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ABSTRACT
An indispensable component in task-oriented dialogue systems is
the dialogue state tracker, which keeps track of users’ intentions in
the course of conversation. The typical approach towards this goal
is to fill in multiple pre-defined slots that are essential to complete
the task. Although various dialogue state tracking methods have
been proposed in recent years, most of them predict the value of
each slot separately and fail to consider the correlations among
slots. In this paper, we propose a slot self-attention mechanism that
can learn the slot correlations automatically. Specifically, a slot-
token attention is first utilized to obtain slot-specific features from
the dialogue context. Then a stacked slot self-attention is applied
on these features to learn the correlations among slots. We conduct
comprehensive experiments on two multi-domain task-oriented
dialogue datasets, including MultiWOZ 2.0 and MultiWOZ 2.1. The
experimental results demonstrate that our approach achieves state-
of-the-art performance on both datasets, verifying the necessity
and effectiveness of taking slot correlations into consideration.
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1 INTRODUCTION
Task-oriented dialogue systems such as Apple Siri and Amazon
Alexa work as virtual personal assistants. They can be leveraged to
help users complete numerous daily tasks. A typical task-oriented
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Table 1: An example dialogue with two domains. The value
of slot “taxi-arriveby” should be inferred according to the
value of slot “restaurant-book time”. The value of slot “taxi-
destination” is the same as that of slot “restaurant-name”.

Sys: Hi, what can I do for you?
User: Please find me a Chinese restaurant.
State: restaurant-food=chinese

Sys: Charlie Chan fits your criterion, can I book it for you?
User: Yes, I need a table on Monday at 12:15 .
State: restaurant-food=chinese; restaurant-name=charlie chan

restaurant-book day=monday; restaurant-book time=12:15

Sys: Booking is successful. Is there anything else I can assist
you with today?

User: I also need a taxi to get me to the restaurant on time .
State: restaurant-food=chinese; restaurant-name=charlie chan

restaurant-book day=monday; restaurant-book time=12:15
taxi-destination=charlie chan; taxi-arriveby=12:15

dialogue system consists of four key components, i.e., natural lan-
guage understanding (NLU), dialogue state tracking (DST), dialogue
policy learning (DPL) and natural language generation (NLG) [5, 12].
Among them, DST aims at keeping track of users’ intentions at each
turn of the dialogue. Since DPL and NLU depend on the results of
DST to select the next system action and generate the next system
response, an accurate prediction of the dialogue state is crucial to
enhance the overall performance of the dialogue system [24, 27].
The typical dialogue state comprises a set of predefined slots and
their corresponding values [33] (refer to Table 1 for an example).
Therefore, the goal of DST is to predict the values of all slots at
each turn based on the dialogue context.

DST has by far attracted much attention from both industry and
academia, and numerous DST approaches have been proposed [9,
18, 19, 25, 43, 51]. Although the state-of-the-art DST methods have
achieved good performance, most of them predict the value of
each slot separately, failing to consider the correlations among
slots [6, 22]. This can be problematic, as slots in a practical dialogue
are unlikely to be entirely independent. Typically, some slots are
highly correlated with each other, demonstrated by coreference and
value sharing. Take the dialogue shown in Table 1 as an example.
The value of slot “taxi-arriveby” is indicated by the slot “restaurant-
book time”. Thus, slot “taxi-arriveby” and slot “restaurant-book time”
share the same value. The value of slot “taxi-destination” should
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also be taken from slot “restaurant-name”. Furthermore, slot values
can have a high co-occurrence probability. For example, the name
of a restaurant should be highly relevant to the food type it serves.

In the literature, we notice that several DST approaches [6, 22, 60]
have tried to model the correlations among slots to a certain de-
gree. However, these methods rely on huge human efforts and prior
knowledge to determine whether two slots are related or not. As
a consequence, they are severely deficient in scalability. Besides,
they all leverage only the semantics of slot names to measure the
relevance among slots and ignore the co-occurrences of slot values.
Utilizing only the slot names is insufficient to capture the slot cor-
relations completely and precisely. On one hand, the correlations
among some slots may be overestimated, as slot values in a partic-
ular dialogue depend highly on the dialogue context. On the other
hand, the correlations among some slots may be underestimated
because their names have no apparent connections, even though
their values have a high co-occurrence probability.

In this paper, we propose a new DST approach, named Slot self-
aTtentive dialogue stAte tRacking (STAR), which takes both slot
names and their corresponding values into account to model the
slot correlations more precisely. Specifically, STAR first employs
a slot-token attention module to extract slot-specific information
for each slot from the dialogue context. It then utilizes a stacked
slot self-attention module to learn the correlations among slots in a
fully data-driven way. Hence, it does not ask for any human efforts
or prior knowledge. The slot self-attention module also provides
mutual guidance among slots and enhances the model’s ability
to deduce appropriate slot values from related slots. We conduct
extensive experiments on bothMultiWOZ 2.0 [3] andMultiWOZ 2.1
[11] and show that STAR achieves better performance than existing
methods that have taken slot correlations into consideration. STAR
also outperforms other state-of-the-art DST methods1.

2 RELATEDWORK
DST is crucial to the success of a task-oriented dialogue system.
Traditional statistical DST approaches rely on either the semantics
extracted by the NLU module [45, 49, 52, 53] or some hand-crafted
features and complex domain-specific lexicons [20, 32, 38, 50, 61] to
predict the dialogue state. These methods usually suffer from poor
scalability and sub-optimal performance. They are also vulnerable
to lexical and morphological variations [27, 43].

Owing to the rise of deep learning, a neural DST model called
neural belief tracking (NBT) has been proposed [33]. NBT employs
convolutional filters over word embeddings in lieu of hand-crafted
features to predict slot values. The performance of NBT is much
better than previous DST methods. Inspired by this seminal work,
a lot of neural DST approaches based on long short-term memory
(LSTM) network [34, 40–42, 59] and bidirectional gated recurrent
unit (BiGRU) network [22, 31, 35, 39, 55, 57] have been proposed
for further improvements. These methods define DST as either a
classification problem or a generation problem. Motivated by the ad-
vances in reading comprehension [4], DST has been further formu-
lated as a machine reading comprehension problem [13, 14, 30, 31].
Other techniques such as pointer networks [56] and reinforcement
learning [7, 8, 23] have also been applied to DST.

1Code is available at https://github.com/smartyfh/DST-STAR

Recently, pre-training language models has gained much atten-
tion from both industry and academia, and a great variety of pre-
trained language models such as BERT [10] and GPT-2 [36] have
been released. Since the models are pre-trained on large corpora,
they demonstrate strong abilities to produce good results when
transferred to downstream tasks. In view of this, the research of DST
has been shifted to building new models on top of these powerful
pre-trained language models [15, 21, 25, 27, 29, 43, 48, 58]. For exam-
ple, SUMBT [27] employs BERT to learn the relationships between
slots and dialogue utterances through a slot-word attention mech-
anism. CHAN [43] is built upon SUMBT via taking into account
both slot-word attention and slot-turn attention. To better model
dialogue behaviors during pre-training, TOD-BERT [54] further pre-
trains the original BERT model using several task-oriented dialogue
datasets. SOM-DST [25] considers the dialogue state as an explicit
fixed-sizedmemory and selectively overwrites thismemory to avoid
predicting the dialogue state at each turn from scratch. TripPy [18]
uses three copy mechanisms to extract slot values. MinTL [29] ex-
ploits T5 [37] and BART [28] as the dialogue utterance encoder and
jointly learns dialogue states and system responses. It also intro-
duces Levenshtein belief spans to track dialogue states efficiently.
NP-DST [16] and SimpleTOD [21] adopt GPT-2 as the dialogue
context encoder and formulate DST as a language generation task.

All the methods mentioned above predict the value of each slot
separately and ignore the correlations among slots. We notice that
several approaches [6, 22, 60] have tried to model the relevance
among slots to a certain degree. Specifically, CSFN-DST [60] and
SST [6] construct a schema graph to capture the dependencies of
different slots. However, the manually constructed schema graph is
unlikely to reflect the correlations among slots completely. Besides,
lots of prior knowledge is involved during the construction process.
Therefore, CSFN-DST and SST are not scalable. SAS [22] calculates
a slot similarity matrix to facilitate information flow among similar
slots. The similarity matrix is computed based on either the cosine
similarity or the K-means clustering results of slot names. However,
when computing the similarity matrix, SAS involves several hy-
perparameters, which are hard to set. SAS also fixes the similarity
coefficient at 1 if two slots are considered to be relevant. This is
obviously impractical. Except for the model-specific drawbacks of
CSFN-DST, SST and SAS, they also share a common limitation:
they all measure the slot correlations using only the slot names.
This may overlook or overrate the dependencies of some slots. Our
method utilizes both slot names and their corresponding values to
model slot correlations more precisely.

3 PRELIMINARIES
In this section, we first provide the formal definition of DST and
then conduct a simple data analysis to show the high correlations
among slots in practical dialogues.

3.1 Problem Statement
The goal of DST is to extract a set of slot value pairs from the
system response and user utterance at each turn of the conversa-
tion. The combination of these slot value pairs forms a dialogue
state, which keeps track of the complete intentions or requirements
that have been informed by the user to the system. Formally, let
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(b) Taxi Destination

Figure 1: The top-5 most correlated slots of slot “restaurant-
area” and slot “taxi-destination” analyzed on MultiWOZ 2.1.
The slot itself is not counted as a relevant one.

X = {(R1,U1), (R2,U2), . . . , (RT ,UT )} denote a conversation of T
turns, where Rt and Ut represent the system response and user
utterance at turn t , respectively. Suppose that we have a set of J pre-
defined slots S = {S1, S2, . . . , S J } with Sj being the j-th slot, then
the dialogue state at turn t is defined as Bt = {(Sj ,V

t
j )|1 ≤ j ≤ J },

whereV t
j ∈ Vj denotes the corresponding value of slot Sj .Vj is the

value space of slot Sj . Putting the value spaces of all slots together,
we construct an ontology O = {(S1,V1), (S2,V2), . . . , (S J ,VJ )}.
Based on the dialogue context X and the ontology O, the task of
DST is defined as learning a dialogue state tracker F : X ×O→ B

that can efficiently capture the user’s intentions in the course of
conversation. According to this definition, we can see that DST is a
relatively challenging problem, as it is needed to predict the values
of multiple slots at each turn. Besides, the value spaces of some
slots may be large, that is, there may be a large number of candidate
values for some slots. This phenomenon makes the prediction of
dialogue states even more challenging.

It is worth mentioning that in this paper we use the term “slot”
to refer to the concatenation of the domain name and the slot name
so as to include both domain and slot information. For example, we
use “restaurant-pricerange” rather than “pricerange” to represent the
“pricerange” slot in the “restaurant” domain. This format is useful,
especially when a conversation involves multiple domains. It has
also been widely adopted by previous works [22, 25, 27, 43].

3.2 Data Analysis
To intuitively verify the strong correlations among slots in practical
dialogues, we conduct a simple data analysis on MultiWOZ 2.1 [11],
which is a multi-domain task-oriented dialogue dataset. Specifically,
we treat every slot pair as two different partitions of the dataset.
For each partition, the corresponding slot values are regarded as
the cluster labels. Then we calculate the normalized mutual infor-
mation (NMI) score between the two partitions. Note that we adopt
NMI as the measurement of slot correlations, as mutual informa-
tion can describe more general dependency relationships beyond
linear dependence2. We illustrate the top-5 most relevant slots of
slot “restaurant-area” and slot “taxi-destination” in Figure 1. Other
2https://en.wikipedia.org/wiki/Mutual_information

slots show similar patterns. From Figure 1, we observe that slot
“restaurant-area” and slot “taxi-destination” are indeed highly corre-
lated with some other slots. The relevant slots are not only within
the same domain but also across different domains. For example,
slot “taxi-destination” correlates highly with slot “restaurant-food”,
even though their names have no apparent connections. This ob-
servation consolidates our motivation that it is necessary to take
into account both slot names and their values.

4 STAR: SLOT SELF-ATTENTIVE DST
In this section, we describe our proposed slot self-attentive DST
model STAR in detail. The overall architecture of STAR is illustrated
in Figure 2, which is composed of a BERT-based context encoder
module, a slot-token attention module, a stacked slot self-attention
module and a slot value matching module.

4.1 Context Encoder
Recently, many pre-trained language models such as BERT [10]
and GPT-2 [36] have shown strong abilities to produce good re-
sults when transferred to downstream tasks. In view of this, we
employ BERT as the context encoder to obtain semantic vector
representations of dialogue contexts, slots and values. BERT is a
deep bidirectional language representation learning model rooted
in Transformer encoders [46]. It can generate token-specific vector
representations for each token in the input sentence as well as an
aggregated vector representation of the whole sentence. Therefore,
we exploit BERT to generate token-specific vector representations
for dialogue contexts and aggregated vector representations for
both slots and values.

4.1.1 Dialogue Context Encoder. The dialogue utterances at turn
t are represented as Dt = Rt ⊕ Ut , where ⊕ is the operation of
sequence concatenation. The dialogue history of turn t is denoted
as Mt = D1 ⊕ D2 ⊕ · · · ⊕ Dt−1. Then, the entire dialogue context
of turn t is defined as:

Xt = [CLS] ⊕ Mt ⊕ [SEP] ⊕ Dt ⊕ [SEP], (1)

where [CLS] and [SEP] are two special tokens introduced by BERT.
The [CLS] token is leveraged to aggregate all token-specific rep-
resentations and the [SEP] token is utilized to mark the end of a
sentence. Since the maximum input length of BERT is restricted to
512 [10], we must truncate Xt if it is too long. The straightforward
way is to cut off the early dialogue history and reserve the most
recent one inMt . However, this operation may throw away some
key information. To reduce information loss, we use the previous
dialogue state as input as well, which is expected to keep all the slot-
related history information. The dialogue state of previous turn is
represented by Bt−1 =

⊕
(Sj ,V t−1

j )∈Bt−1,V t−1
j ,none Sj ⊕V

t−1
j . Note

that in Bt−1 we only include the slots that have been mentioned
before (i.e., only non-none slots are considered). By treating Bt−1
as part of the dialogue history, the entire dialogue context of turn t
is finally denoted as3:

Xt = [CLS] ⊕ Mt ⊕ Bt−1 ⊕ [SEP] ⊕ Dt ⊕ [SEP]. (2)

3Although the previous dialogue state Bt−1 can serve as an explicit, compact and
informative representation of the dialogue history, we find that it is still useful to take
the dialogue history Mt as part of the input.
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Figure 2: The architecture of our approach STAR. A fine-tuning BERT is used to encode dialogue contexts, another fixed BERT
is utilized to generate aggregated vector representations for slots and values. For simplicity, layer normalization and residual
connection are omitted, and only the value matching of slot S J is included. Both FFN1 and FFN2 are feed-forward networks.

Let |Xt | be the number of tokens in Xt . Our first goal is to
generate a contextual d-dimensional vector representation for each
token in Xt . Let htj ∈ R

d denote the vector representation of the
j-th token and Ht = [ht1,h

t
2, . . . ,h

t
|Xt |

] ∈ Rd×|Xt | the matrix form
of all tokens’ representations. We simply feed Xt to BERT to obtain
Ht . Hence, we have:

Ht = BERTf inetune (Xt ). (3)

Note that BERT in Eq. (3) will be fine-tuned during training.

4.1.2 Slot and Value Encoder. Following previous works [27, 43],
we use another BERT to encode slots and their candidate values.
Unlike dialogue contexts, we need to generate aggregated vector
representations for slots and values. To achieve this goal, we use
the vector representation corresponding to the special token [CLS]
to represent the aggregated representation of the whole input se-
quence. As thus, for any slot Sj ∈ S(1 ≤ j ≤ J ) and any value
V t
j ∈ Vj , we have:

h
Sj
[CLS ] = BERTf ixed ([CLS] ⊕ Sj ⊕ [SEP]),

h
V t
j

[CLS ] = BERTf ixed ([CLS] ⊕ V t
j ⊕ [SEP]),

(4)

where BERTf ixed means that the pre-trained BERT without fine-
tuning is adopted. Fixing the weights of BERT when encoding slots
and values is beneficial. Firstly, the slot and value representations
can be computed off-line, which reduces the model size of our
approach. Secondly, since our model relies on the value represen-
tations to score each candidate value of a given slot, fixing the
representations of values can reduce the difficulty of choosing the
best candidate value.

4.2 Slot-Token Attention
Since there are multiple slots to be predicted at each turn t from
the same dialogue context Xt , it is necessary to extract slot-specific

information for each slot Sj (1 ≤ j ≤ J ). Our model employs a multi-
head attention mechanism [46] to retrieve the relevant information
corresponding to each slot Sj .

4.2.1 Multi-Head Attention. For self-consistency, we provide a
brief description of the multi-head attention mechanism. Assume
that we are provided with a query matrixQ = [q1,q2, . . . ,q |Q |] ∈

Rdmodel×|Q | , a key matrix K = [k1,k2, . . . ,k |K |] ∈ R
dmodel×|K |

and a value matrix Z = [z1,z2, . . . ,z |K |] ∈ R
d ′
model×|K | . There are

|Q | query vectors, |K | key vectors and |K | value vectors, respec-
tively. Note that the query vectors and the key vectors share the
same dimensionality. For each query vector qi (1 ≤ i ≤ |Q |), the
attention vector ai over K and Z with N heads is calculated as
follows:

eni j =
(W n

Qqi )
T (W n

Kkj )√
dmodel /N

, τni j =
exp(eni j )∑ |K |

l=1 exp(e
n
il )
,

ani =

|K |∑
j=1

τni j (W
n
Z zj ), ai =WOConcat(a

1
i ,a

2
i , . . . ,a

N
i ),

where 1 ≤ n ≤ N , ai ∈ Rd
′
model , W n

Q ∈ R(dmodel /N )×dmodel ,

W n
K ∈ R(dmodel /N )×dmodel ,W n

Z ∈ R(d
′
model /N )×d ′

model andWO ∈

Rd
′
model×d

′
model . Putting all the attention vectors together, we ob-

tain the attention matrix A = [a1,a2, . . . ,a |Q |] ∈ Rd
′
model×|Q | .

The entire process is formulated as:

A = MultiHead(Q,K ,Z ).

4.2.2 Multi-Head Slot-Token Attention. Ourmodel adopts themulti-
head attention mechanism to calculate a d-dimensional vector for
each slot Sj as the slot-specific information. More concretely, the
slot representation h

Sj
[CLS ] is treated as the query vector, and the

dialogue context representation Ht is regarded as both the key ma-
trix and the value matrix. Consequently, the token-level relevance
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between slot Sj and dialogue context Xt is summarized as:

r tSj = MultiHead(h
Sj
[CLS ],Ht ,Ht ), (5)

where r tSj ∈ R
d . Considering that r tSj only contains the value in-

formation of slot Sj , we concatenate r tSj and h
Sj
[CLS ] to retain its

name information. This merged vector is further transformed by a
feed-forward neural network as below:

ctSj =W
r
2 ReLU (W r

1 Concat(h
Sj
[CLS ],r

t
Sj ) + b

r
1 ) + b

r
2 , (6)

whereW r
1 ∈ Rd×2d ,W r

2 ∈ Rd×d and br1 ,b
r
2 ,c

t
Sj

∈ Rd .

4.3 Slot Self-Attention
Albeit the slot-token attention is expected to retrieve slot-specific
information for all slots, it may fail to capture the valid informa-
tion of some slots due to the various expressing forms in natural
conversations (e.g., coreference, synonymity and rephrasing). In
addition, the slot-specific vector ctSj of each slot Sj is computed
separately. The correlations among slots are ignored. As a result,
once the vector ctSj doesn’t capture the relevant information of slot
Sj properly, the model has no chance to deduce the right value for
slot Sj . To alleviate this problem, we propose exploiting the slot
self-attention mechanism to rectify each slot-specific vector based
on the vectors corresponding to all slots. This mechanism should
be rational because of the high correlations among slots. Therefore,
our model is expected to provide mutual guidance among slots and
learn the slot correlations automatically.

The slot self-attention is also a multi-head attention. Specifically,
this module is composed of L identical layers and each layer has two
sub-layers. The first sub-layer is the slot self-attention layer. The
second sub-layer is a feed-forward network (FFN) with two fully
connected layers and a ReLU activation in between. Each sub-layer
precedes its main functionality with layer normalization [1] and
follows it with a residual connection [17].

LetCt = [ctS1
,ctS2
, . . . ,ctS J

] ∈ Rd×J denote the matrix represen-
tation of all slot-specific vectors and let F 1t = Ct . Then, for the l-th
slot self-attention sub-layer (1 ≤ l ≤ L), we have:

F̃ lt = LayerNorm(F lt ),

Gl
t = MultiHead(F̃ lt , F̃

l
t , F̃

l
t ) + F̃

l
t .

(7)

In the slot self-attention sub-layer, F̃ lt serves as the key matrix, the
value matrix, and also the query matrix. For the l-th feed-forward
sub-layer, we have:

G̃l
t = LayerNorm(Gl

t ),

F l+1t = FFN (G̃l
t ) + G̃

l
t ,

(8)

where the function FFN (·) is parameterized byW1,W2 ∈ Rd×d

and b1,b2 ∈ Rd , i.e., FFN (y) =W2ReLU (W1y + b1) + b2.
The final slot-specific vectors are contained in the output of the

last layer, i.e., FL+1t . Let FL+1t = [f tS1
, f tS2
, . . . , f tS J

], where f tSj ∈ R
d

is the j-th column of FL+1t . f tSj is taken as the final slot-specific
vector of slot Sj , which is expected to be close to the semantic
vector representation of the groundtruth value of slot Sj at turn t .
Since the output of BERT is normalized by layer normalization, we

also feed f tSj
to a layer normalization layer, which is preceded by a

linear transformation layer as follows:

γ tSj = LayerNorm(Linear (f tSj )), (9)

where γ tSj ∈ R
d .

4.4 Slot Value Matching
To predict the value of each slot Sj (1 ≤ j ≤ J ), we compute the
distance between γ tSj

and the semantic vector representation of
each value V ′

j ∈ Vj , where Vj denotes the value space of slot Sj .
Then the value with the smallest distance is chosen as the prediction
of slot Sj . We adopt ℓ2 norm as the distance metric.

During the training phase, we calculate the probability of the
groundtruth value V t

j of slot Sj at turn t as:

p(V t
j |Xt , Sj ) =

exp

(
−∥γ tSj

− h
V t
j

[CLS ]∥2

)
∑
V ′
j ∈Vj exp

(
−∥γ tSj

− h
V ′
j

[CLS ]∥2

) . (10)

Our model is trained to maximize the joint probability of all slots,
i.e., Π J

j=1p(V
t
j |Xt , Sj ). For this purpose, the loss function at each

turn t is defined as the sum of the negative log-likelihood:

Lt =

J∑
j=1

− log
(
p(V t

j |Xt , Sj )
)
. (11)

5 EXPERIMENTAL SETUP
5.1 Datasets

Table 2: Data statistics of MultiWOZ 2.0 & 2.1. The bottom
row summarizes the number of dialogues in each domain.

Domain Attraction Hotel Restaurant Taxi Train

Slot
area
name
type

area
book day

book people
book stay
internet
name
parking

pricerange
stars
type

area
book day

book people
book time

food
name

pricerange

arriveby
departure
destination
leaveat

arriveby
book people

day
departure
destination
leaveat

Train 2717 3381 3813 1654 3103
Validation 401 416 438 207 484
test 395 394 437 195 494

We evaluate our approach on MultiWOZ 2.0 [3] and MultiWOZ
2.1 [11], which are two of the largest publicly available task-oriented
dialogue datasets. MultiWOZ 2.0 consists of 10,348 multi-turn dia-
logues, spanning over 7 domains {attraction, hotel, restaurant, taxi,
train, hospital, police}. Each domain has multiple predefined slots
and there are 35 domain slot pairs in total. MultiWOZ 2.1 is a refined
version of MultiWOZ 2.0. According to [11], about 32% of the state
annotations have been corrected in MultiWOZ 2.1. Since hospital
and police are not included in the validation set and test set, follow-
ing previous works [25, 27, 43, 55, 60], we use only the remaining
5 domains in the experiments. The resulting datasets contain 17
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distinct slots and 30 domain slot pairs. The detailed statistics are
summarized in Table 2.

We follow similar data preprocessing procedures as [55] to pre-
process both MultiWOZ 2.0 and MultiWOZ 2.1. And we create the
ontology by incorporating all the slot values that appear in the
datasets. We notice that several works [27, 43] exploit the original
ontology provided by MultiWOZ 2.0 and MultiWOZ 2.1 to pre-
process the datasets in their experiments. However, the original
ontology is incomplete. If a slot value is out of the ontology, this
value is ignored directly in [27, 43], which is impractical and leads
to unreasonably high performance.

5.2 Comparison Methods
We compare our model STAR with the following state-of-the-art
DST approaches:

• SST: SST [6] first constructs a schema graph and then utilizes
a graph attention network (GAT) [47] to fuse information
from dialogue utterances and the schema graph.

• SAS: SAS [22] calculates a binary slot similarity matrix to
control information flow among similar slots. The similarity
matrix is computed via either a fixed combination method
or a K-means sharing method.

• CREDIT-RL: CREDIT-RL [7] employs a structured repre-
sentation to represent dialogue states and casts DST as a
sequence generation problem. It also uses a reinforcement
loss to fine-tune the model.

• STARC: STARC [13] reformulates DST as a machine reading
comprehension problem and adopts several reading compre-
hension datasets as auxiliary information to train the model.

• CSFN-DST: Similar to SST, CSFN-DST [60] also constructs
a schema graph to model the dependencies among slots.
However, CSFN-DST utilizes BERT [10] rather than GAT to
encode dialogue utterances.

• SOM-DST: SOM-DST [25] regards the dialogue state as an
explicit fixed-sized memory and proposes selectively over-
writing this memory at each turn.

• CHAN: CHAN [43] proposes a slot-turn attention mecha-
nism to make full use of the dialogue history. It also designs
an adaptive objective to alleviate the data imbalance issue.

• TripPy: TripPy [18] leverages three copy mechanisms to
extract slot values from user utterances, system inform mem-
ory and previous dialogue states.

• NP-DST: NP-DST [16] transforms DST into a language gen-
eration problem and adopts GPT-2 [36] as both the dialogue
context encoder and the sequence generator.

• SimpleTOD: SimpleTOD [21] is also based on GPT-2. Its
model architecture is similar to NP-DST.

• MinTL:MinTL [29] is an effective transfer learning frame-
work for task-oriented dialogue systems. It introduces Lev-
enshtein belief span to track dialogue states. MinTL uses
both T5 [37] and BART [28] as pre-trained backbones. We
name themMinTL-T5 andMinTL-BART for distinction.

5.3 Evaluation Metric
We adopt joint goal accuracy [34] as the evaluation metric. Joint
goal accuracy is defined as the ratio of dialogue turns for which

the value of each slot is correctly predicted. If a slot has not been
mentioned yet, its groundtruth value is set to none. All the none
slots also need to be predicted. Joint goal accuracy is a relatively
strict evaluation metric. Even though only one slot at a turn is
mispredicted, the joint goal accuracy of this turn is 0. Thus, the
joint goal accuracy of a turn takes the value either 1 or 0.

5.4 Training Details
We employ the pre-trained BERT-base-uncased model4 as the dia-
logue context encoder. This model has 12 layers with 768 hidden
units and 12 self-attention heads. We also utilize another BERT-
base-uncased model as the slot and value encoder. For the slot
and value encoder, the weights of the pre-trained BERT model are
frozen during training. For the slot-token attention and slot self-
attention, we set the number of attention heads to 4. The number
of slot self-attention layers (i.e., L) is fixed at 6. We treat the context
encoder part of our model as an encoder and the remaining part as
a decoder. The hidden size of the decoder (i.e., d) is set to 768, which
is the same as the dimensionality of BERT outputs. The BertAdam
[26] is adopted as the optimizer and the warmup proportion is fixed
at 0.1. Considering that the encoder is a pre-trained BERT model
while the decoder needs to be trained from scratch, we use different
learning rates for the two parts. Specifically, the peak learning rate
is set to 1e-4 for the decoder and 4e-5 for the encoder. We use a
training batch size of 16 and set the dropout [44] probability to 0.1.
We also exploit the word dropout technique [2] to partially mask
the dialogue utterances by replacing some tokens with a special
token [UNK]. The word dropout rate is set to 0.1. Note that we do
not use word dropout on the previous dialogue state, even though
it is part of the input. The maximum input sequence length is set
to 512. The best model is chosen according to the performance on
the validation set. We run the model with different random seeds
and report the average results. For MultiWOZ 2.0 and MultiWOZ
2.1, we apply the same hyperparameter settings.

6 EXPERIMENTAL RESULTS
6.1 Baseline Comparison
The joint goal accuracy of our model and various baselines on the
test sets of MultiWOZ 2.0 and MultiWOZ 2.1 are shown in Table 35,
in which we also summarize several key differences of these models.
As can be seen, our approach consistently outperforms all baselines
on both MultiWOZ 2.0 andMultiWOZ 2.1. Compared with the three
methods that have taken slot correlations into consideration (i.e.,
SST, SAS and CSFN-DST), our approach achieves 2.96% and 1.13%
absolute performance promotion on MultiWOZ 2.0 and MultiWOZ
2.1, respectively. Our approach also outperforms other baselines by
1.47% and 1.07% separately on the two datasets. From Table 3, we
observe that SST and TripPy are the best performing baselines. Both
methods reach higher than 55% joint goal accuracy on MultiWOZ
2.1. However, SST needs to construct a schema graph by involving
some prior knowledge manually. The schema graph is exploited to

4https://huggingface.co/transformers/model_doc/bert.html
5We noted that both CHAN and SimpleTOD ignore the “dontcare” slots in the released
source codes, which leads to unreasonably high performance. For a fair comparison,
we reproduced the results with all “dontcare” slots being considered. Our approach
can achieve 60% joint goal accuracy if ignoring the “dontcare” slots as well.

1603

https://huggingface.co/transformers/model_doc/bert.html


Slot Self-Attentive Dialogue State Tracking WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Table 3: Joint goal accuracy of various methods on the test sets of MultiWOZ 2.0 and MultiWOZ 2.1 (± denotes the standard
deviation). † indicates the results reported in the original papers.⋆means the results reproduced by us using the source codes.
‡ demonstrates a statistically significant improvement to the best baseline at the 0.01 level using a paired two-sided t-test.

Model Context Encoder Dialogue History Extra Information Slot
Correlations

Joint Goal Accuracy (%)
MultiWOZ 2.0 MultiWOZ 2.1

SST† GAT Previous Turn Schema Graph ✓ 51.17 55.23
SAS† BiGRU Previous µ Turns - ✓ 51.03 -
CREDIT-RL† BiGRU Previous µ Turns - ✗ 51.68 50.61
STARC† BERT Full History Auxiliary Datasets ✗ - 49.48
CSFN-DST† BERT No History Schema Graph ✓ 51.57 52.88
SOM-DST† BERT Previous Turn - ✗ 51.72 53.01
CHAN⋆ BERT Full History - ✗ 53.06 53.38
TripPy† BERT Full History Action+Label Map ✗ - 55.29
NP-DST † GPT-2 Full History - ✗ 44.03 -
SimpleTOD⋆ GPT-2 Full History - ✗ - 51.89
MinTL-T5† T5 Previous µ Turns - ✗ 52.07 52.52
MinTL-BART† BART-Large Previous µ Turns - ✗ 52.10 53.62

STAR BERT Full History - ✓ 54.53±0.21‡ 56.36±0.34‡

Table 4: Performance comparison betweenTripPy and STAR
with andwithout the labelmap being used onMultiWOZ2.1.

Model Label Map Joint Goal Accuracy (%)

TripPy− ✗ 44.90
TripPy ✓ 55.29
STAR ✗ 56.36
STAR+ ✓ 56.58

capture the correlations among slots. Even though SST leverages
some prior knowledge, it is still inferior to our approach. This is
because the schema graph only considers the relationships among
slot names and thus cannot describe the slot correlations completely.
It is worth mentioning that SST also shows a deficiency in utilizing
dialogue history. SST achieves the best performance when only
the previous turn dialogue history is considered [6]. TripPy shows
the best performance among BERT-based baselines. However, it
employs both system actions and a label map as extra supervision.
The label map is created according to the labels in the training
portion of the dataset. During the testing phase, the label map
is leveraged to correct the predictions (e.g., mapping “downtown”
to “centre”). The label map is useful, but it may oversmooth some
predictions. On the contrary, our model doesn’t rely on any extra
information and is a fully data-driven approach. Hence, our model
is more general and more scalable. Since our model also achieves
better performance than SST and TripPy, we can conclude that it
is beneficial to take the slot correlations into consideration. The
slot self-attention mechanism proposed by us is able to capture the
relevance among slots in a better way.

We conduct a further comparison between TripPy and our model
STAR with and without the label map being leveraged on Multi-
WOZ 2.1. We denote TripPy as TripPy− when the label map is
removed and represent STAR as STAR+ when the label map is
involved. The results are reported in Table 4. As can be observed,
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Figure 3: Joint goal accuracy of single-domain dialogues and
multi-domain dialogues on the test set of MultiWOZ 2.1.

the performance of TripPy degrades dramatically if the label map
is ignored. However, the label map doesn’t have significant impacts
on the performance of our approach. With the label map being
considered, our approach only shows slightly better performance.

6.2 Single-Domain and Multi-Domain Joint
Goal Accuracy

Considering that a practical dialogue may involve multiple domains
or just a single domain, it is useful to explore how our approach
performs in each scenario. To this end, we report the joint goal
accuracy of single-domain dialogues and multi-domain dialogues
on the test set of MultiWOZ 2.1, respectively. The results are shown
in Figure 3, from which we observe that our approach achieves
better performance in both scenarios. The results indicate that our
approach can capture the correlations among slots both within a
single domain and across different domains. From Figure 3, we also
observe that all the methods demonstrate higher performance in
the single-domain scenario. Our approach even reaches about 67%
joint goal accuracy. While the performance of all methods in the
multi-domain scenario slightly goes down, compared to the overall
joint goal accuracy shown in Table 3. Nonetheless, our approach
still achieves about 55% joint goal accuracy. The results further
confirm the effectiveness of our approach.
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Table 5: Domain-specific accuracy (%) on MultiWOZ 2.1.

Domain CSFN-DST SOM-DST TripPy STAR

Attraction 64.78 69.83 73.37 70.95
Hotel 46.29 49.53 50.21 52.99
Restaurant 64.64 65.72 70.47 69.17
Taxi 47.35 59.96 37.54 66.67
Train 69.79 70.36 72.51 75.10

attraction-area
attraction-name

attraction-type
hotel-area

hotel-book day
hotel-book people

hotel-book stay
hotel-internethotel-name

hotel-parking
hotel-pricerange

hotel-stars
hotel-type

rest.-area
rest.-book day

rest.-book people
rest.-book time

rest.-food
rest.-name

rest.-pricerange
taxi-arriveby

taxi-departure
taxi-destination taxi-leaveat

train-arriveby
train-book people

train-day
train-departure

train-destination
train-leaveat

60%

70%

80%

90%

100%

TripPy STAR

Figure 4: Slot-specific accuracy on MultiWOZ 2.1. The do-
main “restaurant” is represented as “rest.” for short.

6.3 Domain-Specific Joint Goal Accuracy and
Slot-Specific Accuracy

In this part, we first investigate the performance of our model in
each domain. The domain-specific joint goal accuracy onMultiWOZ
2.1 is reported in Table 5, where we compare our approach with
CSFN-DST, SOM-DST and TripPy. The domain-specific accuracy is
calculated on a subset of the predicted dialogue state. The subset
consists of all the slots specific to a domain. In addition, only the
domain-active dialogues are considered for each domain. As shown
in Table 5, our approach consistently outperforms CSFN-DST and
SOM-DST in all domains. Our approach also outperforms TripPy in
three domains. Although TripPy demonstrates better performance
in the “attraction” domain and “restaurant” domain, it shows the
worst performance in the “taxi” domain. As analyzed in [25], the
“taxi” domain is the most challenging one. This domain also has
the least number of training dialogues (refer to Table 2). Owing to
the strong capability of modeling slot correlations, our approach
achieves much better performance in this challenging domain.

We then illustrate the slot-specific accuracy of our approach and
TripPy in Figure 4. The corresponding exact numbers are shown
in Table 6 in Appendix A. The slot-specific accuracy measures the
accuracy of each individual slot. Note that the slot-specific accuracy
is calculated using only the dialogues that involve the domain
the slot belongs to. From Figure 4, we observe that both methods
demonstrate high performance for most slots. However, TripPy
shows relatively poor performance for slot “taxi-departure” and
slot “taxi-destination”. The results are consistent with the domain-
specific accuracy and explain why TripPy fails in the “taxi” domain.
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Figure 5: Per-turn joint goal accuracy on MultiWOZ 2.1.
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Figure 7: Effects of number of
previous dialogue turns.

From Figure 4, we also observe that our approach is inferior to
TripPy in the name-related slots (i.e., “attraction-name”, “hotel-name”
and “restaurant-name”) and leaveat-related slots (i.e., “taxi-leaveat”
and “train-leaveat”). The values of these slots are usually informed
by the users explicitly. Since TripPy leverages copy mechanisms to
extract values directly, it seems to be more appropriate for these
slots. This observation inspires us that it should be beneficial to
extend our model by incorporating the copy mechanism, which we
leave as our future work.

6.4 Per-Turn Joint Goal Accuracy
Given that practical dialogues have a different number of turns and
longer dialogues tend to bemore challenging, we further analyze the
relationship between the depth of conversation and accuracy of our
model. The per-turn accuracy onMultiWOZ 2.1 is shown in Figure 5.
For comparison, we also include the results of TripPy and STAR-
GT. STAR-GT means the groundtruth previous dialogue state is
used as the input at each turn. Figure 5 shows that the accuracy of
both TripPy and STAR decreases with the increasing of dialogue
turns. In contrast, the performance of STAR-GT is relatively stable.
This is because errors occurred in early turns will be accumulated
to later turns in practice. However, when the groundtruth previous
dialogue state is used, there is no error accumulation.

6.5 Effects of Number of Slot Self-Attention
Layers

We vary the number of slot self-attention layers (i.e., L) in the range
of {0, 3, 6, 9, 12} to study its impacts on the performance of our
model. The results on MultiWOZ 2.1 are illustrated in Figure 6, from
which we observe that our model achieves the best performance
when L is set to 6. The performance degrades while L goes larger.
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This may be caused by overfitting. Figure 6 also shows that when
there is no slot self-attention (i.e., L = 0), the joint goal accuracy
decreases to around 54%. Note that when L = 0, our model doesn’t
learn the slot correlations any more. Hence, we conclude that it is
essential to take the dependencies among slots into consideration.

6.6 Effects of Number of Previous Dialogue
Turns

To evaluate the effects of the number of previous dialogue turns
(i.e., µ), we vary µ in the range of {0, 1, 2, 3, 4, f ull}, where f ull
means all the previous dialogue turns are considered. The results
on MultiWOZ 2.1 are shown in Figure 7. As can be seen, when
full dialogue history is leveraged, our model demonstrates the best
performance.When no dialogue history is employed, ourmodel also
reaches higher than 55.5% joint goal accuracy. However, when µ is
set to 1, 2 and 3, the performance degrades slightly. This is probably
because the incomplete history leads to confusing information and
makes it more challenging to extract the appropriate slot values.

7 CONCLUSION
In this paper, we have presented a novel DST approach STAR to
modeling the correlations among slots. STAR first employs a slot-
token attention to retrieve slot-specific information for each slot
from the dialogue context. It then leverages a stacked slot self-
attention to learn the dependencies among slots. STAR is a fully
data-driven approach. It does not ask for any human efforts or prior
knowledge when measuring the slot correlations. In addition, STAR
considers both slot names and their corresponding values to model
the slot correlations more precisely. To evaluate the performance
of STAR, we have conducted a comprehensive set of experiments
on two large multi-domain task-oriented dialogue datasets Multi-
WOZ 2.0 and MultiWOZ 2.1. The results show that STAR achieves
state-of-the-art performance on both datasets. For future work, we
intend to incorporate the copy mechanism into STAR to enhance
its performance further.
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A SLOT-SPECIFIC ACCURACY

Table 6: Slot-specific accuracy (%) computed via considering
all dialogues in the test set of MultiWOZ 2.1 and only the di-
alogues that contain the domain the slot belongs to (in gray).

Slot SOM-DST TripPy STAR SOM-DST TripPy STAR
attraction-area 97.08 96.64 97.76 92.02 90.15 93.80
attraction-name 94.46 97.16 94.20 83.44 91.67 82.42
attraction-type 96.42 96.16 96.68 89.39 88.63 90.94
hotel-area 95.93 95.53 95.81 88.40 87.29 88.54
hotel-book day 99.14 99.14 99.40 97.56 97.56 98.29
hotel-book people 99.14 98.90 99.41 97.56 96.87 98.32
hotel-book stay 99.21 99.25 99.40 97.75 97.95 98.28
hotel-internet 96.76 96.97 96.93 90.76 91.38 91.42
hotel-name 94.34 97.38 95.20 84.19 92.82 86.31
hotel-parking 96.95 97.34 97.51 91.34 92.42 92.89
hotel-pricerange 97.00 96.86 97.15 91.61 91.23 92.37
hotel-stars 97.87 98.03 98.08 93.93 94.40 94.63
hotel-type 93.68 93.19 94.51 82.14 80.76 84.37
restaurant-area 96.81 96.56 97.39 92.60 91.67 93.67
restaurant-book day 99.36 99.07 99.39 98.40 97.67 98.43
restaurant-book people 99.13 98.73 99.38 97.81 96.81 98.71
restaurant-book time 98.82 99.00 99.43 97.01 97.50 98.59
restaurant-food 97.22 97.20 97.78 93.06 93.03 94.34
restaurant-name 92.78 96.92 93.68 82.13 92.40 83.84
restaurant-pricerange 97.34 97.34 97.51 93.89 93.86 94.61
taxi-arriveby 99.09 99.06 99.28 90.65 90.03 92.07
taxi-departure 97.75 96.31 98.49 76.63 59.35 83.81
taxi-destination 98.26 96.89 98.61 83.17 66.98 85.32
taxi-leaveat 99.05 99.26 98.90 89.40 91.90 87.54
train-arriveby 96.65 97.30 96.85 91.75 93.28 92.14
train-book people 97.41 97.39 97.95 93.52 93.49 94.85
train-day 98.72 99.17 99.63 96.98 98.06 99.25
train-departure 98.26 98.01 98.83 95.79 95.35 97.26
train-destination 98.75 98.53 98.75 97.11 96.54 97.42
train-leaveat 94.30 95.57 94.28 85.79 88.98 85.69

Traditionally, the slot-specific accuracy for each slot is computed
based on all the dialogues in the test set [18, 22, 25, 27, 43]. However,
for a given slot, there are many dialogues that do not contain the
domain the slot belongs to. In these dialogues, the value of the slot
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Table 7: Dialogue state outputs of TripPy and our model STAR on a dialogue (dialogue_id: MUL2686.json) from the test set of
MultiWOZ 2.1. For simplicity, only the turn-active dialogue states are presented. The false predictions are shown in blue.

User: Hi! Can you help me find some places to go on the south side of the city? I am super bored!
GroundTruth: attraction-area=south
TripPy: attraction-area=south
STAR: attraction-area=south

Sys: I am happy to help. There are several types of places to go in the south, parks, theatre, cinema, museum, nightclub.
What sounds good to you?

User: I do not have a preference . Could you make a recommendation?
GroundTruth: attraction-type=dontcare
TripPy: attraction-type=none
STAR: attraction-type=dontcare

Sys: How about a nightclub or cinema? There’s also a great museum.
User: Anything is fine, whatever is most popular.
TripPy: attraction-type=dontcare

Sys: Sure, cineworld cinema will be great. What information do you need about this attraction?
User: Can I get the address, entrance fee and attraction type please?
GroundTruth: attraction-name=cineworld cinema
TripPy: attraction-name=cineworld cinema
STAR: attraction-name=cineworld cinema

Sys: The address is cambridge leisure park, clifton way. It is a cinema. I do not know the entrance fee, unfortunately.
User: I am also wanting some information on a hotel called the kirkwood house . Can you tell me about them?
GroundTruth: hotel-name=kirkwood house
TripPy: hotel-name=kirkwood house
STAR: hotel-name=kirkwood house

Sys: That is a guest house found in the north. It is in the moderate price range and is rated 4 stars. Do you need their contact details?
User: I need a booking there for 5 people staying 3 nights from Monday .
GroundTruth: hotel-book people=5; hotel-book stay=3; hotel-book day=monday
TripPy: hotel-book people=5; hotel-book stay=3; hotel-book day=monday
STAR: hotel-book people=5; hotel-book stay=3; hotel-book day=monday

Sys: Excellent. You are all booked. Reference number is j0vgu1ux. Can I help with anything else?
User: Yes. I need a taxi to commute between the 2 places . I would like to leave the park by 01:15 .
GroundTruth: taxi-leaveat=01:15; taxi-departure=cineworld cinema; taxi-destination=kirkwood house
TripPy: taxi-leaveat=01 ; taxi-departure=kirkwood house ; taxi-destination=cineworld cinema
STAR: taxi-leaveat=01:15; taxi-departure=cineworld cinema; taxi-destination=kirkwood house

is always none. Due to this, even if a model predicts the values
of a slot for all dialogues as none, it can still achieve a relatively
high slot-specific accuracy. To overcome this limitation, we propose
calculating the slot-specific accuracy using only the dialogues that
involve the domain the slot belongs to. The detailed results are
shown in Table 6 (in gray). For comparison, we also include the
results computed based on all dialogues. As can be seen, no matter
which method is adopted to calculate the slot-specific accuracy, our
model is able to achieve better performance for most slots. Table 6
also shows that if the traditional method is adopted, all three models
demonstrate higher than 90% slot-specific accuracy for each slot.
Besides, there are only subtle differences in the slot-specific accu-
racy of the three models. While the slot-specific accuracy computed
using our proposed method is more discriminative.

B CASE STUDY
Table 7 shows the predicted dialogue states of our model and TripPy
on a dialogue from the test set of MultiWOZ 2.1. As can be seen,
our model correctly predicts all slot values at each turn. However,
TripPy fails to predict the value of slot “attraction-type” at turn 2
and delays the prediction to turn 3. At the last turn, TripPy predicts
the value of slot “taxi-leaveat” as “01” rather than “01:15”, albeit this
information is explicitly contained in the user utterance. For slot
“taxi-departure” and slot “taxi-destination”, since the user provides
the corresponding information indirectly, it is challenging to deduce
their valid values. TripPy falsely predicts the destination as the
departure and vice versa.
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