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ABSTRACT
A cyber–cyber digital twin is a simulation of a software system.
By contrast, a cyber–physical digital twin is a simulation of a non-
software (physical) system. Although cyber–physical digital twins
have received a lot of recent attention, their cyber–cyber counter-
parts have been comparatively overlooked. In this paper we show
how the unique properties of cyber–cyber digital twins open up
exciting opportunities for research and development. Like all digital
twins, the cyber–cyber digital twin is both informed by and informs
the behaviour of the twin it simulates. It is therefore a software
system that simulates another software system, making it concep-
tually truly a twin, blurring the distinction between the simulated
and the simulator. Cyber–cyber digital twins can be twins of other
cyber–cyber digital twins, leading to a hierarchy of twins. As we
shall see, these apparently philosophical observations have practi-
cal ramifications for the design, implementation and deployment
of digital twins at Facebook.
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1 INTRODUCTION
Simulation is increasingly becoming one of the most important ap-
plications of software engineering, yet it has received comparatively
little attention from the software engineering research community.
The importance of simulation is hard to overstate: many, if not all,
of the most important challenges we face as a species are being
tackled by simulation-based solutions. For example, simulation is
increasingly used for prediction and decision-making in economics
[52], climate change and weather prediction [30], traffic safety [4],
and, most recently, with the farthest possible impact, our response
to the COVID19 pandemic [1].

In this paper we outline our on-going development of WW, a
simulation of Facebook’s WWW platform. The WW system can
be thought of as a cyber–cyber digital twin of Facebook’s WWW
platform and infrastructure. That is, it is a simulation of the WWW
platform that is both informed by and informs the behaviour of
that platform. There has been much recent development of digital
twins, with which the simulation process is extended so that the
simulation and the simulated system automatically interact with
one another. However, that research agenda is confined to cyber–
physical digital twins; software systems that simulate real physical
engineering systems and processes. Despite the fact that the digital
twin is a software artefact, the potential for cyber–cyber digital
twins, in which the simulated system is also a software system or
process, remains relatively under-exploited and under-explored.

In this paper we argue that there is considerable potential for
software engineering research to extend from cyber–physical dig-
ital twins to cyber–cyber digital twins. This is not merely ‘yet
another application of digital twins’; the fact that the two twins are
constructed out of the same software engineering material makes
cyber–cyber digital twins a fundamentally different research para-
digm compared to cyber–physical digital twins. In particular,

(1) Complete malleability: The physical system in a cyber–
physical digital twin can only partially adapt. Furthermore,
when such a physical system does adapt, it is typically only
the software components of the physical system that can
be changed automatically. For example, the configuration
parameters of an automobile engine controller can be au-
tomatically adapted in response to feedback from a cyber
twin, but the bodywork of the automobile cannot. By con-
trast, the cyber system in a cyber–cyber digital twin can
completely adapt in response to its twin; theoretically, no
change is unimplementable.

(2) True twins: Cyber–cyber digital twins truly are twins; it
may become hard to tell which is the simulator and which
is the simulated, because either could inform or affect the
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other, causing it to adapt any or all of its components, due
to complete malleability.

(3) Simulation Hierarchy: Since a cyber–cyber digital twin
can, itself, also have a digital twin, we can create recursive
hierarchies of cyber𝑁 digital twins.

A digital twin can predict a system’s response to safety-critical
events and uncover previously unknown issues before they become
critical. Furthermore, it allows the replay of critical events that oc-
curred in the past in order to assess whether prevention strategies
could have mitigated these events. This is an example where the
simulation paradigm goes beyond the traditional software engi-
neering testing paradigm; unit and integration tests are designed
to uncover known failure modes, whereas simulation allows the
whole system to be tested.

This paper covers three principal aspects of cyber–cyber digital
twin deployments:

(1) Scalability: How can we simulate salient behavioural prop-
erties of human–platform interactions in a large complex
software platform? We consider two principal aspects of
scalability:

(a) Execution Scalability: can we compute results quickly
enough to act on them using reasonable computational
resources?

(b) Developmental Scalability: can we develop new simu-
lations quickly enough to take action in response to new
behaviours?

(2) Behaviour: How can we simulate human behaviour realis-
tically enough to make actionable predictions and recom-
mendations?

(3) Verification and Validation: Cyber–cyber digital twins
bring up many natural verification and validation questions.
For example

(a) Verification: Towhat degree canwe verify our confidence
that the simulation captures the desired salient properties
with sufficient faithfulness for the intended digital twin
applications?

(b) Validation: How canwe ensure that results of simulations
are valid in order to address the questions, predictions and
interventions in mind? This is especially challenging in sit-
uations where we aremodelling counterfactual behaviours
never previously witnessed

These three challenges lie at the heart of the technical and sci-
entific problems we face in developing a scalable, high fidelity
simulation able to produce actionable predictions and conclusions.
We believe that tackling them will have a profound impact on both
social media and on the wider application of cyber–cyber digital
twins to general complex systems.

In this paper, we describe how we developed and deployed a
hierarchy of digital twin simulations. Each twin occupies a position
on a spectrum of engineering trade-offs allowing us to tackle execu-
tion scalability by trading simulation fidelity for speed. We describe
the architecture of the online real-time simulation layer of the WW
hierarchy, and how the other layers of hierarchy are related to it.
Our experience is that this architecture is helping us to achieve
reasonable developmental scalability. We also briefly outline our
hybrid approach to semi-realistic user behaviour imitation and our

approach to tackling the problem of verification and validation of
simulation outcomes.

The paper concludes with a set of open challenges for both
the scientific and software engineering communities. We describe
applications to software engineering which promise many future
benefits.

2 THE SIMULATION HIERARCHY
Figure 1 depicts the WW Simulation Hierarchy. Human users and
the devices they use to interact with Facebook make up the physical
aspects of the hierarchy. All other entities in the figure are digi-
tal entities, and relationships between them are thus cyber–cyber
relationships.

The lower rectangle depicts the Facebook platform itself, con-
sidering it conceptually to be a cyber physical simulation of social
interaction. In some ways, Facebook itself might be considered a
digital twin of physical social interactions, but we leave further
study of this perspective to future work. Our focus for this paper
are the cyber–cyber digital twins that we have built on top of the
Facebook platform.

The upper rectangle depicts the WW system, a simulation plat-
form which rests on top of the Facebook platform itself. WW con-
sists of the bots (simulating real users), and a simulation of the
Facebook platform, chosen at one of several levels of precision;
here online, offline/synthetic, and emulated. The simulations of the
Facebook platform are constructed through a chain of digital twins,
thereby forming a simulation hierarchy. In some ways, Facebook
itself might be considered a digital twin of physical social inter-
actions, but we leave further study of this perspective to future
work.

As can be seen from Figure 1, the relationships between bots,
real users, the Facebook platform and its various simulations in the
simulation hierarchy collectively form a commutative diagram. In
future work we hope to exploit this observation further, through
rigorous informal and formal verification and validation obligations
which are best formulated using this kind of commutative diagram.
For example, suppose we have verified that the emulator correctly
captures an important property, 𝑃 , of the offline simulation. Now,
when we have bots used in the offline simulation that maintain 𝑃 ,
when transformed into bots in the emulator, we know that emulator
interactions with the bots, and offline mode interactions with the
bots should behave identically with respect to property 𝑃 .

The chain of cyber–cyber simulations is represented in the right–
hand–side of the diagram by a four-component pyramid, in which
each component is a digital twin. The upper digital twins of the
pyramid simulate the behaviour of those below, while the base of
the pyramid is also a cyber–physical digital twin; the Facebook
platform itself.

Onlinemode. Immediately above the Facebook platform itself, we
find theWWonlinemode. This is ourmost faithful simulation of the
Facebook WWW platform. It is ‘faithful’ in the sense that, although
the behaviour of the bots is a simulation (of real user behaviours),
the actions and observations in which these bots engage is executed
directly on the real Facebook platform itself. In this way, online
mode is a cyber–cyber digital twin, but it is also a web enabled
simulation [2]. It differs crucially from conventional simulations
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[30, 32, 52] because the simulated process can be digitally executed.
By contrast, an engine simulation, for example, must execute a
model of the physical engine.

Offline mode. The WW offline simulation is a cyber–cyber dig-
ital twin of the online simulation. In offline mode, WW does not
necessarily execute all of the bots’ actions, nor provide all of the ob-
servations to bots that are available on the Facebook platform itself.
Rather, offline simulations either synthetically generate content, so-
cial graph topology, and bot state (simulated historical actions), or
they recapture and cache online simulation results for subsequent
offline reuse. These offline modes have many advantages:

(1) Speed: Offline simulations execute orders ofmagnitude faster
than their online counterparts

(2) Test–friendliness: Offline execution supports verification
and validation of simulation results, because it reduces test
flakiness [3].

(3) Counterfactual Support: We can combine synthetic net-
work topologies with simulated content and bot state infor-
mation to create virtual worlds. These virtual worlds share
some properties with the real world, but also allow us to
explore behaviour in counterfactual worlds in which we
mutate some or all of the social graph network topology,
content and bot state.

(4) Privacy–safety: For simulations of sensitive aspects that
would not be privacy-safe in online mode, the synthetic
simulation mode allows us to perform simulations that are
privacy-safe by construction.

These advantages may come at the expense of losing some fi-
delity of the simulation results, compared to those that would be
experienced in reality. Therefore, the simulation hierarchy intro-
duces classical engineering trade-offs between precision and speed.

Emulation. While offlinemode improves simulation performance
substantially, it is not sufficient for some situations. Many of the
applications of WW digital twins aim to improve Facebook’s infras-
tructure and apps in a way that balances protection of normal users
and inhibition of malicious users. To tackle this technical challenge,
we use an approach reminiscent of genetic improvement [43] that
we call ‘mechanism design’ [2]. Mechanism design uses compu-
tational search [24] over the space of product changes, guided by
fitness functions that capture the impact of the product change on
normal and harmful behaviour.

Fitness Computation. Each fitness computation is, itself, an entire
simulation story. Fitness assesses the effect of a product change on
a particular kind of behaviour, as experienced by the bots. Effective
computational search typically requires a large number of fitness
evaluations [27]. This motivated us to develop faster simulations
than can be achieved in either online or offline mode. In order
to meet these high performance requirements, the top level of
the simulation pyramid uses emulation. Emulation uses machine
learning to create high performance black box predictive models of
the behaviour of lower levels of the pyramid.

In summary. WW employs two strands of simulation: The first
strand, to the left-hand side of the diagram, is a cyber–physical

Figure 1: The WW Simulation Hierarchy: a recursive chain
of digital twins that trade simulation precision for speed.

simulation of real users by bots. The second strand, to the right-
hand side of the diagram, is a chain of cyber–cyber simulations,
which simulate the Facebook platform. The interaction between
the bots and the simulated Facebook platform is a cyber–cyber
interactionwhich simulates the cyber–physical interaction between
real Facebook users and the real Facebook platform.

3 VERIFICATION AND VALIDATION OF
SIMULATION OUTCOMES

Simulations need to be verified and validated before decisions can
be based on them. The WW verification and validation framework
is built around 4 properties: fidelity, regression, isolation and cor-
rectness (FRIC). We developed the MIA[3] testing framework to
test the FRIC properties.

We tackle all four properties using the full panoply of software
testing techniques, including mutation [29], regression [58], meta-
morphic [3], and property-based [14] techniques. MIA currently
automates end–to–end, regression and metamorphic testing (end–
to-end and regression testing are formulated, implemented and
deployed as special cases of metamorphic testing [3]). We are cur-
rently extending MIA to handle other types of testing.
Fidelity: There are two aspects of fidelity that we test: simulation-
simulation fidelity and reality-simulation fidelity.

Simulation-simulation fidelity can sometimes be constructed
without real-world data, as a consistency check between different
cyber–cyber digital twins. Reality–simulation fidelity measures the
closeness of WW simulation results to reality. While simulation–
simulation fidelity captures an internal consistency of the hierarchy,
we cannot be sure that the results we are checking are valid (that
they matter) without reality–simulation fidelity.

In some cases, measurement of reality-simulation fidelity proves
to be straight forward. For example, when simulating an event
sequence that previously occurred in reality, we have the ground
truth from earlier observations. However, counterfactual simula-
tions (which use newer versions of the Facebook platform not
previously deployed) naturally raise a profound question about the
meaning of fidelity: to what extent can we determine faithfulness
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of simulation to reality when aspects of the simulated situations
have never been previously witnessed?
Regression: At Facebook, any code change is called a ‘diff’. Testing
performed on individual diffs when they are submitted for code
review is called ’per diff’ testing. WW platform development occurs
as a sequence of diffs and it is very useful to perform regression
testing on each diff. Regression testing is clearly useful for per-
diff mode testing of changes to WW code. When this kind of diff
test fails, it indicates that the proposed code changes would alter
simulation results.

Not only do we regression test the WW code, we also ‘diff sniff’
other Facebook code changes entirely unrelated to WW itself. We
use the phrase ‘diff sniff’ to refer to a regression test on an arbitrary
diff which is not necessarily a WW diff. A diff sniff regression
test runs a short simulation on both the current code and on the
proposed code change and compares them to ’sniff’ for problematic
changes. If the regression test fails, it means that the diff disrupted
the behaviour of WW bots. This, in turn, means that the diff is
likely to disrupt real users, and could indicate a serious bug.

This diff sniff mode exploits the fact that our test involves sim-
ulations and, as such, allows us to deploy social testing [2] on all
diffs that might disrupt users’ normal behaviours. For example, a
simulation that involves a bot community sending and responding
to messages can uncover potential social bugs in diffs that change
Facebook’s messaging infrastructure.
Isolation: Bots must not interact with normal users. The WW
framework has systems in place to ensure that bots remain isolated
from real users [2]. Specifically, we built WW to have inherent
isolation of bots by design and also encase the bots in a privacy layer
that further traps any potential to bleed through from bot behaviour
to production. However, isolation is clearly highly important, so
we also need to adopt a ‘trust but verify’ policy with regard to
our own isolation-by-construction approach, thereby continually
testing that our systems are, indeed, separate.
Correctness: In a WW simulation, we can only execute actions
that real users are able to execute on the platform. Based on a
policy and the observations received, a bot can execute or ignore a
specific type of action. WW code errors might break the simulation
framework, might alter the behaviour of the platform, or might
cause incorrect bot actions. The current WW framework uses end–
to–end, regression and metamorphic testing to assess whether the
simulation terminates without failure [3]. We are currently working
on property-based testing [14] that will test a wider variety of
properties of a simulation including the number and types of bot
actions and the number of simulated bots.

4 REALISTIC BOTS
We refer to bots’ distinguishing attributes, such as the demographic
they simulate, as a persona. Personas specify salient characteristics
of bots such as their age, gender, and platform activity level. They
also specify aspects of a bot’s goals such as whether it is malicious
or benign.

A simulation is typically set up with a set of bot personas that
capture the particular scenario of interest. For example, if we are
interested in understanding the ability for systems to detect and

impede scamming attacks on our users, then we would set up a
simulation with scammers and benign users.

In the scamming scenario, we might implement a set of rela-
tively sophisticated scamming behaviours, captured by imitation
learning, together with a set of more simple rule–based behaviours
that capture the benign users that might become victims to such
scamming attacks.

Our bot behaviour modelling techniques range from simple ran-
dom actions tomore advanced rule-based andML-learnt behaviours.
Different techniques can coexist in the same simulation, as different
bots use different methods based on their role and persona.

The set of available personas is defined at the beginning of a
simulation, roles are then assigned to each bot according to a pre-
defined set of rules yielding a distribution comparable to the real
environment.

Figure 2: WW simulations can include bots following differ-
ent strategies. The phrase ‘Hybrid bot’ represents a mix of
strategies in a single agent.

Figure 2 depicts the four principal techniques we currently use
to train bots’ behaviours in WW, each of which we describe in more
detail below.
Random: The simplest behavioural model causes bots to execute
actions randomly from a pool of available actions. This model can
be useful in cases such as testing, where the developer may care
less about realistic behaviour than they do about code coverage.
Random behaviour also provides a useful baseline against which to
compare more intelligent and purposeful behaviours.
Rule-based: Given some basic assumptions about the goal of a
simulation, it is often possible to express the desired user behaviour
by a set of parameterised rules. The rules serve as a backbone
algorithm that captures the core of a bot’s behaviour. The agents
in a simulation often do not need to be very sophisticated for their
aggregate behaviour to lead to interesting conclusions.

Using the rule-based approach allows us to focus on one specific
aspect of behaviour. Rule–based bots are also more likely to behave
deterministically. Determinism tends to help with interpretability,
and is particularly useful for exploring extreme behaviour. Rule-
based behaviours also allow us to capture the distilled essence of
harmful behaviour, and thereby check that our systems are robust
even in the presence of such extremes.

Even if we have not witnessed such extreme behaviour, this
remains a useful integrity stress test for the cyber-physical platform.
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Although no specific user may behave in this way, if we suitably
capture a specific behaviour of interest, this can be used to explore
mechanisms designed to either inhibit or allow that behaviour.

Rule–based bots are configured according to parameters, which
capture the specific behaviours, outlined by the overall backbone
algorithm. This allows us to parameter sweep over the specific
aspects of behaviour, under certain conditions and constraints. The
parameters in the rule-based behaviour descriptions allow us to
investigate whole areas of counterfactuals: by sweeping over a
range of parameters we can explore how well harmful behaviour
of various levels of severity is handled.
ML: Clearly, rule-based strategies alone are insufficient to capture
all of the nuanced complexities and emergent properties of social
interaction. Where more realistic behaviour is required, we have
employed Machine Learning techniques to imitate decisions made
by classes of real users. We only simulate whole classes of user
of behaviour, thereby allowing us to train a bot to imitate specific
personas, but not specific individuals.

We use sequences of actions from de–identified logs to train imi-
tation learners. We encode each action as a vector using Word2Vec
[39]. Positive samples are collected from the logs of executed ac-
tions, together with information about the context in which the
action was carried out. The context is then used to infer other
actions that could have been performed, but were not.

The model is trained to predict the next action given the context,
one positive sample (the real action) and one negative sample (the
available action that was not executed in the log). During the sim-
ulation, at each step, pairwise comparison is performed between
available choices, using scores from the ML model. The action with
the highest score according to this ranking is then executed.

Each type of action has a defined set of features that are collected
for accurate prediction. These features are sets of de–identified fea-
tures which, like all supervised training based on labelled features,
are used to train the bot to generalise to particular kinds of decision
responses. For example, a bot may need to decide which group to
join next. Groups features include when the group was created, the
number of members, the number of posts per day, etc. From these
features we can train a bot that simulates scamming behaviours
by training it to join groups with similar features to those features
that scammers, on aggregate, have tended to favour in the past.
ML–Rul–based hybrids: Our imitation learners can be substi-
tuted in a plug–and–play manner into our backbone rule-based
algorithms. This supports us in deploying hybrid approaches which
combine a role-based backbone, with different imitation learners to
capture different kinds of personas and different kinds of behaviour
patterns. Such a hybrid typically uses the rule-based algorithm for
its overall strategy, such as crawling over the platform. However,
at each step in the crawl, a number of options are available. When
a bot has a range of decisions available to it, it uses the imitation
learner in order to determine the next step.

5 FACEBOOK’S WWMICRO-SERVICE
ARCHITECTURE FOR USER SIMULATION

In theWWarchitecture, we describe the set of actions and responses
that a bot can perform its ‘simulation story’. Simulation stories can

Figure 3: The Top-LevelWWMicro Services Architecture for
Real-Time Simulation

be composed. Larger simulations can be constructed from smaller
ones.

In addition to simulating bot actions, the WW architecture sup-
ports monitoring, statistical analysis, and realtime scheduling for
high fidelity online simulations.

Figure 3 shows the top level architecture ofWW. There is a sched-
uler and an executor which interact with the Facebook environment
according to a policy.

The scheduler dispatches events at the appropriate simulation
time and is responsible for terminating simulations. The platform
policy is the ‘brain’ of the simulation and determines how bots be-
have. A WW ‘simulation story’ is defined by an initial action which
triggers a cascade of responses. Each response can trigger additional
actions which can trigger additional responses. We use a ‘plug and
play’ approach whereby different policies and environments can
be used in the same WW simulation story.

The platform policy is responsible for selecting agent actions
and for maintaining the state of the execution. Agent actions can
range from hard-coded stochastic rules to adaptive actions based
on Reinforcement Learning (RL) similar to that used in game AIs
[61]. The policy maintains bots’ ‘memory’ and is also responsible
for content replacement since environment calls are stateless. Each
action has a content placeholder like ‘<comment>’.

The interface to the Facebook environment is provided by an
API for action execution which is implemented as a WWW Thrift
service [49]. The environment service can be (re)implemented for
different platforms or as a synthetic environment, where all actions
are executed offline.

This architecture provides several advantages:
(1) Plug and play: Policies can be reused in any simulation and

different platform policies can be applied to the same WW
simulation story.

(2) Flexibility: The environment is implemented as a service
which provides the Actions API. The Environment Service
can be implemented for any platform, allowing a simulation
story to be run on different platforms.

(3) Scalability: The Environment Service is deployed on multi-
ple machines and can be scaled when needed.

6 OPEN CHALLENGES IN APPLYING
CYBER–CYBER DIGITAL TWINS TOWEB
ENABLED SIMULATION

Modelling Users: Modelling the behaviour of real users is a natu-
ral challenge in any simulation of social behaviours. We have found
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a combination of rule–based approaches and decision procedures
guided by imitation learning to be effective for many use cases.
However, our work has only scratched the surface of what is re-
quired in order to simulate behaviours and complex community
interactions. Much more research is needed to accurately simulate
situations involving complex human behaviours..

We have found that, although realism is a natural goal, it is
not essential in all application areas. For example, when using
mechanisms designed to tackle harmful behaviours, we often want
to simulate the ‘distilled essence’ of the harmful behaviour. This
distilled essence is particularly useful in the early phases of the
search process to find mechanisms to counteract such behaviour.
Any mechanisms which can’t handle the most egregious examples
of a harmful behaviour can be discarded early in the search process.

However, finding interventions to tackle harmful behaviour is
inherently a multi–objective search process: while we want to add
friction to reduce the prevalence and effectiveness of harmful be-
haviours, we do notwant to impede normal user behaviour. In order
to incorporate this into the search for optimisedmechanisms, we are
naturally led to a multi-objective formulation. In such a multi objec-
tive formulation, we need to balance the impact of mechanisms on
harmful behaviours against their impact on normal behaviour. This,
in turn, requires a realistic model of normal behaviour, wherein
lies the greatest challenge. How does one best capture the normal
behaviour of users in such a way that interventions that might
disrupt their normal behaviour can be dismissed early in the search
process?
Balancing Speed and Precision: Cyber–cyber digital twins will
increasingly need to produce simulation results in real-time. Fur-
thermore, predictions which alter the real platform have to be made
ahead of real-time. These tight time constraints, coupled with the
potential need for large amounts of training data, present us with a
scalability challenge: Cyber–cyber digital twins will increasingly
need to produce simulation results in real-time. And predictions
which alter the real platform have to be made ahead of real-time?

WW addresses this challenge with the simulation hierarchy
which provides different precision and speed trade-offs for differ-
ent use cases. When optimising the outcome of multiple agents,
this approach allows us to formulate search in terms of a range
of precision-speed fitness computation choices. In the early explo-
ration phase of an optimisation algorithm, a more coarse-grained,
faster fitness can be used. This corresponds to more abstract levels
of the simulation hierarchy. As the search for mechanisms enters
the exploitation phases of the search, the algorithm can gradually
switch to fitness functions which have higher precision and higher
computation cost [35].
Validation, Verification and Testing: We need techniques to ver-
ify and test properties of simulation systems that are specifically
tailored to interactive multi-agent scenarios. Techniques from AI
assisted gameplay [56] and multi-agent system testing [31, 42] may
be relevant here, but much more work is needed to determine their
usefulness.

For example, we need to deal with unknowable oracles, and wide-
spread non-determinism, and consequently flaky tests [3]. Although
challenging, it will also be extremely beneficial to have automated
verification for cyber–cyber digital twins. This may be possible,
for example, where properties of models of a digital twin can be

proved correct. Such a property-preserving model can be used as a
surrogate for more computationally expensive alternatives.

Finally, and perhaps most important of all, we need techniques to
help understand, check and optimise validity of simulation results.
This is challenging because we are often dealingwith counterfactual
scenarios for which, even when ground truth is known, it can be
only partially relevant to validity.

7 FURTHER SOFTWARE ENGINEERING
APPLICATIONS OF CYBER–CYBER
DIGITAL TWINS

In this section we outline ways in which cyber–cyber digital twins
could be applied in four areas of current active software engineering
research. Our list is not intended to be exhaustive, but merely
illustrative.
Testing: Currently we tend to think of a testing tool as a separate
system that automatically tests the system under test [6, 9]. The
test system might report tests automatically into a continuous inte-
gration system [5]. However, we typically do not think of testing
tools as cyber–cyber digital twins that run in production alongside
the system being tested. Nevertheless, with cyber–physical digital
twins, it is increasingly common to see continuous real-time de-
ployment of the digital twin, running alongside the system under
test. In some regards, therefore, software testing research is behind
other engineering testing research in the use of digital twins as part
of an overall automated continuous testing deployment.
Automated Repair: Automated repair is gaining increasing atten-
tion from both software engineering researchers [17] and practi-
tioners [38] . However, like testing, automated repair systems are
often considered to be executed by the provider, rather than auto-
matically executed in production, and therefore implicitly invoked
by the user. Consider what a cyber–cyber digital repair twin might
look like. Such a system would automatically run in production,
and test repairs to the system under test. It would model execution
of the system under test and its repairs. It would automatically
respond to unwanted behaviour witnessed in production. It would
deploy patches to the system under test as the system executes. In
this way, the twin is to the system under test, as a personal surgeon
is to a patient; continually monitoring vital signs, and responding
with cures (fixes) when problems are uncovered.
Adaptive and Self-Managing Systems and Autonomous Sys-
tems: Adaptive autonomous systems need to be able to respond
quickly to their environment, making predictions and taking ac-
tions to respond to the problems in real time [33]. This is a perfect
setting in which to deploy a cyber–cyber digital twin, able to main-
tain and adapt its own model of the system, and to respond to
changes by adapting that system, autonomously, as the two twins
execute in parallel. The twins respond to the world together in
a technological embrace that enables one twin to simulate in or-
der to explore counterfactual variations of previously witnessed
behaviour, during downtime when its twin would otherwise be
relatively inactive [26].

This has been referred to as the ‘dreaming phones’ [26], because
the simulation of smart phone optimisations to be deployed the
next day could take place overnight, while the phone is charging,
reusing the phone’s computational resources for the simulation
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overnight; the phone is essentially ‘dreaming’ about the day that
just occurred.
Modern Code Review: It is increasingly common to think of tools
that assist code review as bots [51] that, like engineers, comment
on code using the same continuous integration interfaces used by
human engineers [5, 13]. Taking this a step further, we could imag-
ine a cyber–cyber digital twin that plays the role of a maintainers’
assistant [54].

Such an assistant would be a full member of the team, in the
sense that the assistant would be able to upload code for review
and to respond to code review feedback from humans and other
bots, as well as commenting on code as a reviewer. The assistant
would maintain a mental model of the system being developed,
and would use this to take measurements and recommend changes,
and also comment on other engineers’ changes. Like any other
member of the team, this assistant would have particular skills
and attributes specific to its background and training. This system
might lack a lot of the context that human engineers would bring
to the development and review process. In compensation, however,
the bot would be able to perform meticulous repeated experimental
analyses in order to provide comprehensive scientific evidence to
back up its claims.

8 RELATEDWORK
We have previously discussed the wide range of research related to
Web Enabled Simulation [2] including Multi-Agent Reinforcement
Learning [12], Search-Based Software Engineering [25], and Auto-
mated Mechanism Design [48]. These topics are also relevant here,
but we focus on the work most related to digital-twins [44].

While cyber–cyber digital twins are a new concept1, many of
the cyber–physical digital twin insights are also relevant to them.
Digital Twins were first described by Grieves in 2002 in the context
of Product Lifecycle Management [7] [18] [19]. This model included
a real space, a virtual space, and two-way communication between
them to keep them synchronized.

Digital twins have already been deployed in healthcare, meteo-
rology, manufacturing, education, smart cities, transport and the
energy sector [44]. Singapore and other ‘smart cities’ have created
digital twins to manage roadways, pedestrian traffic, energy use
and other city functions [36]. The ultimate digital twin is an EU
plan for a digital twin of the entire earth [8].

For social media, successful prediction enables features to be
chosen that maximize social good and user satisfaction. This kind
of optimization may require robust models of normal human users.
To test the system’s response to extreme circumstances, it is also
useful2 to model aberrant human behaviours, or to test against
increasingly smart malicious bot AI.

1They are mentioned as cyber-digital twins in this interview:
https://siliconangle.com/2020/02/26/qa-accenture-creates-cyber-digital-twins-
simulate-potential-attack-scenarios-rsac/ but we are not aware of any other previous
publications on the topic. We prefer the term ‘cyber–cyber’ over ‘cyber-digital’
because it emphasises the composability that naturally leads to the the many unique
properties of cyber–cyber digital twins, such as the recursive simulation hierarchy
and the twins’ inherent maximal adaptivity.
2https://datadome.co/bot-management-protection/bot-detection-how-to-identify-
bot-traffic-to-your-website/

8.1 Digital twins in healthcare
Digital twin technology for healthcare could fulfil the goals of per-
sonalised medicine by enabling predictive medicine, where disease
can be predicted and stopped before it happens [11].

Data-driven and rule–based mathematical models have been
used in conjunction to determine effective interventions [23, 34, 37,
46, 59]. There are similarities between digital twins from engineer-
ing paradigms and those applied to personalised healthcare. There
are also some marked differences with respect to the engineering
paradigm. For example, patients’ health can be continuously moni-
tored via wearable devices [22]. However, direct intervention on a
patient is clearly more problematic than it would be in the purely
engineering paradigm. Instead, healthcare digital twins tend to aim
at supporting the engineering of a healthy status via recommenda-
tions and early identification of upcoming disease states [10, 11].
Such healthcare–facing digital twins are not fully automated.

8.2 Simulation for Recommender Systems
In 2004, MySpace3 became the first social media site to reach a
million users. Facebook first became available to the general public
in 2006 and now has 2.8 billion4 monthly active users. There are
now wide range of social media sites5, yet none has yet built a full
cyber–cyber digital twin. Nevertheless, many sites now use online
experiments and simulations to improve their services6.

Recommender systems allow social media platforms to select
the pages, news stories, ads, groups and friend suggestions to show
to users [15]. Simulation has been used to design and test recom-
mender systems and to model their social impact [57].

The first recommender systems were based on ‘collaborative fil-
tering’ [16]. Currently, recommender systems use advanced neural
networks and graph algorithms [55] and incorporate a richer rec-
ommendation context. However, the current generation of recom-
mender systems remain relatively ‘myopic’; focusing on individual
recommendations rather than on optimizing for impact over time.
The opportunities for better recommendations are well understood,
though the field remains wide open for improvement [50].

The ‘Reco-gym’ system [45] is a simulation test environment for
reinforcement-learning based recommender systems. The creators
hope that it will stimulate the kind of advancement for recom-
menders that the OpenAI Gym did for general reinforcement learn-
ing. Two other recent examples include a simulator for evaluating
conversational recommender systems [60] and the first-generation
‘RecSim’ platform for testing reinforcement learning based recom-
mender systems [28].

Recommender systems have also been blamed for various kinds
of negative social impact: radicalization, polarization, addiction,
and the prevalence of ‘click-bait’ headlines [40] [53]. Simulation is
being used to understand these phenomena and to create advanced
recommender systems that address the issues. For example, the
recent ‘RecSim NG’ system [41] simulates content providers in
addition to users and studies the impact of their incentives under
different recommender policies.

3https://en.wikipedia.org/wiki/Myspace
4https://en.wikipedia.org/wiki/Facebook
5https://en.wikipedia.org/wiki/List_of_social_networking_services
6https://hbr.org/2017/09/the-surprising-power-of-online-experiments

https://datadome.co/bot-management-protection/bot-detection-how-to-identify-bot-traffic-to-your-website/
https://datadome.co/bot-management-protection/bot-detection-how-to-identify-bot-traffic-to-your-website/
https://en.wikipedia.org/wiki/Myspace
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https://hbr.org/2017/09/the-surprising-power-of-online-experiments
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8.3 Game Simulations and Learned Models
In the case of a cyber–cyber digital twin, we already have the
true model implemented in software, so one may question the
relevance of learning real–world models. However, for many use
cases, the software platform has many restrictions which make
experimentation difficult or impossible and indeed create the need
for a twin: these are mostly related to speed, security (it can be
hard to decouple some aspects of the platform from real users) and
flexibility.

Hence, learning a model of the platform may provide a useful
alternative to writing the software for a high-level model. Impres-
sive progress has been made in learning game models [20] [21] [47].
Whether these methods can scale to the challenge of learning digital
twins remains an open question. When learning a game model, the
agent is in control of its interactions with the environment, and
may try risky actions without bad consequences. This allows it to
quickly learn circumstances in which specific actions are impos-
sible; a luxury we often cannot afford when learning models of
real-world systems.

However, social media platforms have vast inflows of data from
which to train bots, thereby facilitating sample efficiency. Another
very practical approach is to start with a hand-programmed high-
level model and learn the parameters of the model by probing
the system. This has the advantage of being well understood, and
still open to direct counterfactual experimentation and relatively
efficient adversarial learning (e.g. to develop platform variants that
limit bad actors). Hence an engineering approach that mixes hand-
designed and learned components offers great promise, and this is
already a significant line of research7.
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