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Abstract
Decentralising the Web is a desirable but challenging goal.
One particular challenge is achieving decentralised content
moderation in the face of various adversaries (e.g. trolls). To
overcome this challenge, many Decentralised Web (DW) im-
plementations rely on federation policies. Administrators use
these policies to create rules that ban or modify content that
matches specific rules. This, however, can have unintended
consequences for many users. In this paper, we present the
first study of federation policies on the DW, their in-the-wild
usage, and their impact on users. We identify how these poli-
cies may negatively impact “innocent” users and outline pos-
sible solutions to avoid this problem in the future.

1 Introduction
The “Decentralised Web” (DW) is an evolving concept, which
encompasses technologies aimed at providing greater trans-
parency, openness, and democracy on the web [10]. Today,
well-known social DW platforms include Pleroma, Mastodon
(microblogging services), Hubzilla (cyberlocker), and Peer-
Tube (video sharing platform).

Typically, individuals or organisations can install, own and
manage their servers, also known as instances [8, 30]. In-
stances are independent, and participants in the community
must register with specific instances. For example, in the case
of Pleroma (a microblogging service), a company could cre-
ate an instance to provide a platform for employees to inter-
act. To enable users across such instances to interoperate, fed-
eration protocols allow information and interactions to flow
across DW instances to create a larger interconnected com-
munity. This creates a physically distinct set of servers yet
allows users to follow each other regardless of which instance
they register with.

A key selling point of the DW is the promotion of free
speech outside of the remit of large tech companies. Although
appealing, this decentralised form of management creates new
challenges [32]. For example, as popular centralised social
platforms like Facebook and Twitter continue to clamp down
on hateful and violent communities, some of these commu-
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nities have migrated [25] to DW instances where moderation
and regulation are more difficult to enforce (e.g. Gab [27, 29]).

In contrast to centralised services (e.g. Twitter), DW mod-
eration is usually performed on a per-instance basis. Specifi-
cally, instance administrators enforce policies within their in-
stance to moderate the content coming from other federated
instances. For example, administrators of one instance can re-
ject (i.e. block) any material from other instances that match
specific criteria. This instance-based approach shifts the mod-
eration responsibility to administrators who need to answer
questions such as: What policies should be applied, and to
which instances? How much effort should be put in modera-
tion? What is the collateral damage of the policies (i.e. while
a minority of users might cause a policy, this will affect the
rest of the “innocent” users of that same instance)?

To explore these questions, we focus on one popular DW
platform: Pleroma. In contrast to other DW microblogging
platforms, Pleroma instances make their moderation policies
public through an API. We collect a large-scale dataset cover-
ing 5 months; this includes 1298 instances, 111k users, 24.5m
posts, associated metadata, and, importantly, the 46 different
policies imposed by the instances.

We analyse the types of policies imposed by administrators.
We find that that moderation affects the overwhelming major-
ity of the users: 97.7% users and 97.8% posts are impacted by
policies. The reject action is most popular, affecting 86.2%
users and 88.5% posts (see Section 4). This brute-force pol-
icy blocks entire instances, even though only a subset of users
might be misbehaving. To investigate the resulting collateral
damage, we study users’ toxicity using Google’s Perspective
API (Section 5). While toxic users are the likely target of in-
stance blocking, we find that 95.8% of the users blocked are
not toxic. We conclude by proposing some strawman solu-
tions to reduce collateral damage.

2 Background
Pleroma. Pleroma is a lightweight decentralised microblog-
ging server implementation whose user-facing functionality is
similar to Twitter. In contrast to a centralised social network,
Pleroma is a federation of servers (aka instances), which in-
terlink to share content. Through these instances, users can
register accounts and publish posts, which will appear on fol-
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lower timelines. These followers can either be on the same
instance or another (federated) instance.

Federation. We refer to users registered on the same instance
as local, and users registered on different instances as remote.
A user on one instance can follow another user on a separate
instance. Note that a user registered on their local instance
does not need to register with the remote instance to follow
the remote user. Instead, a user creates a single account with
their local instance. When the user wants to follow a user
on a remote instance, the local instance subscribes to the re-
mote user on behalf of the local user, thereby federating with
the remote instance. This process is implemented using an
underlying subscription protocol (ActivityPub [1]) that allows
instances to federate with each other.

Fediverse. The resulting network of federated instances is re-
ferred to as the fediverse. The fediverse includes instances
from Pleroma and instances from other platforms that Pleroma
can federate with (e.g. Mastodon) because they support the
same subscription protocol (i.e. ActivityPub). Accordingly,
Pleroma instances can federate and target its policies at non-
Pleroma instances (e.g. Gab from Mastodon).

Policies. Instances in the fediverse federate with each other,
and federated instances can target each other with policies.
Policies affect how instances federate with each other through
different rule-action pairs. These allow certain actions to be
executed when a post, user, or instance matches pre-specified
criteria. We refer to each of these rule-action pairs within a
policy as actions (e.g. the SimplePolicy has multiple ac-
tions such as media removal and reject).

Note that some policies are in-built to the Pleroma software
package. Instance administrators can enable (“switch on”) one
or more policies. Some of these policies are enabled by de-
fault when a new Pleroma instance bootstraps. Additionally,
administrators can craft new policies if they require specific
functionalities not covered by the in-built policies.

3 Data Collection
Instances. Our measurement campaign covers the period be-
tween 16 December 2020 and 24 April 2021. We first compile
a list of Pleroma instances by crawling the directory of in-
stances from distsn.org and the-federation.info. We then cap-
ture the list of instances that each Pleroma instance has ever
federated with using the Peers API.1

This includes both Pleroma and non-Pleroma instances
(Pleroma can federate with any instance of the fediverse, see
Section 2). In total, we identify 9969 instances, out of which
1534 are Pleroma and 8435 are non-Pleroma (e.g. Mastodon).

We then collect metadata for each Pleroma instance every 4
hours via their public APIs.2 We obtain the number of users
on the instance, the number of their followers, the number of
posts, the version of Pleroma, whether the instance is accept-
ing new registrations, the enabled policies, the applied policies

1〈instance.uri〉/api/v1/instance/peers
2〈instance.uri〉/api/v1/instance/

as well as the instances targeted by these policies, and other
meta information.

From the 1534 Pleroma instances, we are able to gather
data from 1298 instances (84.6%). For the remaining 236
instances: 110 are not found (404 status code), 84 instances
require authorisation for timeline viewing (403), 24 result in
bad gateway (502), 11 in service unavailable (503), and 7 re-
turn gone (410).

User Timelines. Users have three timelines: (i) a home time-
line, with posts published by the accounts that the user fol-
lows (local and remote); (ii) a public timeline, with all the
posts generated within the local instance; and (iii) the whole
known network, with all posts that have been retrieved from
remote instances that the local users follow. Note, the whole
known network is not limited to remote posts that a partic-
ular user follows; instead, it is the union of remote posts re-
trieved by all users on the instance. The whole known network
timeline is an innovation-driven by the decentralised nature of
instances: it allows users to observe and discover posts by re-
mote users. Out of the 1,298 Pleroma instances, we gather
all posts from 796 instances (119 instances had no posts, and
the public timeline of the remaining 38.7% instances was not
reachable). We gather data using the public Timeline API.3

This timeline covers all posts shared on each instance. This
allows us to collect 14.5M (including federated posts) public
posts out of 24.5M posts, covering 91.7K users. Note that,
from the 1,298 instances we are able to crawl, we discover a
total of 111K unique users. 48.7% of users published at least
one post.

Harmful Classifications. Generally, instance administrators
target moderation policies/actions against other instances that
have been perceived to post harmful content or violate their
”Terms of Service.” For any instance that has at least one
reject action targeted against it (see Section 4.1), we anno-
tate all of its posts with harmful/non-harmful labels (15.8% of
all instances). We annotate the posts using Google’s Perspec-
tive API [5, 21]. The Perspective API scores text based on the
perceived impact it might have on a conversation [17]. The
scores represent the probability that a human annotator would
reach the same conclusion and are between 0 to 1 for a range
of attributes [18, 26]. In this paper, we classify posts across
three attributes: toxicity, profanity, and sexually explicit con-
tent. Perspective results have been found to be similar to hu-
man annotators [16, 21, 24, 25], it is widely used in production
environments (e.g. New York Times) [19] and it is continually
maintained and updated [6].

We label a post as harmful if it receives a score of 0.8 or
above in any of the three attributes (toxicity, profanity, and
sexually explicit). This threshold is based on recommenda-
tions from the developers of the Perspective API [20] and re-
lated literature [4]. Finally, we classify a user as harmful when
the average of all the user’s posts for any of the attributes (tox-
icity, profanity, sexually explicit) is greater or equal to 0.8.

3〈instance.uri〉/api/v1/timelines/public?local=true
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Figure 1: The top 15 policy types and the percentage of instances
that use each policy (sorted by the percentage of instances). We also
include the percentage of the global user population on the instances
that use each policy. We represent the percentage of instances and
users for all the less popular policies as “Others.”

4 Exploring Policies
We begin by briefly characterising the types of policies used
within Pleroma and the instances targeted by these policies.

4.1 Characterising Policy Settings
Overview of Policies. We are able to retrieve policy informa-
tion from 91.9% of Pleroma instances. The remaining 8.1%
of Pleroma instances do not expose their policy information.
These cover 46 unique policy types: 26 of these policies are
included in the Pleroma software package, instance adminis-
trators have created the other 20. In general, administrators
need to enable policies before they target them towards spe-
cific instances. However, we find the ObjectAgePolicy
and NoOpPolicy enabled by default in the software pack-
age.

The policies we retrieve affect 97.7% of the total users and
97.8% of all posts. Figure 1 shows the distribution of the top
15 policy types enabled by the administrators across instances
and the percentage of users signed up within those instances.

Popular Policies. Most common amongst the popular policies
is the ObjectAgePolicy (on 66.9% of instances). This
policy allows admins to apply an action based on the age of
a post regardless of the post’s harmful/non-harmful nature.
The default age threshold is 7 days but administrators are able
to configure this as they choose. Possible actions under this
policy includes (i) delist: removes the post from the public
timelines; (ii) strip followers: removes followers from the re-
cipient list; and (iii) reject: rejects the message entirely. As
a default policy, this is enabled on any new installations of
Pleroma starting from version 2.1.0.

The TagPolicy, applies policies to individual users based
on tags but does not entirely stop the flow of any material be-
tween instances. For example, it allows marking posts from
individual users as Not Safe For Work (NSFW). This policy is
enabled on 33% of instances. Finally, the SimplePolicy is
enabled on 25.4% of instances. The SimplePolicy is the
most flexible policy, allowing admins to configure a range of
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Figure 2: Number of instances targeted by SimplePolicy actions
(Y-1). Instances are split into Pleroma and non-Pleroma instances.
We also plot the number of users on the associated Pleroma instances
(Y-2).

actions on posts or instances that match certain criteria e.g. the
reject action blocks all connections from a given instance.

The remaining policies are less commonly encoun-
tered. For completeness, we briefly discuss a few of them
here. The HellthreadPolicy is enabled on 6.7%
of the instances. This de-lists/rejects a post when the
number of user mentions exceeds a set threshold. The
StealEmojiPolicy whitelists instances to automatically
download emojis from; this is enabled on 6.2% of the
instances. Other less common policies we encounter include
the HashtagPolicy, AntiFollowBotPolicy,
MediaProxyWarmingPolicy, KeywordPolicy (see
Appendix A for a list of Pleroma in-built policies).

SimplyPolicy Breakdown. Due to the diversity of features
available within the SimplePolicy, its reach as well as
its relevance in content moderation, we next inspect the most
popular actions associated with the SimplyPolicy. Fig-
ure 2 presents a breakdown of the various actions used by in-
stances with the SimplePolicy against Pleroma instances,
as well as instances from other platforms of the fediverse (e.g.
Gab from Mastodon). The figure also shows the number of
users signed up on these instances. In contrast, Figure 3 shows
the number of Pleroma instances that have targeted other in-
stances with the SimplePolicy actions and the number of
users on these instances.

The figures reveal a rich variety of policy actions. For ex-
ample, the media removal action (which removes any me-
dia coming from targeted instances) is applied by 5.4% of the
instances, and this impacts 23.3% of users. The most popular
and stringent is, however, the reject action. Figure 3 shows
that the 73% of instances that have the SimplePolicy en-
abled, apply the reject action.

We also notice 86.2% of users and 88.7% of posts are on
instances that have been rejected by at least one other instance,
and these rejected instances make up 80% of all moderated
instances. On a finer granularity, we see the reject action
making up 62.8% of all moderation events while the sum of all
the other (9) SimplePolicy actions make up the remaining
37.2%. As the reject action is the most stringent, the most
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Figure 3: Bar plot showing the number of instances that have tar-
geted other instances with the SimplePolicy actions. We also
plot the number of users associated with the targeted instances.

popular, and impacting a larger number of users, we focus our
analysis on the reject action. Hence, we spend the next
section exploring the instances that these reject actions are
targeted against.

4.2 Characterising Rejected Instances
Distribution of Reject Policies. Figure 5 shows the num-
ber of reject actions targeting each Pleroma rejected in-
stances. These instances represent only 15.5% of Pleroma
instances, however, they accumulate 86.2% and 88.7% of
the total users and posts, respectively. Instances with more
posts tend to receive a larger number of rejects: we find
a weak correlation between the number of posts on an in-
stance and the number of rejects (Spearman of 0.38). Over-
all, we find 1,200 unique instances have been rejected at
least once (202 Pleroma and 998 non-Pleroma). The major-
ity of these are targeted by only a small subset of instances
though: 86.8% of these are rejected by fewer than 10 in-
stances. However, we do see an “elite” set (5.4%) of contro-
versial Pleroma instances that gain in excess of 20 reject
actions, led by Freespeechextremist.com (a propo-
nent of free speech with 97 rejects). A variety of other
types of instances also make up the top rejected list e.g.
kiwifarms.cc (well known for trolling, with 86 rejects),
spinster.xyz (a feminist instance rejected 65 times) and
neckbeard.xyz (blocked by another instance linking it to
the LGBT community with 61 rejects). This “elite” set of re-
jected instances accounts for 33.6% and 23.4% of the total
Pleroma users and posts, respectively.

For context, Table 1 lists the 5 most rejected Pleroma in-
stances along with their number of users, posts, as well as
their average scores in toxicity, profanity, and sexually ex-
plicit content. Similarly, Figure 4 shows a normalised plot
with the Google Perspective API attribute features in Table 1
for all the rejected Pleroma instances in our dataset. The score
of each Perspective API attribute is the average score of all
posts by users on an instance. Although the instance with the
most reject actions against it is gab.com (a Mastodon in-
stance), Pleroma instances make-up 3 of the top 5. Amongst
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Figure 4: A plot of rejected Pleroma instances with the number of
times they are rejected, their average toxicity, profanity, and sexually
explicit scores across all users on the instances (sorted by the number
of rejects).
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Figure 5: A bar plot showing all rejected Pleroma instances (X-axis)
with their number of users and the number of Pleroma instances that
have rejected them (sorted by the number of rejects).

the top 10 overall, just 40% are from the Pleroma platform.
This suggests a larger percentage of illicit material is imported
into Pleroma from larger platforms such as Mastodon (prob-
ably due to the size of their user base).

Do rejected Pleroma instances retaliate? We next assess
whether rejected Pleroma instances also tend to use the
reject action themselves. To answer this, we compute
Spearman’s correlation coefficient for rejects applied by vs.
rejects received for all rejected Pleroma instances (-0.033).
This means that the reverse is actually the case. In fact, we
notice that the most rejected Pleroma instances barely ap-
ply the reject action against other instances (pleroma or
non-Pleroma). For example, the most rejected Pleroma in-
stance, freespeechextremist.com, does not reject a
single other instance (Pleroma or non-Pleroma). We conjec-
ture that their openness to any kind of material may contribute
to them being rejected. Of the top 10, only 1 Pleroma in-
stance (spinster.xyz, a woman-centric instance) has re-
jected over 2 instances (Pleroma and non-Pleroma) with 45
rejects. A manual check reveals non-tolerance for pornogra-
phy, hate, violence or harassment in its “Terms of Service”.
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Instance #rejects #users #user posts Toxicity Sc Profanity Sc Sexually Explicit Sc

freespeech-extremist.com 97 1.8k 1.13M 0.26 0.22 0.16
kiwifarms.cc 86 6.8k 391k 0.24 0.19 0.16
spinster.xyz 65 17.9k 1.34M NA NA NA
neckbeard.xyz 61 15.1k 816k 0.13 0.11 0.11
poa.st 51 5.1k 344k 0.27 0.25 0.18

Table 1: Top 5 Pleroma rejected instances with the number of times they are rejected, users, posts, the averages of their toxicity, profanity,
and sexually explicit scores.
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Figure 6: Number of toxic, profane, sexually explicit, and non-
harmful users on each rejected Pleroma instance.

Why are instances blocked?. To examine this, we manually
annotate the 92 rejected Pleroma instances by going through
their post content and also visiting each site. Note, these are
the rejected Pleroma instances we have post data for, and we
exclude single-user instances (see Section 5). We label the
rejected Pleroma instances as (i) Toxic (hate speech): for con-
tent with identity attacks, threats, insults, and other hateful
material; (ii) Sexually explicit (pornography): for adult con-
tent; (iii) Profane: for material with swear/curse words; and
(iv) General: for Pleroma instances we are unable to cate-
gorise. We are able to annotate 88.4% of the rejected Pleroma
instances. For the Pleroma instances we are able to annotate,
we find that the sexually explicit, toxic, and profane instances
make up 90.6%. The remaining 9.4% are labeled as general.

5 Is there collateral damage?
We conjecture that the activities of individual users may result
in an entire instance being rejected. Thus, many “innocent”
users may also be rejected by association. We refer to this as
collateral damage. To shed preliminary light on this ques-
tion, we explore what fraction of users on rejected Pleroma
instances share harmful material. We flag that there may be
multiple reasons why an instance is rejected, and emphasize
this limitation in our analysis.

In total, we have posts for 61.9% rejected Pleroma in-
stances, with 26.4% of them being single-user instances. As
we are interested in what percentage of “innocent” users are
affected by these policies, we filter out the single user Pleroma
instances. We find 1.62k users on these rejected Pleroma in-
stances have publicly accessible content (59.3k posts). Us-
ing the Perspective labels (see Section 3), we find that 4.2%

Threshold 0.5 0.6 0.7 0.8 0.9
Non Harmful (%) 86.4 91.8 94.1 95.8 97.3

Table 2: Percentages of harmful and non-harmful Pleroma users with
varying Google Perspective API thresholds.

of these users on rejected Pleroma instances have a score of
>=0.8 in at least one of the three attributes [4]. With our
threshold of 0.8, we notice a harmful-to-non-harmful posts ra-
tio of 1:11. We also find that the Pleroma instances with posts
averaging a Perspective API score ¿=0.8 actually make up 7
of the top 10 most rejected Pleroma instances.

Figure 6 shows a stacked bar plot, with the number of users
that have been classified as toxic, profane, or sexually explicit
on each rejected Pleroma instance. We also plot the num-
ber of non-harmful users on each Pleroma instance. For the
users with an average score ¿=0.8, we see a distribution of
69.7% toxicity, 57.6% profanity, and 43.9% as sexually ex-
plicit. Note here that a user can be classified as all 3. Based on
this method, 95.8% of the users on rejected Pleroma instances
are affected, even though none of their own posts are flagged
as harmful. This further strengthens our earlier hypothesis:
it is likely that just a few posts from a few users trigger the
rejections.

For completeness, we finally show the percentage of harm-
ful and non-harmful users when we use other Perspective
thresholds in Table 2. We find that regardless of the threshold,
a high percentage of non-harmful users are rejected alongside
the small percentage of harmful users.

6 Implications
Collateral Damage. DW instance-based moderation provides
useful tools for admins. However, our findings indicate that
they are not granular enough. Reject actions are applied to
entire instances and all associated users are blocked. Despite
this, we find that only 4.2% of the users on rejected instances
share harmful posts. Although such users may be undesirable
for other reasons, this does suggest that a large majority of
users may be “collateral damage”. This raises questions as
to whether rejecting entire instances is the most appropriate
approach.

Dissatisfied Users. Generally, users tend to join social plat-
forms where their friends already are, i.e. the network ef-

5



fect [2, 15]. This could possibly be one of the major rea-
sons why some decentralised networks struggle to accumulate
a strong user base. Being rejected could result in growing user
dissatisfaction, especially if they have friends on another in-
stance which they are banned from following. We argue that
such experiences could lead to an exodus of users. Thus, ad-
dressing collateral damage is important.

Federation Graph. In a centralised network, a social graph
shows the connections between users. In the DW, this can
go further to show the connections between instances. A
reject tends to have far-reaching effects on the social graph;
e.g., if an instance relies on another to reach a segment of the
social graph, and due to the actions of a few users it gets re-
jected, that instance could be cut off from the wider network.
This will adversely affect the federation. Exploring the wider
impact is an interesting item for future work.

7 Solution Space
We now briefly explore some solutions to the above chal-
lenges. One obvious solution would be for administrators to
adopt other less stringent in-built Pleroma policies, e.g. tag-
ging posts as NSFW. With this policy, messages from targeted
instances are tagged with warnings rather than blocked.

Some of the most rejected Pleroma instances happen to be
those with sexually explicit content and these materials are
mostly in media form. With the media removal facility,
multimedia content is removed, leaving only the text. That
way, the harmful material loses its meaning while the non-
harmful users are still able to have their posts delivered across
the federation. For DW platforms that carry out moderation in
a similar fashion to Pleroma (e.g. Mastodon), we concretely
propose three steps that could be taken to improve moderation
in the DW:

1. New generic policies could be designed that rely on a
trusted/curated list of well-known instances in the fe-
diverse that may need to be blocked. For example,
policies called ”NoHate” or ”NoPorn” could have in-
stances like Gab, freespeechextremist.com and
social.myfreecams.com, and baraag.net listed
as part of a community effort. Thus, an administrator could
simply select the relevant lists. We expect that these listings
are periodically updated by professionals who ensure that
the instances have limited collateral damage.

2. New user-driven policies could be designed that enable
administrators to moderate on a per-user basis. For in-
stance, TagPolicy can be used to apply a policy to a
user based on a tag applied. Hence, streamline moderation
interfaces could be devised to make the process of tagging
individual users straightforward (potentially assisted by au-
tomated classifiers).

3. New policies could enable administrators to automatically
implement policies/actions for repeated offenders. For
instance, policies/actions could be automatically applied

(e.g. NSFW, media removal) to a user when they have
been reported n times, or when the user post goes above a
certain threshold (e.g. in Google Perspective API). Again,
such actions could be assisted by automatic classification
of behaviour.

8 Related Work
There has been a range of work on content moderation in so-
cial media. Halevy et al. [11] looked into striking a balance
between free speech and safety, considering diverse cultural
and political climates. Fortuna et al. [9] used 6 publicly avail-
able datasets and compared the labeling of each dataset for at-
tributes such as sexism, toxicity, and racism. They found that
definitions, datasets, and conflicting annotations can all affect
the performance of classifiers. Ribeiro et al. [23] studied dif-
ferences between hateful Twitter users and normal users with
respect to their activities, vocabulary and network centrality.
More recently, soft moderation and other techniques have also
been explored by social platforms and researchers alike [28].
Other studies have profiled social media users based on their
dissemination of hate material [3, 14]. By contrast, our work
focuses on the implementation of policies by administrators
on Pleroma, rather than the behaviour of hateful users.

There have also been a set of studies looking specifically at
DW services. Raman et al. [22] measured the challenges in
deploying DW applications, particularly related to network is-
sues [12]. Zignani et al. [30] studied the growth of Mastodon
while comparing its structure with Twitter. Similarly, La Cava
et al. [13] explored the evolution of Mastodon at an instance
level, as well as the connectivity between instances. Zignani
et al. [31] further investigated the interrelationship between
the Mastodon system design and the social network. An-
other closely related work [32] looked at how Mastodon users
tag their own posts as NSFW. Doan et al. [7] investigated
the performance of a decentralized video streaming platform
(DTube) by developing an app that streams from both central-
ized and decentralized services. We differ from these works
in that we focus on content moderation activities.

9 Conclusion
This paper presented the first study of Pleroma and its moder-
ation policies. We find that policies are widely used, impact-
ing 97.7% of users and 97.8% of posts. Using the Perspec-
tive API, we have found that 95.8% of the users on rejected
Pleroma instances do not share posts classified as harmful.
This leaves just 4.2% of harmful users that are likely respon-
sible for the rejects. This implies significant “collateral dam-
age.” This has led us to sketch a set of strawman policies
that may reduce this damage. Our proposed solutions would
generally be applicable to platforms that carry out moderation
at a per-instance granularity (e.g. DW) rather than at a per-
user granularity (e.g. Twitter). In our future work, we plan to
implement and evaluate these policies, as well as continue to
explore how other DW platforms perform moderation.
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There are a number of lines of future work. We wish to
further explore the reasons why administrators apply partic-
ular policies. This, for instance, could be achieved via user
studies. Using this knowledge, we intend to develop novel
policies that can assist administrators. We are particularly in-
terested in designing more techniques that can automatically
identify users or instances to apply certain policies too.
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A Appendix

We summarise the basic functionalities of Pleorma in-built
policies in Table 3.

For completeness, we show in Figure 7 the entire policy
spectrum, the percentage of Pleroma instances that enable
these policies, as well as the number of users on these instance.
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policy #description #instances #users

ObjectAge Rejects or delists posts based on their age when received 869 57,854
TagPolicy Applies policies to individual users based on tags 429 38,067
SimplePolicy Restrict the visibility of activities from certains instances with a suite of actions 330 46,691
NoOpPolicy Doesn’t modify activities (default) 176 6,443
HellthreadPolicy De-list or reject messages when the set number of mentioned users threshold is exceeded 87 14,401
StealEmojiPolicy List of hosts to steal emojis from 81 7,003
HashtagPolicy List of hashtags to mark activities as sensitive (default: nsfw) 62 10,933
AntiFollowbotPolicy Stop the automatic following of newly discovered users 51 6,918
MediaProxyWarmingPolicy Crawls attachments using their MediaProxy URLs so that the MediaProxy cache is primed 46 9,851
KeywordPolicy A list of patterns which result in message being reject/unlisted/replaced 42 22,428
AntiLinkSpamPolicy Rejects posts from likely spambots by rejecting posts from new users that contain links 32 7,347
ForceBotUnlistedPolicy Makes all bot posts to disappear from public timelines 23 6,746
EnsureRePrepended Rewrites posts to ensure that replies to posts with subjects do not have an identical subject and instead begin with re: 18 247
ActivityExpirationPolicy Sets a default expiration on all posts made by users of the local instance 11 1,420
SubchainPolicy Selectively runs other MRF policies when messages match 8 81
MentionPolicy Drops posts mentioning configurable users 6 1,149
VocabularyPolicy Restricts activities to a configured set of vocabulary 5 121
AntiHellthreadPolicy Stops the use of the HellthreadPolicy 4 2,106
RejectNonPublic Whether to allow followers-only/direct posts 3 1,101
FollowBotPolicy Automatically follows newly discovered users from the specified bot account 2 281
DropPolicy Drops all activities 1 1,098

Table 3: Description of policies provided by Pleroma and the number of instances that enable them, as well as the number of users on the
instances
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Figure 7: Entire policy spectrum showing policy types and the percentage of instances that use each policy (sorted by the percentage of
instances). We also include the percentage of the global user population on the instances that use each policy.
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