA burden between different samples (Supplementary Fig. 6).
The CNA burden was similar between different regions within
the same tumors, but varied substantially between patients
(Supplementary Fig. 7a). The median CNA JI was 0.50 (range:
0.02–0.93) (interquartile (25th–75th) range: 0.27–0.85, Supple-
mentary Fig. 5c), higher than that of NSCLC tumors from the
TRACERx cohort (median: 0.21, range: 0–0.99) (interquartile
(25th–75th) range: 0.06–0.35, Supplementary Fig. 5d). CNA
heterogeneity varied at different chromosomal locations (Supple-
mentary Fig. 7b).

To further understand the global clonal architecture of SCLC
tumors, we merged WES data from different regions within the
same tumors and calculated the percent clonal and subclonal
mutations at tumor level by Pyclone27. The results revealed a
median of 82.8% (24.4–99.8%) (interquartile (25th–75th) range:
65.8–91.7%) of clonal mutations at global tumor level (Fig. 1b),
once again suggesting a relatively homogeneous mutational
landscape.

A total of 134 cancer gene alterations were identified in these
tumors (Supplementary Fig. 8). As expected, the most frequently
altered cancer genes were RB1 and TP53, identified in 16 (84%)
and 15 (79%) of the 19 patients, respectively. Importantly, 86 of
134 (64%) cancer gene alterations were detected in all regions
within the same tumors and 30 of 34 (88%) cancer gene point
mutations (with known clonal status at tumor level) were clonal.
These results suggest that these cancer gene alterations were early
genomic events during evolution of SCLC and the genomic
landscape of these SCLC tumors was homogeneous not only
quantitatively, but also qualitatively in key cancer gene
alterations.

Different mutational processes are associated with early versus
late mutagenesis in SCLC. Understanding how mutational pro-
cesses shape cancer evolution may inform the mechanisms
underlying tumor adaptation28. We analyzed the mutational
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spectrum and signatures in these SCLCs29. C > A transversions
were the most common nucleotide substitutions (Supplementary
Fig. 9) and Cosmic Signature 4 (associated with cigarette smok-
ing) was the predominant mutational signature (Supplementary
Fig. 10a) as expected, given that all 19 patients were either
smokers or heavy second-hand smokers.

To further dissect the mutational processes associated with
early versus later carcinogenesis of these SCLC tumors, we
delineated the mutational signatures of trunk mutations repre-
senting early genomic events and nontrunk mutations represent-
ing later events, respectively28. As shown in Supplementary
Fig. 10b, c, among the top 5 mutational signatures, Cosmic
Signature 4 remained as the predominant signature in trunk
mutations contributing to 62% of the top 5 signatures, consistent
with previous reports that smoking-associated mutational
processes play critical roles during early mutagenesis of lung
cancers12,14,30. On the other hand, the contribution of Signature 4
was significantly reduced (29% for nontrunk mutational signa-
tures versus 62% for trunk mutational signatures among the
top 5 signatures, p= 0.002), while Cosmic Signature 3 (associated

with defect of DNA double-strand break repair) emerged as the
predominant signature for nontrunk mutations (45% for
nontrunk mutational signatures versus 6% for trunk mutational
signatures among the top 5 signatures, p < 0.0001). These results
highlight the dynamic nature of mutagenesis at different time
points during evolution of SCLC and suggest that smoking-
associated mutational processes play essential roles during early
carcinogenesis of this cohort of SCLC, while later evolution may
be associated with other mutational processes such as DNA repair
defects.

Cold TCR repertoire in SCLC tumors. We next performed TCR
sequencing in 36 tumor specimens (1–3 regions per tumor) and
16 tumor-adjacent lung tissues from patients with adequate DNA
remaining. T-cell density, an estimate of the proportion of T cells
in a specimen, ranged from 0.11% to 33% with a median of 1.7%
(interquartile (25th–75th) range: 0.57–3.97%) (Supplementary
Fig. 11a). T-cell richness, a measure of T-cell diversity, ranged
from 38 to 8286 unique T cells (median: 510) (interquartile

Fig. 1 Genomic intratumor heterogeneity (ITH) and clonal architecture of limited-stage small-cell lung cancers (LS-SCLCs). a Phylogenetic trees of 18
limited-stage SCLC tumors (LS-SCLCs) with multi-region whole-exome sequencing (WES). Blue, brown and red lines represent trunk, branch, and private
mutations, respectively. The length of trunk (blue), branch (brown), and private branch (red) is proportional to the numbers of mutations shared by 3, 2, or
1 tumor regions. The total number of mutations is listed above the phylogenetic tree of each tumor. TP53 and RB1 mutations are mapped to the
phylogenetic trees as indicated. b Global clonal architecture of SCLC at tumor level. PyClone was run on merged bam files from different regions of the
same tumors. Mutations were classified as clonal (present in the cluster with the highest cellular prevalence, blue) or subclonal (orange) in each tumor.
The total number of mutations in each tumor is listed on the top of each bar. Note: the numbers of mutations in each tumor are less than those in
phylogenetic analysis as the clonal status of some mutations could not be inferred by PyClone. Patient ID: purple= alive; green= deceased. Source data
are provided as a Source Data file.
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(25th–75th) range: 181–1034) per specimen (Supplementary
Fig. 11b) and T-cell clonality, a metric depicting T-cell expansion
and reactivity, ranged from 0.002 to 0.139 (median= 0.009)
(interquartile (25th–75th) range: 0.005–0.0025) (Supplementary
Fig. 11c). Compared with tumor-adjacent lung tissues (≥2 cm
from tumor margin), SCLC tumors demonstrated lower T-cell
density, richness, and clonality (p= 0.0580, p= 0.0067, and
p= 0.0166, respectively, Supplementary Fig. 11d–f), indicating a
reduced T-cell infiltration, diversity, and proliferation in tumor
tissues similar to NSCLC21. As shown in Supplementary Fig. 11,
P13 was an outlier in TCR parameters. We therefore re-ran this
analysis excluding P13, which did not lead to significant changes
(Supplementary Fig. 12). Of particular interest, compared with
the TCR repertoire data generated using the same method from
NSCLCs (the PROSPECT cohort), all three TCR metrics were
significantly lower than those from NSCLCs (T-cell density 0.014
versus 0.21, p < 0.0001 (Fig. 2a); diversity 510 versus 3246,
p < 0.0001 (Fig. 2b); and clonality 0.009 versus 0.14, p < 0.0001
(Fig. 2c))21. Similarly, the total TCR templates were also sig-
nificantly lower in SCLC tumors compared with NSCLC tumors
(Supplementary Fig. 13).

Higher levels of immune-cell infiltration can lead to low tumor
purity. Vice versa, lower tumor purity can indicate a higher level
of immune-cell infiltration. We estimated tumor purity by
Sequenza31 in this cohort of LS-SCLCs and compared that with
localized NSCLCs from the PROSPECT cohort. As shown in
Fig. 3a, significantly higher tumor purity was observed in these

SCLC compared with NSCLC from the PROSPECT cohort
supporting possible lower immune infiltration in SCLC.

Furthermore, we derived the immune score by quantifying the
density of all immune cells within tumors and estimated the
fraction of T-cell infiltration by deconvoluting previously
published RNA sequencing (RNA-seq) data of 81 SCLCs23 and
compared those with 1027 NSCLCs from TCGA30,32. In line with
TCR repertoire findings, both immune score and estimated T-cell
fraction were significantly lower in SCLCs than NSCLCs
(p < 0.0001, p < 0.0001, respectively, Fig. 3b, c).

To orthogonally assess tumor-infiltrated T cells, we performed
immunohistochemistry (IHC) by T-cell marker CD3 and
programmed death ligand-1 (PD-L1) (Supplementary Fig. 14)
on 66 SCLC tumors, including 18/19 tumors in the current study
(one tumor tissue was exhausted) and 68 NSCLC tumors
(Supplementary Data 1) with matched clinical characteristics,
including sex, age, smoking status and tumor size (Table 1). As
shown in Fig. 3d, SCLC tumors had significantly lower T-cell
infiltration than NSCLC tumors (p < 0.0001). Importantly, the
T-cell infiltration was negatively associated with tumor purity
(r=−0.47, p= 0.0405, Fig. 3e), indicating lower T-cell infiltration
was one potential reason underlying observed higher tumor purity
in SCLCs than NSCLCs. Moreover, the PD-L1 expression was also
significantly lower in SCLCs than NSCLCs (p < 0.0001, Fig. 3f).
Taken together, these data suggest that SCLC had an overall lower
T-cell infiltration rather than higher level of adaptive immuno-
suppression compared with NSCLCs at the time of resection.
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Fig. 2 TCR metrics in small-cell lung cancer (SCLC) versus non-small cell lung-cancer (NSCLC) tumors (the PROSPECT cohort). a T-cell density—an
estimate of the proportion of T cells in a specimen, b T-cell richness—a measure of T-cell diversity and (c) T-cell clonality—a metric indicating T-cell expansion
and reactivity, were derived from 19 SCLCs (red) versus 236 NSCLCs (blue) from the PROSPECT cohort. TCR intratumor heterogeneity (ITH) in 10 SCLC versus
11 NSCLC using (d) the average Jaccard index (JI), a metric representing the proportion of shared T-cell clonotypes, eMorisita index (MOI), a metric taking into
consideration not only the composition of T-cell clonotypes but also the abundance of individual T-cell clonotypes and (f) proportion of shared top 20 TCR
clonotypes between any paired samples within the same tumors in SCLC (blue) versus NSCLC tumors (red) with multiregional TCR data available. The
difference of TCR metrics between SCLC and NSCLC was evaluated using two-sided Mann–Whitney test. Source data are provided as a Source Data file.
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Substantial TCR repertoire heterogeneity in SCLC. To gain
further insights into TCR heterogeneity, we calculated the JI
measuring the proportion of shared T-cell clonotypes between
two samples. Substantial TCR heterogeneity was evident across all

SCLC tumors, with a median JI of 0.05 (0.02–0.15) in the 10
SCLCs with multiregion TCR data available (Fig. 4a), significantly
lower than the 11 localized NSCLCs13 (median 0.05 in SCLC vs.
0.16 in NSCLC, p < 0.0001) (Fig. 2d) with multiregion TCR data
available13. Furthermore, 79.9–97.7% of T-cell clones were
restricted to individual tumor regions, while only 0.2–14.6%
(median: 0.98%, interquartile (25th–75th) range: 0.54–3.06%)
were identified in all regions within the same tumors (Fig. 4b),
significantly lower than NSCLC (median: 5.7%, range: 1.6–14.5%)
(interquartile (25th–75th) range: 3.6–7.4%) (p= 0.0048)13

demonstrating profound TCR ITH in SCLC even beyond NSCLC.
Of note, TCR JI was positively correlated with T-cell density,
richness and clonality, although not universally statistically sig-
nificant (Supplementary Fig. 15a–c).

To compare shared TCR clonotypes considering T-cell
expansion, we used two additional metrics: Morisita index
(MOI), which takes into consideration not only T-cell clonotype
composition but also abundance, and the proportion of shared
top (most expanded/abundant) 20 clonotypes. Similar to TCR JI,
compared with the NSCLCs13, SCLC tumors showed significantly
lower TCR MOI and shared top 20 TCR clonotypes (Fig. 2e, f),
suggesting a higher level of TCR ITH in SCLC tumors for not
only the overall TCR repertoire but also for the most expanded/
active T cells.
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Fig. 3 Comparison of immune features in small-cell lung cancer (SCLC) versus non-small cell lung cancer (NSCLC). a Tumor purity in SCLCs versus
NSCLCs. Tumor purity was derived from whole-exome sequencing (WES) data from 19 SCLC tumors (blue) versus 242 NSCLC tumors (red) from the
PROSPECT cohort. b T-cell infiltration in SCLCs compared with NSCLCs. T-cell infiltration was derived by deconvolution of RNA sequencing (RNA-seq)
data of 81 SCLC tumors (George cohort) versus 1027 NSCLC tumors from TCGA. c Immune score in SCLCs compared with NSCLCs. The immune score
was calculated from RNA-seq data to quantify all immune cells within the tumors from 81 SCLC tumors (George cohort) versus 1027 NSCLC tumors from
TCGA. d CD3+ tumor-infiltrating lymphocytes (TILs) of SCLC (n= 67) versus NSCLC (n= 68) tumors by immunohistochemistry (IHC). The y axis
represents CD3+ TILs: tumor-cell ratio. e Association of tumor purity with CD3+ TILs in SCLCs (n= 19). The y axis represents CD3+ TILs: tumor-cell
ratio. f Expression of programmed death ligand-1 (PD-L1) by IHC in SCLC (n= 67) versus NSCLC (n= 68) tumors. The difference of immune features
between SCLC and NSCLC was evaluated using two-sided Mann–Whitney test. The correlation coefficient (r) of tumor purity with CD3+ TILs was
assessed by two-tailed Spearman’s rank-correlation test. Source data are provided as a Source Data file.

Table 1 Clinical characteristic comparison of SCLC and
NSCLC patients.

SCLC (n= 67) NSCLC
(n= 68)

p value

Age (median) (yrs) 64 (38–83) 64 (36–79) 0.9659
Gender 0.155
Female 11 18
Male 56 50
Smoking status 0.2025
Never smokers 16 23
Smokers 51 45
Tumor size
(median) (cm)

2.8 (1–10) 3 (1–8.5) 0.6205

TNM stage 0.0666
I 30 31
II 23 13
III 14 24

The p values were calculated by two-sided Mann–Whitney test for age, Chi-squared test for
gender, Chi-squared test for smoking status and Mann–Whitney test for tumor size.
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Frequent copy number aberrations, loss of IFN-γ pathway
genes, and HLA LOH in SCLCs. To identify the genomic
aberrations underlying a cold TCR repertoire in SCLC, we first
assessed (HLA)-A-, -B-, and -C-presented neoantigens in
silico33,34. A median of 88 (39–503) (interquartile (25th–75th)
range: 53–125) predicted neoantigens (IC50 < 500 nmol/L) per
tumor were detected (Supplementary Fig. 16a), which was similar
to NSCLCs from the PROSPECT cohort (median: 72/tumor,
2–801, interquartile (25th–75th) range: 35–125, p= 0.25). Similar
to somatic mutations, 81% (48–93%, interquartile (25th–75th)
range: 72–89%) of predicted neoantigens were present across
different regions within the same tumors (Supplementary
Fig. 16b), and 91% of predicted neoantigens (21–100%, inter-
quartile (25th–75th) range: 77–82%) were associated with clonal
mutations at the tumor level. These results suggest that the cold
TCR repertoire in SCLC is unlikely to be due to a low clonal
neoantigen burden.

We next assessed the associations between CNA burden and
TCR repertoire35,36. A median of 2310 CNA events per tumor
(26–8044, interquartile (25th–75th) range: 444–4318) were
identified from these SCLCs (Supplementary Fig. 7a), significantly

higher than 111 per tumor (range: 0–7741, interquartile
(25th–75th) range: 0–561) in NSCLCs from the PROSPECT
cohort (p < 0.0001)21, which have exhibited a significantly more
active TCR repertoire than this cohort of SCLCs (Fig. 2a–c).
Importantly, the CNA burden was negatively associated with
T-cell density, richness, and clonality in this cohort of SCLCs
(Fig. 5a–c, r=−0.40, p= 0.0157; r=−0.36, p= 0.0321;
r=−0.33, p= 0.0490, respectively), suggesting that higher
CNA burden was an important genomic feature associated with
an impaired TCR repertoire in these SCLCs.

One potential impact of CNA on immune evasion is loss of
neoantigens35,37. In this cohort, predicted neoantigen-associated
genes were not observed to be more frequently lost than other
mutated genes (Supplementary Fig. 17a). We next explored
whether loss of heterozygosity (LOH) is associated with predicted
neoantigen loss. As shown in Supplementary Fig. 17d, LOH was
enriched in chromosomal regions 3p, 5, 13, 15, and 17p,
consistent with previous reports23,38. Copy number neutral
LOH (CNN–LOH) was more common in predicted neoantigen-
associated genes than mutated genes not associated with
neoantigens (Supplementary Fig. 17b). The same trend was
observed in copy number loss LOH (CNL–LOH), though the
difference was not statistically significant (Supplementary
Fig. 17c). These results suggest that neoantigen loss through
LOH could be a potential mechanism underlying immune
evasion in this cohort of SCLCs. An important follow-up
question is whether these predicted neoantigens were maintained
or lost under LOH. Presumably, all LOH events associated with
neoantigens must be subclonal, otherwise, these mutations
leading to neoantigens would not have been detected. If these
predicted neoantigens are kept under (or occurred after) LOH, it
could indicate either a lack of immune evasion or inability of
LOH as a mechanism of immune evasion. As there are currently
no appropriate computational approaches to reliably infer the
clonal status of LOH, we used trunk (LOH present in all regions
within the same tumors) versus branch (LOH present in some but
not all regions within the same tumors) status to represent the
clonal status of LOH. Overall, a median of 89.8% (ranging from
40.2% to 99.3%) of LOH events were trunk events shared by all
regions within the same tumors (Supplementary Fig. 18 and 19),
suggesting that these LOH events were early molecular events
during the evolution of these SCLC tumors. Importantly, only a
median of 16% (range: 1.5–26%) of genes associated with
predicted neoantigens showed evidence of LOH and a median
of 18% (range: 0–73%) of LOH events associated with predicted
neoantigens were branched albeit numerically higher when all
LOH events were considered (Supplementary Fig. 20). With all
the technical caveats acknowledged, these results did not support
LOH as a major mechanism underlying immune evasion in this
cohort of SCLC tumors.

Mutations of essential genes (e.g., B2M, JAK1, and JAK2) of
antigen-presentation (APC) pathways and copy number loss of
interferon gamma (IFN-γ) pathway genes have been reported to
play pivotal roles in immune evasion39,40. In this cohort of
SCLCs, we did not detect any mutations in APC-pathway genes.
However, copy-number loss of IFN-γ pathway genes was
frequently observed in this cohort of SCLCs (Fig. 6a) and was
significantly more common than NSCLCs (Fig. 6b). Importantly,
copy-number loss in IFN-γ pathway genes was positively
associated with the CNA burden (Fig. 6c). These data suggest
that frequent loss of essential immune genes associated with the
high global CNA burden may be one potential genomic basis
underlying immune evasion in SCLCs.

LOH of HLA has also been reported as a potential immune-
evasion mechanism across different cancers41,42. Evidence of
HLA LOH was revealed in 9 of 19 SCLC tumors, numerically
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Fig. 4 Substantial T cell receptor (TCR) repertoire intratumor
heterogeneity (ITH) in small-cell lung cancer (SCLC). a Quantification of
TCR ITH by Jaccard index (JI), a metric representing the proportion of
shared T-cell clonotypes between two samples in 10 SCLC patients with
multiregion TCR sequencing data. b Proportions of T-cell clonotypes
detected in all regions (shared, blue), in 2/3 (brown) and restricted to a
single region (red) from the same tumors in 10 SCLC patients with
multiregion TCR sequencing data. Patient ID: purple= alive;
green= deceased. Source data are provided as a Source Data file.
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higher than in NSCLCs from the TRACERx (9/19 versus. 36/90,
p= 0.61) and the PROSPECT cohort (9/19 versus 60/216,
p= 0.11), although the difference did not reach statistical
significance likely due to the small sample size. Among the
21 samples with HLA LOH in this cohort of SCLC, a median of
52.7% (0–89.7%) of predicted neoantigens bound to the lost allele
(Supplementary Fig. 21) supporting HLA LOH as one potential
mechanism underlying immune evasion. On the other hand,

some tumors (P01, P04, and P14 for example) had only a small
proportion of predicted neoantigens binding to the lost allele,
suggesting that other factors could have contributed to immune
evasion in these tumors.

Taken together, these results suggest that there was once
immune pressure during carcinogenesis of these SCLC. Loss of
essential immune genes and HLA LOH could be common
genomic alterations underlying immune evasion. Eventually,
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Fig. 5 Associations of chromosomal copy number aberrations (CNAs) with T cell receptor (TCR) repertoire. CNA burden and its negative correlations
with T-cell (a) density, (b) richness, and (c) clonality in 36 small-cell lung cancer (SCLC) samples with both CNA and TCR data available. The correlation
coefficient (r) was assessed by two-tailed Spearman’s rank-correlation test. Source data are provided as a Source Data file.

Fig. 6 Copy number loss of interferon gamma (IFN-γ) pathway genes in small-cell lung cancer (SCLC) and comparison with non-small cell lung-cancer
(NSCLC) tumors. a Copy number loss of IFN-γ pathway genes in 50 SCLC samples from 19 SCLC patients. Purple patient IDs= alive; Green patient
IDs= deceased. b Copy-number loss burden of IFN-γ pathway genes in 50 SCLC samples (blue) versus 327 NSCLC samples (red) from TRACERx. c
Correlation of copy number alteration (CNA) burden of IFN-γ pathway genes with overall CNA burden in SCLC (n= 50). The difference of copy number
loss burden of IFN-γ pathway genes between SCLC and NSCLC was evaluated using two-sided Mann–Whitney test. The correlation coefficient (r) of CNA
burden of IFN-γ pathway genes with overall CNA burden was assessed by two-tailed Spearman’s rank-correlation test. Source data are provided as a
Source Data file.
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these SCLC tumors were able to survive immune pressure,
leading to a limited immune infiltration, as evidenced by low
T-cell infiltration and low T-cell expansion. Interestingly, among
the 9 SCLC tumors, 5 tumors had HLA LOH in all regions (P04,
09, 17, 18 and 19), while four tumors had HLA LOH in 1 or 2
regions (P01, 02, 07 and 14). Similarly, loss of different IFN-γ
pathway genes was observed in different regions of the same
SCLC tumors (Fig. 6a). These data indicate that distinct immune-
escape mechanisms could be at play not only in different patients
but also in different subclones within the same tumors.

Genomic and TCR ITH associated with survival in patients
with SCLC. We next attempted to assess whether genomic and
T-cell features impact clinical outcome. Given the limited sample
size and lack of availability of recurrence status for certain
patients, we focused on OS. Higher TMB was associated with
significantly longer OS (Fig. 7a, HR= 0.85, p= 0.036), consistent
with previous reports in NSCLC43. Conversely, significantly
shorter OS was observed in patients with higher CNA burden
(Fig. 7b, HR= 1.21, p= 0.014). No TCR parameters (T-cell
density, richness, and clonality) were associated with OS (Sup-
plementary Fig. 15d–f), however, patients with a more hetero-
geneous TCR repertoire (lower TCR JI) exhibited significantly
shorter OS (Fig. 7c, HR= 0.87, p= 0.037).

Interestingly, lower tumor purity, presumably indicative of
more immune infiltration, was associated with longer OS (Fig. 7d,

HR= 1.30, p= 0.001). This finding was further supported by the
IHC data on the 66 SCLC patients, where significantly longer OS
was observed in patients with higher level of CD3 (Fig. 7e,
HR= 0.32, p= 0.0167) or positive PD-L1 expression (Fig. 7f,
HR= 0.35, p= 0.0249). Prolonged DFS was also observed in
patients with higher CD3 infiltration (Supplementary Fig. 22a,
HR= 0.30, p= 0.0059) or positive PD-L1 expression (Supple-
mentary Fig. 22b, HR= 0.54, p= 0.1411) in their tumors,
suggesting that increased intratumor T-cell infiltration was
associated with superior disease control and survival in these
SCLC patients.

Discussion
Although pioneering studies have revealed pivotal molecular
features22–25,38, the genomic ITH architecture of SCLC has not
been defined, primarily due to the lack of adequate tumor spe-
cimens for multiregion profiling. Because SCLC is sensitive to
initial treatment but nearly all patients experience relapse with
refractory disease, it has been speculated that SCLC may have
profound mutational ITH, where cancer cells highly resistant to
chemotherapy/radiotherapy hide in the treatment-naive SCLC
tumors as minor subclones that give rise to relapse7,44. Surpris-
ingly, all SCLCs in the current study demonstrated a homo-
geneous genomic landscape for both mutations and CNAs.
Additionally, previous work from our group45 and others38 has
demonstrated striking similarity of the mutational landscape
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Fig. 7 Association of overall survival (OS) with immunogenomic landscape. a OS of patients with higher (above median, blue) tumor mutational burden
(TMB) versus patients with lower (below median, red) TMB. b OS of patients with higher (above median, blue) copy number aberration (CNA) burden
versus patients with lower (below median, red) CNA burden. c OS of patients with more homogeneous T-cell receptor (TCR) repertoire (higher above-
median TCR Jaccard index (JI), blue) versus patients with more heterogeneous TCR repertoire (lower below-median TCR JI, red). d OS of patients with
tumors of higher (above median, blue) tumor purity versus patients with tumors of lower (below median, red) tumor purity. e OS of patients with tumors of
higher (no less than median, blue) CD3+ tumor-infiltrating lymphocytes (TILs) versus patients with tumors of lower (below median, red) CD3+ TILs. f OS
of patients with tumors of positive (above 0, blue) programmed death ligand-1 (PD-L1) expression versus patients with tumors of negative (equal to 0, red)
PD-L1 expression. Two-sided log-rank test was used for survival analysis. Source data are provided as a Source Data file.
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between primary and relapsed SCLC. Taken together, these data
indicate that complex genomic ITH and selection of chemo-/
radio-resistant minor subclones may not be the main mechan-
isms underlying therapeutic resistance in SCLC.

Cancer evolution with or without treatment may be shaped by
the dynamic interaction between cancer cells and host factors,
particularly through immune surveillance46. Our study delineates
the intratumor TCR repertoire of SCLC and demonstrates an
extremely cold TCR repertoire quantitatively (density) and qua-
litatively (richness and clonality), compared with not only mat-
ched normal lung tissues but also compared with NSCLC tumors
despite the fact that SCLC and NSCLC tumors had similar TMB
and comparable mutational homogeneity. Comparing the
immune score and estimated T-cell fraction by deconvolution of
transcriptomic data from a previously published larger SCLC
cohort (n= 81)23 to TCGA NSCLC cohorts (n= 1,027) also
revealed significantly lower immune infiltration in SCLCs than
NSCLCs. These findings were further validated orthogonally by
IHC using anti-CD3 on 66 SCLC tumors and 68 NSCLC tumors
matched for clinicopathological characteristics.

In addition to the cold intratumor TCR repertoire, SCLC
tumors also demonstrated an extremely heterogeneous TCR
repertoire with only 0.2–14.6% of all T cells identified across all
tumor regions within the same tumors. TCR ITH was even more
pronounced than that in NSCLC13, which may further impair the
efficacy of the antitumor immune response. SCLC is among the
cancers with high TMB28 and our study also demonstrated a
homogeneous mutational landscape, both of which have been
reported to associate with benefit from ICB47. However, com-
pared with NSCLC and other tumor types, fewer SCLC patients
benefit from ICB48. The cold and heterogeneous TCR repertoire
may be one potential reason underlying suboptimal response to
immunotherapy.

In subsequent attempts to identify genomic features that may
account for the cold TCR repertoire in SCLC, a significantly
higher CNA burden was observed in SCLC compared with that in
NSCLC. Moreover, the CNA burden was negatively associated
with both T-cell quantity (density) and quality (richness and
clonality). These results suggest that high CNA burden may be
one of the genomic changes underlying the cold TCR repertoire
in SCLC. High CNA burden has been reported to correlate with a
cold immune microenvironment and inferior benefit from ICB
across different cancer types35,49,50. The mechanisms underlying
the association between high CNA burden and immunosup-
pression are not well understood. In this study, we observed
frequent loss of IFN-γ pathway genes, which has been reported to
associate with immune evasion of cancers39,40. Importantly, the
frequency of IFN-γ pathway gene copy-number loss was asso-
ciated with the overall CNA burden. One feasible explanation is
that dual inactivation of TP53 and RB1 led to global chromoso-
mal instability51 (as evidenced by the overall high CNA burden)
and higher incidence of losing essential immune genes, including
IFN-γ pathway genes, which subsequently empowered SCLCs to
evade the host antitumor immune response. Future multiomics
studies, including transcriptomic profiling and functional studies,
are eventually warranted to determine how exactly CNA impacts
the antitumor immune response.

Compared with many malignancies, our understanding of the
molecular landscape of SCLC is rudimentary, primarily due to the
lack of adequate tumor tissues, as the majority of SCLC patients
are not treated with surgical resection. As such, our study was
limited by the small sample size, and therefore, these intriguing
findings need to be validated by larger cohorts in future studies
that may need multi-institutional collaboration. Nevertheless,
WES and TCR data from multiregional specimens make these
data unique to understand the ITH architecture of SCLC tumors.

Additionally, one of the main findings regarding cold T-cell
infiltration was validated orthogonally by IHC on a larger cohort
of SCLC tumors and NSCLC tumors matched for clin-
icopathologic features. Another limitation is that it is unclear
whether the biology of these resected early-stage SCLC tumors
resembles that of advanced-stage SCLCs. On the other hand, we45

and Wagner et al38 have demonstrated similar genomic landscape
between treatment-naive resected SCLC tumors and recurrent
disease, suggesting that some of the findings in the current study
may be applicable to advanced SCLCs. Finally, the resected
tumors only offer one molecular snapshot during evolution of
these SCLC tumors and the dynamic interaction between cancer
cells and immune features before the surgical resection is still
unknown. For example, although the low T-cell infiltration, low
immune score, and low PD-L1 expression suggested an overall
cold immune response rather than the high level of adaptive
immune evasion in these SCLC tumors, the high prevalence of
HLA LOH suggested that active adaptive immune suppression
may have taken place at some point during early evolution of
these SCLC tumors.

In summary, we demonstrate that despite a homogeneous
genomic landscape, SCLC exhibits a cold and heterogeneous
T-cell infiltration that could potentially lead to ineffective anti-
tumor immune surveillance. From a therapeutic standpoint, these
findings demand further investigation into approaches capable of
overcoming the cold and heterogeneous intratumor T cell
repertoire to improve the efficacy of immunotherapy for SCLC
patients. Enhancement of T-cell trafficking into SCLC tumors as
well as within tumors may have the potential to promote T-cell
infiltration and make the immune infiltrate more consistent,
therefore generating more effective antitumor responses. T-cell
trafficking can be impaired by tumor-vascular structure52, aber-
rant tumor extracellular-matrix architecture53, presence of
myeloid-derived suppressor cells (MDSCs)54, hypoxia55, lack of
T-cell recruitment-associated chemokines such as CCL5 and
CXCL956, as well as other mechanisms. Targeting these pathways
to reprogram T-cell motility may provide opportunities to
improve the efficacy of immunotherapy in tumors with a cold
and/or heterogeneous immune infiltrate such as SCLC.

Methods
Patients. A total of 67 patients with LS-SCLC (11 females and 56 males with
median age 64 (range: 38–82)) who underwent surgical resection at Zhejiang
Cancer Hospital, Hangzhou, China from 2008 to 2020, were enrolled. All the
enrolled patients underwent upfront surgery without preoperative chemotherapy
or radiation therapy and no patients received immunotherapy prior to or post
surgery. As a control group, 68 patients with localized NSCLC (18 females and 50
males with median age 64 (range: 36–79)), who underwent upfront surgery without
preoperative chemotherapy or radiation therapy also at Zhejiang Cancer Hospital,
Hangzhou, China, were included. The clinical information of all 135 patients is
included in Supplementary Data 1. The SCLC group and NSCLC group were
matched for clinical characteristics, including gender, age, smoking status and
tumor size (Table 1). Written informed consent was obtained from all patients
involved. The study was approved by the Institutional Review Boards (IRB) at MD
Anderson Cancer Center and Zhejiang Cancer Hospital. This study is compliant
with the “Guidance of the Ministry of Science and Technology (MOST) for the
Review and Approval of Human Genetic Resources”, which requires formal
approval for the export of human genetic material or data from China.

Sample processing and DNA extraction. Hematoxylin and eosin (H&E) slides
from each tumor were reviewed by experienced lung-cancer pathologists to con-
firm the diagnosis, assess necrosis, tumor purity, and cell viability. Manual mac-
rodissection was conducted to enrich malignant cells. A H&E slide from each
tumor region was first reviewed by experienced lung-cancer pathologists to assess
the percentage of tumor versus adjacent normal tissues. Three regions from each
tumor FFPE block, were collected by a “grid” approach representing the spatial
heterogeneity of the primary tumors. Only tumor regions with sufficient tumor
cells (estimated 50,000 cancer cells) that could yield a minimum of 150 ng of DNA
were selected for DNA exaction and sequencing (Supplementary data 3, Supple-
mentary Fig. 2). DNA was extracted using the AllPrep® DNA/RNA FFPE Kit
(Qiagen, Hilden, Germany) from 50 spatially separated tumor regions from 19 LS-
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SCLC tumors with adequate tissues available (three regions per tumor from 13
patients, two regions per tumor from five patients, and one tumor piece from one
patient) and paired matched adjacent normal lung (≥2 cm from tumor margin,
morphologically negative for malignant cells assessed by two lung cancer pathol-
ogists independently)57.

WES. WES was performed using the Illumina protocol at MD Anderson Cancer
Center. DNA was extracted using the QIAamp DNA FFPE Tissue Kit (QIAGEN)
and the resulting genomic DNA was sheared into 300–400-bp segments and
subjected to library preparation for WES using KAPA library prep (Kapa Biosys-
tems) with the Agilent SureSelect Human All Exon V4 kit according to the
manufacturer’s instructions.58 In all, 76-nt paired-end multiplex sequencing of
DNA samples was performed on the Illumina HiSeq 2500 sequencing platform.
The average sequencing depth was 180x for tumor DNA (ranging from 64x to
224x), 161x for germline DNA (ranging from 96x to 194x).

Quality control for sequencing data from FFPE samples. As all specimens were
formalin-fixed paraffin-embedded (FFPE) samples, which are known to be asso-
ciated with artifacts from NGS, rigorous quality control was applied before further
analyses57. FFPE artifacts usually present as nonrecurrent, low log-odds (LOD)
score, and low variant allele frequency (VAF) (usually < 10%), predominantly
C > T | G > A “transitions”. On the other hand, smoking-induced mutations are
predominately C > A | G > T. Therefore, in addition to sequencing depth, VAF, and
minimal counts of alternative reads, a minimal LOD threshold of 18 (the default is
6.3 for somatic mutation calls) based on our data was applied to filter out FFPE
artifacts. As shown in Supplementary Fig. 23, “mutations” with low LOD scores
exhibited a high proportion of C > T | G > A transitions, while mutations with high
LOD scores showed consistent proportion of C > A | G > T transversions, sug-
gesting that “mutations” with low LOD scores were likely “contaminated” by FFPE
artifacts. We then assessed the quality of mutation calls after our stringent filtering.
As shown in Supplementary Fig. 9, the predominant single nucleotide variants
(SNVs) included in the current study were predominantly C > A | G > T rather than
C > T | G > A. Taken together, these data suggest that FFPE artifacts were con-
trolled for the current study.

Mutation calling. The BWA aligner (bwa-0.7.5a) was applied to map the raw reads
to the human hg19 reference genome (UCSC genome browser: genome.ucsc.edu).
The Picard (v1.112, http://broadinstitute.github.io/picard/) “MarkDuplicates”
module was applied to mark the duplicate reads. Then the “IndelRealigner” and
“BaseRecalibrator” modules of the Genome Analysis Toolkit were applied to per-
form indel realignment and base-quality recalibration. Mutect (v1.1.4)59 was
applied to identify SNVs and small insertions/deletions. To ensure high-quality
mutation calls, the following filtering criteria were applied: (1) sequencing depth
≥20× in tumor DNA and ≥10× in germline DNA; (2) VAF ≥0.02 in tumor DNA
and <0.01 in germline DNA; (3) the total number of reads supporting the variant
calls is ≥4; (4) variant frequency is <0.01 in ESP6500, 1000-genome, and EXAC
databases; and (5) LOD score >18 (MuTect default is 6.3). We kept the mutations
that passed all filtering criteria except LOD score <18, only if the identical muta-
tions were present with LOD score >=18 in other regions within the same tumors.
Cancer gene mutations were defined as identical oncogene mutations previously
reported, stop gains and frameshift of tumor suppressor genes, and other non-
synonymous mutations with Combined Annotation Dependent Depletion (CADD)
score >2060.

Clonal analysis. To delineate the clonal architecture of the 19 SCLC tumors, we
merged the bam files from different regions within the same tumors and calculated
the percent of clonal and subclonal mutations. To ensure high-quality mutation
calls at tumor level, the following filtering criteria were applied: (1) sequencing
depth ≥20× in tumor DNA and ≥10× in germline DNA; (2) variant-allele fre-
quency (VAF) ≥0.02 in tumor DNA and <0.01 in germline DNA; (3) the total
number of reads supporting the variant calls is ≥4; (4) variant frequency is <0.01 in
ESP6500, 1000-genome, and EXAC databases; and (5) LOD score >30 (MuTect
default is 6.3) based on our data (Supplementary Fig. 24). We rescued those
mutations if they were identified at region level. Tumor contents and major/minor
copy number changes were then estimated by Sequenza (v2.1.2)31. Pyclone-VI61

was applied to estimate the clonal status of each mutation. In brief, PyClone
implements a Dirichlet process clustering model that simultaneously estimates the
distribution of the cellular prevalence for each mutation. Copy numbers of somatic
mutations were inferred by integrating integer copy numbers determined by
Sequenza (v2.1.2) on single-sample basis. The outputs were cellular-prevalence
value distributions per SNV estimated from Markov-chain Monte Carlo (MCMC)
sampling. The median value of the MCMC sampling-derived distribution was used
as a representative cellular prevalence for each mutation. Those mutations in the
cluster with the highest cellular prevalence were classified as “clonal”, otherwise,
“subclonal”62.

Phylogenetic analysis. Mutation profiles were converted into binary format
with 1 being mutated and 0 otherwise. Ancestors were germline DNA assuming
with no mutations. Multistate discrete-character Wagner parsimony method in

PHYLIP (Phylogeny Inference Package) (version 3.695) was used to generate
phylogenic tree63.

Mutational signature analysis. The R package “DeconstructSigs” (version 1.8.0)64

was applied to estimate the proportions of 30 COSMIC mutational signatures
(http://cancer.sanger.ac.uk/cosmic/signatures).

Somatic copy number analysis. ExomeCNV (version 1.4)65 was applied to infer
CNA by estimating the tumor/normal read-count log2 ratio of the capture region
followed by segmentation. CNTools package (version 1.49.0) was used to segment
DNA copy number profiles at the gene level. Those genes with mean-segment
log2 ratio >0.6 were defined as copy number gain and <−0.6 was defined as
copy number loss. CNA burden was quantified using a gene-based CNA analysis
algorithm26 for exome-sequencing data that allows the comparison of the CNA
between different samples. To define the copy-number gains of oncogenes identified
by ExomeCNV, the copy number output from Sequenza was taken into con-
sideration. Only oncogenes with copy number values higher than the overall ploidy
of the sample in Sequenza output were defined as having copy-number gains.

Neoantigen prediction. WES data were reviewed for nonsynonymous exonic
mutations. The binding affinity with patient-restricted MHC class I molecules of all
possible 9- and 10-mer peptides was evaluated with the NetMHC3.4 algorithm
based on patient HLA-A, HLA-B, and HLA-C alleles66–68. HLA allele was pre-
dicted by POLYSOLVER (version 1.2.0)41. Candidate peptides were considered
HLA binders when IC50 < 500 nM.

TCR-β sequencing and comparison parameters. Immunosequencing of the
CDR3 regions of human TCR-β chains was performed using the protocol of
ImmunoSeq (Adaptive Biotechnologies, hsTCRβ Kit)69–71. Two sets of PCRs were
performed on DNA extracted from the tissues collected. The initial PCR used a mix
of multiplexed V- and J-gene primers that amplify all possible recombined receptor
sequences from the DNA sample, and then a second PCR designing to add unique
DNA barcodes to each PCR product was followed. After that, samples were pooled
together with a negative and a positive control. The pools were then sequenced on
an Illumina MiSeq platform using a 150-cycle paired-end protocol and sequence-
ready primers. After sequencing, the raw data were transferred to Adaptive Bio-
technologies and processed into a report, including those that passed quality-check
samples and a normalized and annotated TCR-β-profile repertoire accordingly.

T-cell density was calculated by normalizing TCR-β template counts to the total
amount of DNA usable for TCR sequencing, where the amount of usable DNA was
determined by PCR amplification and sequencing of housekeeping genes expected
to be present in all nucleated cells. T-cell richness is a metric of T-cell diversity, and
it is calculated on the T-cell unique rearrangements. T-cell clonality is a metric of
T-cell proliferation and reactivity, and it is defined as 1-Peilou’s evenness. Clonality
ranges from 0 to 1: values approaching 0 indicate a very even distribution of the
frequency of different clones (polyclonal), whereas values approaching 1 indicate a
distinct asymmetric distribution in which a few activated clones are present at high
frequencies (monoclonal). Statistical analysis was performed in R version 3.2 in
ImmunoSEQ ANALYZER (ANALYSES 3.0). The immunoSEQ Assay is for
research use only and not for use in diagnostic procedures. TCR Jaccard index (JI)
is conceptually a percentage of how many objects of two sets have in common out
of how many objects they have in total. JI was calculated by the number of
rearrangements shared/sum of the total number of rearrangements between any
two specimens. Morisita index (MOI) is a measure of the similarity in the T-cell
repertoire between samples ranging from 0 to 1, taking into account the specific
rearrangements and their respective frequencies, with an MOI of 1 being an
identical T-cell repertoire.

Human-leukocyte antigen loss of heterozygosity analysis. Loss of heterogeneity
(LOH) of human-leukocyte antigen (HLA) was assessed41. Briefly, class-I HLA
alleles for each HLA gene were inferred from germline DNA by POLYSOLVER
(version 1.2.0) using a two-step Bayesian classification approach, which takes into
account the base qualities of aligned reads, observed insert sizes, as well as the
ethnicity-dependent prior probabilities of each allele. Tumor purity and ploidy
were then estimated using Sequenza (v2.1.2)31, and LOHHLA (Loss of Hetero-
zygosity in Human Leukocyte Antigen) algorithm was applied to detect allele-
specific HLA loss in each tumor sample. Briefly, logR and BAF across each HLA
gene locus was obtained by binning the coverage at mismatch positions between
homologous HLA alleles, and HLA haplotype-specific copy numbers were then
calculated based on logR and BAF values from the corresponding bin adjusted by
tumor purity and ploidy. The median value of binned allelic copy number was used
to determine LOH, where a copy number of <0.5 indicated allele loss and LOH was
determined if p < 0.01.

Copy number LOH analysis. For each sample, we calculated the fraction of copy-
number losses for those genes associated with predicted neoantigens versus other
mutated genes not associated with predicted neoantigens, respectively. The seg-
ment copy-number file (predicted by Sequenza (v2.1.2)31) was used to evaluate a
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gene showing evidence of copy number neutral LOH (CNN–LOH) or copy num-
ber loss LOH (CNL–LOH). Those candidate genes within the chromosomal seg-
ments with the count of A allele equaling to 2 and B allele equaling to 0 were
considered as CNN–LOH, while counts of A allele equaling to 1 and B allele
equaling to 0 were considered as CNL–LOH72. For those mutated genes not
associated with predicted neoantigens, the fraction was calculated by the total
number of mutated genes with CNN–LOH/CNL–LOH divided by the total number
of mutated genes. For those predicted neoantigen-associated genes, the fraction was
calculated by the total number of predicted neoantigen-associated genes with
CNN–LOH/CNL–LOH divided by the total number of genes associated with
predicted neoantigens.

Immunohistochemistry. Immunohistochemistry (IHC) of CD3 and PD-L1 was
performed on 66 LS-SCLC tumors (including the same 18/19 tumors that underwent
multiregion WES and TCR sequencing) and 68 localized NSCLC tumors with mat-
ched clinical characteristics including gender, age, smoking status and tumor size
(Supplementary Data 1 and Table 1). Representative IHC figures are shown in
Supplementary Fig. 14. Serial sections with a thickness of 4 μm from FFPE samples
were cut onto glass slides, followed by IHC staining. PD-L1 IHC testing was per-
formed using the PD-L1 clone 22C3 pharmDx kit and Dako Automated Link 48
platform (Cat No. SK006, Agilent Technologies/Dako, Carpinteria, CA, USA. This
antibody was provided by Merck & Co., Inc.). Slides stained with CD3 were labeled by
a mouse anti-CD3 monoclonal antibody (BOND™ Ready-to-Use Primary Antibody
CD3 (LN10) (no dilution), Cat No. PA0553, Leica Biosystems, Newcastle Upon Tyne,
UK; https://shop.leicabiosystems.com/zh-cn/ihc-ish/ihc-primary-antibodies/pid-cd3)
at a working solution and incubated on an autostainer (Leica BOND-III, Leica Bio-
systems, Newcastle Upon Tyne, UK). Two independent observers examined the
stained slides in a blinded fashion. The PD-L1 tumor-proportion score (TPS) values
were determined by the formula (PD-L1-positive tumor cells/total tumor cells*100%)
in the slides. The PD-L1-positive tumor cells were defined by clear membrane
staining tumor cells with or without plasma staining at any extent. For each slide,
CD3-positive tumor-infiltrating lymphocytes (TILs) were indicated by the values
(CD3+ TILs/tumor cells) in each of 10 typical high-power phases (20×).

Analysis of published data. RNA sequencing data from 81 SCLCs23 and 1027
NSCLCs from TCGA30,32 were downloaded. The estimated T-cell fraction was
calculated by MCPcounter (version 1.0.0)73. The immune score was calculated with
the R package “ESTIMATE” (https://sourceforge.net/projects/estimateproject/),
which infers the infiltration of immune cells by 141 gene expression signatures74.
Copy number comparison of this study makes use of data generated by The
TRAcking Non-small Cell Lung Cancer Evolution through Therapy (Rx) (TRA-
CERx) Consortium and provided by the UCL Cancer Institute and The Francis
Crick Institute. The TRACERx study is sponsored by University College London,
funded by Cancer Research UK, and coordinated through the Cancer Research UK
and UCL Cancer Trials Center.

Statistical analysis. Graphs were generated with GraphPad Prism 8.0 (La Jolla,
CA). Pearson’s correlations were calculated to assess the association between two
continuous variables. Wilcoxon signed-rank test was applied to compare two
paired groups. Mann–Whitney test was used to compare differences between two
independent groups. Kruskal–Wallis H test was applied to compare categorical
variables with more than two levels. Chi-squared test was used to compare cate-
gorical variables in two groups. Log-rank test was used for survival analysis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The WES data in this study have been deposited in the European Bioinformatics Institute
European Genome–phenome Archive (EGA) (accession number: EGAS00001005087)
through controlled access. TCR sequencing data in this study are available through the
immuneACCESS platform (10.21417/MC2021NC; [https://clients.adaptivebiotech.com/
pub/chen-2021-nc]). To protect patient privacy, researchers interested in the WES data
need to apply via data-access committee (DAC) by contacting Dr. Jianjun Zhang at
Jzhang20@mdanderson.org, which will grant all reasonable requests. TCR sequencing
data have been shared as public data. The WES data of PROSPECT cohort used in this
study are available in the EGA database under accession code EGAS00001004026. TCR
sequencing data of PROSPECT cohort are available through the immuneACCESS
platform (10.21417/AR2019NC [https://clients.adaptivebiotech.com/pub/reuben-2019-
natcomms]). Sequencing data of George cohort used in this study are available in the
EGA database under the accession code EGAS00001000925. Sequencing data of
TRACERx cohort used in this study are available in the EGA database under the
accession code EGAS00001002247. Sequencing data of TCGA used in this study are
available in the Genomic Data Commons (GDC) and the Data Coordinating Center
(DCC) for public access (https://gdc.cancer.gov/ and https://www.cancer.gov/about-nci/
organization/ccg/research/structural-genomics/tcga). All other data may be found within
the Article file, Supplementary information, or Source Data file. Source data are provided
with this paper.
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