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Abstract
Background: Individuals	with	chronic	obstructive	pulmonary	disease	(COPD)	
commonly	 experience	 exacerbations,	 which	 may	 require	 hospital	 admission.	
Early	detection	of	exacerbations,	and	therefore	early	treatment,	could	be	crucial	
in	 preventing	 admission	 and	 improving	 outcomes.	 Our	 previous	 research	 has	
demonstrated	 that	 the	 pattern	 analysis	 of	 peripheral	 oxygen	 saturation	 (SpO2)	
fluctuations	provides	novel	insights	into	the	engagement	of	the	respiratory	con-
trol	 system	 in	 response	 to	 physiological	 stress	 (hypoxia).	 Therefore,	 this	 pilot	
study	 tested	 the	hypothesis	 that	 the	pattern	of	SpO2	variations	 in	overnight	re-
cordings	of	individuals	with	COPD	would	distinguish	between	stable	and	exacer-
bation	phases	of	the	disease.
Methods: Overnight	pulse	oximetry	data	from	11	individuals	with	COPD,	who	
exhibited	 exacerbation	 after	 a	 period	 of	 stable	 disease,	 were	 examined.	 Stable	
phase	recordings	were	conducted	overnight	and	one	night	prior	to	exacerbation	
recordings	 were	 also	 analyzed.	 Pattern	 analysis	 of	 SpO2	 variations	 was	 carried	
examined	using	sample	entropy	(for	assessment	of	 irregularity),	 the	multiscale	
entropy	(complexity),	and	detrended	fluctuation	analysis	(self-	similarity).
Results: SpO2	variations	displayed	a	complex	pattern	in	both	stable	and	exacerba-
tion	phases	of	COPD.	During	an	exacerbation,	SpO2	entropy	increased	(p = 0.029)	
and	long-	term	fractal-	like	exponent	(α2)	decreased	(p = 0.002)	while	the	mean	
and	standard	deviation	of	SpO2	time	series	remained	unchanged.	Through	ROC	
analyses,	SpO2	entropy	and	α2	were	both	able	to	classify	the	COPD	phases	into	ei-
ther	stable	or	exacerbation	phase.	With	the	best	positive	predictor	value	(PPV)	for	
sample	entropy	(PPV = 70%)	and	a	cut-	off	value	of	0.454.	While	the	best	negative	
predictor	value	(NPV)	was	α2	(NPV = 78%)	with	a	cut-	off	value	of	1.00.
Conclusion: Alterations	in	SpO2	entropy	and	the	fractal-	like	exponent	have	the	
potential	to	detect	exacerbations	in	COPD.	Further	research	is	warranted	to	ex-
amine	if	SpO2	variability	analysis	could	be	used	as	a	novel	objective	method	of	
detecting	exacerbations.
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1 	 | 	 INTRODUCTION

Chronic	 obstructive	 pulmonary	 disease	 (COPD)	 is	 a	
global	health	burden	estimated	to	affect	251 million	peo-
ple	worldwide	and	carries	with	it	high	mortality	(Husebø	
et	 al.,	 2014;	 Mathers	 &	 Loncar,	 2006).	 In	 COPD,	 indi-
viduals	 commonly	 experience	 exacerbations	 of	 their	 ill-
ness	leading	to	a	sudden	deterioration	in	their	health	(Al	
Rajeh	et	al.,	2020).	Patients	report	that	exacerbations	are	
the	 most	 disruptive	 aspect	 of	 living	 with	 COPD	 (Zhang	
et	al.,	2018).	This	often	leads	to	hospital	admissions;	with	
poor	prognosis	(Al	Rajeh	et	al.,	2020).	Consequently,	the	
prevention	 of	 exacerbations	 is	 essential	 when	 managing	
COPD	(Hurst,	Vestbo,	et	al.,	2010)	and	better	prevention	
of	 COPD	 exacerbations	 has	 been	 identified	 as	 a	 top	 re-
search	priority	(Alqahtani	et	al.,	2021).

Although	several	tools	have	been	proposed	to	help	de-
tect	 exacerbations	 earlier,	 to	 the	 best	 of	 our	 knowledge,	
there	 is	 no	 sensitive	 method	 of	 predicting	 exacerbation	
risk	or	rate	accurately	(Adibi	et	al.,	2020;	Al	Rajeh	et	al.,	
2020;	Donaldson	et	al.,	2012;	Hurst,	Vestbo,	et	al.,	2010).	
Clinical	 studies	 have,	 however,	 attempted	 to	 investigate	
the	utility	of	changes	in	various	physiological	parameters	
including	 heart	 rate,	 forced	 expiratory	 volume	 (FEV1),	
respiratory	rate	and	level	of	peripheral	oxygen	saturation	
(SpO2)	 before	 and	 during	 exacerbation	 with	 limited	 suc-
cess	(Al	Rajeh	et	al.,	2020.;	Al	Rajeh	&	Hurst,	2016;	Burton	
et	al.,	2015;	Hurst,	Donaldson,	et	al.,	2010;	Hurst,	Vestbo,	
et	al.,	2010;	Husebø	et	al.,	2014).	While	pulse	oximetry	has	
some	 role	 when	 monitoring	 individuals	 in	 the	 commu-
nity,	 there	 is	 no	 clear	 benefit	 of	 using	 mean	 values	 and	
overnight	 readings	 with	 the	 prediction	 of	 exacerbations	
due	 to	 the	 insignificant	 magnitude	 of	 the	 changes	 (Al	
Rajeh	et	al.,	2020).

Recent	 evidence	 has	 demonstrated	 that	 the	 complex	
pattern	 of	 variability	 in	 SpO2	 signals	 may	 provide	 more	
mechanistic	 insight	 than	 absolute	 or	 mean	 SpO2	 values	
(Bhogal	 &	 Mani,	 2017;	 Costello	 et	 al.,	 2020;	 Jiang	 et	 al.,	
2021).	 SpO2	 signals	 exhibit	 a	 complex	 fractal-	like	 pat-
tern	 in	hypoxic	 individuals	 (Costello	et	al.,	 2020).	Using	
a	 network	 physiology	 approach,	 we	 have	 demonstrated	
that	 SpO2	 fluctuations	 are	 not	 random	 and	 contain	 use-
ful	information	about	the	engagement	of	respiratory	con-
trol	during	hypoxia	(Jiang	et	al.,	2021).	Furthermore,	we	
also	reported	that	SpO2	entropy,	but	not	absolute	or	mean	
SpO2,	was	correlated	with	the	perception	of	breathlessness	
in	the	same,	otherwise	healthy,	individuals	when	hypoxic	

(Costello	et	al.,	2020).	These	data	 suggest	 that	 there	 is	a	
significant	 exchange	 of	 information	 between	 SpO2	 and	
other	respiratory	variables	(i.e.	tidal	volume,	minute	ven-
tilation,	 respiratory	 rate,	 end-	tidal	 oxygen,	 and	 carbon	
dioxide	 pressure)	 during	 graded	 normobaric	 hypoxia	
in	 healthy	 participants	 (Jiang	 et	 al.,	 2021).	 Fluctuations	
in	 these	 respiratory	 variables	 were	 reflected	 in	 the	 SpO2	
signal,	 specifically	 in	SpO2	entropy	 (Jiang	et	al.,	2021),	a	
measure	 that	 describes	 the	 unpredictability	 and	 irregu-
larity	of	these	SpO2	signals	(Richman	&	Moorman,	2000).	
Calculated	using	a	well-	established	algorithm	(Richman	
&	 Moorman,	 2000),	 SpO2	 entropy	 may	 reveal	 additional	
information	about	cardiorespiratory	control	in	health	and	
disease	(Jiang	et	al.,	2021).

To	date,	the	usefulness	of	SpO2	variability	analysis	has	
not	been	studied	extensively	 in	COPD.	Accordingly,	 this	
pilot	study	investigated	the	hypothesis	that	SpO2	variabil-
ity	 would	 distinguish	 between	 the	 two	 phases	 of	 COPD	
(stable	 vs.	 exacerbation).	 As	 SpO2	 entropy	 is	 easily	 com-
puted	 and	 incorporated	 into	 bedside	 monitors	 or	 smart	
devices,	 this	method	could	assist	 in	the	earlier	detection	
of	 COPD	 exacerbations	 and,	 following	 faster	 access	 to	
the	necessary	treatment,	ultimately	result	in	an	improved	
prognosis	(Qureshi	et	al.,	2014;	Wilkinson	et	al.,	2004).

2 	 | 	 METHODS

2.1	 |	 Participants

From	September	2016	to	January	2018,	participants	were	
recruited	from	COPD	clinics	and	pulmonary	rehabilitation	
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New & Noteworthy
This	report	provides	evidence	that	the	pattern	of	
peripheral	 oxygen	 saturation	 (SpO2)	 fluctuations	
detects	exacerbations	 in	 individuals	with	COPD.	
The	entropy	of	SpO2	signal	increases	a	day	prior	to	
clinical	diagnosis	of	exacerbation	in	COPD	while	
mean	and	total	variability	of	SpO2	signals	remain	
unchanged.	This	finding	has	the	potential	for	de-
velopment	of	a	non-	invasive	method	for	early	de-
tection	of	exacerbations	in	COPD.
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classes	at	three	separate	sites	in	London.	All	participants	
were	fully	informed	and	submitted	written	consent	forms.	
The	 UK	 Health	 Research	 Authority	 and	 Royal	 Free	
Hospital	 local	 committee	 granted	 ethical	 approvals	 on	
data	collection	(16/LO/1120).	The	inclusion	criteria	con-
sisted	of	COPD	diagnosis	[smoking	history	≥10	pack	years	
and	 post-	bronchodilator	 FEV1/FVC	 <0.7	 (suggesting	 a	
non-	reversible	obstructive	 lung	disease	pattern)],	one	or	
more	 self-	reported	 moderate	 or	 severe	 exacerbations	 of	
their	COPD	 in	 the	 last	12 months,	and	 the	ability	 to	at-
tend	 scheduled	appointments	and	use	 study	equipment.	
Individuals	were	excluded	if	they	had	an	existing	diagnosis	
of	obstructive	sleep	apnea	either	via	self-	report	or	results	
of	STOP-	Bang	and	Epworth	questionnaires	(Johns,	1991;	
Nagappa	 et	 al.,	 2015),	 and/or	 significant	 co-	morbidities	
that	prevented	participation	(Al	Rajeh	et	al.,	2020).

The	 clinical	 recordings	 used	 for	 analysis	 are	 credited	
to	a	recently	published	pilot	randomized	controlled	 trial	
regarding	COPD	exacerbation	detection	 (Al	Rajeh	et	al.,	
2020).	 The	 data	 in	 this	 analysis	 derives	 from	 one	 arm	
of	 this	 study	 looking	 at	 overnight	 monitoring	 of	 COPD	
(n  =  44).	 Some	 of	 the	 data,	 including	 individual	 demo-
graphics	 and	 mean	 SpO2,	 but	 importantly	 not	 any	 SpO2	
variability	data,	have	already	been	published	in	the	refer-
enced	study	(Al	Rajeh	et	al.,	2020).	In	the	original	study,	
only	13	participants	exacerbated	in	the	time	frame	of	the	
study	 and	 were	 included	 in	 the	 analysis.	 The	 quality	 of	
SpO2	recording	for	two	individuals	was	limited	(less	than	
90 mins	continuous	SpO2	signal)	and	therefore	these	par-
ticipants	were	excluded	from	the	analysis	(n = 11).	In	the	
study,	 there	 were	 7	 male	 participants	 and	 4	 female	 par-
ticipants	(n = 11)	with	an	average	age	(SD)	of	71.8	(10.4)	
years.	Of	these	participants,	3	were	current	smokers,	with	
8	ex-	smokers.	The	baseline	clinical	characteristics	for	the	
population	studied	can	be	found	in	Table	1.

2.2	 |	 Data collection

Each	 participant	 received	 a	 wristband	 pulse	 oximeter	
(Nonin	 3150,	 Nonin	 Medical	 Inc.)	 and	 was	 instructed	 by	
researchers	on	using	it.	Each	pulse	oximeter	measured	the	
SpO2	time	series	of	each	participant	overnight.	In	the	origi-
nal	clinical	trial,	participants	were	closely	monitored	during	
the	first	2 weeks	of	the	study	to	ensure	they	were	using	the	
equipment	 properly	 and	 recording	 data	 accurately.	 They	

were	considered	“stable”	during	this	2-	week	period	when	
there	 was	 no	 incidence	 of	 exacerbation.	 An	 exacerbation	
was	defined	as	the	need	for	oral	corticosteroids	or	antibiot-
ics,	as	judged	by	the	patient's	clinician	or	self-	management	
plan	(Al	Rajeh	et	al.,	2020).	The	first	set	of	continuous	SpO2	
time	series	available	from	the	stable	phase	was	used	for	the	
calculation	 of	 SpO2	 variability	 indices	 in	 this	 study.	 The	
sampling	rate	of	SpO2	recording	was	0.25 Hz	(one	sample	
recorded	 every	 4  s).	 SpO2	 signals	 were	 saved	 as	 comma-	
separated	value	(csv.)	files	for	stability	and	one	day	prior	to	
exacerbation	phase	separately.	The	data	were	chosen	one	
day	prior	to	exacerbation,	as	this	offered	insight	into	a	use-
ful	 window	 for	 the	 early	 detection	 of	 an	 exacerbation.	 In	
this	report,	the	signals	recorded	a	day	prior	to	clinical	diag-
nosis	of	exacerbation	are	called	“exacerbation	phase”.

2.3	 |	 SpO2 variability

The	longest	duration	of	time	that	all	individuals	had	of	un-
interrupted	SpO2	data	was	~90 min,	so	the	first	available	90-	
min	recording	was	used	for	the	analyses.	Well-	established	
measures	within	this	field	to	analyze	the	patterns	of	vari-
ability	(Bhogal	&	Mani,	2017),	including	standard	devia-
tion	(SD),	sample	entropy,	Multiscale	Entropy	(MSE),	and	
Detrended	Fluctuation	Analysis	 (DFA)	(Bhogal	&	Mani,	
2017)	were	employed.

Details	 of	 these	 methods	 and	 associated	 algorithms	
are	described	in	detail	elsewhere	[DFA	(Peng	et	al.,	1995),	
MSE	 (Costa	 et	 al.,	 2002),	 and	 sample	 entropy	 (Richman	
&	Moorman,	2000)].	In	brief,	sample	entropy	looks	at	the	
complexity	 of	 a	 time	 series	 by	 analyzing	 the	 probability	
of	repetition	of	a	signal,	with	a	particular	length	(m)	and	
degree	of	tolerance	(r).	In	this	study,	sample	entropy	was	
determined	 under	 the	 settings	 of	 m	 at	 2	 and	 r	 at	 0.2	 as	
previously	described	(Richman	&	Moorman,	2000).	MSE	
looks	 at	 entropy	 at	 different	 time	 scales,	 and	 as	 such	 is	
seen	as	an	extension	of	sample	entropy.	The	trends	of	en-
tropy	change	within	this	time	scales	provide	further	infor-
mation	on	the	complexity	of	a	data	set.	For	this	analysis,	
MSE	was	used	over	five	scales	in	accordance	with	current	
practice	(Costa	et	al.,	2002).	Finally,	to	examine	the	frac-
tality	 of	 the	 SpO2	 data,	 we	 employed	 DFA	 as	 it	 looks	 at	
the	self-	similarity	of	a	time	series	providing	information	
on	 the	 fractal-	like	 dynamics	 present	 (Peng	 et	 al.,	 1995).	
In	 a	 DFA	 plot,	 the	 logarithm	 of	 fluctuation	 (standard	

Age BMI
MRC Dyspnea 
Scale FEV1 (%)

All	Participants	
(n = 11)

71.8 ± 10.4 24.6 ± 6.70 2.82 ± 0.874 47.7 ± 18.8

All	data	are	expressed	as	mean	±SD

T A B L E  1 	 Summary	of	the	baseline	
demographics	of	the	study	participants
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deviation)	of	detrended	time	series	is	plotted	against	the	
logarithm	of	scale	(n).	The	slope	of	this	line	is	known	as	
the	scaling	exponent	(α).	Previous	studies	proved	there	to	
be	a	“cross-	over”	in	SpO2	DFA	graph,	thus	the	short-	term	
and	long-	term	scaling	exponent,	α1	and	α2	are	calculated	
separately	as	described	elsewhere	(Bhogal	&	Mani,	2017).	
All	calculations	were	completed	in	MATLAB	(Matworks	
R2020b).

2.4	 |	 Statistical analysis

All	 statistical	 tests	 were	 performed	 using	 MATLAB	
(Matworks	 R2020b)	 and	 SPSS	 software.	 A	 paired	 two-	
tailed	 Student's	 t-	test	 was	 employed	 for	 comparing	 the	
mean,	SD,	α1	and	α2	of	COPD	individuals	(n = 11)	during	
a	stable	phase	to	that	of	the	same	cohort	a	day	prior	to	the	
clinical	diagnosis	of	an	exacerbation.	A	two-	way	ANOVA	
was	 used	 to	 analyze	 the	 results	 of	 MSE,	 with	 statistical	
significance	 taken	 as	 a	 p-	value	 less	 than	 0.05.	 Receiver	

operating	characteristic	(ROC)	curves	of	sample	entropy	
at	5	scales,	α1	and	α2	of	individuals	were	plotted	by	SPSS	
for	 further	 investigation	of	 the	differences	 in	 these	 indi-
ces	between	the	two	phases	and	their	potential	to	detect	
early	exacerbation	 (exacerbation	phase).	Area	under	 the	
curve	 (AUC),	 sensitivity,	 specificity,	 positive	 predictive	
value	(PPV),	negative	predictive	value	(NPV),	and	a	cut-	
off	value	of	each	 index	were	also	determined	from	ROC	
curves.

3 	 | 	 RESULTS

3.1	 |	 Pattern analysis of SpO2 variability

The	SpO2 signals	for	exacerbation	and	stable	phase	show	
a	 complex	 pattern	 (see	 Figure	 1).	 A	 summary	 of	 mean	
SpO2	and	 the	various	variability	 indices	are	displayed	 in	
Table	2.	Overall,	mean	SpO2	during	the	stable	phase	was	
not	statistically	different	to	that	of	the	exacerbation	phase	
(91.4 ± 1.89%	vs.	90.6 ± 2.11%;	p = 0.125),	 likewise,	 the	
mean	SD	of	both	phases	were	similar	(Table	2).

Mean	 sample	 entropy	 increased	 (0.395  ±  0.101	 vs.	
0.505  ±  0.159;	 p <  0.05)	 during	 exacerbation.	This	 indi-
cates	an	 increased	 irregularity	of	 the	signal;	however,	 in	
order	to	assess	whether	this	change	was	random	or	com-
plex,	 we	 analyzed	 the	 data	 using	 MSE	 (Bhogal	 &	 Mani,	
2017).	 This	 difference	 is	 constantly	 observed	 across	 the	
increasing	 scale	 factor	 using	 MSE	 (Figure	 2),	 where	 the	
values	of	mean	sample	entropy	during	exacerbation	were	
all	higher	than	that	of	the	stable	phase.	Two-	way	ANOVA	
analysis	 showed	 that	 there	 was	 a	 significant	 difference	
in	 the	 MSE	 between	 the	 stable	 phase	 and	 exacerbation	
phase	(Fgroup = 8.63,	p = 0.004),	highlighting	the	increased	
amount	of	information	and	complexity	during	an	exacer-
bation.	 Additionally,	 an	 increasing	 trend	 of	 sample	 en-
tropy	 value	 from	 scale	 1	 to	 5	 in	 both	 COPD	 phases	 was	
observed	 (Figure	 2),	 revealing	 that	 fluctuated	 SpO2	 time	
series	is	not	a	random	process	(Costa	et	al.,	2002).

From	 DFA,	 the	 short-	term	 scaling	 exponent,	 α1	 of	
the	 stable	 phase	 (α1  =  1.17  ±0.110)	 and	 exacerbation	
(α1 = 1.15 ± 0.137)	were	between	values	expected	 from	

F I G U R E  1  Representative	90-	minute	SpO2 signals	recorded	
from	an	individual	with	COPD	at	(a)	stable	phase	and	(b)	a	day	
prior	to	clinical	diagnosis	of	exacerbation	(exacerbation	phase).	
X-	axis	is	the	data	points	of	the	pulse	oximeter	signals	recording	
(1 sample	every	4 seconds),	and	Y-	axis	is	the	SpO2	(%)

T A B L E  2 	 Summary	of	SpO2 mean	and	variability	indices	in	11	individuals	with	COPD	during	stable	phase	and	exacerbation	phase

Mean SpO2 
(%)

Standard 
deviation

Sample 
entropy DFA (α1) DFA (α2)

COPD	stable 91.4 ± 1.89 1.33 ± 0.440 0.395 ± 0.101 1.17 ± 0.110 1.04 ± 0.114

COPD	exacerbation 90.6 ± 2.11 1.33 ± 0.444 0.505 ± 0.159 1.15 ± 0.137 0.925 ± 0.107

p-	value 0.125 0.963 0.029 0.555 0.002

All	data	are	expressed	as	mean	±SD,	and	the	p-	value	is	calculated	using	a	Student's	paired	t-	test.
Bold	values	reflect	a	statistically	significant	difference	between	the	groups	(p-	value	<	0.05).
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Brownian	noise	(α = 1.50)	and	1/f	dynamics	(α = 1.00);	
however,	 their	 values	 did	 not	 differ	 between	 phases	
(p  =  0.55).	 However,	 the	 long-	term	 scaling	 exponent,	
α2,	 of	 both	 phases	 approached	 closer	 to	 1/f	 dynamics	
(α2  =  1.04  ±  0.114	 in	 stable	 and	 α2  =  0.925  ±  0.107	 in	
exacerbation),	 confirming	 that	 SpO2	 fluctuations	 have	 a	
fractal-	like	pattern	(Bhogal	&	Mani,	2017).	Statistical	sig-
nificance	was	shown	between	α2	of	exacerbation	vs	stable	
phase	(p < 0.01),	validating	there	was	a	slight	reduction	

in	scaling	exponent	and	shift	toward	white	noise	dynam-
ics	during	exacerbation.	Two	example	graphs	of	the	DFA	
analysis	obtained	from	the	SpO2	time	series	are	shown	in	
Appendix	A.

3.2	 |	 ROC analysis of SpO2

ROC	curves	assessing	the	sensitivity	and	specificity	of	SpO2	
variability	indices	in	classifying	stable	from	exacerbation	
phase	are	presented	in	Figure	3.	Sample	Entropy	and	α2	
exhibited	a	significant	AUC	with	values	of	0.702	and	0.777	
respectively	(Table	2).	MSE	indices	at	scales	2	and	3,	also	
had	a	significant	statistical	AUC	with	values	of	0.711	and	
0.719	 respectively	 (Table	 2).	 The	 best	 positive	 predictor	
value	(PPV)	was	for	sample	entropy	(PPV = 70%)	with	a	
cut-	off	 value	 of	 0.454.	 The	 best	 negative	 predictor	 value	
(NPV)	was	for	α2	(NPV = 78%)	with	a	cut-	off	value	of	1.00.

4 	 | 	 DISCUSSION

This	study	tested	the	hypothesis	that	the	pattern	of	SpO2	
variations	 in	 overnight	 recordings	 of	 individuals	 with	
COPD	would	distinguish	between	stable	and	exacerbation	
phases.	 In	 support	of	 the	hypothesis,	our	novel	 findings	
suggest	that	sample	entropy	at	different	scales	increases,	
while	the	long-	term	scaling	exponent	(α2)	decreases,	a	day	
prior	to	the	clinical	diagnosis	of	an	exacerbation	of	COPD.	
These	 indices	 were	 also	 different	 during	 the	 stable	 and	

F I G U R E  2  Multiscale	entropy	(MSE)	graph	describing	the	
overall	complexity	of	the	individuals	with	COPD	at	stable	phase	
and	exacerbation.	The	error	bars	are	calculated	sample	error	of	the	
mean	values

F I G U R E  3  ROC	curve	for	classifying	COPD	phase	(stable	or	exacerbation)	based	on	SpO2	variability	indices



6 of 11 |   AL RAJEH et al.

exacerbation	 phases,	 while	 mean	 SpO2	 remained	 stable	
throughout.	Furthermore,	in	terms	of	sensitivity,	specific-
ity,	PPV,	and	NPV	from	ROC	analyses,	sample	entropy	of	
the	original	SpO2	time	series	and	α2	of	DFA	appear	to	have	
the	best	diagnostic	capabilities	to	support	earlier	detection	
of	COPD	exacerbations.

This	study	extends	our	earlier	work	in	SpO2	variabil-
ity	analysis	 in	healthy	 individual	after	exposure	 to	hy-
poxia	to	individuals	with	chronic	lung	disease	(Bhogal	
&	Mani,	2017;	Costello	et	al.,	2020;	Jiang	et	al.,	2021).	We	
have	shown	an	increased	in	sample	entropy	in	healthy	
participants	 during	 exposure	 to	 normobaric	 hypoxia	
(Costello	 et	 al.,	 2020;	 Jiang	 et	 al.,	 2021)	 and	 here	 we	
have	 similarly	 demonstrated	 a	 higher	 sample	 entropy	
0.395–	0.505,	and	in	all	scales	in	MSE,	following	COPD	
exacerbation.	 Interestingly,	 these	 previous	 reports	 es-
tablished	 that	 there	 is	 an	 inverse	 correlation	 between	
mean	 SpO2	 and	 SpO2	 Sample	 Entropy	 under	 both	 nor-
moxic	and	hypoxic	environments	in	healthy	individuals	
(Bhogal	&	Mani,	2017;	Costello	et	al.,	2020),	with	lower	
oxygen	saturation	correlated	with	higher	SpO2	entropy.	
This	relationship	was	not	observed	in	the	current	study	
(Appendix	B),	which	could	suggest	a	compromise	in	the	
cardiorespiratory	 integrity	 in	 COPD	 (O’Donnell	 et	 al.,	
2020).	Another	consideration	for	the	lack	of	correlation	
between	mean	SpO2	and	sample	entropy	in	our	cohort;	
could	be	the	wide	range	of	SpO2	values	included	in	the	
present	study	(individuals	with	COPD)	versus	the	other	
reports	 in	 healthy	 participants.	 Nevertheless,	 future	
studies	with	a	larger	number	of	participants	could	test	
this	hypothesis.

According	 to	 Pincus	 (1994),	 higher	 entropy	 signifies	
greater	amounts	of	information	being	processed	in	a	com-
plex	 physiological	 system,	 reflecting	 the	 enhanced	 con-
nections	and	communications	across	various	components	
within	that	system	(Pincus,	1994).	In	terms	of	the	cardio-
respiratory	system	and	its	homeostatic	control	of	oxygen	
saturation,	Jiang	et	al.	(2021)	provided	further	insight	by	
using	 a	 network	 physiology	 approach	 to	 show	 that	 the	
information	controlling	oxygen	saturation	was	communi-
cated	across	several	key	components	of	the	cardiorespira-
tory	system.	Therefore,	when	this	system	is	under	hypoxic	
stress	either	through	a	decrease	in	the	fraction	of	inspired	
oxygen	or	in	a	clinical	state	(COPD);	the	transfer	of	infor-
mation	is	increased	across	these	components	to	maintain	
mean	 SpO2.	 This	 is	 demonstrated	 by	 the	 rise	 in	 sample	
entropy	 when	 healthy	 individuals	 are	 hypoxic	 (Costello	
et	al.,	2020),	as	well	as	during	an	exacerbation	in	COPD	
(see	Figure	2	and	Table	2).

The	sample	entropy	in	both	stable	and	exacerbation	
phases	of	COPD	(0.395 ± 0.101	vs.	0.505 ± 0.159)	is	no-
tably	less	than	the	sample	entropy	value	of	healthy	indi-
viduals	(0.98 ± 0.28)	with	the	same	mean	value	of	mean	

SpO2	 (93.94  ±  1.85%)	 during	 hypoxic	 challenge	 (Jiang	
et	 al.,	 2021).	 This	 may	 be	 attributed	 to	 the	 disruption	
of	functional	connectivity	within	cardiorespiratory	sys-
tem	when	COPD	is	diagnosed	(Donaldson	et	al.,	2012).	
This	 is	 reflected	 in	 the	 impaired	 response	 to	 hypoxia	
and	 changes	 in	 ventilation	 that	 often	 lead	 to	 hyper-
capnia	 (Abdo	 &	 Heunks,	 2012).	This	 disruption	 in	 the	
control	 system	 limits	 the	adaptive	 response	 to	hypoxia	
during	exacerbation,	thus	reflected	by	a	limited	increase	
in	 sample	 entropy.	 This	 hypothesis	 requires	 further	
examination	 with	 more	 stringent	 control	 of	 possible	
confounders	 such	 as	 age,	 lifestyle	 (e.g.,	 smoking),	 and	
environment.	For	example,	we	have	reported	that	aging	
reduces	 SpO2	 entropy	 in	 otherwise	 healthy	 individuals	
(Bhogal	&	Mani,	2017).	This	supports	the	theory	that	the	
integrity	of	cardiorespiratory	control	system	is	affected	
by	aging	and	chronic	diseases	such	as	COPD	(O’Donnell	
et	 al.,	 2020;	 Strait	 &	 Lakatta,).	 However,	 future	 stud-
ies	 should	 aim	 to	 compare	 SpO2	 entropy	 between	 age-	
matched	 healthy	 cohorts	 and	 COPD	 individuals	 in	
different	phases	to	help	explain	the	changes	seen	in	an	
exacerbation	and	better	predict	future	exacerbations.

It	 is	now	well-	established	 that	 the	DFA	of	SpO2	 sig-
nals	results	in	two	scaled	components,	one	representing	
short-	term	 (α1)	 and	 the	 other	 long-	term	 (α2)	 fractal-	
like	 fluctuations	 (Bhogal	 &	 Mani,	 2017).	 Table	 2	 illus-
trates	 a	 statistically	 significant	 decrease	 in	 α2	 upon	
exacerbation	while	α1 remains	stable.	Interestingly,	this	
data	 trend	 contradicts	 a	 study	 assessing	 DFA’s	 useful-
ness	 in	 diagnosing	 childhood	 sleep	 apnea-	hypopnoea	
(Vaquerizo-	Villar	et	al.,	2018).	Like	COPD,	sleep	apnea	
is	 also	 associated	 with	 hypoxia;	 however,	 it	 is	 due	 to	
episodic	 upper	 airway	 collapse	 during	 sleep	 (Stradling	
et	al.,	2004).	By	applying	DFA	in	their	study,	Vaquerizo-	
Villar	et	al.	(2018)	observed	an	increased	α1	with	inten-
sified	apnea-	hypopnoea	severity	while	α2	was	unaltered.	
These	 results	are	 likely	due	 to	 the	different	underlying	
pathophysiology	in	the	two	diseases.	Despite	both	lead-
ing	 to	 dyspnea,	 apnea-	hypopnoea	 is	 associated	 with	
acute	 episodic	 hypoxia	 reflected	 by	 alternation	 in	 the	
short-	term	scaling	component	(α1).	While	in	COPD,	in-
dividuals	suffer	from	chronic	hypoxia	leading	to	changes	
in	 the	 long-	term	 scaling	 component	 (α2)	 (Khatri	 &	
Ioachimescu,	 2016).	 Furthermore,	 the	 faster	 breathing	
pattern	in	younger	children,	and	the	associated	dynam-
ics	of	apnea-	hypopnoea	occurrences,	may	also	translate	
to	shorter	 time	scales	being	more	sensitive	 than	longer	
time	scales	in	disease	relative	to	adults.

Although	the	values	of	the	ROC	analysis	of	the	sample	
entropy	and	α2	showed	moderate	levels	of	sensitivity	and	
specificity,	 this	was	 the	 first	attempt	 to	suggest	 their	po-
tential	in	supporting	earlier	diagnosis	of	COPD	exacerba-
tions.	Judging	from	the	‘zigzag’	shape	of	the	ROC	analysis	
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(Figure	3)	and	repeated	values	in	sensitivity	and	specific-
ity	(Table	3),	we	speculate	that	this	was	due	to	the	small	
sample	size	 in	the	current	study	(n = 11)	or	 insufficient	
heterogeneity/range	 in	 the	 predictor	 measures.	 Previous	
work	had	proposed	the	effectiveness	of	COPD	Assessment	
Test	 (CAT)	questionnaire	 to	evaluate	disease	 severity,	 as	
CAT	 score	 significantly	 increases	 during	 exacerbation	
(Mackay	 et	 al.,	 2012).	 However,	 this	 method	 showed	 an	
AUC	of	0.64	for	the	CAT	questionnaire	in	491	COPD	indi-
viduals	in	detecting	exacerbations	(Lee	et	al.,	2014),	which	
is	 less	 than	 that	 of	 both	 sample	 entropy	 (AUC  =  0.702)	
and	 α2	 (AUC  =  0.777)	 in	 our	 analysis.	 CAT	 is	 a	 well-	
established	scoring	system	for	monitoring	COPD,	but	 its	
diagnostic	value	may	be	compromised	by	its	subjectivity.	
As	 SpO2	 analysis	 is	 a	 useful	 predictor	 of	 dyspnea,	 and	 a	
key	component	of	the	CAT	questionnaire	(Costello	et	al.,	
2020),	combining	the	objective	SpO2	analysis	with	the	CAT	
questionnaire	could	provide	 the	most	accurate	predictor	
of	future	exacerbations.

In	the	present	data,	we	had	access	to	90 min	of	signal	
in	all	individuals	and	showed	that	SpO2	variability	indices	
can	distinguish	between	stable	and	exacerbation	phases.	
In	a	preliminary	analysis,	we	also	examined	shorter	inter-
vals	of	SpO2	signals	 (i.e.,	60,	50,	40,	30,	and	15 min).	As	
shown	in	Appendix	C,	we	applied	Bland-	Altman	analysis	
to	the	data	and	found	that	60 min	is	also	sufficient	for	SpO2	
sample	 entropy	 analysis,	 while	 DFA	 requires	 90  min	 to	
detect	an	exacerbation.	While	this	might	not	be	clinically	
feasible	for	spot-	checking	hypoxia	in	acute	scenarios,	this	
analysis	combined	with	better	SpO2	wearable	technology	
may	 improve	 management	 in	 individuals	 experiencing	
chronic	hypoxia	(Buekers	et	al.,	2019).

4.1	 |	 Limitations and future research

Like	other	pilot	 studies,	 the	major	 limitation	of	 the	cur-
rent	study	is	the	small	sample	size.	The	source	of	SpO2	re-
cording	 data	 in	 this	 study	 was	 from	 a	 pilot	 randomized	
controlled	 trial	 testing	 the	 effectiveness	 of	 overnight	

physiological	 monitoring	 to	 predict	 COPD	 exacerbation	
(Al	Rajeh	et	al.,	2020).	With	the	limited	sample,	there	is	
a	risk	of	low	statistical	power	and	type	II	error.	However,	
despite	the	small	sample	size,	our	results	reached	statisti-
cal	significance.	This	demonstrates	 the	potential	of	SpO2	
variability	 analysis	 in	 non-	invasively	 detecting	 early	 ex-
acerbations	for	timely	treatment	and	the	need	for	future	
studies	with	larger	sample	sizes.	This	method	also	has	the	
potential	 to	 monitor	 exacerbation	 recovery	 and	 provide	
an	 objective	 tool	 for	 discharge	 in	 these	 individuals,	 and	
future	studies	can	help	determine	this.

Since	 data	 were	 obtained	 from	 a	 randomized	 clinical	
trial	with	regular	follow-	up	of	the	participants,	the	chance	
of	selection	bias	is	low.	However,	a	possible	source	of	bias	
in	this	study	is	the	availability	of	long	(>90 min)	contin-
uous	SpO2	signal	in	the	participants.	In	the	present	study,	
two	 participants	 had	 less	 than	 90  min	 continuous	 SpO2	
signals	in	their	stable	phase	and	were	not	included	in	this	
study.	 Future	 studies	 can	 investigate	 this	 limitation	 in	 a	
larger	multicentre	trial	to	assess	the	value	of	SpO2	pattern	
analysis	in	the	prediction	of	exacerbation.

It	 is	difficult	 to	estimate	an	accurate	cut-	off	 for	sepa-
ration	of	stable	versus	exacerbation	phase	based	on	such	
a	small	sample	size.	To	further	test	the	validity	of	the	cut-	
off	value,	we	randomly	selected	samples	 from	stable	pe-
riods	of	 the	same	participants	recorded	at	different	days	
and	measured	SpO2	Sample	Entropy.	The	mean	(±SD)	of	
the	randomly	selected	samples	was	0.341 ± 134	(n = 11)	
which	was	not	significantly	different	from	data	presented	
in	 Table	 2	 for	 the	 SpO2	 Sample	 Entropy	 of	 stable	 phase	
(0.395 ± 0.101).	Furthermore,	the	rate	of	false	positive	was	
18%	when	the	cut-	off	in	Table	3	was	used	for	the	predic-
tion	of	exacerbation.	While	these	pilot	results	are	promis-
ing,	a	comprehensive	analysis	of	the	reportability	of	SpO2	
variability	 indices	 is	 required	 prior	 to	 the	 translation	 of	
these	findings	into	clinical	practice.

Another	 limitation	of	 this	 study	 is	 the	severity	of	ex-
acerbation	 was	 not	 measured.	 An	 exacerbation	 was	 de-
fined	as	the	need	for	oral	corticosteroids	or	antibiotics,	as	
judged	by	the	patient's	clinician	or	self-	management	plan.	

T A B L E  3 	 Summary	for	ROC	analysis	of	SpO2	variability	indices	for	detection	of	exacerbation

AUC p- value Cut- off Sensitivity Specificity PPV NPV

Sample	entropy 0.702 0.029 0.454 0.636 0.727 0.700 0.666

Sample	entropy	(scale	2) 0.711 0.016 0.758 0.727 0.636 0.666 0.700

Sample	entropy	(scale	3) 0.719 0.031 0.836 0.818 0.545 0.643 0.750

Sample	entropy	(scale	4) 0.628 0.175 0.844 0.818 0.636 0.692 0.778

Sample	entropy	(scale	5) 0.636 0.120 0.903 0.818 0.636 0.692 0.778

DFA	(α1) 0.529 0.555 1.17 0.545 0.455 0.500 0.500

DFA	(α2) 0.777 0.002 1.00 0.818 0.636 0.692 0.778

Abbreviations:	AUC,	area	under	the	curve,	PPV,	positive	predictive	value,	NPV,	negative	predictive	value.
Bold	values	reflect	a	statistically	significant	difference	between	the	groups	(p-	value	<	0.05).
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This	practical	approach	has	 its	 shortcomings	as	 the	pre-
scription	of	oral	corticosteroids/antibiotics	 following	 the	
worsening	of	respiratory	symptoms	may	vary	among	prac-
titioners	and	healthcare	systems	(Celli	et	al.,	2021	Sep	27).

Hurst	 et	 al.,	 previously	 reported	 that	 a	 combined	 ox-
imetry	score	(i.e.,	the	positive	magnitude	in	standard	de-
viation	units	of	the	fall	in	SpO2	and	the	rise	in	heart	rate)	
could	predict	the	onset	of	an	exacerbation,	prior	to	clinical	
diagnosis	(Hurst,	Donaldson,	et	al.,	2010).	We	had	limited	
access	to	high	quality	continuous	signals	2–	3 days	prior	to	
diagnosis	of	exacerbation	in	the	current	study	and	could	
only	include	SpO2	variability	analysis	one	day	prior	to	clin-
ical	 diagnosis	 of	 exacerbation.	 Therefore,	 future	 studies	
can	extend	our	pilot	study	by	developing	wearable	devices	
suitable	 for	 long-	term	 signal	 recording	 for	 SpO2  fluctua-
tion	analysis.	In	addition,	similar	to	this	combined	oxime-
try	score,	novel	analytical	methods	(e.g.,	transfer	entropy)	
have	 the	potential	 to	assess	 the	 interaction	of	heart	 rate	
and	SpO2	time	series	in	order	to	develop	a	comprehensive	
physiomarker	for	the	non-	invasive	assessment	of	patients	
with	COPD.	Application	of	 these	methods	 in	healthcare	
warrant	further	investigations	in	larger	studies.

5 	 | 	 CONCLUSION

This	 is	 a	 proof-	of-	concept	 study	 demonstrating	 that	
SpO2  fluctuation	analysis	has	 the	potential	 to	be	used	 to	
support	 earlier	 detection	 of	 exacerbations	 in	 individuals	
with	 COPD.	 Specifically,	 the	 sample	 entropy	 increases	
and	 there	 is	 an	 alteration	 in	 fractal-	like	 behavior	 of	
SpO2  fluctuations	 during	 exacerbation.	 As	 pulse	 oxime-
try	has	recently	been	expanded	beyond	the	measurement	
of	 absolute	 peripheral	 oxygen	 saturation,	 measurement	
of	 SpO2	 dynamics	 has	 the	 potential	 to	 be	 incorporated	
into	smart	devices	 to	assist	 the	early	diagnosis	of	COPD	
exacerbations.
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APPENDIX A

APPENDIX B

F I G U R E  A 1  Two	examples	of	DFA	graphs	on	SpO2	variability	
data	showing	the	linear	trend	when	plotting	scale	and	detrended	
fluctuations	on	a	log-	log	scale.	This	graph	represents	the	stable	
phase	(red	dots)	and	the	exacerbation	phase	(blue	dots)	of	a	
participant	with	COPD.	α1	and	α2	are	short-	term	and	long-	term	
scaling	exponent	respectively

F I G U R E  B 1  (a)	Correlation	between	mean	SpO2	and	SpO2	Sample	Entropy	in	individuals	with	COPD	in	Stable	phase.	(b)	Correlation	
between	mean	SpO2	and	SpO2	Sample	Entropy	in	individuals	with	COPD	in	Exacerbation	phase.	There	is	no	significant	correlation	between	
mean	SpO2	and	SpO2	entropy	in	individuals	with	COPD.	This	is	unlike	previous	reports	in	healthy	individuals	where	Entropy	of	SpO2	
exhibits	a	significant	inverse	correlation	with	mean	SpO2.	For	more	information	please	see	(Bhogal	&	Mani,	2017;	Costello	et	al.,	2020).	
Sample	Entropy	is	calculated	at	scale	1	with	m = 2	and	r = 0.2
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APPENDIX C

F I G U R E  C 1  Bland-	Altman	plot	of	
sample	entropy	(SampEn)	in	90 min	vs.	
60 min	SpO2 signal	duration

(b)


