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ABSTRACT

The hydrodynamic problem of wave interaction with a ship floating on the water surface near a semi-infinite ice sheet is considered based on
the linearized velocity potential theory for fluid flow and the thin elastic plate model for ice sheet deflection. The properties of an ice sheet
are assumed to be uniform, and zero bending moment and shear force conditions are enforced at the ice edge. The Green function is first
derived, which satisfies both boundary conditions on the ice sheet and free surface, as well as all other conditions apart from that on the ship
surface. Through the Green function, the differential equation for the velocity potential is converted into a boundary integral equation over
the ship surface only. An extended surface, which is the waterplane of the ship, is introduced into the integral equation to remove the effect
of irregular wave frequencies. The asymptotic formula of the Green function is derived and its behaviors are discussed, through which an
approximate and efficient solution procedure for the coupled ship/wave/ice sheet interactions is developed. Extensive numerical results
through the added mass, damping coefficient and wave exciting force are provided for an icebreaker of modern design. It is found that the
approximate method can provide accurate results even when the ship is near the ice edge, through which some insight into the complex
ship/ice sheet interaction is investigated. Extensive results are provided for the ship at different positions, for different ice sheet thicknesses
and incident wave angles, and their physical implications are discussed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0071972

I. INTRODUCTION

Reduction of ice extent and thickness has led the Arctic to
become a focal point for environmental protection and future develop-
ments. One of the new possible potentials is the new Arctic shipping
route, which would substantially reduce the navigational distance
between Asia, Europe, and North America, saving fuel and reducing
CO2 emissions. When sailing in the Arctic region, a ship may navigate
in open water near the edge of a large ice sheet, instead of passing
through icy water, to avoid the additional ice resistance and the possi-
ble damage to its structures. As a result, because of the effect of the
nearby ice sheet, the hydrodynamic force on the ship as well as its per-
formance will be very different from that in the open sea free of the ice
sheet. This paper will undertake studies through a practical ship, and it
aims to shed some insight into the behavior of the ship when navigat-
ing along the edge of a large ice sheet.

When an incident wave encounters a ship, it will be diffracted,
and the wave will be altered. The ship will be set into motion, which
creates more waves or wave radiation. In the completely open water,
the diffracted and radiated waves will propagate into infinity. When

there is an ice sheet near the ship, these waves will have further inter-
actions with the ice sheet. Part of the wave will transmit into the region
covered by the ice sheet. In addition to the wavy motion of the fluid,
the ice sheet will also be set into motion in the form of a flexural-
gravity wave, and the other part of the wave will be reflected back to
the ship, together with the part of those due to ice sheet motion. This
forward and backward interaction makes the hydrodynamic force on
a ship near a large ice sheet much more complex than that in open
waters, as well as its motion.

The wave motion without the presence of the ship is usually
treated as the input of its environmental fluid loading. There has been
extensive research on ocean wave interactions with large ice sheet,
because in addition to the external loading to a ship it is of the strong
interest in geophysics.1 When the thickness of the ice sheet is much
smaller than its horizontal dimension, the deflection of ice sheet can
be modeled by the thin elastic plate. As water wave is very much domi-
nated by gravity and viscosity effect becomes important only after
many periods or many wavelengths, the fluid motion can be described
through the velocity potential theory. When the wave amplitude is
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small relative to this length, the conditions on the ice sheet and free
surface can be linearized. This model has been widely used. Fox and
Squire2 solved two-dimensional (2D) problem-free surface wave inter-
actions with a semi-infinite ice sheet through matched eigenfunction
expansions (MEE), with the unknowns being found though minimiz-
ing the error function. The problem was extended to the oblique inci-
dent wave case by Fox and Squire,3 and a critical angle was shown to
exist when the wave number for free surface wave was larger than that
for flexural-gravity wave in the ice sheet. When the angle between inci-
dent wave direction and ice edge was smaller than the critical angle,
no wave energy could transmit into the far field below the ice sheet.
Sahoo, Yip and Chwang4 considered a similar problem with various
edge conditions. In particular, instead of minimizing the error func-
tions, they used an orthogonal inner product to enforce the edge con-
ditions and continuity conditions at the interface of the free surface
and ice sheet regions. The 2D problem was also solved by Balmforth
and Craster5 through the Wiener–Hopf method (WHM) with the ice
sheet described by the Timoshenko–Mindlin model which further
included the effects of rotary inertia and transverse shear of the ice
sheet. For a typical range of ice properties and wave parameters, the
dimensionless variables indicated that the Kirchhoff–Love model for
thin elastic plate would give results similar to those by the
Timoshenko–Mindlin model, which was consistent with the numeri-
cal results in Fox and Squire.6 Based on the WHM, Tkacheva7 derived
the formula for the ice deflection, from which the far field reflection
and transmission coefficients were obtained. Alternative to the MEE
and WHM, Chakrabarti8 solved the problem by first transforming it
into a singular integral equation of the Carleman type over a semi-
infinite range, and the solutions to the reflection and transmission
coefficients were obtained. The residue calculus technique (RCT) was
also used by Linton and Chung9 to solve wave interactions with a
semi-infinite ice sheet. Under the effect of wave propagations into the
ice-covered water, the large ice sheet may break into discrete ice floes.
This process was studied in a low temperature laboratory experiment
by Dolatshah et al.10 When the distance between two neighborhood
ice sheets is much larger than the wavelength, the wide spacing
approximation can be applied to construct an approximate solution,
e.g., by Shi, Li, andWu.11

When there is no ice sheet, various cases have been studied for a
ship, e.g., floating in open water,12 in a harbor,13 and in a channel con-
fined by two solid walls.14 The interaction problem of coupled wave/
body/ice sheet motions started only more recently. Sturova15 derived a
2D Green function for the water surface covered by a semi-infinite ice
sheet based on the MEE, and the wave radiation problem of a sub-
merged oscillating cylinder was obtained through the boundary ele-
ment method. The solution procedure was extended by Sturova16 to
the 2D ice channel confined by two semi-infinite ice sheets. The
WHM can be also used to find the Green function for the water sur-
face partially covered by an ice sheet, as done by Tkacheva17 for a 2D
ice floe. For a 2D rectangular barge floating on the channel confined
between ice sheets, Ren, Wu and Thomas18 obtained the solution
through MEE and found that the hydrodynamic force oscillated
against the wave number and multiple nature frequencies were found
to be possible for the barge motions. Li, Shi and Wu19 further devel-
oped a hybrid method for a 2D body of arbitrary shape, i.e., the
boundary integral equation was used in the ice channel and the eigen-
function expansions were applied in the two ice-covered regions.

When the distance between the ship and the edge of ice sheet is large,
the effect of evanescent waves can be ignored in their interaction and
only the progressing wave mode needs to be considered. Based on this,
Li, Shi, and Wu20 developed an approximate solution for a body float-
ing on a wide polynya, and the mechanism for the oscillatory behav-
iors of the hydrodynamic forces was uncovered. When the submerged
cylinder has a circular shape, the multipole expansion method (MEM)
initiated in the free surface problem21 can be used to the case for the
water surface covered by an ice sheet, for example, by Tkacheva22 for a
cylinder near a vertical wall, by Li, Wu, and Ji23 for a cylinder below an
ice sheet with a crack and by Li, Shi, and Wu24 for a cylinder undergo-
ing large amplitude oscillations.

The three-dimensional (3D) problem has also been solved.
Brocklehurst, Korobkin and P�ar�au25 analyzed flexural-gravity wave
interactions with a bottom-mounted vertical circular cylinder clamped
with the ice sheet through Weber transform and found that the hori-
zontal force on the cylinder could be large even for small amplitude
long waves. Similar problem was solved by Korobkin, Malenica, and
Khabakhpasheva26 through the vertical mode method (VMM). Ren,
Wu, and Ji27 extended the problem to multiple vertical circular cylin-
ders through MEE, and the effects of arrangement of the cylinders on
the hydrodynamic force were studied. In these works, the water sur-
face is fully covered by an ice sheet. In many situations, there will be a
region in which water surface may be free. Ren, Wu, and Ji28 studied
wave interactions with a vertical circular cylinder in a circular polynya,
and the oscillatory features of the hydrodynamic force in the polynya
were observed. For a practical structure floating in a polynya of arbi-
trary edge shape, Li, Shi, and Wu29 developed a hybrid method in
which a series of integral equations in horizontal plane under the ice
sheet were constructed and coupled with the inner boundary integral
equation through an orthogonal inner product. Similar solution proce-
dure was used by Li, Shi, and Wu30 for free surface wave interactions
with an ice-covered harbor of vertical wall, and the shape of horizontal
plane of which can be arbitrary. The solution procedure is efficient
when the interface between two sub-domains is finite. For an ice chan-
nel with finite width and infinite length, Li, Wu and Ren31 derived the
Green function which satisfied all the boundary conditions except that
on the body surface, based on which the problem of a ship in the chan-
nel was solved.

In this work, we shall further consider the problem of a ship navi-
gating near the edge of a large ice sheet, in context of the possible
Arctic shipping route. The large ice sheet is assumed to be semi-
infinite extent with its edge being straight and infinitely long, and the
water depth is assumed to be constant and finite. The differential equa-
tion for the disturbed velocity potential is first converted into a bound-
ary integral equation based on the Green function, which satisfies all
the boundary conditions apart from that on the ship surface. Through
the asymptotic formula of the Green function, an approximate and
efficient solution procedure is developed. Although the method is
based on the assumption that a ship is far away from the ice sheet, it is
found that the method can provide accurate results even when the
ship is near the ice edge. Based on the asymptotic formula, the com-
plex ship/wave/ice sheet interaction is investigated and the mechanism
behind the behaviors of the hydrodynamic force is discussed.

The rest of paper is organized as follows. The mathematical
model is formulated in Sec. II, and the governing equation together
with the boundary conditions including those at the ice edge are
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described. The Green function or the velocity potential due to a single
oscillating source is given in Sec. IIIA, and the boundary integral
equation for the radiation and diffraction potentials are presented in
Sec. III B. Then the formula for the hydrodynamic force is provided in
Sec. III C. Results and discussions are made in Sec. IV, where the
asymptotic formula for the Green function is derived and an approxi-
mate solution procedure is developed. Finally, conclusions are drawn
in Sec. V.

II. MATHEMATICAL MODEL

The hydrodynamic problem of wave interaction with a ship float-
ing near a semi-infinite ice sheet is sketched in Fig. 1. The ice sheet is
modeled as a thin elastic plate with uniform properties, i.e., its Young’s
modulus E, Poisson’s ratio �, density qi and thickness h are assumed
to be constant and its draught effect being ignored. To describe the
problem, a Cartesian coordinate system O� xyz is defined with
O� xy plane being the undisturbed mean free water surface, and z
axis pointing vertically upward. The edge of the semi-infinite ice sheet
is assumed to be straight and parallel to the x axis and located at y ¼ b.
The motion of the ship is assumed to be excited by an incident wave
from the open water, which propagates from infinity from an angle b
with the positive x axis. The fluid with density qi is bounded in vertical
direction by a flat seabed at z ¼ �H and an upper surface at z ¼ 0.

The fluid is assumed to be inviscid, incompressible, and homoge-
neous, and its motion to be irrotational. Thus, the velocity potential
theory can be used to describe the fluid flow. When the amplitudes of
wave motion and ship motion are small compared to wavelength and
the dimension of ship, the linearized velocity potential theory can be
further applied. For sinusoidal motion in time with radian frequency
x, the total velocity potential u can be written as

uðx; y; z; tÞ ¼ Re g0/0ðx; y; zÞeixt þ
X6
j¼1

ixgj/jðx; y; zÞeixt

2
4

3
5; (1)

where g0 is the amplitude of the incident wave, /0 ¼ /I þ /D is the
scattering potential with /I and /D as the incident and diffracted
potentials, respectively; /j is the radiation potential due to the jth
mode of ship motion in six degrees of freedom with complex ampli-
tude gj. Here, gj with j ¼ 1; 2; 3 are for the translational modes along

x, y and z directions, respectively, i.e., surge, sway and heave, while gj
with j ¼ 4; 5; 6 are for the corresponding rotational modes, i.e., roll,
pitch and yaw. The conservation of mass requires that the velocity
potential should satisfy the Laplace equation throughout the fluid, or

r2/j þ
@2/j

@z2
¼ 0 ðj ¼ 0;…; 6Þ; (2)

wherer2 ¼ @2=@x2 þ @2=@y2 is the Laplacian in horizontal plane. In
the fluid domain with a free surface, the combination of linearized
dynamic and kinematic free surface boundary conditions provides

�x2/j þ g
@/j

@z
¼ 0 ðy � b� 0 and z ¼ 0Þ; (3)

where g is the acceleration due to gravity. In the fluid domain covered
by an ice sheet, it is assumed that there is no gap between ice sheet and
water surface, which provides the following kinematic condition:

@W
@t
¼ @U
@z
ðy � bþ 0 and z ¼ 0Þ: (4)

Here, W is the deflection of the ice sheet, which may be written in an
analogous form to Eq. (1), or

Wðx; y; tÞ ¼ Re g0w0ðx; yÞeixt þ
X6
j¼1

ixgjwjðx; yÞeixt

2
4

3
5: (5)

This combined with Eq. (4) means that

wj ¼
1
ix

@/j

@z

����
z¼0
: (6)

The combination of the kinematic and dynamic boundary conditions
on the interface between ice sheet and water surface provides

ðLr4 þ qwg �mix
2Þ
@/j

@z
� qwx2/j ¼ 0 ðy � bþ 0 and z ¼ 0Þ;

(7)

where L ¼ Eh3=½12ð1� �2Þ� is the effective flexural rigidity of the ice
sheet, and mi ¼ qih is the corresponding mass per unit area. Here,

FIG. 1. Coordinate system and sketch of
the problem.
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b� 0 and bþ 0 in Eqs. (3) and (7) indicate that the ice edge is
approached from the free surface side and ice sheet side, respectively.
At the ice edge, zero bending moment and shear force conditions are
imposed, which can be written as32

B
@/j

@z

� �
¼ 0 and S

@/j

@z

� �
¼ 0 ðy ¼ bþ 0 and z ¼ 0Þ (8)

for j ¼ 0;…; 6, with the operators B and S, respectively, defined as

B ¼ @2

@y2
þ � @

2

@x2
; (9)

S ¼ @

@y
@2

@y2
þ ð2� �Þ @

2

@x2

" #
: (10)

On the mean wetted ship surface SB, the impermeable condition
provides

@/j

@n
¼ nj and

@/D

@n
¼ � @/I

@n
ðj ¼ 1;…; 6Þ; (11)

where ðn1; n2; n3Þ ¼~n, ðn4; n5; n6Þ ¼ ð~r �~r0Þ �~n, with~n being the
unit normal vector of the surface pointing into the ship,~r ¼ ðx; y; zÞ
being the position vector and ~r0 ¼ ðx0; y0; z0Þ being the rotational
center. Similarly, on the flat seabed z ¼ �H, we have

@/j

@z
¼ 0 and

@/D

@z
¼ 0 ðj ¼ 1;…; 6Þ (12)

for j ¼ 0;…; 6. At infinity, the radiation condition requires that the
radiated and diffracted waves should propagate outward in form of
free surface wave for y � b� 0 and in form of flexural-gravity wave
for y � bþ 0.

III. SOLUTION PROCEDURE
A. Velocity potential due to a single source: The Green
function

The Green function Gðp; qÞ is defined as the velocity
potential at field point pðx; y; zÞ due to a source at point qðn; g; fÞ.
Once G is obtained, the unknown velocity potential described in
Sec. II can be found through the boundary integral equation. G
should satisfy the following governing equation throughout the
fluid or

r2Gþ @
2G
@z2
¼ �4pdðx � nÞdðy � gÞdðz � fÞ (13)

together with the boundary conditions in (3), (7), (8), (12) and the
radiation condition. Here, dðxÞ is the Dirac delta function. Without
loss of generality, we may assume that the source is in the free sur-
face part or g � b� 0, which is consistent with the location of the
ship floating on the free surface. Then following the similar proce-
dure in Li, Wu, and Ren,31 we can first apply the Fourier transform
along the x axis. In the z direction, vertical modes ZmðzÞ
(m ¼ 0; 1;…;1) below the free surface y � b� 0 and QmðzÞ
(m ¼ �2;�1;…;1) below the ice sheet y � bþ 0 can be used,
and they are written as29

ZmðzÞ ¼
cosh kmðz þ HÞ½ �

coshðkmHÞ
; (14)

QmðzÞ ¼
cosh jmðz þ HÞ½ �

coshðjmHÞ
; (15)

where km are the root of the dispersion equation for free surface (k0 is
the purely positive real root; km are an infinite number of purely nega-
tive imaginary roots withm ¼ 1;…;1) or

K1ðx; kÞ ¼ gk tanhðkHÞ � x2 ¼ 0 (16)

and jm being the root of the dispersion equation for ice sheet (j�2
and j�1 are two complex roots with negative imaginary parts and
symmetric about the imaginary axis; j0 is the purely positive real root;
jm are an infinite number of purely negative imaginary roots with
m ¼ 1;…;1) or

K2ðx; kÞ ¼ ðLk4 þ qwg �mix
2Þk tanhðkHÞ � qwx2 ¼ 0: (17)

Equation (13) then becomes a series of standard second order ordinary
different equations in the y direction, which can be easily solved, simi-
lar to that in Li, Wu, and Ren.31 Here, we write the result as

G¼
Fþ 2

X1
m¼0

ZmðzÞ
ðþ1
0

ame
�ibmðb�yÞ cos½aðx� nÞ�da; y� b� 0;

2
X1
m¼�2

QmðzÞ
ðþ1
0

bme
�icmðy�bÞ cos½aðx� nÞ�da; y� bþ 0;

8>>>><
>>>>:

(18)

where b2
m ¼ k2m � a2 and c2m ¼ j2

m � a2. To satisfy the condition in
the far field, we choose ImðbmÞ � 0 and ImðcmÞ � 0 when they are a
complex number, and bm > 0 and cm > 0 when they are a purely real
number. In Eq. (18),

F ¼
X1
m¼0

p
iPm

ZmðfÞZmðzÞHð2Þ0 ðkmRÞ (19)

is in fact the Green function for full free surface without the ice sheet,
where Hð2Þ0 ðkmRÞ is the zeroth order Hankel function of the second
kind. Equation (19) can be also written in an integral form as33

F ¼ 1
r1
þ 1
r2
þ 2

ðþ1
0

e�kH
gkþ x2

K1ðx; kÞ
cosh kðfþ HÞ½ �

coshðkHÞ
� cosh kðz þ HÞ½ �J0ðkRÞdk; (20)

where the integral route from 0 to þ1 should pass over the pole at
k ¼ k0, r1 is the distance between p and q, r2 is the distance between p
and the mirror image of q about the flat seabed, J0ðkRÞ is the zeroth
order Bessel function of the first kind, and R is the horizontal distance
between p and q. The unknown coefficients am and bm in Eq. (18) can
be obtained through enforcing the continuity at the interface at y ¼ b
and the ice edge conditions along y ¼ b, z ¼ 0, or the solution of the
following matrix equation:31

cm
X1
~m¼0

a~mVm;~m � bmcmUm �
LTm

qwx2

X1
~m¼�2

b~mT~m �a2ðc~m þ cmÞ
�

�2a2cm þ c2mðc~m � cmÞ � c~mðj2
m þ j2

~mÞ
�

¼ icm
X1
~m¼0

1
b~mP~m

e�ib~m ðb�gÞZ~mðfÞVm;~m (21)

and
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�bmPmam �
X1

~m¼�2
b~mc~mV~m;m ¼ ie�ibmðb�gÞZmðfÞ; (22)

where

Tm ¼ jm tanhðjmHÞ; (23)

Um ¼
2jmH þ sinhð2jmHÞ
4jmcosh

2ðjmHÞ
þ 2LT2

mj2
m

qwx2
; (24)

Vm;~m ¼
ð0
�H

QmZ~mdz ¼
Tm � x2=g
j2
m � k2~m

; (25)

Pm ¼
ð0
�H

ZmðzÞZmðzÞdz ¼
2kmHþsinhð2kmHÞ
4kmcosh

2ðkmHÞ
: (26)

It should be noticed that the Green function in Eq. (18) satisfies all the
boundary conditions apart from that on the mean wetted body
surface.

B. Boundary integral equation for the disturbed
velocity potential

As demonstrated by Li, Wu, and Ren,31 with the help of the
Green function G in (18), we can write the disturbed velocity potential
/ in terms of a boundary integral equation over the mean wetted ship
surface only, or

‘/ðpÞ ¼
ð
SB

Gðp; qÞ @/ðqÞ
@nq

� @Gðp; qÞ
@nq

/ðqÞ
" #

dsq; (27)

where ‘ is the solid angle at point p. For a given condition in Eq. (11),
Eq. (27) may be solved. However, at some frequencies, solution of Eq.
(27) may not exist or may not be unique. This has been widely discussed
in the free surface problem and is commonly called irregular frequencies.
These frequencies may be linked to the velocity potential flow problem
inside the space confined by the ship hull. The internal potential is zero
on the inner hull surface and satisfies the same condition as that of G on
the waterplane of the ship. In general, the solution of the potential will
be zero. However, at irregular frequencies, non-trivial solution may exist.
Since G in Eq. (18) satisfies Eq. (3), with or without the ice sheet, the
irregular frequencies here are expected to be the same as those for the
free surface problem. It ought to point out that the existence of the irreg-
ular frequencies is a result of the integral equation in Eq. (27) and it is
not a real physical problem. Therefore, their effects can be removed
through modifying Eq. (27). Here, we adopt the procedure in Lee,
Newman, and Zhu34 and rewrite Eq. (27) in an equivalent form as

‘/ðpÞ þ
ð
SBþSE

@Gðp;qÞ
@nq

/ðqÞdsq ¼
ð
SB

Gðp;qÞ@/ðqÞ
@nq

dsq for p 2 SB

(28)

and

�4p/ðpÞ þ
ð
SBþSE

@Gðp; qÞ
@nq

/ðqÞdsq

¼
ð
SB

Gðp; qÞ @/ðqÞ
@nq

dsq for p 2 SE; (29)

where SE is the extended surface interior the ship or its waterplane at
z ¼ 0.

For the radiation potential / ¼ /j, the boundary integral equa-
tions (28) and (29) can be solved directly by imposing @/j=@n ¼ nj
on SB. While the diffracted velocity potential /D of the incident veloc-
ity potential /I includes two components, i.e.,

/D ¼ /ð1ÞD þ /ð2ÞD ; (30)

where /ð1ÞD is the diffracted velocity potential by the ice sheet to /I ,
and /ð2ÞD is that by the body to u ¼ /I þ /ð1ÞD . The incident velocity
potential for free surface wave can be written as

/I ¼ uIðy; zÞe�ikxx; (31)

with

uIðy; zÞ ¼ Ae�ikyyZ0ðzÞ; (32)

where A ¼ ig=x, kx ¼ k0 cos b and ky ¼ k0 sin b. Correspondingly,
the velocity potential u can be written as

u ¼ �uðy; zÞe�ikxx: (33)

Then, u can be obtained virtually in the same way as that used for ~G,
through replacing a in Eqs. (21) and (22) with kx , and the right hand
sides of the matrix equation with the contribution due to /I , as shown
in the Appendix. Through the decomposition (30), both u and
/ð2ÞD satisfy the free ice edge conditions (8), and the latter one can be
solved through the boundary integral equations (28) and (29) by
imposing the condition @/ð2ÞD =@n ¼ �@u=@n on the mean wetted
ship surface SB.

C. Hydrodynamic coefficients and wave exciting force

After the velocity potential /j have been found, the pressure at
any point in fluid can be computed through the linearized Bernoulli
equation. Then the hydrodynamic force on a ship can be obtained
through integrating the dynamic pressure over the mean wetted ship
surface. According to the decomposition of velocity potential in Eq.
(1), we may divide the total hydrodynamic force into two parts, i.e.,
the wave exciting force fE;j at unit incident wave amplitude due to the
scattering velocity potential /0 or

fE;j ¼ �ixqw

ð
SB

/0njds (34)

and the radiation force due to the forced oscillatory motions of a ship
which can be written in form of added mass ljk and damping coeffi-
cient kjk, i.e.,

sjk ¼ ljk � i
kjk
x
¼ qw

ð
SB

/knjds: (35)

IV. NUMERICAL RESULTS

In following numerical computations, the values of parameters of
ice sheet and fluid are taken to be35

E ¼ 5GPa; � ¼ 0:3; qi ¼ 922:5 kg=m3;

qw ¼ 1025 kg=m3; H ¼ 100m;
(36)

together with h 2 ½0m; 5m�, which are one of the typical situations in
the Arctic region. When there is no special specification with unit of
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the parameter being given, the numerical results are dimensionalized
based on the combinations of three basic parameters, i.e., density of
water qw, acceleration due to gravity g ¼ 9:80m=s2 and the half
breadth of the ship. The infinite summations in Eq. (18) are truncated
at a finite number MG. Similarly, only the first MD terms are kept in
the infinite summations in Eqs. (A2) and (A4). For the boundary inte-
gral equations (28) and (29), the mean wetted body surface SB is dis-
cretized into NB flat panels and the extended interior surface SE
introduced to remove the irregular frequencies is discretized into NE

flat panels. On each panel, the velocity potential is assumed to be con-
stant. The application of flat panels indicates that the solid angle ‘ in
Eq. (28) is always 2p. Through increasing MG, MD, NB and NE , a
desired accuracy can be obtained. The solution procedure developed
in Sec. III can be used to compute all the hydrodynamic coefficients
and wave exciting force, and only the heave and roll modes are pro-
vided in the following text to show the effect of ice sheet.

A. Geometry and principal parameters of the ship

The ship used for this study is an icebreaker of modern design.
The principal parameters are given in Table I, in which the vertical
position of gravity center is given with respect to the baseline, the lon-
gitudinal position is with respect to the after-perpendicular, and the
transverse position is with respect to the longitudinal middle plane.
The rotational center ðx0; y0; z0Þ of the ship is taken to be at the gravi-
tational center, and y0 ¼ 0 has been used below. A typical discretiza-
tion of the hull surface for the boundary integral equations (28) and
(29) are shown in Fig. 2. On the mean wetted body surface SB, NB

¼ 2870 flat panels are distributed, and the extended interior surface SE
is discretized into NE ¼ 172 flat panels. Near the bow and stern, the
triangle element is used. Away from these areas, where the surface is
less curved, the quadrilateral element is used, starting with smaller one
and followed by larger one toward the middle section. It may be
noticed that the mesh quality and quantity will have an influence on
the computed results, and a proper mesh can reduce the number of
panels to meet the requirement of convergence. For the infinite sum-
mation in Eq. (18),MG ¼ 50 is taken. To obtain the diffracted velocity

potential /ð1ÞD due to /I by the semi-infinite ice sheet, MD ¼ 200 is
taken. It has been observed that further increase in NB, NE , MG and
MD will no longer give graphically distinguishable curves in the fig-
ures. They are used for the results below if it is not specified.

B. Asymptotic wave behaviors at large b through
the Green function

For waves generated by an oscillating source submerged in a
channel confined between two semi-infinite ice sheets, it has been
shown that when j0 < k0, there may be waves trapped in the channel
with N discrete wavenumbers at j0 < aj < k0, j ¼ 1;…;N , and the
value of N will depend on a particular problem.36 These waves propa-
gate periodically along the channel and decay exponentially away from
the channel in its transverse direction. aj corresponds to the first order
singular points of integrand of Green function.31 For the current
problem, i.e., when there is a semi-infinite ice sheet on one side, no
such simple poles are found numerically for am and bm in Eq. (18).
This means that the free surface waves of the form exp ½�ib0;jðb
�yÞ� exp ð�iajjx � njÞ with b0;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � a2j

q
, which does not decay

at large x or large b, will not appear.
To consider the asymptotical behavior at large b, Eqs. (21) and

(22) may be rewritten as

am ¼ �
1

bmPm
ie�ibmðb�gÞZmðfÞ þ

X1
~m¼�2

b~mc~mV~m ;m

" #
(37)

and

�cm
X1
n¼�2

bncn
X1
~m¼0

1
b~mP~m

Vn;~mVm;~m � bmcmUm �
LTm

qwx2

X1
~m¼�2

b~mT~m

� ð� � 2Þa2ðc~m þ cmÞ � c3m � c3~m
� �

¼ 2icm
X1
~m¼0

1
b~mP~m

e�ib~m ðb�gÞZ~mðfÞVm;~m : (38)

When m > 0, bm is a negative imaginary number and exp ½�ibmðb
�yÞ� as well as exp ½�ibmðb� gÞ� decay exponentially with b.
Therefore, we need to consider only the term of a0 and keep only the
term of ~m ¼ 0 on the right hand side of Eq. (38). As b2

0 ¼ k20 � a2

! 0 when a! k0, there is a square root singularity in a0 of form
1=b0. If we multiply b0 on both sides of Eq. (38), we can see that bm
has no singularity at b0 ¼ 0. From Eq. (37), a0 can then be written as

a0 ¼ AðaÞe�ib0ðb�gÞZ0ðfÞ=b0; (39)

where AðaÞ has no singularity. Equation (39) can be further written as

TABLE I. The principal parameters of a modern design icebreaker.

Length between perpendiculars (L) 147.20 m
Breadth (B) 22.60 m
Draft (T) 8.00 m
Displacement volume (D) 17 543.10 m3

Block coefficient (Cb) 0.66
Mid-ship coefficient (Cm) 0.93
Vertical center of gravity 10.00 m
Longitudinal center of gravity 70.27m
Transverse center of gravity 0.00m
Roll gyration radius 0.34B
Pitch gyration radius 0.27L
Yaw gyration radius 0.27L

FIG. 2. General view of the geometry and distribution of panels on the icebreaker.
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a0 ¼ að1Þ0 þ að2Þ0 ; (40)

where

að1Þ0 ¼ AðaÞ � Aðk0Þ½ �e�ib0ðb�gÞZ0ðfÞ=b0; (41)

að2Þ0 ¼ Aðk0Þe�ib0ðb�gÞZ0ðfÞ=b0: (42)

The second term on the right hand side of Eq. (18) for y � b� 0 can
be written as

GI ¼
X1
m¼0

gm; (43)

where

gm ¼ 2ZmðzÞ
ðþ1
0

ame
�ibmðb�yÞ cos½aðx � nÞ�da ðm ¼ 0;…;1Þ:

(44)

At large b, we can keep only g0 term. We write

g0 ¼ gð1Þ0 þ gð2Þ0 ; (45)

where

gð1Þ0 ¼ 2Z0ðzÞ
ðþ1
0

að1Þ0 e�ib0ðb�yÞ cos½aðx � nÞ�da; (46)

gð2Þ0 ¼ 2Z0ðzÞ
ðþ1
0

að2Þ0 e�ib0ðb�yÞ cos½aðx � nÞ�da: (47)

Invoking Eq. (A6) of Li, Wu, and Ren,31 we may rewrite Eq. (47) as

gð2Þ0 ¼ pAðk0ÞZ0ðzÞZ0ðfÞHð2Þ0 ðk0�RÞ; (48)

where �R2 ¼ ðx � nÞ2 þ ð2b� y � gÞ2. By noticing37

Hð2Þ0 ð�RÞ ¼
ffiffiffiffiffiffi
2

p�R

r
e�i

�R�p
4ð Þ þ O

1

�R3=2

� �
for �R ! þ1; (49)

we further have

lim
�R!þ1

gð2Þ0 ¼ Aðk0ÞZ0ðzÞZ0ðfÞ
ffiffiffiffiffiffiffiffi
2p
k0�R

r
e�i k0�R�p

4ð Þ: (50)

For gð1Þ0 in Eq. (46), let iðx � nÞ ¼ �Rsinht0 and 2b� y � g ¼ �Rcosht0

with t0 2 ð�ip=2;þip=2Þ, and a ¼ ik0sinht and b0 ¼ k0cosht, we
have

gð1Þ0 ¼ iZ0ðzÞZ0ðfÞ
ð
C
AðaÞ � Aðk0Þ½ �e�ik0�Rcoshðt�t0Þdt; (51)

where C is the integral route below,

t 2 ð�1þ ip=2;þip=2Þ [ ðþip=2;�ip=2Þ [ ð�ip=2;�ip=2þ1Þ:
(52)

By using the method of steepest descent, we have the asymptotic
formula of Eq. (51),

lim
�R!þ1

gð1Þ0 ¼ Z0ðzÞZ0ðfÞ Aða0Þ � Aðk0Þ½ �
ffiffiffiffiffiffiffiffi
2p
k0�R

r
e�i k0�R�p

4ð Þ; (53)

where

a0 ¼ �k0 sin ðh0Þ; (54)

with

h0 ¼ arctan ðx � nÞ=ð2b� y � gÞ½ �: (55)

Invoking Eqs. (50) and (53), we can obtain the asymptotic expression
of Eq. (43) as

G1I � lim
�R!þ1

GI ¼ Aða0ÞZ0ðzÞZ0ðfÞ
ffiffiffiffiffiffiffiffi
2p
k0�R

r
e�i k0�R�p

4ð Þ; (56)

where the higher order term has been dropped. It may be noticed that
AðaÞ in Eq. (56) in the above equation can be obtained numerically
through the matrix equation (37) and (38). As b! þ1, h! 0 and
a0 ! 0, we further have

lim
b!þ1

G1I ¼ Að0ÞZ0ðzÞZ0ðfÞ
ffiffiffiffiffiffiffi
2p

k0�b

s
e�i k0�b�p

4ð Þ; (57)

where �b ¼ 2b� y � g. Equation (57) shows that at large b, the
effect of the ice sheet on the free surface decays at a rate of
1=sqrtð�bÞ. It is in fact due to a source placed at mirror image posi-
tion of q with respect to y ¼ b. However, it does not mean y ¼ b
can be treated as a wall, as the strength of the source is different,
and it depends on Að0Þ.

Figure 3 shows GI in Eq. (43) and G1I in Eq. (56) at pð0; 0; 0Þ
against b induced by a source at qð0; 0;�H=100Þ with wave number
k0 ¼ 2. Because x � n ¼ 0, Eqs. (56) and (57) are identical in this spe-
cial case. Three ice sheet thicknesses are considered, i.e., h ¼ 0:1, 1,
and 5m, which are within the typical range of field observations.38 It
can be seen from the figure that as b increases, G1I becomes closer and
closer to GI , and their modulus oscillate with b and decrease slowly at
the same time, as shown in Eq. (56). When the ice sheet thickness is
very small, GI becomes negligible. When h increases, the modulus of
GI becomes larger, i.e., the ice sheet has a much stronger effect or the
reflected wave by the ice sheet due to Fðp; qÞ has a much larger
amplitude.

C. The effectiveness of irregular frequency removal
method

When Eq. (27) is discretized, a matrix equation for the potentials
at panels can be obtained. Away from the irregular frequencies, the
equation can be solved using standard methods and accurate results
can be obtained. However, the matrix equation becomes ill-
conditioned at irregular frequencies. The obtained results near the
irregular frequencies vary almost vertically or they are highly oscilla-
tory, which is not due to true physical reason but due to deficiency of
the mathematical method. Therefore, following Lee, Newman, and
Zhu,34 Eq. (27) is modified into two equivalent equations, or Eqs. (28)
and (29). Figures 4 and 5, respectively, depict the added mass and
damping coefficient against the wavenumber k0 computed from (27),
and also that from combined (28) and (29). The two sets of results are
generally in good agreement, as they should be. Near the irregular fre-
quencies the results from the former have spikes, while those from the
latter are smooth. This shows that Eqs. (28) and (29) have successfully
removed irregular frequencies.
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D. Approximate solution for a ship away from the ice
edge

When the distance b between the ship and ice sheet is large, we
may write e ¼ ðx � nÞ=ð2b� y � gÞ. When e! 0, from Eq. (54)
a0 ¼ OðeÞ. When Aða0Þ in Eq. (56) is replaced by Að0Þ, the ignored
term is of order OðeÞ. With this approximation, when b is large, by
ignoring the e3=2 term in Eq. (56), the Green function in Eq. (18) may
be approximated as

Gðp; qÞ � Fðp; qÞ þ Að0ÞIðp; qÞ ðy � b� 0Þ; (58)

where

Iðp; qÞ ¼ Z0ðzÞZ0ðfÞ
ffiffiffiffiffiffiffiffi
2p
k0�R

r
e�i k0�R�p

4ð Þ: (59)

Invoking Eqs. (37) and (38), we have that Að0Þ is independent of the
source and field positions, as well as the distance b. However, it is

FIG. 3. GI and G1I at pð0; 0; 0Þ against b
induced by a source at qð0; 0;�H=100Þ
(k0 ¼ 2). (a) and (b) are for h ¼ 0:1 m;
(c) and (d) are for h ¼ 1 m; (e) and (f) are
for h ¼ 5m. Re is for real part and Im is
for imaginary part. Solid lines: GI [Eq.
(43)]; dashed lines: G1I [Eq. (56)].
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affected by the properties of the ice sheet. Nevertheless, for a given
wave frequency and ice sheet, Að0Þ only needs to be computed once,
which significantly reduces the CPU requirement. Figures 6 and 7
show the diagonal terms of the added mass and damping coefficients
against the distance b. The wavenumber is taken to be k0 ¼ 2. It can

be seen from these two figures that as in the range of b calculated,
especially at large value, the difference between the solid lines [using
the Green function in Eq. (18)] and dashed lines [using the approxi-
mation in Eq. (58)] is very small. This shows that the approximate
method can predict the hydrodynamic force with a high accuracy,

FIG. 4. Added mass in heave mode l33
(a) and roll mode l44 (b) against k0 with
b ¼ 5. Solid lines: by Eq. (27); dashed
lines: by Eqs. (28) and (29).

FIG. 5. Damping coefficient in heave
mode k33 (a) and roll mode k44 (b)
against k0 with b ¼ 5. See the caption of
Fig. 4 for further information.

FIG. 6. Added mass in heave mode l33
(a) and roll mode l44 (b) against b
(h ¼ 1m and k0 ¼ 2). Solid lines: by Eq.
(18); dashed lines: by Eq. (58).
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while it is also computationally far more efficient. At a given distance
b ¼ 5, the diagonal terms of the added mass and damping coefficients
are provided in Figs. 8 and 9, respectively. It can be seen from the fig-
ures that the hydrodynamic force computed using Eq. (58) agrees well

with that by the exact Green function (18), although the distance b is
only five times of the half ship width or a third of the ship length. This
is the case in the whole range of wavenumber, including very small k0
or very long wavelength.

FIG. 7. Damping coefficient in heave
mode k33 (a) and roll mode k44 (b)
against b. See the caption of Fig. 6 for fur-
ther information.

FIG. 8. Added mass in heave mode l33
(a) and roll mode l44 (b) against k0
(h ¼ 1m and b ¼ 5). Solid lines: by Eq.
(18); dashed lines: by Eq. (58).

FIG. 9. Damping coefficient in heave
mode k33 (a) and roll mode k44 (b)
against k0. See the caption of Fig. 8 for
further information.
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E. The effect of distance of a ship from the ice edge

In Secs. IVE–IVG, the solution procedure in Sec. III will be
applied to compute the hydrodynamic coefficients and wave exciting
force, while the approximate solution in Sec. IVD will be used to
investigate the mechanism behind the behaviors of the results. We
consider wave interactions with a ship floating on the water surface
with its longitudinal direction parallel to the ice edge. Three transverse
distances are considered, i.e., b ¼ 3, 5, 7. The incident wave from open
sea is normal to the ice edge or b ¼ p=2, which also means beam sea
to the ship. The ice sheet thickness is chosen to be h ¼ 1m. The diago-
nal terms of the added mass and damping coefficients are, respectively,
shown in Figs. 10 and 11 against the wavenumber k0, while the modu-
lus of the wave exciting force is provided in Fig. 12. In these figures,
the results for open water are also provided for comparison. In numer-
ical calculations, the wavenumber k0 varies from 0:04 to 4 with a step
0:02. To investigate any possible sharp variation of the results, the step
can be easily reduced further.

It can be seen from Figs. 10 and 11 that the hydrodynamic coeffi-
cients will tend to those for open sea as k0 ! 0, as the boundary con-
ditions on both ice sheet and free surface will tend to be that for a rigid
lid or @/j=@z ¼ Oðx2Þ. Also, when x! 0 the forced oscillations of a
ship will be almost like quasi-static motion, the disturbed waves will

become very small, and the damping coefficient will tend to zero, as
shown in Fig. 11. For the diffraction problem, it can be observed from
Fig. 12 that all the wave exciting force tend to zero except those in the
heave mode and pitch mode which tend to a finite value. This is
because that as k0 tends to zero or the wavelength tends to infinity, the
wave dynamic effect will disappear or the diffracted velocity potentials
/1
D and /2

D in Eq. (30) will be zero. Then, Eq. (34) becomes

fE;j ¼ �ixqw

ð
SB

/Injds ¼ qwg
ð
SB

njds: (60)

For translational mode, Eq. (60) indicates that only fE;3 is nonzero;
while for rotational mode, only fE;5 will be nonzero since the ship is
symmetric about its longitudinal plane passing the rotational center
and asymmetric about the corresponding transverse plane.

As the wavenumber k0 increases, the hydrodynamic force for dif-
ferent b starts to depart from each other and all oscillate around that
for open sea, which changes smoothly against k0. As the disturbed free
surface wave generated by the ship encounters the ice sheet, the wave
will be significantly altered. Part of wave will be reflected. Upon
encountering the ship, the reflected wave may be at its peak or through
depending on the ratio of the wavelength to b, leading to the oscilla-
tory features of the hydrodynamic force. This may be further explained

FIG. 10. Added mass in heave mode l33
(a) and roll mode l44 (b) at different dis-
tances from the ice edge against k0
(h ¼ 1m and b ¼ p=2). Solid lines:
b ¼ 3; dashed lines: b ¼ 5; dash-dotted
lines: b ¼ 7; dotted lines: open water.

FIG. 11. Damping coefficient in heave
mode k33 (a) and roll mode k44 (b) at dif-
ferent distances from the ice edge against
k0. See the caption of Fig. 10 for further
information.
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through the asymptotic form of the Green function. According to Eq.
(57), there is an oscillatory term in form of exp ð�2ik0bÞ. For a fixed
b, the period of oscillation with k0 will be p=b. In terms of k0, this
becomes p=b, as can be observed from Figs. 10–12. For a fixed k0, the
period of oscillation with b will be p=k0, and in terms of b this
becomes p=k0, as can be seen in Figs. 6 and 7 of Sec. IVD for the
added mass and damping coefficient, respectively. As k0 ¼ 2, the
period is equal to p=2. The results in Figs. 5 and 6 also decay slowly
with b, which is consistent with Eq. (57). From Eq. (57), the effect of
the ice sheet at a given k0 will disappear as b!1. This is different
from the 2D problem, where the effect of ice sheet on the hydrody-
namic force will always be there even if b!1 (e.g., Li, Shi and
Wu20).

F. The effect of ice sheet thickness

We then investigate the effect of ice sheet thickness on the hydro-
dynamic force. Three different ice sheet thicknesses are considered,
i.e., h ¼ 0.1, 1, 5m, together with the case for open water or h ¼ 0.
The incident wave angle is taken to be b ¼ p=2, and the distance
between ship and ice edge is chosen as b ¼ 5. Figures 13 and 14 show
the diagonal terms of the added mass and damping coefficients against

the wavenumber k0, and Fig. 15 demonstrates the modulus of the
wave exciting force. The range and step of abscissa are the same as
those in Sec. IVE.

When k0 ! 0, the hydrodynamic force for ice sheet with differ-
ent thickness all tends to the same value as the boundary condition on
the upper surface tends to be the same. As the wavenumber k0
increases, the hydrodynamic force with different h starts to depart
from each other. When the ice sheet thickness tends to zero, the
hydrodynamic force will tend to that for open water, e.g., from
h ¼ 5m to h ¼ 0:1m shown in the figures. In fact, if we set h ¼ 0
directly in Eq. (38), it can be shown that bm ¼ e�ibmðb�gÞZmðfÞ=
ðibmPmÞ, and then am ¼ 0 in Eq. (37), i.e., the Green function in
Eq. (18) will become that for open water.

When h increases, the hydrodynamic force oscillates around that
for open water with a much larger amplitude. As discussed by Li, Shi
andWu20 for a 2D wave/body/ice sheet interaction problem, the oscil-
latory behavior strongly depends on the reflection coefficient by the
ice sheet, and a larger jRoj may lead to much larger peaks and smaller
troughs. We may use the 2D results as an indication here. In Fig. 16,
the variations of j0 and jRoj of normal incident against the wavenum-
ber k0 at different ice thicknesses are provided. It can be observed that
with the increase in ice thickness, the flexural-gravity wavenumber

FIG. 13. Added mass in heave mode l33
(a) and roll mode l44 (b) at different ice
sheet thicknesses against k0 (b ¼ 5 and
b ¼ p=2). Solid lines: h ¼ 0:1 m; dashed
lines: h ¼ 1:0m; dash-dotted lines:
h ¼ 5:0m; dotted lines: open water.

FIG. 12. Wave exciting force in heave
mode fE;3 (a) and roll mode fE;4 (b) at dif-
ferent distances from the ice edge against
k0. See the caption of Fig. 10 for further
information.
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decreases, while the reflection coefficient increases. This means that
the interaction between ice sheet and a body nearby becomes much
stronger. In 2D problems, the reflected wave by an ice sheet due to a
line source is a plane wave, and its amplitude does not decrease during

its propagation. However, in 3D problems, Eq. (59) indicates that the
reflection wave is a ring wave with its center at the mirror image posi-
tion of the source point with respect to the ice edge. Að0Þ in Eq. (58)
can be used as a measurement of its amplitude, which further

FIG. 14. Damping coefficient in heave
mode k33 (a) and roll mode k44 (b) at dif-
ferent ice sheet thicknesses against k0.
See the caption of Fig. 13 for further
information.

FIG. 15. Wave exciting force in heave
mode fE;3 (a) and roll mode fE;4 (b) at dif-
ferent ice sheet thicknesses against k0.
See the caption of Fig. 13 for further
information.

FIG. 16. Flexural-gravity wave number (a)
and 2D reflection coefficient (b) against k0
(b ¼ p=2). Solid lines: h ¼ 0:1m; dashed
lines: h ¼ 1:0m; dash-dotted lines: h
¼ 5:0m; dotted lines in (a): h ¼ 0m.
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determines the oscillatory amplitude of the hydrodynamic force.
Therefore, in Fig. 17 we plot the modulus of Að0Þ against k0 at differ-
ent ice sheet thickness. It can be seen from Fig. 17 that jAð0Þj increases
with h, leading to a much larger oscillatory amplitude of the hydrody-
namic force. In fact, the left-hand sides of Eqs. (A6) and (A7) with

kx ¼ 0 are the same as those of Eqs. (21) and (22) at a ¼ 0. Their sol-
utions should be similar. Noticing for Ro ¼ �a0=A where A is given
below Eq. (32), and Að0Þ obtained from Eqs. (37) and (38), the varia-
tions of jRoj and jAð0Þj with respect to h are expected to be similar.

G. The effect of incident wave angle on the wave
exciting force

Finally, we consider the effect of incident wave angle on the wave
exciting force. Four different incident wave angles are considered, i.e.,
b ¼ p=2, p=3, p=6 and p=18. The first one indicates that the incident
wave propagates normally to the ice sheet, while the last one corre-
sponds to that nearly parallel to the ice sheet. The ice sheet thickness is
taken to be h ¼ 1m, and the distance between ship and ice edge is
chosen as b ¼ 5. Figure 18 shows the wave exiting force fE;j against the
wavenumber k0, while Figs. 19 and 20 depict the corresponding

Froude–Krylov force f IE;j due to u ¼ /I þ /ð1ÞD and the wave diffrac-

tion force f DE;j due to/ð2ÞD , or

f IE;j ¼ �ixqw

ð
SB

unjds; (61)

FIG. 17. The modulus of Að0Þ in Eq. (58) against k0. Solid lines: h ¼ 0:1m;
dashed lines: h ¼ 1:0m; dash-dotted lines: h ¼ 5:0 m.

FIG. 18. Wave exciting force in heave
mode fE;3 (a) and roll mode fE;4 (b) at dif-
ferent incident wave angles against k0
(b ¼ 5 and h ¼ 1:0 m). Solid lines:
b ¼ p=2; dashed lines: b ¼ p=3; dash-
dotted lines: b ¼ p=6; dotted lines:
b ¼ p=18.

FIG. 19. Froude–Krylov force in heave
mode f IE;3 (a) and roll mode f

I
E;4 (b) due to

u at different incident wave angles against
k0. See the caption of Fig. 18 for further
information.
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f DE;j ¼ �ixqw

ð
SB

/ð2ÞD njds: (62)

The range and step of abscissa are the same as those in Sec. IVE.
It can be seen from the figures that as k0 is small the wave excit-

ing force is not affected by the incident wave angle very much. This is
because that the dynamic effect of fluid motion is small in this case,
and the effect of b disappears. As k0 increases, fE;j for different b
departs from each other evidently. Generally, the magnitude of wave
exciting force has more local peaks and troughs against k0 than the
radiation force shown through ljj and kjj in Figs. 13 and 14. This is
because the velocity potential u, which is a combination of /I and
/ð1ÞD by the ice sheet due to /I , also oscillates with k0, leading to the
local peaks and troughs of Froude–Krylov force f IE;j, as shown in
Fig. 19. When we impose the boundary condition in the boundary

integral equations (28) and (29), or @/ð2ÞD =@n ¼ �@u=@n, both the

Green function G and u will contribute to the oscillations of /ð2ÞD .
While for the wave radiation problem, only G will have contributions
to the local oscillations as @/j=@n ¼ nj is imposed on SB.

When b varies from p=18 to p=2, the wave exciting forces in
sway, heave and roll tend to increase overall. For the oblique incident

wave case, Fox and Squire3 have shown that a critical angle exists,
smaller than which the refection coefficient jRoj ¼ 1. Equivalently, it
means that at a given b, j0=k0 has a critical value. Below that, there is
no transmission into ice sheet and there will be full refection, and
above that transmission can happen. At b ¼ p=3, p=6 and p=18, the
critical value of j0=k0 are at 0:50, 0:87 and 0:98, respectively, and the
corresponding values of wave number kc0 are marked in Figs. 18–20.
As shown in Fig. 16(a), j0=k0 decreases as k0 increases except at small
k0. Therefore, on the right hand side of the critical value marked in the
figures, there will be no transmission. Figure 21 shows when k0
approaches the critical number from the left, jRoj from different b all
increase to 1 very fast, and beyond the critical number jRoj ¼ 1, indi-
cating a full reflection. Correspondingly, there is a rapid variation of
the wave exciting force in Figs. 18–20 when k0 increases to the critical
value, which is evident when the magnitude of the force is big in the
figure.

V. CONCLUSIONS

The problem of wave interactions with a ship floating on the
water surface near a semi-infinite ice sheet has been solved based on
the linearized velocity potential theory for fluid motion and thin elastic
plate model for the ice sheet deflection. The Green function, satisfying
all the boundary conditions including those on the ice sheet and free
surface, apart from that on the ship surface, is derived. Through the
Green function, the differential equation for the disturbed velocity
potential is transformed into a boundary integral equation over the
ship surface only, and the effect of irregular wave frequencies is
removed through modification of the integral equation which is solved
based on the boundary element method.

An asymptotic formula of the Green function is derived when
the transverse distance b between the source and ice sheet is large.
This reveals that the effect of an ice sheet is equivalent to place another
source at the mirror image location with respect to the ice edge.
However, the strength of the source at the mirror image is different
from the original one, and it depends on the physical properties of the
ice sheet. The result is, therefore, different from that of a vertical wall.
As the ice sheet thickness increases, the strength of the mirror source
will increase. Through the asymptotic formula of the Green function,
an approximate and efficient solution procedure is developed.
Although it is based on the assumption that a ship is far away from

FIG. 20. Wave diffraction force in heave
mode f DE;3 (a) and roll mode f

D
E;4 (b) due to

/ð2ÞD at different incident wave angles
against k0. See the caption of Fig. 18 for
further information.

FIG. 21. Reflection coefficient against k0 at different incident wave angles
(h ¼ 1:0 m). Solid lines: b ¼ p=2; dashed lines: b ¼ p=3; dash-dotted lines:
b ¼ p=6; dotted lines in (a): b ¼ p=18.
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the ice sheet, it is found that the approximate method can predict the
hydrodynamic force with a high accuracy in the whole range of wave-
numbers calculated, including very large wavelength even when the
ship is close to the ice edge. At the same time, the method is computa-
tionally far more efficient.

Different from a ship floating in open water, the existence of the
ice sheet will lead to an oscillatory behavior of the hydrodynamic force.
Specifically, the asymptotic solution procedure shows that at a fixed b,
the period of oscillation of the hydrodynamic force with wavenumber
k0 will be p=b, while in terms of b it will be p=k0. This indicates that a
larger b will lead to a more oscillatory hydrodynamic force against k0.
As b!1, the effect of the ice sheet at a given k0 will disappear,
which is different from that in the two-dimensional problem. More
wave energy will be reflected back to the ship by the ice sheet when it
becomes thicker, leading to the hydrodynamic force having a much
larger oscillatory amplitude. The wave exciting force has more peaks
and troughs than the added mass and damping coefficient due to the
interactions between incident wave and the ice sheet. For oblique inci-
dent wave with angle b, the wave exciting force will have a rapid varia-
tion around the critical wavenumber at which cosb ¼ j0=k0 with j0

being the flexural-gravity wavenumber.
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APPENDIX: DIFFRACTED VELOCITY POTENTIAL BY
THE ICE SHEET TO THE INCIDENT WAVE

Substituting Eq. (33) or u ¼ �uðy; zÞe�ikxx into the governing
Eq. (2), we have that �u should satisfy the Helmholtz equation
throughout the fluid, or

�k2x �u þ @
2�u
@y2
þ @

2�u
@z2
¼ 0; (A1)

and the same boundary conditions as those for ~G, but with a being
replaced by kx . In the free surface part of fluid, we may write �u as

�u ¼ �uf ¼ uIðy; zÞ þ
X1
m¼0

�am�w
f
m ðy � b� 0Þ; (A2)

with

�w
f
m ¼ e�i

�bmðb�yÞZmðzÞ; (A3)

where �b
2
m ¼ k2m � k2x , and Imð�bmÞ � 0 when it is a complex num-

ber and �bm > 0 when it is a purely real number. In the ice-covered
part of fluid, we may write �u as

�u ¼ �ui ¼
X1
m¼�2

�bm�w
i
m ðy � bþ 0Þ; (A4)

where

�w
i
m ¼ e�i�cmðy�bÞQmðzÞ: (A5)

Here, �c2m ¼ j2
m � k2x , and Imð�cmÞ � 0 when it is a complex number,

and �cm > 0 when it is a purely real number based on the require-
ment of the radiation condition. Then, similar to Eqs. (21) and (22),
we can obtain

�cm
X1
~m¼0

�a ~mVm;~m � �bm�cmUm �
LTm

qwx2

X1
~m¼�2

�b ~mT~mf�k2xð�c ~m þ �cmÞ

�2k2x�cm þ �c2mð�c ~m � �cmÞ � �c ~mðj2
m þ j2

~mÞg ¼ ��cmAe
�ikybVm;0;

(A6)

��bmPm�am �
X1

~m¼�2

�b ~m�c ~mV~m ;m ¼ �kyAe�ikybdm0Pm: (A7)

The infinite summations in Eqs. (A2) and (A4) can be truncated at
a finite number, and the matrix equation can be solved, the coeffi-
cients �am and �bm, and subsequently the potential u can be
obtained.
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