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Synergistic insights into human health from
aptamer- and antibody-based proteomic profiling
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Affinity-based proteomics has enabled scalable quantification of thousands of protein targets

in blood enhancing biomarker discovery, understanding of disease mechanisms, and genetic

evaluation of drug targets in humans through protein quantitative trait loci (pQTLs). Here, we

integrate two partly complementary techniques—the aptamer-based SomaScan® v4 assay

and the antibody-based Olink assays—to systematically assess phenotypic consequences of

hundreds of pQTLs discovered for 871 protein targets across both platforms. We create a

genetically anchored cross-platform proteome-phenome network comprising 547

protein–phenotype connections, 36.3% of which were only seen with one of the two plat-

forms suggesting that both techniques capture distinct aspects of protein biology. We further

highlight discordance of genetically predicted effect directions between assays, such as for

PILRA and Alzheimer’s disease. Our results showcase the synergistic nature of these tech-

nologies to better understand and identify disease mechanisms and provide a benchmark for

future cross-platform discoveries.
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Proteins are the essential functional units of human meta-
bolism that translate genomic information and enable
growth, development and homeostasis. Naturally occurring

sequence variation in the human genome, either in close physical
proximity to the protein-encoding gene (cis) or anywhere else in
the genome (trans), has wide-ranging effects on proteins,
including, but not limited to, expression, structure and function,
with important implications for human health1,2. Early studies
have started to describe the genetic architecture of protein targets
measured in plasma but all have been small-scale or restricted to
one platform3–9.

Modulating protein abundances or function represents the
most common mode of action of drugs10 and major pharma-
ceutical companies now integrate protein quantitative trait loci
(pQTLs) into their strategies to identify new drug targets or to
repurpose existing drugs11–13. This has only been possible
through the commercial development and application of scalable
affinity-based proteomic techniques that can measure thousands
of protein targets simultaneously. Projects are now underway to
apply these techniques to large-scale studies, such as the UK
Biobank14,15, which will provide major scientific opportunities.
However, information about the consistency of protein measures
and the pQTLs identified using different proteomics platforms is
needed to inform the generalisability of genetic findings and
strategies for future data integration or meta-analytical approa-
ches, and, more importantly, for possible downstream con-
sequence for biomedical applications, for example, the alignment
of pQTLs with disease-causing genetic variants.

Here we assess 871 proteins targeted by two complementary
techniques, the SomaScan v4 assay16 (aptamer-based) and Olink’s
proximity extension assay17 (PEA, antibody-based), measured in
up to 10,708 individuals, including overlapping measurements by
both technologies in a subset of 485 participants. We use a
machine learning approach to identify technical parameters and
protein characteristics that contribute to measurement variation
between platforms. We identify hundreds of pQTLs and sys-
tematically assess their consistency in a reciprocal design, gen-
erating a unique benchmark for future studies. We create a
comprehensive, genetically anchored cross-platform proteinphe-
notype network using colocalisation analysis at protein-encoding
loci across thousands of phenotypes, identifying substantial
synergy between both platforms. We show that
protein–phenotype colocalisation seen with only one platform
goes beyond missing target specificity and can be explained by
alternative proteoforms induced by genetic variants altering the
amino acid sequence of the protein and the effects of alternative
splicing.

Results
We used the SomaScan v4 platform (SomaLogic Inc., Boulder,
Colorado, US) to measure protein abundances of 4775 unique
human protein targets (covered by 4979 unique aptamers) from
frozen EDTA-plasma samples in 12,345 participants from the
Fenland study18 (Supplementary Data 1). We assessed 1069
protein targets based on 1104 measures across 12 Olink® Target
96-plex panels, based on the PEA technology using the same
EDTA-plasma samples from 485 Fenland study participants.
Measurements were performed by the manufacturers and meth-
ods have previously been described in detail19,20 and are provided
in the Methods section. We identified a total of 871 overlapping
proteins targeted by 937 unique SomaScan–Olink reagent pair-
ings (Fig. 1, see Methods).

Technical factors affecting correlations between protein tar-
gets. We observed varying correlation coefficients for overlapping

measurements with a median of 0.38 (IQR: 0.08–0.64) spanning
almost the entire range from high positive (Leptin, r= 0.95) to
inverse correlations (Heat shock protein beta-1, r=−0.48)
(Fig. 2a and Supplementary Data 2). When we used the Soma-
Logic data without a normalisation step applied to correct for
unwanted technical variation and to make data comparable across
cohorts, we observed a higher median correlation (median: 0.50,
IQR: 0.19–0.72) (Fig. 2a). While correlation coefficients seemed to
increase, we observed substantial differences in the association
with various phenotypic characteristics comparing normalised to
non-normalised data (Supplementary Fig. 1). For example, sys-
tolic blood pressure was associated with 3745 aptamers in the
entire SomaScan data using the non-normalised compared to
1528 in the normalised data set. Such an effect might be explained
by phenotypic variation that is associated with median fluores-
cence intensities across proteins per sample, which can introduce
artificial associations.

We identified technical factors, such as binding affinity of the
SOMAmer reagent or missing/extreme measurements (likely due
to technical variation and strong genetic effects, see Supplemen-
tary Note 1), and certain protein characteristics, for example,
presence of a transmembrane domain, to explain varying
correlation coefficients, based on a random-forest-based feature
selection algorithm (Fig. 2b, see Methods and Supplementary
Note 1). In line with previous findings21, protein targets that have
been validated by orthogonal methods, such as mass
spectrometry-based target validation or immunoassays, showed
higher correlation coefficients as well (median correlation: 0.57 vs
0.27, p value < 1.59 × 10−21). These results were largely indepen-
dent of the normalisation procedure used and we considered the
normalised SomaScan data as the primary resource in the
following analyses.

Shared genetic effects are target-dependent. We identified a
total of 1923 genetic variant–SOMAmer–Olink triplets with evi-
dence from at least one platform (816 SOMAmer reagents, 770
Olink measures and 1267 genetic variants, Supplementary Fig. 2
and Supplementary Data 3, see Methods) and observed con-
siderably lower correlation coefficients between effect estimates
(Fig. 3) than previously reported5, with values of 0.41 for cis-
pQTLs and 0.34 for trans-pQTLs. Correlation coefficients were
higher (cis-pQTL: 0.68, trans-pQTL: 0.75) for well-correlating
protein targets (Supplementary Fig. 3) and comparable to an
independent set of Olink-based pQTLs8 (Supplementary Fig. 4
and Supplementary Data 4).

We next tested more rigorously for a shared genetic
architecture across platforms and identified 306 (63.9%) genomic
region-to-protein target associations that were shared between
platforms, that is, showed the same, directionally consistent
genetic signal (see Methods and Supplementary Fig. 5 and
Supplementary Data 5), with approximately similar fractions for
cis- and trans-pQTLs out of 479 with sufficient power for
replication (Fig. 3b). This included 13 regions for which we
discovered two independent cis-pQTLs (r2 < 0.1) for SomaScan
but only the secondary signal was shared with Olink (Supple-
mentary Figs. 6 and 7). The remaining 36.1% genomic
region–protein target associations were platform-specific because
they were either (1) only evident for one of the two assays (24.6%,
N= 59 for the SomaScan assay and N= 59 for Olink), or (2)
showed evidence for distinct genetic signals at the same locus
(10%, 48 pairs). We observed a lower fraction of shared genomic
regions when comparing to publicly available Olink pQTLs8 with
39.1%, which was best explained by the presence of multiple non-
specific trans-pQTLs (see Supplementary Note 1 and Supple-
mentary Data 6).
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Based on this assessment we identified the following factors to
be associated with a higher likelihood of a distinct or platform-
specific pQTL: (1) a lower observational correlation, (2) lower
binding affinity of the SOMAmer reagent to the protein target,
(3) linkage to a protein altering variant (PAV) (in particular for
cis-pQTLs discovered using the SOMAscan assay), (4) a high
proportion of extreme values in SomaScan measurements and (5)
missing colocalisation with cis-expression QTLs (eQTLs) and
phenotypic traits (Fig. 3c and Supplementary Data 7–9), by
evaluating meta-regression models (see Methods).

Finally, we observed that genotypes significantly affected the
correlations of measurements between platforms. We identified
22 instances in which the correlation coefficient between
measurements of the same protein target across both platforms
significantly differed by genotype (false discovery rate <20% for
an interaction term), including pQTLs in cis and trans (Fig. 3d).
In other words, the agreement between both platforms was higher
for a genetically defined subgroup of participants, with effects in
cis possibly pointing to epitope effects, whereas effects in trans
pointing towards posttranslational modifications, such as glyco-
sylation (Supplementary Data 10 and Supplementary Note 1). For
example, we identified that stratifying the correlation of YKL-40
(r= 0.45 overall) by rs2071579 improved up to 0.96 among
carriers of the minor C-allele. rs2071579 is in almost complete LD
(r2= 0.99) with the missense variant rs880633 (p.R145G), the
major C-allele (AF= 53% in Fenland) introduces an arginine to
glycine substitution in a predicted antibody binding sequence of
YKL-40, thereby likely attenuating the binding capacity of the

aptamer reagent. As this results in a constant dilution factor
depending on the genotype, correlations between the affected
SomaScan assay and the possibly unaffected Olink assay improve
upon stratification.

A genetically anchored protein–phenotype network across
platforms. We created a gene-protein–phenotype network, to
systematically explore the synergy of cross-platform proteomic
studies to identify and better understand disease mechanisms.
To this end, we performed phenome-wide colocalisation
screens for all 871 protein-encoding regions mapping to the set
of overlapping protein targets using region-wide summary
statistics derived from both proteomic platforms (Fig. 4, see
Methods). We identified shared genetic signals for a total of 547
protein target–phenotype pairs (posterior probability >80%),
comprising 112 protein targets and 342 phenotypes (Supple-
mentary Data 11). About a third (36.3%) of the gene-
protein–phenotype pairs were only seen for one of the two
platforms, including 108 pairs unique to Olink and 91 pairs
unique to SomaScan accounting for the differences in statistical
power. A few (1.4%) showed strong evidence for a shared signal
with proteins measured by both platforms but with opposing
effect directions. We further identified four pairs that were
consistent across platforms once the effect of the lead cis-pQTL
for the SomaScan assay has been taken into account, indicating
recovery of biological plausible information by accounting for
possible measurement artefacts. Finally, about a third (34.3%)

Fig. 1 Scheme of the study design. The Venn diagram displays the overlap in protein targets captured by the SomaScan assay and the Olink proximity
extension assay (PEA). Modes of binding to the protein target are depicted simplified next to each ellipse. Correlation coefficients were used to compare
both technologies and factors possibly accounting for measurement differences and low correlation coefficients examined in a subset of 485 individuals
with overlapping measurements. For the set of 871 common protein targets, genome-wide association analysis was performed in 10,708 (SomaScan assay)
and 485 (Olink PEA) participants in the Fenland cohort. Correspondence of genetic associations was analysed by examining local genetic architecture,
comparison of effect estimates and evaluation of phenotypic consequences. Parts of this figure have been created with BioRender.com.
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of the gene-protein–phenotype pairs were consistent between
both platforms.

Directionally discordant associations at an Alzheimer’s disease
locus. We identified eight protein target–phenotype pairs for
which proteins as measured by both assays were highly likely to
share the same genetic signal with the same phenotype but with
opposite effect directions for the same protein target or its iso-
forms (Figs. 4 and 5a). For instance, the missense variant
rs1859788 (p.G78R, sAF= 31.7% for the A-allele) in PILRA was
the lead cis-pQTL inversely associated with paired
immunoglobulin-like type 2 receptor alpha (PILRA) measured by
Olink (beta=−0.74, p < 3.48 × 10−29). In contrast, we found
positive associations for the same genetic signal with two
SOMAmer reagents targeting soluble isoforms of the same pro-
tein (6402-8 targeting isoform FDF03-deltaTM (beta= 1.26,
p < 2.67 × 10−5193) and 10816-150 targeting isoform FDF03-M14
(beta= 1.26, p < 1.53 × 10−5360)), but no association with the
SOMAmer reagent designed to target the canonical protein
(8825-4, beta= 0.004, p= 0.75). Statistical colocalisation pro-
vided strong evidence of a genetic signal shared between all three
different protein measures and Alzheimer’s disease (Supplemen-
tary Data 11 and Fig. 5a), in line with the A-allele of rs1859788
having been identified as protective for Alzheimer’s disease22.
PILRA is an inhibitory receptor expressed in dendritic and
myeloid cells23 and p.G78R was shown to reduce signalling via
reduced ligand binding, likely modulating microglia migration
and activation in the brain22. G78R is located in the extracellular-
domain common to all three forms of PILRA23. Therefore, the
positive effect directions of the SOMAmer reagents targeting the
two isoforms in the absence of an association with the canonical
protein suggest aptamer binding affinity introduced by p.G78R
being restricted to the soluble isoform. However, our results
cannot distinguish which isoform the polyclonal Olink antibodies
target and whether the inverse association reflects reduced
binding affinity to the variant protein of at least some of them.

We identified similar examples with possible downstream con-
sequences for phenotypic interpretation, including hepatoma-
derived growth factor and high-density lipoprotein cholesterol
concentrations or intracellular adhesion molecule 1 and lym-
phocyte cell count (Supplementary Data 11).

A phenotypically distinct role of cis-pQTLs for IL-7 receptor
subunit alpha. We observed a segregation of phenotypes coloca-
lising at the IL7R locus depending on the protein assay used to
identify cis-pQTLs for the IL-7 receptor subunit alpha (IL-7Ra)
(Fig. 4 and Supplementary Fig. 8). The lead cis-pQTL rs6451229
(MAF= 40.1%) for the SomaScan assay colocalised with type 1
diabetes and treatment for hypothyroidism, whereas the lead cis-
pQTL, rs11742270 (MAF= 26.8%), for the Olink assay colocalised
with multiple sclerosis, allergic disease, primary biliary cirrhosis and
basophil counts (Supplementary Data 11). Both variants are only in
weak LD (r2= 0.25) and the phenotypic divergence further supports
two distinct signals. The lead variant for Olink is in perfect LD with a
well-known splice variant (rs6897932, r2= 1) previously shown to
mediate increased risk for multiple sclerosis by skipping of exon 6
and creating a higher amount of soluble IL-7Ra24 and has since been
identified for various immune-related diseases25. A higher fraction of
soluble, that is, circulating, IL-7Ra might explain the positive asso-
ciation of the same genetic variant with IL-7Ra as measured by Olink.
Soluble IL-7Ra has been suggested as active IL-7 reservoir, including
an increased risk for the generation of IL-7-dependent self-reactive
T cells in autoimmunity25. With respect to the lead cis-pQTL for
SomaScan, our finding supports IL7R as a likely causal gene at an
established type 1 diabetes locus26. More recent work, however,
identified two distinct variants (rs230313727 and rs228790028,
r2= 0.29) in the same locus, both in moderate LD (r2= 0.45) with
the SomaScan cis-pQTL but without evidence for colocalisation.
However, there is some orthogonal evidence supporting ILR7 as the
candidate causal gene at this locus, including the preliminary success
of IL-7Ra antibodies in mouse models of type 1 diabetes29 and
immunomodulation in patients with type 1 diabetes30.
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Allelic heterogeneity at FGCR2A and autoimmune disease. We
identified three independent genetic variants at the FCGR2A/
FCGR2B locus that acted in a platform- and phenotype-specific
manner on the gene products low-affinity immunoglobulin gamma
Fc region receptor II-a (FCGR2A) and II-b (FCGR2B) as measured
by SomaScan and Olink (Fig. 4 and Supplementary Fig. 9). We
identified rs7515174 (G-allele, allele frequency= 11.2%) as an

intronic cis-pQTL unique to FCGR2A measured by Olink (beta=
−1.25, p value < 7.5 × 10−41) and a shared signal with rheumatoid
arthritis (RA) in Europeans31 (beta=−0.11, PP > 84.9%). The var-
iant is in strong LD (r2= 0.99) with the multi-nucleotide variants
rs9427397 and rs9427398, which cumulatively introduce a substitu-
tion of glutamine with tryptophan (p.Q63W) at position 63 of the
protein sequence (based on transcript ENST00000271450.6) and
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thereby possibly reducing the affinity of the Olink antibodies for the
modified protein.

A different, independent variant (r2 < 0.14), rs4657041
(MAF= 48.0%), was the lead intronic cis-pQTL for FCGR2A
measured by SomaScan as well as FCGR2B measured by Olink.
This signal was shared with ulcerative colitis (UC, PP > 95.3%),
systemic lupus erythematosus (SLE, PP > 82.6%) and various cell
surface markers of different immune cell populations, including
FCGR2A (CD32) (Fig. 4). FCGR2A is an activating receptor upon
binding of immunoglobulin (IgG) complexes as part of the
humoral immune system and rs4657041 is in strong LD
(r2= 0.99) with the missense variant rs1801274 encoding for
the well-known low-/high-responder phenotype32,33. The sub-
stitution of histidine for arginine conferred by the A-allele at
position 134 increases binding of IgG2, a mechanism suggested to
contribute to a higher risk for autoimmune disease, including UC
and SLE. GWAS studies, however, showed opposing effect
directions for UC (beta= 0.14, p value < 1.5 × 10−18) and SLE
(beta=−0.18, p value < 5.5 × 10−11). The extremely strong effect
of rs1801274 on the SomaScan measure of FCGR2A (>1 s.d. per
A-allele, beta=−1.21, p value < 1.1 × 10−6276) likely provides a
simple proteomic readout for low versus high-responder status
relevant for immunotherapy using antibodies34. We note, that
possibly both cis-pQTLs for FCGR2A relate to RA, since we
obtained evidence that the lead signal for SomaScan colocalised
with RA (PP > 87.1%) as assessed in Biobank Japan (Supplemen-
tary Data 11). Finally, rs6665610 (a synonymous variant within
FCGR2B) was a cis-pQTL unique to FCGR2B as measured by
SomaScan with no evidence for a shared phenotypic association.
Together, these results suggest that SomaScan and Olink target
different forms of FCGR2A, each with distinct downstream
consequences for human health as evidenced by the colocalising
genetic signal.

Phenotypic colocalisation unique to the SomaScan assay.
Aptamers of the SomaScan assay are designed to bind through
their specific shape to the target protein. This shape-based nature
enabled us to discover multiple unique protein–phenotype
links, including cathepsin H and type 1 diabetes (rs2289702
within CTSH), TREM-like transcript 2 protein and monocyte
count (rs62396355 within TREML2) or plexin-B2 and systolic
blood pressure (rs28379706 within PLXNB2) (Supplementary
Data 11).

We identified a complete segregation of abundance- versus
shape-based effects for growth-differentiation factor 15 (GDF-
15). GDF-15 is generally considered as a stress signal inducing
weight loss and reducing food intake via an effect on aversion to
food, a phenomenon thought to explain cachexia/anorexia in

cancer patients and episodes of hyperemesis during pregnancy35.
We observed that the SomaScan-specific cis-pQTL (rs75347775,
MAF= 24.5%) showed strong evidence for colocalisation with
related phenotypes, including a self-reported measure of child-
hood obesity and coffee intake, and was further in strong LD
(r2= 0.96) with a known risk variant (rs45543339) for hyperem-
esis gravidarum36. The lead cis-pQTL for GDF-15 as measured by
Olink and replicated in a larger study8 (rs1227734, MAF=
14.0%), however, was unrelated to these outcomes, albeit being a
secondary signal for GDF-15 as measured by SomaScan (Fig. 5b).
The lack of association between rs75347775 and the Olink
measure likely indicates that the genetic variant acts via a
differential recognition by the SOMAmer reagent and rs75347775
is indeed in strong LD with the missense variant p.H202D
(rs1058587, r2= 0.98, Supplementary Fig. 10). The G-allele
mediating the amino acid substitution was associated with higher
GDF-15 recognition by the SomaScan assay (beta= 0.39,
p < 4.7 × 10−174), but with 32% reduced risk for hyperemesis
gravidarum (odds ratio: 0.68, 95% CI: 0.62–0.75, p < 3.4 × 10−14)
as well as a higher risk for childhood obesity (beta= 0.01,
p value < 6.7 × 10−13) and reported coffee intake (beta= 0.01,
p value= 5.6 × 10−8) clearly opposing the well-documented
effects of high circulating GDF-1535.

GDF-15 is being actively investigated as an anti-obesity
agent37. However, instrumenting genetic variants, including the
ones found with the Olink assay, that are proxies for life-long
higher GDF-15 levels in the physiological range did not provide
evidence for a causal role of GDF-15 in measures of adult obesity
and metabolic health8,38. We, however, obtained evidence that the
same missense variant underlying childhood obesity colocalises
with adult body mass index (PP= 95.1%, beta= 0.01, p value <
8.2 × 10−8) once stronger independent signals in the region have
been taken into account (Fig. 5b). Our findings therefore provide
human genetic evidence that it is not the abundance of GDF-15
within the physiological range but rather the proteoform
(p.H202D or p.H6D in the mature protein) that possibly has an
effect on food aversion, an effect of particular relevance during
childhood, in which food choices are more restricted compared to
later life.

Phenotypic colocalisation unique to the Olink assay. We report
34 cis-pQTLs unique to the Olink assay and identified in only
485 samples that showed strong evidence for colocalisation with
phenotypic traits (PP > 80%) (Supplementary Data 11). These
included established cardiovascular risk loci such as FGF5 (e.g.,
hypertension39, coronary heart disease40 or atrial fibrillation41)
and UMOD (e.g., hypertension and estimated glomerular filtra-
tion rate42) for which we estimate that genetically higher protein

Fig. 3 Consistency of genetic effects across platforms. a Comparison of beta estimates from linear regression models across 816 corresponding
SOMAmer–Olink pairs (n= 770 unique protein targets) with at least one genome-wide associated genetic variant for either of the two, including 1267
distinct genetic variants (R2 < 0.8). Colouring is based on the genomic location of genetic variants. Red indicates variants close to the protein-encoding
gene (cis, ±500 kb) and blue otherwise. Estimates are presented in Supplementary Data 3. b Summary of platform agreement for 479 genomic
region–protein target associations with sufficient power among the Fenland subsample with available Olink measures (N= 485). More information is
detailed in Supplementary Data 5. c Factors associated with pQTLs that are shared across platforms compared to three sets of platform-specific controls.
Odds ratios and 95% confidence intervals for factors associated with cross-platform protein quantitative trait loci (pQTL) across the SomaScan v4 and
Olink assays (Supplementary Data 9). The panels are based on 540 variant–protein target pairs (306 shared, 234 platform-specific) with sufficient power
for replication in the Fenland sample. PAV protein altering variant, eQTL expression quantitative trait loci, Coloc. colocalisation, GWAS genome-wide
association analysis. d Spearman correlation coefficients stratified by genotype. The first bar in each column indicates the overall correlation, and the three
successive bars indicate the correlation among homozygous carriers of the major allele, heterozygous carriers and homozygous carriers of the minor allele
(if any). Colours indicate whether the pQTL was in cis (orange) or trans (blue). Protein target–pQTL pairs were selected based on a linear regression model
(see main text). Source data are provided as a Source Data file.
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levels are causally associated with higher disease risk, for instance,
a 1 s.d. increase in genetically predicted FGF-5 levels was asso-
ciated with a 12% higher risk of coronary artery disease (odds
ratio: 1.12; 95% CI: 1.08–1.16; p value < 9.0 × 10−12) possibly via
its effect on hypertension (1.32; 1.29–1.35; p value < 1.7 × 10−99).
Other known or recently described disease loci for which we
identified evidence for a shared gene-protein–phenotype signal
included carboxypeptidase E (CPE) and bone mineral density43,
ICOS ligand (ICOSLG) and RA31, or SLAM Family Member 8
(SLAMF8) and Crohn’s disease44 pointing towards biomarkers of
disease progression or probably druggable targets such as for
Aminopeptidase N (ANPEP) and eye morphology45.

Discussion
Identification of DNA sequence variants modulating protein
levels or activities and shared with disease loci can identify
disease-causing mechanisms and help to prioritise new and
repurpose existing drug targets11. To inform and advance such
strategies, comparison across different measurement techniques
can not only validate identified signals, but also help to better
understand the potential biological relevance of platform-specific
signals for human health. We provide genetically anchored evi-
dence that the integration of diverse proteomic techniques
enables the identification of disease mechanisms beyond changes
in the abundance of circulating proteins, emphasising the need
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Fig. 4 A genetically anchored protein–phenotype network. Each node is either a protein target (square) or a phenotype (circle) and a connection was
drawn between both if the protein target shared a genetic signal (posterior probability (PP) >80%) with the phenotype within a ±500 kb region around the
protein-encoding gene (Supplementary Data 11). Colours indicate whether the shared signal was identified using the SomaScan (cyan) or the Olink assay
(orange). Protein–phenotype connections consistent between both platforms are indicated by two lines connecting the protein and the phenotype. Solid
lines indicate a positive association of the shared genetic variant with the phenotype aligned to the protein-increasing allele. The inset highlights selected
subnetworks for which both proteomic techniques provide complementary information.
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Fig. 5 Regional association plots for the PILRA and GDF15 locus. a Regional association plots for paired immunoglobulin-like type 2 receptor alpha
(PILRα) measured by SomaScan (top rows) and Olink, as well as for Alzheimer’s disease centred around a colocalising signal for the missense variant
rs1859788 within PILRA (p.G78R). Colours indicate direction of effect for the A-allele of rs1859788 on the respective trait (blue—inverse, red—positive)
and shading indicates linkage disequilibrium (r2) with the lead variant at the locus. The red line in the gene panel indicates the position of the variant.
P values for protein measures were derived from genome-wide association analysis (linear regression models) from the Fenland cohort as described in the
main text, whereas summary statistics for Alzheimer’s disease was obtained from Jansen et al.58. The scheme on the right displays a possible mechanism
by which the p.G78R could lead to discordant results between SomaLogic and Olink. b Each panel shows summary statistics (p values) from genetic
association studies for coffee intake, comparative body size at age 10, body mass index (conditioned on lead signals), and growth-differentiation factor 15
(GDF-15) measured by Olink and SomaScan. The lead genetic variants for each assay as well as variants in high linkage disequilibrium are highlighted by
colours (blue—SomaScan, orange—Olink). Summary statistics for phenotypes were obtained from the Open GWAS database (UK Biobank)55 and protein
summary statistics for GDF-15 from8 for Olink and SomaScan from the present study. The scheme on the right shows possible consequences of a
differently shaped GDF-15 protein. A 3D model of the alternative protein is presented in Supplementary Fig. 10. Parts of this figure have been created with
BioRender.com. Source data are provided as a Source Data file.
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for complimentary techniques and most importantly better
understanding of the relevance of platform-specific pQTLs for
protein function.

A common pattern among results not shared between both
assays related to the reliance of the SomaScan assay to a con-
served protein structure to enable aptamer binding (Supple-
mentary Data 10). This has important implications for protein-
level based causal inference techniques, such as Mendelian ran-
domisation, where genetic instruments acting in cis are com-
monly used to infer plasma ‘abundance’ rather than function of
the encoded protein. Biased conclusions from such techniques
could arise where the direction of the protein binding affinity
(‘abundance’) and the function of the mutant protein the variant
is instrumenting are disconnected. Employing intermediate traits,
that is, those that lie on a causal pathway from the protein to the
disease, instead to obtain genetic weights for such analysis may
help to address this problem. We further show that strong and
platform-specific signals with extreme binding affinity can mask
signals that are shared across platforms and demonstrate that
association statistics conditioning on such strong lead pQTLs can
uncover biologically relevant signals shared between platforms.

A common theme of platform-specific cis-pQTLs that aligned
with the genetic signal for phenotypic consequences was a
genetically induced alternative form of the target protein, which
we referred to as ‘proteoform’, such as for GDF-15 for which we
obtained evidence that an alternative form of the protein rather
than altered abundances may mediate downstream effects. While
this generally pointed towards specificity of the affinity reagent to
the ‘canonical’ protein (or at least the protein sequence that has
been used to select the affinity reagent against with) and cannot
be distinguished from as a technical artefact, triangulating genetic
variation with protein ‘abundance’ (or presence) and phenotypic
consequences provided evidence for the candidate causal gene
and the expression of the alternative proteoform at substantial
levels to be detected in plasma. More importantly, such effects
enabled us to derive functional hypothesis that go beyond
reduced or enhanced expression of certain protein targets starting
to explore functional proteomics in humans.

Previous smaller scale studies3,5,21 have performed unidirec-
tional validation of pQTLs for a selected set of protein targets and
reported inflated correlation estimates due to missing alignment
of effect directions to the protein-increasing or -decreasing allele,
thereby introducing an artificially large reference range. We
provide a systematic and bidirectional characterisation of pQTLs
covering 871 overlapping protein targets and show that the
majority of pQTLs are shared across platforms (64%) but with
substantially lower correlations than previously reported in cis
and trans. We identify factors associated with platform-specific
pQTLs for both platforms, which can directly help to inform
strategies for prioritising pQTLs in academic and pharmaceutical
efforts that have used either platform at scale, in particular for the
thousands of protein targets only assayed by the Somalogic
platform. Unlike our previous effort demonstrating the feasibility
of meta-analysing genetic signals for metabolites measured by
diverse platforms46, the proteome possesses distinct challenges
and requires tailored strategies to increase samples size by inte-
grating diverse platforms. Our results provide a benchmark and
guidance for any future genetic studies aiming to increase samples
size by integrating proteomic data across different platforms.

We identify several characteristics affecting the correlation
between both assays, including technical variation, certain protein
characteristics and a strong effect of genetic variants (Fig. 6).
However, the lack of full technical details of the assays that are
not in the public domain as they are commercially sensitive and
general methodological differences between the assays did not
permit a more rigorous assessment of non-biological factors. This

includes the similarity of synthetic peptides used to select binding
reagents or a measure of binding affinity for antibodies, which
might likely yield additional insights into possible differences.
Incorporation of complementary techniques such as mass spec-
trometry may help to resolve some of these issues47, for example
by linking a pQTL to an actually measured peptide sequence,
which would provide important scientific opportunities if the
approach can be applied at scale. In addition, structural char-
acterisation of proteins bound to affinity reagents using mass
spectrometry has the potential to identify the concrete protein
species bound to the affinity reagent4,21. While we identify factors
that increase the likelihood of cross-platform pQTLs, larger stu-
dies are needed to test for factors differentially associated with
replication of cis- and trans-pQTLs.

By integrating strong evidence for gene-protein–outcome pairs
across two complementary proteomic techniques, we were able to
identify hundreds of examples (>30% of all), which would have
otherwise been missed using only one technique. While both
techniques have their merits, mutual application in clinical and
population-based studies, possibly further complemented with
mass spectrometry, is unfeasible but using genetics as a common
anchor across studies along with well-powered GWAS for phe-
notypes enables novel discoveries for individual diseases and
among diseases as exemplified in the protein–phenotype network.

Methods
MRC Fenland cohort. The Fenland study is a population-based cohort study of
12,435 participants, predominantly of White British ancestry born between 1950
and 1975. Participants were recruited from general practice surgeries in the
Cambridgeshire region of the UK and underwent detailed phenotyping at a
baseline visit between 2005 and 2015 (Supplementary Data 1). Exclusion criteria
were clinically diagnosed diabetes mellitus, inability to walk unaided, terminal
illness (life expectancy of ≤1 year at the time of recruitment), clinically diagnosed
psychotic disorder, pregnancy or lactation. The study was approved by the Cam-
bridge Local Research Ethics Committee (NRES Committee – East of England
Cambridge Central, ref. 04/Q0108/19) and all participants provided written
informed consent. The consent covered measurements made from blood samples
as well as extends beyond the baseline examination. As previously described18,
participants in the study were on average 48.6 years old (standard deviation: 7.5
years) and 53.4% were female.

Proteomic measurements. Relative protein abundances were measured in fasting
EDTA-plasma samples from 12,084 Fenland Study participants collected at the
baseline visit by SomaLogic Inc. (Boulder, US) using an aptamer-based technology
(SomaScan V4 assay). Details of the assay have been described previously20, but
briefly, 4775 human protein targets were evaluated by 4979 aptamers; short single-
stranded DNA molecules, which are chemically modified to specifically bind to
protein targets and quantified using DNA microarrays. To account for variation in
hybridisation within runs, hybridisation control probes are used to generate a
hybridisation scale factor for each sample. To control for total signal differences
between samples due to variation in overall protein concentration or technical
factors such as reagent concentration, pipetting or assay timing we applied adaptive
median normalisation. Briefly, a ratio between each aptamer’s measured value and
a reference value, derived from healthy external controls (Covance data set,
described in Williams et al.20) is computed, and the median of these ratios is
computed for each of the three dilution sets (20%, 0.5% and 0.005%) and applied to
each dilution set to centre the study medians to the reference medians. The study
set is then normalised by scaling each protein signal by the respective scale factors.
Samples were removed if they were deemed by SomaLogic to have failed or did not
meet our acceptance criteria of 0.25–4 for all scaling factors. In addition to passing
SomaLogic QC, only human protein targets were taken forward for subsequent
analysis (4979 out of the 5284 aptamers). Aptamers’ target annotation and map-
ping to UniProt accession numbers as well as Entrez gene identifiers were provided
by SomaLogic.

We estimated a limit of detection for each SOMAmer reagent using a ‘robust
estimate’ method suggested by SomaLogic, based on the median plus 4.9 × median
absolute deviation (MAD) signal of the blank (buffer) samples. We further defined
outliers for SOMAmer and Olink measurements as being outside the median ±5 ×
MAD based on test sample signals and used the fraction of outliers as a variable to
explain variation.

Plasma samples for a subset of 500 Fenland participants were additionally
measured using 12 Olink 92-protein panels using PEAs17. Of the 1104 Olink
proteins, 1069 were unique (n= 35 on >1 panel, average correlation coefficient
0.90). We imputed values below the detection limit of the assay using raw
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fluorescence values. Protein levels were normalised (‘NPX’) and subsequently log2-
transformed for statistical analysis. A total of 15 samples were excluded based on
quality thresholds recommended by Olink, leaving 485 samples for analysis.
Participants were selected at random from the largest set of Fenland participants
that had been examined at the same test site and were genotyped on the same array
to minimise technical artefacts for the platform comparison. Demographics of the
subcohort were identical to the overall cohort (Supplementary Data 1).

Protein target mapping. We identified overlapping protein targets between both
techniques using either UniProt identifiers (www.uniprot.org) or based on the
same encoding gene as provided by the manufacturers. Where multiple measure-
ments were available for a protein assayed on multiple Olink panels, we selected
one of the protein measures from one of the panels at random for two reasons.
Firstly, Olink uses the same type of antibodies irrespective of the panel and sec-
ondly, the average correlation was 0.90 (range 0.68–0.99) for the same protein
target across different panels. We kept each SOMAmer reagent matching to one
Olink reagent for downstream analysis, since they bind to distinct structural
characteristics of the protein target16. This procedure yielded 937 unique
SOMAmer–Olink measurement pairs, comprising 871 unique protein targets
(Fig. 1 and Supplementary Data 1). We further queried the UniProt database to
obtain protein domain information and other characteristics of overlapping protein
targets. We noted that protein targets overlapping between platforms were enri-
ched for secreted proteins (odds ratio: 3.66, p value < 4.7e–44) and high-affinity
targets (odds ratio: 1.18, p value < 4.3e–6), and slightly depleted for protein targets
with a higher amount of outlying samples (odds ratio: 0.87, p value < 1.3e–4) when
comparing to the entire set of proteins captured by the SomaScan v4 assay.

Statistical analysis. We used rank-based inverse normal transformations to make
protein measurements between both technologies comparable and reported
Spearman rank-based and Pearson correlation coefficients as a measure of con-
cordance between platforms.

To derive factors explaining the Spearman correlation gradient across protein
targets, we created a matrix with meta-information for each protein target,
including information about technical characteristics of each platform as well as
characteristics of the protein target (Fig. 2) and used those as input for a Random-
forest-based feature selection approach, called Boruta-feature selection48. Briefly,
this method employs multiple rounds of Random-forest generation and includes
so-called shadow variables, which are permuted versions of the original input
variables, to derive test statistics for the variable importance measure.

Genotyping and imputation. Fenland participants were genotyped using one of
three genotyping arrays: the Affymetrix UK Biobank Axiom array (OMICs,
N= 8994), Affymetrix SNP5.0 (GWAS, N= 1402) and Illumina Infinium Core-
Exome 24v1 (Core-Exome, N= 1060). Samples were excluded for the following
reasons: (1) failed channel contrast (DishQC <0.82); (2) low call rate (<95%); (3)
gender mismatch between reported and genetic sex; (4) heterozygosity outlier; (5)
unusually high number of singleton genotypes or (6) impossible identity-by-

descent values. Single-nucleotide polymorphisms (SNPs) were removed if: (1) call
rate <95%; (2) clusters failed Affymetrix SNPolisher standard tests and thresholds;
(3) MAF was significantly affected by plate; (4) SNP was a duplicate based on
chromosome, position and alleles (selecting the best probeset according to Affy-
metrix SNPolisher); (5) Hardy–Weinberg equilibrium p < 10−6; (6) did not match
the reference or (7) MAF= 0.

Imputation to the HRC (r1) panel for the autosomes of the OMICS and GWAS
subsets was performed using IMPUTE449 and to HRC.r1.1 for the Core-Exome
subset and the X-chromosome (all subsets) using the Sanger imputation server50.
Imputation to the UK10K+1000Gphase351 panel using the Sanger imputation
server was used to supplement the HRC imputation with additional variants not
present in that panel. We excluded variants with MAF < 0.001, imputation quality
(info) <0.4 or Hardy–Weinberg Equilibrium p < 10−7 in any of the genotyping
subsets from further analyses.

GWAS and meta-analysis. After excluding ancestry outliers and related indivi-
duals, up to 10,708 Fenland participants (n= 485 for Olink proteins) had both
phenotypes and genetic data for the GWAS (OMICS= 8350, Core-Exome= 1026,
GWAS= 1332). We transformed aptamer abundances to follow a normal dis-
tribution using the rank-based inverse normal transformation and then adjusted
for age, sex, sample collection site and ten principal components in STATA v14.
Residuals from the regression were used as input for the genetic association ana-
lyses. Test site was omitted for protein abundances measured by Olink as those
were all selected from the same test site. Genome-wide association was performed
under an additive model using BGENIE (v1.3)49 and we combined the results for
the three genotyping arrays using a fixed-effects meta-analysis in METAL52. Fol-
lowing the meta-analysis, 17,652,797 genetic variants also present in the largest
subset of the Fenland data (Fenland-OMICS) were taken forward for further
analysis.

For each protein target, we used a genome-wide significance threshold of
1.004 × 10−11 (SomaScan) or 4.5 × 10−11 (Olink) and defined non-overlapping
regions by merging overlapping or adjoining 1 Mb intervals around all genome-
wide significant variants (500 kb either side), treating the extended MHC region
(chr6: 25.5–34.0 Mb) as one region. We classified pQTLs as cis-acting instruments
if the variant was less than 500 kb away from the gene body of the protein-
encoding gene.

We performed conditional analysis as implemented in the GCTA software
using the slct option for each genomic region–aptamer pair identified. We used a
collinear cut-off of 0.1 and a p value below 5 × 10−8 to identify secondary signals in
each region. As a quality control step, we fitted a final model including all identified
variants for a given genomic region using individual level data in the largest
available data set (‘Fenland-OMICs’) and discarded all variants no longer meeting
genome-wide significance.

Comparison of effect estimates and genomic regions between SomaScan and
Olink. To systematically test for cross-platform consistency of pQTLs, we per-
formed a reciprocal comparison of effect estimates of genome-wide association

Fig. 6 Sources of variation. Graphical summary of factors contributing to variation in the affinity-based discovery of the plasma proteome. PAV protein
altering variant, SNV single-nucleotide variant. This figure has been created with BioRender.com.
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analysis of 871 common protein targets using the SomaScan v4 assay (N= 10,708,
p < 1.004 × 10−11) with 12 Olink panels (N= 485, p < 4.5 × 10−11, Supplementary
Fig. 5) in the Fenland study. This analysis overcomes the biased assessment of
previous one-way or within platform replication efforts4,5,21. To test the potential
influence of sample size on this comparison, we additionally compared the
SomaScan-derived pQTLs to published genetic effect estimates for 90 protein
targets from the Olink CVD-I panel including up to 22,000 participants from the
SCALLOP consortium8. We collapsed genetic variants from overlapping protein
targets into one signal if they were in strong LD (r2 > 0.8).

We collapsed pQTLs discovered by either platform using a distance-based
threshold (±500 kB) to define shared (‘cross-platform’) versus ‘platform-specific’
pQTLs. This procedure resulted in 479 (N= 333 in cis, N= 146 trans, 390 protein
targets, Supplementary Data 5) genomic region–protein target combinations for
which we had sufficient statistical power to replicate effects, that is, pQTLs
observed in the larger SomaScan study that had at least a p value < 10−5 when
restricting the analysis to the sample of 485 participants with overlapping
measurements (see Methods).

We applied the following criteria to consider a pQTL/genomic region to be
shared across both platforms: (1) genome-wide significance in either discovery
approach of the same SNV or a proxy in high LD (R2 > 0.6) and/or sufficient effect
strength to be detected in the smaller Olink sample, and (2) to be directionally
concordant (Supplementary Fig. 5). We further performed a regional look-up
(±500 kB) if the regional sentinels for the SomaScan assay and Olink were not in
LD with the respective lead variant and tested if a conditionally independent pQTL
in the same region may align (Supplementary Fig. 5).

To facilitate comparison between SomaScan and Olink, we repeated genetic
variant–protein target associations within the same sample for which Olink was
available. To account for differing sample sizes between the SomaScan data in
Fenland and the varying sample sizes within SCALLOP, we recomputed p values by
holding the beta estimates constant and re-estimated standard errors using the
respective sample size. We considered a predicted p value threshold of 10−5 to
include pQTLs for consistency assessment in case there was evidence for a genome-
wide signal from either approach.

Annotation of pQTLs. For each identified pQTL we first obtained all SNPs in at
least moderate LD (r2 > 0.1) using PLINK (version 2.0) and queried comprehensive
annotations using the variant effect predictor software53 (version 98.3) using the
pick option. For each cis-pQTL we checked whether either the variant itself or a
proxy in the encoding gene (r2 > 0.6) is predicted to induce a change in the amino
acid sequence of the associated protein, so-called PAVs.

Phenome-wide association analyses. To enable linkage to reported GWAS-
variants we downloaded all SNPs reported in the GWAS catalogue54 (19 December
2019) and pruned the list of variant-outcome associations manually to omit pre-
vious protein-wide GWASs. For each SNP identified in the present study we tested
whether the variant or a proxy in LD (r2 > 0.8) has been reported to be associated
with other outcomes previously.

We used the Open GWAS database55 to query for each genomic region
associations with non-proteomic phenotypes using the R package ‘ieugwasr’ v0.1.5.
We tested for a shared genetic signal between a protein target and a phenotype with
at least suggestive evidence (p < 10−6) using statistical colocalisation56 as
implemented in the R package ‘coloc’ v4.0.4. We used a conservative prior
(p= 1 × 10−6) for the probability of a shared signal between a protein and a trait
and further filtered results for protein–phenotype examples for which the
respective regional lead variants were in strong LD (r2 > 0.8). We extended this
colocalisation approach to all overlapping protein targets with at least suggestive
evidence for a cis-pQTL for either assay (p < 10−6). We considered a posterior
probability of 80% as highly likely. We repeated this analysis for all cis-regions
from the SomaScan-based discovery with evidence for a secondary signal
(p < 5 × 10−8) by creating conditional summary statistics using the lead signal in
the locus as additional covariate. We computed conditional association statistics
using the cond option from GCTA-cojo to align with the identification of
secondary signals.

Expression quantitative trait loci. We obtained lead eQTLs from the most recent
release of the GTEx project v857 across all 49 tissues and mapped cis-pQTLs to cis-
eQTLs by LD (r2 > 0.8) restricting to the respective protein-encoding gene. We
further generated a simple LD-based mapping (r2 > 0.8) considering any overlap
between lead pQTLs and eQTLs to allow for incorporation of trans-pQTLs.

Analysis of genetic associations. To identify factors that are associated with
pQTLs that are shared across platforms as opposed to those that are platform-specific,
we used logistic regression models to systematically test the odds of platform-
specificity for 22 factors, including functional annotation of variants, associations with
diverse phenotypic traits, gene eQTL and protein characteristics. We considered three
control groups: (1) protein targets with distinct pQTLs in the same genomic region,
(2) pQTLs unique to the SomaScan assay and (3) pQTLs unique to the Olink assay
(Supplementary Data 7–9). We derived robust standard errors using the sandwich
method. We applied log-transformation (‘apparent Kd’) or square root-

transformation (number of colocalising traits, absolute effect estimate and predicted
explained variance) to reduce the impact of highly skewed factors.

To decompose the variance of measurement differences, we computed the
differences in rank-transformed measurements between SomaScan and Olink for
each overlapping protein target. We used this variable as outcome for a variance
decomposition model as implemented in the R package ‘variancePartition’ v1.14.1
using a corresponding pQTL, age, sex, body mass index, plasma alanine
aminotransferase and estimated glomerular filtration rate as explanatory variables.
We selected only one pQTL for each overlapping pair based on a simple linear
regression model explaining the differences in measurements.

Finally, we used a linear regression model to test whether the association
between the Olink measure (outcome) and the SomaScan measure (exposure)
differed by genotype of associated pQTLs. The resulting p value for the interaction
term between the SomaScan variable and the pQTL can be interpreted as a test of
differential correlation coefficients based on the genotype. We accounted for
multiple testing by adopting a false discovery rate of 20%. We took a permissive
approach given the small sample size (N= 485) and the generally low statistical
power to detect interaction terms.

We used R version 3.6.0 (R Foundation for statistical computing, Vienna,
Austria), including the package ‘igraph’ v1.2.6, and BioRender.com for visualisation
of results.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Information about the Fenland cohort is available at the study website (https://www.mrc-
epid.cam.ac.uk/research/studies/fenland/information-for-researchers/), which includes a
link to the MRC Epidemiology Unit metadata access portal (https://epi-meta.mrc-
epid.cam.ac.uk/). To comply with the consent given by Fenland participants, data access
is granted to bona fide researchers through an application process that typically takes no
more than 4–6 weeks. Data will either be shared through an institutional data sharing
agreement or arrangements will be made for analyses to be conducted remotely without
the necessity for data transfer. Publicly available summary statistics for look-up and
colocalisation of pQTLs were obtained from https://gwas.mrcieu.ac.uk/ and https://
www.ebi.ac.uk/gwas/. We obtained genome-wide summary statistics for 90 protein
targets from Folkersen et al.8, which are also available from the GWAS catalogue (https://
www.ebi.ac.uk/gwas/publications/33067605, GCST90011994-GCST90012083). The
Cryo-EM structure for GDF-15 and associated receptors has been obtained from the
Protein Data Bank 6Q2J. Source Data are provided with this paper.

Code availability
Code used in the present study has been deposited on GitHub at https://github.com/
MRC-Epid/cross_platform_pGWAS.
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