
Testing Web Enabled Simulation at Scale Using
Metamorphic Testing

John Ahlgren, Maria Eugenia Berezin, Kinga Bojarczuk, Elena Dulskyte, Inna Dvortsova, Johann George,
Natalija Gucevska, Mark Harman, Maria Lomeli, Erik Meijer, Silvia Sapora, and Justin Spahr-Summers

FACEBOOK Inc.

Abstract—We report on Facebook’s deployment of MIA (Meta-
morphic Interaction Automaton). MIA is used to test Facebook’s
Web Enabled Simulation, built on a web infrastructure of
hundreds of millions of lines of code. MIA tackles the twin
problems of test flakiness and the unknowable oracle problem.
It uses metamorphic testing to automate continuous integration
and regression test execution. MIA also plays the role of a test
bot, automatically commenting on all relevant changes submitted
for code review. It currently uses a suite of over 40 metamorphic
test cases. Even at this extreme scale, a non–trivial metamorphic
test suite subset yields outcomes within 20 minutes (sufficient for
continuous integration and review processes). Furthermore, our
offline mode simulation reduces test flakiness from approximately
50% (of all online tests) to 0% (offline). Metamorphic testing has
been widely-studied for 22 years. This paper is the first reported
deployment into an industrial continuous integration system.

Index Terms—Metamorphic Testing, Oracle Problem, Scala-
bility, Testing, Test Flakiness, Web-Enabled Simulation.

I. INTRODUCTION

We describe Facebook’s metamorphic testing system MIA,
which is used to test WW, Facebook’s simulation of its own
platforms [1]. WW incorporates hundreds of millions of lines
of code, simulating user interactions with bots trained by
machine learning. WW is a multi agent simulation in which
each agent is essentially a bot, isolated from production users,
that simulates classes of user behaviour.

Not only is WW a simulation at scale, it is potentially
highly non-deterministic. This forces us to tackle the issue
of test flakiness [2], [3]. Furthermore, WW is a simulation
of unanticipated human behaviours, thereby making the test
oracle problem particularly pernicious; not only is the oracle
unknown, it is inherently unknowable, making it the epitome
of the most challenging of test oracle problems [4].

Simulation correctness is of profound importance, due to
the far-reaching impact of simulation-based predictions. Such
simulation–based predictions lie at the very heart of many
of the critical decisions humanity must make; decisions that
fundamentally impact all species on the planet. For example,
simulation applications include economics [5], climate change
and weather prediction [6], traffic safety [7], and the spread of
diseases, where simulation determined governmental responses
to the COVID-19 pandemic [8].

Mark Harman is part supported by European Research Council Advanced
Fellowship grant number 741278.

Since the decisions made from the results of these sim-
ulations are so fundamental, their predictions and the code
on which they are based acquire paramount importance. The
consequences of (perhaps subtle, yet pivotal) bugs are clearly
among the most impactful facing any software engineer. In
order to improve testing of simulation-based systems, more
work is needed to address the problems of test flakiness and
the oracle problem.

Based on metamorphic testing, we have been deploying an
automated test infrastructure for our web-enabled simulation,
WW, at Facebook, that tackles these twin problems of oracles
and flakiness. In this paper we report on the development
and deployment of our metamorphic testing system, MIA:
Metamorphic Interaction Automaton. MIA is a system for
end–to–end automated metamorphic testing, at scale. MIA
was first deployed in 2020 as part of Facebook’s continuous
integration system. Developers working on WW primarily see
its results in the form of an automated bot commenting on
relevant code changes in code review at diff time (at Facebook
a code change request is called a ‘diff’).
Tackling the Oracle Problem: The oracle problem is a well-
known problem in software testing: we typically do not have
an ‘oracle’ that determines the expected output for a given
input [9]. Metamorphic testing [10], [11] is one widely-studied
way to ameliorate the difficulties posed by the oracle problem.
A metamorphic test relates two or more input and output pairs,
thereby requiring only a partial specification [12], sufficient
to capture the metamorphic relation. Metamorphic relations
imbue testing with some degree of specification, when a full
specification is unknown (or even, as in our case, unknowable).

There has been previous work on the application of meta-
morphic testing techniques to real-world software systems.
For example, Zhou et al. [13] used metamorphic testing to
test search engines such as Google and Yahoo, while Kuo et
al. [14] reported on a case study application to an embedded
system. Donaldson [15] reported that Google is also using
metamorphic testing to uncover bugs in third graphics systems.
However, although metamorphic testing has been a research
topic of much interest [11] for over two decades [16], there
have been few other previous industrial deployments reported
in the literature and none that have been deployed into
a continuous integration system. MIA is therefore the first
deployment of Metamorphic Testing into a full–scale industrial
continuous integration system.

Tackling the Test Flakiness Problem: MIA also performs
regression testing [17] for the WW system. We show that
regression testing can be formulated as a special case of meta-
morphic testing. The task of regression testing a simulation
system is challenging because of the test flakiness problem [2],
[3]. Test cases tend to be highly flaky [1], due to the simulation
resting on an infrastructure that contains, in abundance, all the
previously identified technical features known to cause test
flakiness [3], [18]–[20].

We developed an iterative capture–replay [17], and an of-
fline mode to tackle flakiness. We then formulate the problem
of regression testing as the testing of a metamorphic relation
between different versions of the system using either capture–
replay and/or offline mode. Iterative capture–replay avoids the
test flakiness problem by continually updating the metamor-
phic relation to capture the previous version’s outcomes and
test against the next version. Offline mode helps us to tackle
both the scalability and test flakiness problems.

In testing terms, capture–replay is an ‘on-demand’ de-
flakiness approach that can, in theory, tackle flakiness in any
simulation, as it executes. By contrast, offline mode is an
anticipatory de-flakiness approach, that determines, prior to
simulation, the computation needed to be pre-computed to
avoid flakiness.

The primary contributions of this paper as follows:
1) The first industrial application of metamorphic testing.
2) A new approach to testing simulation-based systems us-

ing metamorphic testing, introducing novel metamorphic
relations for simulation testing.

3) Experience on running metamorphic testing and regres-
sion testing on a large scale system (hundreds of millions
of lines of code), with open problems and research
challenges identified based on this experience.

II. WEB ENABLED SIMULATION

A Web Enabled Simulation (WES) is a simulator of the
behaviour of a community of users on a software platform. By
contrast with more traditional simulation systems [21], [22], a
WES can use a (typically web-enabled) software platform to
simulate real-user interactions, thereby allowing it to simulate
users’ behaviour on the real platform infrastructure, isolated
from production users [1]. A WES system is thus a multi
agent system in which each agent is essentially a bot that
simulates user behaviour. At Facebook we have built a WES
called WW [1] that simulates the Facebook WWW backend
by wrapping the entire real WWW platform infrastructure to
create a WES for social interaction simulation.

A. Mechanism Design

Partly inspired by economic game theory [23] and our
previous work on automated repair [24], we are building a
transformation ‘layer’ we call ‘Automated Mechanism Design’
[1]. Mechanism design is a form of genetic improvement.
Genetic improvement consists of automatically searching for
code modifications that improve functional and non-functional
behaviour of the system, guided by testing [25].

Mechanism design offers a scalable ‘light touch’ approach
to genetic improvement, in which the mechanism through
which bots interact with the underlying platform is trans-
formed. These transformations simulate proposed software
improvements, without the need to rebuild the entire backend
system. Automation can be provided Search Based Software
Engineering (SBSE) [26], [27]. Our approach to automated
mechanism design was motivated by the need for scalability:
given the scale of the backend systems and Facebook platform,
build times can take several minutes [28], [29]. This build
time issue would be a barrier to scalability were we to seek
to perform genetic improvement directly on the code itself.

Fortunately, automated mechanism design circumvents the
need to change the code directly, by building a mechanism
layer between the bots and the underlying infrastructure.
The mechanism can be tuned and reconfigured to simulate
arbitrary possible changes to the code. We believe that this
mechanism design approach may also benefit the many other
applications of genetic improvement [25], where build times
pose a challenge to scalability.

B. Bot Traversals of the Social Graph

A key component to WW is that bots traverse the social
graph in order to simulate real users’ journeys in their sessions
with Facebook products. We use a combination of machine
learning techniques, including imitation learning and rule-
based descriptions of previously-witnessed behaviours in order
to capture realistic traversals.

Due to page limit constraints, a detailed overview of the
bot training process is omitted herein. It is sufficient to
know that multiple bots traverse the WW platform simulating
harmful and non-harmful behaviours. The focus of this paper
is on testing the overall infrastructure and the mechanisms
that constrain the way in which bots can interact with the
platform. The testing approach is independent of the bot
training method. Therefore, our metamorphic testing approach
and regression testing techniques generalise to simulations that
involve any kind of bot training, and any kind of constraints
that restrict the way the bots can interact with an underlying
platform.

C. Bot Personas

WW imbues a bot with a persona that captures a particular
sub–population of the overall user population, based on coarse-
grained statistical demographic information. For example, age
range and geography are both captured by personas. For bots
that simulate harmful behaviours, a predilection towards the
particular kind of behaviour is also part of the persona. For
each specific persona, we sample from the set of all possible
bots that share this persona to produce a population of bots,
each of which implements an instance of the persona. In
this way, we can perform simulations on classes of users
that exhibit particular kinds of behaviour, using the associated
persona, although we do not simulate any specific user. In
software testing terms, a persona can be thought of as part of
the initial state of the test case.

The behaviour of different bots with different personas is
expected to exhibit certain characteristics and these can be
captured in metamorphic tests. That is, we cannot determine
exactly how a particular bot will behave, because its behaviour
is inherently unknowable (this is why we need simulation
after all). Nevertheless, we can capture salient properties of
particular personas and the relationships between behaviours
of bots with different categories of persona. These behavioural
differences are relationships on which to base metamorphic
relations, and thereby facilitate metamorphic testing.

III. METAMORPHIC TESTING

For a System Under Test (SUT) p that implements the func-
tion f , a metamorphic relation is a relation over applications
of f that we expect to hold across multiple executions of
p. For simple mathematical functions f , there are a number
of obvious (readily definable) metamorphic relations. For
instance, suppose f(x) = ex, then we know that eae−a = 1
ought to hold, and this thereby defines a metamorphic relation
that ought to be respected by any SUT that implements f [30].

Metamorphic testing is the process of defining and applying
metamorphic relations to generate partial test oracles that
apply between two (or more) executions of a SUT [31]. We
implemented metamorphic testing in terms of the sequence of
test observations with a reliable reset. This is easily defined
using the terminology and notation from the recent survey
on the Test Oracle Problem [32]. In that survey, testing was
couched in terms of ‘stimuli’ and ‘observations’, denoted x
when x is a member of the set of observations (such as outputs)
and x when x is a member of the set of stimuli (such as inputs).

Formally, this means that a metamorphic relation is de-
fined [32] as follows: There is a reliable reset, which is a
stimulus, R, that allows us to interpose a reset between a pre-
vious test case, 〈x1, y1〉, and a subsequent test case, 〈x2, y2〉,
to form a five-element test sequence 〈x1, y1, R, x2, y2〉, for
which we can define a relationship, the “metamorphic testing
relationship”, π, between x1, y1, x2 and y2.

According to the formulation of metamorphic testing in
the current literature π is a 4-ary predicate, relating the first
input-output pair to the second and our metamorphic oracle,
D consists of running a sequence of test executions with input
stimuli, observing the output, and then applying a reliable reset
between the two test cases. The reliable reset simply initialises
the simulation to an initial state, thereby ensuring that both
test executions that participate in the metamorphic relation are
executed in the same initial state. The metamorphic oracle D
is defined as follows:

D〈x1, y1, R, x2, y2〉 if π(x1, y1, x2, y2)

MIA allows relationships between arbitrary numbers
of runs, so we generalise this to a test sequence
〈x1, y1, R, . . . , R, xn, yn〉 for n ≥ 1, where the metamorphic
oracle, D, is defined as follows:

D〈x1, y1, R, . . . , R, xn, yn〉 if π(x1, y1, . . . , xn, yn)
n ≥ 1

When n = 1 this metamorphic oracle degenerates to the
traditional (end-to-end) testing oracle in which the predicate
π is a predicate on a single input–output pair (a test case). For
this degenerate case, MIA falls back on the implicit oracle [9],
that the test input x1 should not ‘break’ execution; if the test
causes a crash then it is deemed to fail, otherwise it passes,
so π = λx, y.y 6= crash.

For traditional metamorphic testing n = 2. For regression
testing, n = 2, just as for traditional metamorphic testing,
but there are further constraints: y1 is the result of executing
a previous version of the system on x1 (in offline mode),
while y2 is the result of executing the latest version of the
system on x2 (also in offline mode), where x1 = x2 and
π = λx, y.x = y. As this formalisation reveals, for MIA,
regression testing is simply as special (constrained) instance
of traditional metamorphic testing. This connection between
metamorphic testing and regression testing was first observed
(although not exploited further) in the technical report version
[32] of the subsequently peer-reviewed [9] survey on the Test
Oracle Problem. MIA also supports more general metamorphic
testing, where n > 2.

A. Test Order Dependence and Asynchronous IO

Asynchronous IO can help scale testing, particularly where
(as in our case) the overall computation is heavily reliant on
IO. However, we need to tackle the test order dependence
problem [17], [33]. We can only asynchronously execute
those tests that are independent and some are inherently
order dependent. For example, suppose we wish to observe a
particular bot trajectory for a given input, and then select some
arbitrary point in that trajectory and use this as the initial state
for a subsequent follow-up run. MIA automatically detects test
order dependence and runs order dependent tests sequentially,
while order independent tests are run asynchronously, thereby
contributing to the scalability of the overall approach.

B. Statistical Metamorphic Testing

In our work, reported here, we have used a limited form
of statistical metamorphic relation. We have chosen relations
where stochastic simulation properties do not impinge on our
ability to test the metamorphic relation. For example, when-
ever we test a metamorphic relationship between different bot
personas, we choose situations where the statistical effect size
is sufficiently large that it is highly likely to manifest in any
pair of executions.

More subtle stochastic properties may require a more so-
phisticated statistical analysis. For example, many mechanisms
that denote rate limits; limits on the rate at which some partic-
ular actions or observations can be performed. Rate limits tend
to have an overall monotonic effect: the more we tighten the
rate limit, the more the behaviour becomes constrained, with
the result that observable properties tend to rise or fall roughly
monotonically with the increasing rate limit. The problem is
that this monotonicity property is, indeed, a “rough trend”
rather than a guaranteed behaviour.

It is known that such statistical metamorphic relations
pose additional challenges [34], [35]. There are approaches
reported in the literature on statistical metamorphic testing to
handle such cases. For example, Guderlei and Mayer [36]
introduced statistical metamorphic testing, which has been
applied to metamorphic testing to stochastic optimisation
algorithms [37]. Nevertheless, the statistical analyses required
to augment traditional metamorphic testing with the ability
to detect small yet important effect sizes remain to be fully
developed.

IV. THE MIA END TO END METAMORPHIC TESTING
SYSTEM

WW has three simulation modes (online, offline and syn-
thetic), while MIA has two deployment modes (continuous
and per-diff).

A. WW Simulation Modes and Handling Test Flakiness

We uses three simulation modes:
Online Mode: This is the most computationally expensive,
but also arguably the most realistic simulation; it uses the real
infrastructure and graph, although bots traverse this graph in
read only mode [1] and therefore cannot interact.
Offline Mode: This is less computationally expensive because
a near strongly connected component sub–graph is extracted
and pre–loaded (incurring a one–off computational cost).
Synthetic Graph Mode: This mode does not use a real social
graph, but replaces it with a graph generated to share some
salient statistical properties with the real social graph.

For online mode we can also capture–replay traversals. Each
mode has different applications and use cases. In this paper
we are primarily concerned with the way in which the modes
assist testing. In particular, capture–replay and offline modes
tackle test flakiness. That is, most nontrivial web–based sys-
tems are also highly non-deterministic. Non-determinism leads
to test flakiness. Non-determinism is particularly prevalent
in web enabled systems, so WW denotes the archetype of
software testing flakiness challenge.

The problem of test flakiness has been widely reported in
the literature [2], [3], [38]. It is one of the most challenging
problems for production testing and verification systems [2],
[39].

We have found three causes of test flakiness, each of which
is tackled by the MIA as follows:
Real World State Change: WES systems model the real
world, which is subject to constant state change. These
changes are reflected in WES system state. As it has previously
been observed [40], real world state change means that the
test coverage can be affected by almost anything, including
the prevailing weather conditions. In the case of WW, the
Facebook social graph continually changes, as over 2 billion
users interact with it, updating state as they do so. Fortunately,
we can use offline execution to control for any consequent
flakiness. Offline mode uses a pre–computed subgraph; a
snapshot of the real world at a point in time and therefore
it is immune to state changes.

Inherent Infrastructure Non-Determinism: The backend
Facebook system optimisation involves all of the software
engineering features known to engender test flakiness, such
as asynchronous IO, context sensitive optimisation, and order
dependencies [3]. However, using the capture–replay approach
(online) and/or offline mode, we not only control flakiness due
to changes in the real world state (e.g. users’ updates to the
social graph), but also the inherent non-determinism of the
infrastructure that supports social media interactions.
Simulation Sampling: Differences in bot behaviour are also
possible due to different bot personas. We therefore require
that the bot persona is determined entirely by the simulation
run’s pseudo random number generation seed. Essentially,
the seed denotes an element of a sample of all possible bot
behaviours simulated in WW. With iterative capture–replay
and offline mode, it is ensured that all the variance in bot
behaviours is due to the bot’s persona, which is, in turn,
defined solely by the choice of random seed. This approach
facilitates simple statistical random sampling.

B. MIA Deployment Modes

MIA is deployed in two modes, as described in this section.
Continuous Mode: Figure 1 shows an example of dashboard
monitoring of the continuous deployment of metamorphic and
regression testing. The dashboard also incorporates automated
alerts, which fire when any of the existing test cases break
in production, which alerts the team member who is ‘on-call’
for the week. This feeds into a standard Facebook DevOps
process, part of which requires that each team member takes
a one-week duty as the on-call member of the team for the
week.

We also use a ‘Chaos Monkey‘ style approach [41] to
simulate infrastructural failures, in order to test MIA’s re-
silience to unexpected and expected infrastructural failures.
Expected infrastructure failure can occur, for example, because
of test timeouts, particularly with online mode, where it is
challenging to predict test execution time. During periods of
high demand on the overall elastic computing infrastructure,
there can also be test failures due to lack of availability of
virtual machines on which to perform the tests. In such cases,
MIA uses standard engineering techniques such as retries and
ultimately marks the test as broken so that this signal is
not confused with failure. The Chaos Monkey approach also
allows us to test this infrastructural resilience itself.

As can be seen from Figure 1 there is a cyclic system
demand pattern, with reduced activity at weekends, which is a
phenomenon observable throughout the company and reflects
a commitment to work-life balance [42]. The company culture
requires engineers to be accountable for breakages, hence the
on-call process. However, balanced against this, is a strong
commitment to work life balance, and therefore it is not
expected that engineers will typically be working at weekends,
nor after hours. Where possible, the company strives to deploy
Software Engineering processes that avoid unplanned overtime
and the associated harmful effects (on morale and productivity)
this can engender in the engineering culture [43].

Fig. 1. Continuous test monitoring; part of the MIA Dashboard. This dashboard shows the executions of tests in September 2020. The upper two lines
show successful runs for regression and metamorphic tests, while the (generally) lower two lines show the tests that failed to execute. The periods of minimal
activity correspond to weekends.

Fig. 2. Example of submit-time comments by the MIA bot in the Continuous
Integration System. MD stands for ‘Mechanism Design’. These are faithful
screenshots of the signal given to engineers by the MIA bot, that have been
amended only to occlude confidential proprietary information.

Per–Diff Mode: Figure 2 shows an example of the comments
that MIA makes on all relevant diffs submitted to the code
review system at Facebook. Each time a developer submits a
diff for code review into the continuous integration system, the
MIA system is automatically invoked to execute the changed
code, and produces a test outcome signal to the developer (and
human reviewer) in the form of regression tests and diff time
metamorphic tests.

There is a standard “signal box” that can be incorporated
in the continuous integration system to give such feedback.
Using the signal box, the MIA system comments appear as part
of the review process. Effectively, MIA acts as an automated
bot commenting on diffs with test signal. The regression test
signal appears in one signal box, while the metamorphic test
outcomes appear in another box. As can be seen from Figure 2,
the initial signal is a summary, but more information could
be found by following up test logs. The entire integration
with continuous deployment uses a simple web interface to
allow developers to navigate to get outcomes and test signals
provided.

V. THE METAMORPHIC TEST SUITE

There are techniques in the literature for automated discov-
ery of mathematical [31], [44], [45] and combinatorial [34],
[35], [37], [46] metamorphic relations. However, the current
state of the art is only, at best, partially automated. In the
research literature, and in practice, since no metamorphic
testing system has hitherto been deployed in industry, we
use a manual definition of metamorphic relations for this first
industrial deployment of metamorphic testing at scale.

For simulation systems, the interplay between different
modes of simulation, and the interplay between these sim-
ulation modes and the application of mechanisms (through
mechanism design) has led to a rich space of natural meta-
morphic relations. Space does not permit us to present the
full test suite in detail. At the time of writing we have over
40 metamorphic tests, and the number is currently growing at
a rate of between two and three per week.

Table I provides a top-level description of a key subset of
MIA’s current metamorphic test suite. This subset serves as
an illustration of the rich diversity of possibilities, and also a
basis for empirical results on flakiness. Section V-A, below,
provides detailed descriptions of each. We continue to develop
metamorphic tests and also end-to-end tests, which also use
MIA, thereby practically exploiting the theoretical observation
(from Section III) that an end-to-end test is merely a special
case of metamorphic test where N = 1.

A. Illustrative Examples of Metamorphic Tests

Basic Replicability Online: Some of our metamorphic testing
scenarios rely on replicability (non–flakiness). Therefore, we
have a metamorphic relation to check this basic replicability.
That is, we make two executions to create two traversals, each
starting from the same starting point in the social graph and
check that they do, indeed, return identical results. This is
a simple metamorphic relation, since it is simply testing the
identity relation.
Basic Replicability Offline: Offline mode traversals should be
inherently replicable, since they are immune to social graph
state changes between runs. We test this by starting two runs
at identical initial states (randomly chosen starting states in
the offline graph) and testing for traversal equality.
Feature Hiding: One of the ways in which harmful behaviours
can be tackled is by hiding selected features from users who
are engaging in harmful behaviour. There is a monotonic
property that the more features are hidden, the less we would
expect it to be possible to engage in harmful behaviour, and
this is tested by feature hiding metamorphic tests.

Test Name Metamorphic Principle tested
Basic replicability online Replay should replicate a previously captured online run
Basic replicability offline Offline mode should replicate all traversals
Feature hiding Hiding features should tend to reduce harmful behaviour
Minimal mechanism equivalence With a minimal mechanism (1 friend viewable only), bad actor bots are indistinguishable from random bots
Demographic homophilia Bots will have a tendency to favour similar demographics in their graph traversal
Rate limit transitivity Traversals respect rate limit transitivity. A detailed description is provided in Section V-A.
Personification Bots with given personas exhibit lower variance than random bots
Randomisation Random bot behaviour should be independent of whether they simulate bad actors or not

TABLE I
A KEY SUBSET OF THE FACEBOOK METAMORPHIC TEST SUITE

Fig. 3. The Essence of the Minimal Mechanism Metamorphic Relation.
Capture replay essentially computes sufficient transient state information to
render the two online mode executions equivalent to offline mode executions.

Minimal Mechanism Equivalence: Interaction faults are
known to be subtle and hard to detect due to the number
of interactions required [47], [48]. Fortunately, metamorphic
relations can express equalities and inequalities between runs
with different feature settings, thereby capturing that part of
the oracle that relates the different desired/undesired feature
interactions. In our case, with Web Enabled Simulation and
Mechanism Design, there are many different mechanisms that
rate limit the bots’ behaviour. There are expected differential
behaviours for bots subject to these limits. We capture these
in metamorphic relations. For example, when we minimise the
mechanism, by maximising the rate limit that applies to bot
behaviour, this constrains the behaviour sufficiently strongly
to create metamorphic identities.

One such identity applies when the maximum number
of friends observable is mechanism–constrained to 1. The
bots’ behaviour is thus so–constrained that they should make
the same choices, irrespective of the machine learner used
to train them. Therefore, we start traversals from the same
starting state with a minimal mechanism, and check that bots
with different personas and machine learning decision-makers,
produce identical trajectories because they are thereby con-
strained to follow the same traversal. The Minimal Mechanism
metamorphic relation is depicted in Figure 3.
Demographic Homophilia: Since before the founding of
Facebook it has been known that social networks exhibit
homophily [49]: individuals are more likely to associate with
other similar individuals. The Facebook social graph exhibits
this property [50]. Therefore, when WW bots are behaving cor-
rectly and realistically, they should also exhibit this property; a
bot with a given persona should be more likely to visit others
with similar personas. This suggests a natural metamorphic
test. We create two bots with different personas, and compare
their traversals, measuring the difference in personas visited,
to check that they exhibit homophily.

Fig. 4. The Essence of the Demographic Homophilia Metamorphic Relation.
Note that this test does not require offline more nor capture replay and that
it relies on an expected outcome; one that may not always hold in every case
(but is expected to hold in most).

Such a metamorphic test would be useful in any system that
associates users. The Demographic Homophilia metamorphic
relation is depicted in Figure 4. In this case, the test focuses
on the homophilic nature of the age demographic.
Rate Limit Transitivity: Mechanism rate limits also have
interesting transitive effects on decision-making. For example,
suppose we start a traversal from a state T , with a rate limit
R1. Then, we start two other traversals from the state T with
rate limits R2 and R3, such that R2 is more permissive than
R1 (e.g. a superset of friends are visible through R2 compared
to R1) and such that R3 is more permissive still than R2.

The trajectory induced by execution with the intermediately
permissive rate limit (R2) must start with the common prefix
of the trajectories induced by the least and most permissive
rate limits, R3 and R1 respectively. This is satisfied (trivially)
if there is no common prefix between the least and most
permissive rate limits. However, should there exist any non-
empty common prefix, p, between trajectories resulting from
the least and most permissive rate limits, then the trajectory
induced by the intermediately permissive rate limit must start
with p.

Provided that execution is not stochastic for such rate limits,
this transitive property applies to rate limits that have this
‘subset’ effect on permissiveness; the tighter the rate limit,
the smaller the subset of possibilities they offer to the bot
to choose from. Fortunately, although overall simulations are
generally stochastic, their stochastic behaviours are typically
controlled by a random seed, so that execution for a given seed
is deterministic. Indeed, this is one of the desirable properties
needed support scientific replication of simulation results (see,
for example, recent verification reports for the replicability of
nation–critical simulation results on COVID-19 [51]).

Fig. 5. The Essence of the Rate Limit Transitivity Metamorphic Relation.

This test is useful at bug revelation because it connects
several different rate limits and the decision making of the
bots (which can be arbitrarily complex) in a simple transitive
relation. Many of our rate limits are parameterised by a
value that produces precisely this subset effect. This kind of
metamorphic test principle is therefore very useful. Further-
more, it seems likely that many other forms of simulation
system would have properties that would tend to constrain the
simulation. Where these are similarly parameterised, this same
metamorphic relation principle will apply.

The Rate Limit Transitivity metamorphic relation is de-
picted in Figure 5.
Personification: Bots with given personas must respect the
general statistical properties of real users who share persona
similarities. We never model any individual user, only coarse-
grained statistical properties at the persona level. Nevertheless,
we can still use metamorphic testing to capture one salient
property of a persona: it should, in some high-level sense,
constrain the bots’ behaviour. Specifically, when we compare
traversals made by a bot with a persona to those made by a
bot without a persona, the variance in types of persona (e.g
their age demographics) visited should be lower for the with–
persona bot.
Randomisation: Although conceptually simple, effective ran-
domisation is at the very heart of any simulation system. We
have several metamorphic tests that check for properties of
random and pseudo random behaviour to ensure that randomi-
sation is less vulnerable to subtle bugs that might influence the
outcome of simulations. For example, bots behaving entirely
randomly should be independent of the personas.

VI. QUANTITATIVE EXPERIENCE ON EXECUTION TIME
AND TEST FLAKINESS

This section contains quantitative results on test execution
times and test flakiness, providing evidence for the scalability
of our approach and the way in which offline mode tackles
flakiness.

A. Test Suite Execution Time

Figure 6 shows the execution time required by the regression
and metamorphic test suites run at diff time. As can be seen
the peak execution time over the month of September 2020
did not rise above 20 minutes.

This is acceptable for a periodic execution that runs every
6 hours in continuous deployment. It is also acceptable for
diff time testing, because it is unlikely that a human reviewer
will comment in under one hour [20]. Key to this scalable
deployment was the use of offline mode (which executes an
order of magnitude faster than online mode) and the use of
asynchronous IO to concurrently execute test cases where there
is no test order dependence.

B. Flakiness

Table II presents results for test flakiness. Each row of the
table corresponds to a deployment of a metamorphic test, in
either online or offline mode, and identifies the bot personas
tested. Each test is executed three times sequentially. The
outcome is deemed to be flaky if the test outcome differs on
any of the three executions. In order to collect this data, the
test suite was executed every hour over a period of three days
and nine hours. The rows are ordered by decreasing flakiness.

The most obvious finding from Table II is that all of the
tests that exhibit any non-zero flakiness do so when executed
in online mode. By contrast, offline mode is far less flaky
exhibiting, in this experiment, zero flakiness. Interestingly, the
persona variance test is not flaky in either online or offline
mode, highlighting the fact that persona variance is a statistical
property. However, the test has revealed an important (and
unexpected) difference between online and offline mode1

This difference highlights another value of metamorphic
testing. Offline mode is an order of magnitude faster and
reduces flakiness considerably, as these results show. Never-
theless, it remains challenging to capture all of the offline
information and pre-compute it ahead of time in order to
guarantee to replicate all of the statistical properties witnessed
in online mode.

There is also, of course, no guarantee that Offline mode
captures all of the bugs that can occur in online mode; it’s
more likely that it captures a subset. We therefore need to
remain constantly vigilant for differences in online and offline
mode, with online mode playing the role of ultimate ‘litmus
test‘, whereupon, flakiness reappears as an issue with which
we have to contend.

Furthermore, it is interesting to observe that some tests can
exhibit zero flakiness while being executed online. Consider
the demographic homophilia test, which checks the behaviour
of bots with different age demographics. This metamorphic
test concerns a statistical property of the overall behaviour
of the bot, related to the demographics. As such, the test
is not strongly affected by state changes in the real world
graph, since these state changes also respect this demographic
property. This is an interesting finding, because it points to
the possibility of also using statistical properties to overcome
flakiness (even in the inherently non–deterministic online
execution mode).

1This unexpected difference is under investigation at the time of writing.

Fig. 6. Execution times for the test suites. The horizontal axis shows the date on which the sample of test suite execution times was taken. The vertical axes
show the elapsed (wall clock) time in minutes from initiating the test to receiving the test suite outcomes as a signal, per test suite. The upper sub-figure is
for regression test performance, while the lower sub-figure is for metamorphic test performance. Within each sub-figure, the upper line shows the maximum
execution time observed in the associated time period, while the lower line shows the average execution time for that period.

Test name Participating personas Execution Mode #Runs #Flaky #Pass #Fail #Broken
(online/offline)

Somewhat flaky tests
Replicability harmful behaviour online 81 21 1 59 0

Transitivity arbitrary persona online 81 10 66 3 2
Feature hiding arbitrary persona online 81 4 77 0 0

Minimal mechanism equivalence (harmful behaviour, random behaviour) online 81 1 79 0 1
Non flaky tests

Replicability non-harmful behaviour offline 93 0 92 0 1
Replicability non-harmful behaviour online 81 0 80 0 1
Replicability harmful behaviour offline 81 0 81 0 0

Transitivity arbitrary persona offline 81 0 80 0 1
Minimal mechanism equivalence (partially harmful behaviour, random behaviour) offline 81 0 81 0 0
Minimal mechanism equivalence (harmful behaviour, random behaviour) online 81 0 81 0 0
Minimal mechanism equivalence (harmful behaviour, random behaviour) offline 81 0 81 0 0

Feature hiding arbitrary persona offline 81 0 81 0 0
Persona variance (40-50 year old demographic, random) online 81 0 72 9 0
Persona variance (40-50 year old demographic, random) offline 81 0 0 81 0

Demographic homophilia (20-30 year old demographic, 50-60 year old demographic) online 81 0 81 0 0
Demographic homophilia (20-30 year old demographic, 50-60 year old demographic) offline 81 0 81 0 0

Totals 1,308 36 1,114 152 6
Summary statistics on test flakiness

Flaky runs (runs which both passed and failed on at least one of three sequential executions) 36 (3% of all runs (6% of all online runs))
Online flaky runs (online mode runs which both passed and failed on at least one of three sequential executions) 36 (100% of all flaky runs)
Offline flaky runs (offline mode runs which both passed and failed on at least one of three sequential executions) 0 (0% of all flaky runs)
Flaky tests (test cases that exhibited at least one flaky triple of runs in the 3 day period studied) 4 (25% of all tests)
Online flaky tests (online test cases that exhibited at least one flaky triple of runs in the 3 day period studied) 4 (50% of all online tests)
Offline flaky tests (offline test cases that exhibited at least one flaky triple of runs in the 3 day period studied) 0 (0% of all offline tests)

TABLE II
RESULTS ON ONLINE AND OFFLINE METAMORPHIC TEST FLAKINESS

VII. SUBTLE SIMULATION ERROR BUGS CAUGHT

For reasons of confidentiality (and to avoid revealing po-
tential counter–measures to potential harmful behaviours) we
cannot give specific details of bugs found here. Instead, in this
section, we give some examples of two kinds of bugs found
to provide a simple flavour of our experience of MIA’s bug
revelation at Facebook.
Feature Interaction Bugs: We found that metamorphic testing
is well–placed to reveal feature interaction bugs, because of
the way it relates different features. For instance MIA, when
we combine the capture–replay feature and the random bot
decision making feature, a question arises:

Should the behaviour of the bot be random, or should
the previous random number choices be captured and
then re-played?

Random decision-making is guided by a pseudo random
number generator, and it is important that the next random
number in the sequence is determined solely by the seed,
which in turn, determines the specific sample from the popu-
lation of all possible behaviours.

In this way, the seed can be used to sample from all possible
bot behaviours. For this reason, when both random decision-
making and capture–replay are enabled, there is an interest-
ing feature interaction: random decision-making should take
priority over capture–replay. Metamorphic testing revealed an
interaction fault, in which the code incorrectly gave precedence
to capture–replay over random decision-making. Other testing
approaches may be less likely to distinguish such a subtle, yet
important, difference.

Corner Case Bug Revelation: Metamorphic tests often in-
volve corner cases or special behaviours, so a metamorphic test
also plays the role of a pair (or more) of end–to–end tests that
explore such corner cases. We found several subtle bugs were
revealed simply by the execution of each test in the metamor-
phic pair (without needing to make the relational comparison).
One example of this was a persona misconfiguration, in which
the environment used to compute the bots’ initial personas
was incorrectly configured to include the mechanism. In most
cases such a bug could be missed, because most mechanisms
are highly unlikely to impact persona choices.

Nevertheless, the metamorphic tests include those that cover
a particular restrictive mechanism that limits the rate limit
with a ‘minimal mechanism equivalence’ test (see Table I).
This mechanism proved to be sufficiently restrictive such that
the persona misconfiguration was revealed. The reason was
that too few friends were available to form a meaningful bot
persona, leading to a failure being induced and flagged by
MIA.

VIII. OPEN PROBLEMS AND DIRECTIONS FOR FURTHER
IMPACT FROM METAMORPHIC TESTING

Here, we briefly review some of the remaining open prob-
lems for this research agenda on metamorphic testing of
simulations.
Metamorphic Testing for Simulation Oracles: It is clearly
important to define further metamorphic relations, and to
define them for other simulations, so that we can better
understand the commonalities. It would also be useful to
identify techniques for automatically inferring metamorphic
relations.
Probabilistic Metamorphic Testing: Simulations are inher-
ently statistical, and therefore statistical metamorphic testing
techniques [36] ought to prove a good fit. More work is needed
on probabilistic inference techniques for metamorphic testing,
and further development of statistical metamorphic testing.
Theoretical Relationships between Regression and Meta-
morphic Testing: This paper further developed the relation-
ship [32] between regression testing and metamorphic testing.
We deployed regression testing as a special case of meta-
morphic testing, but more work is required on the theoretical
connections between these two apparently different, but clearly
related techniques for testing.
Flakiness: In this paper we showed that offline computation
can be used as a way to tackle flakiness problems. However,
more work is needed to understand the cost–benefit trade
off when pre-computing large amounts of simulation data in
this offline manner. We also know that it remains sensible
to assume that all tests are essentially flaky [2]. Therefore,
further research is required on techniques to adapt statistical
metamorphic testing to handle flakiness as a special case.
Metamorphic Testability: We needed extra event logging in
order to facilitate metamorphic testing. We also augmented
the simulation input space in order to facilitate metamorphic
testing. These features were added to support testability [52].
For example, we allowed the traversal to start at the same
initial point, specifically (and solely) to enable metamorphic
tests, suggesting possible further applications of testability
transformation [53].
Automated Diagnostics and Debugging: More work is re-
quired to automate the process of diagnosis and debugging.
Techniques such as automated debugging [54] and spectrum
based fault localisation [55], [56] could prove useful here, but
may need adaption to handle metamorphic testing scenarios.
Ultimately, we might even hope that some faults could be
automatically fixed [24], [57].

IX. CONCLUSIONS

We presented our experience of the MIA metamorphic
testing system at Facebook. This is the first industrial scale
deployment of metamorphic testing reported in the literature.
MIA supports general metamorphic testing and regression test-
ing as a continuous test process, and also as a bot commenting
on each change submitted in code review. MIA includes a
dashboard that is monitored for Continuous Integration within
a DevOps setting. MIA uses automated reporting and alarms to
developers and diagnostics on test performance. We reported
on our experience of the system and the kinds of faults it has
revealed thus far.

REFERENCES

[1] J. Ahlgren, M. E. Berezin, K. Bojarczuk, E. Dulskyte, I. Dvortsova,
J. George, N. Gucevska, M. Harman, R. Laemmel, E. Meijer, S. Sapora,
and J. Spahr-Summers, “WES: Agent-based user interaction simulation
on real infrastructure,” in GI @ ICSE 2020, S. Yoo, J. Petke, W. Weimer,
and B. R. Bruce, Eds. ACM, 3 Jul. 2020, pp. 276–284, invited Keynote.

[2] M. Harman and P. O’Hearn, “From start-ups to scale-ups: Opportunities
and open problems for static and dynamic program analysis (keynote pa-
per),” in 18th IEEE International Working Conference on Source Code
Analysis and Manipulation (SCAM 2018), Madrid, Spain, September
23rd-24th 2018, pp. 1–23.

[3] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in 22nd International Symposium on Foundations of
Software Engineering (FSE 2014), S.-C. Cheung, A. Orso, and M.-A.
Storey, Eds. Hong Kong, China: ACM, November 16 - 22 2014, pp.
643–653.

[4] E. J. Weyuker, “On testing non-testable programs,” The Computer
Journal, vol. 25, no. 4, pp. 465–470, Nov. 1982.

[5] S. Terzi and S. Cavalieri, “Simulation in the supply chain context: a
survey,” Computers in Industry, vol. 53, no. 1, pp. 3–16, 2004.

[6] G. L. Johnson, C. L. Hanson, S. P. Hardegree, and E. B. Ballard,
“Stochastic weather simulation: Overview and analysis of two com-
monly used models,” Journal of Applied Meteorology, vol. 35, no. 10,
pp. 1878–1896, 1996.

[7] S. Al-Sultan, M. M. Al-Doori, A. H. Al-Bayatti, and H. Zedan, “A
comprehensive survey on vehicular ad hoc network,” Journal of Network
and Computer Applications, vol. 37, pp. 380 – 392, 2014.

[8] D. Adam, “Special report: The simulations driving the world’s response
to COVID-19,” Nature, 2020.

[9] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” IEEE Transactions on
Software Engineering, vol. 41, no. 5, pp. 507–525, May 2015.

[10] T. Y. Chen, J. Feng, and T. H. Tse, “Metamorphic testing of programs
on partial differential equations: A case study,” in 26th Annual Interna-
tional Computer Software and Applications Conference (COMPSAC’02).
IEEE Computer Society, 2002, pp. 327–333.

[11] S. Segura, G. Fraser, A. B. Sánchez, and A. R. Cortés, “A survey
on metamorphic testing,” IEEE Transactions on Software Engineering,
vol. 42, no. 9, pp. 805–824, 2016.

[12] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. H. Tse, and Z. Q.
Zhou, “Metamorphic testing: a review of challenges and opportunities,”
vol. 51, no. 1, pp. 4:1–4:27, January 2018.

[13] Z. Q. Zhou, S. Zhang, M. Hagenbuchner, T. H. Tse, F.-C. Kuo, and T. Y.
Chen, “Automated functional testing of online search services,” Software
Testing, Verification and Reliability, vol. 22, no. 4, pp. 221–243, 2012.

[14] F.-C. Kuo, T. Y. Chen, and W. K. Tam, “Testing embedded software
by metamorphic testing: A wireless metering system case study,” in
IEEE 36th Conference on Local Computer Networks, (LCN 2011), Bonn,
Germany, October 4-7, 2011. IEEE Computer Society, 2011, pp. 291–
294.

[15] A. F. Donaldson, “Metamorphic testing of android graphics drivers,” in
Proceedings of the 4th International Workshop on Metamorphic Testing,
MET@ICSE 2019, Montreal, QC, Canada, May 26, 2019, X. Xie, P.-L.
Poon, and L. L. Pullum, Eds. IEEE / ACM, 2019, p. 1.

[16] T. Chen, S. Cheung, and S. Yiu, “Metamorphic testing: A new approach
for generating next test cases,” Department of Computer Science, Hong
Kong University of Science and Technology, Tech. Rep. HKUST-CS98-
01, 1998.

[17] S. Yoo and M. Harman, “Regression testing minimisation, selection and
prioritisation: A survey,” Journal of Software Testing, Verification and
Reliability, vol. 22, no. 2, pp. 67–120, 2012.

[18] A. M. Memon, Z. Gao, B. N. Nguyen, S. Dhanda, E. Nickell,
R. Siemborski, and J. Micco, “Taming Google-scale continuous testing,”
in 39th International Conference on Software Engineering, Software
Engineering in Practice Track (ICSE-SEIP). Buenos Aires, Argentina:
IEEE, May 20-28 2017, pp. 233–242.

[19] F. Palomba and A. Zaidman, “Does refactoring of test smells induce
fixing flakey tests?” in International conference on software maintenance
and evolution (ICSME 2017). IEEE Computer Society, 2017, pp. 1–12.

[20] N. Alshahwan, X. Gao, M. Harman, Y. Jia, K. Mao, A. Mols, T. Tei, and
I. Zorin, “Deploying search based software engineering with Sapienz
at Facebook (keynote paper),” in 10th International Symposium on
Search Based Software Engineering (SSBSE 2018), Montpellier, France,
September 8th-10th 2018, pp. 3–45, springer LNCS 11036.

[21] J. P. Kleijnen, “Supply chain simulation tools and techniques: a survey,”
International journal of simulation and process modelling, vol. 1, no.
1-2, pp. 82–89, 2005.

[22] F. Michel, J. Ferber, and A. Drogoul, “Multi-agent systems and simula-
tion: A survey from the agent community’s perspective,” in Multi-Agent
Systems. CRC Press, 2018, pp. 17–66.

[23] L. Hurwicz and S. Reiter, Designing Economic Mechanisms. Cambridge
University Press, 2006.

[24] A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia, K. Mao,
A. Mols, and A. Scott, “SapFix: Automated end-to-end repair at scale,”
in International Conference on Software Engineering (ICSE) Software
Engineering in Practice (SEIP) track, Montreal, Canada, 2019.

[25] J. Petke, S. O. Haraldsson, M. Harman, W. B. Langdon, D. R. White, and
J. R. Woodward, “Genetic improvement of software: a comprehensive
survey,” IEEE Transactions on Evolutionary Computation, vol. 22, no. 3,
pp. 415–432, Jun. 2018.

[26] M. Harman, A. Mansouri, and Y. Zhang, “Search based software
engineering: Trends, techniques and applications,” ACM Computing
Surveys, vol. 45, no. 1, pp. 11:1–11:61, November 2012.

[27] M. Harman and B. F. Jones, “Search based software engineering,”
Information and Software Technology, vol. 43, no. 14, pp. 833–839,
Dec. 2001.

[28] J. Bell, G. Kaiser, E. Melski, and M. Dattatreya, “Efficient dependency
detection for safe Java test acceleration,” in Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, 2015, pp.
770–781.

[29] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig, “Trade-
offs in continuous integration: assurance, security, and flexibility,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, 2017, pp. 197–207.

[30] T. Chen, D. Huang, H. Huang, T.-H. Tse, Z. Yang, and Z. Zhou,
“Metamorphic testing and its applications,” in Proceedings of the 8th
International Symposium on Future Software Technology, ser. ISFST
2004, 2004, pp. 310–319.

[31] F. T. Chan, T. Y. Chen, S. C. Cheung, M. F. Lau, and S. M. Yiu, “Appli-
cation of metamorphic testing in numerical analysis,” in Proceedings of
the IASTED International Conference on Software Engineering, 1998,
pp. 191–197.

[32] M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “A comprehensive
survey of trends in oracles for software testing,” Department of Com-
puter Science, University of Sheffield, Tech. Rep. Research Memoranda
CS-13-01, 2013.

[33] L. C. Briand, J. Feng, and Y. Labiche, “Using genetic algorithms and
coupling measures to devise optimal integration test orders,” in Software
Engineering and Knowledge Engineering (SEKE 02), 2002, pp. 43–50.

[34] C. Murphy, K. Shen, and G. Kaiser, “Using JML runtime assertion
checking to automate metamorphic testing in applications without test
oracles,” 2009 International Conference on Software Testing Verification
and Validation, pp. 436–445, 2009.

[35] ——, “Automatic system testing of programs without test oracles,” in
ISSTA. ACM Press, 2009, pp. 189–200.

[36] R. Guderlei and J. Mayer, “Statistical metamorphic testing testing
programs with random output by means of statistical hypothesis tests
and metamorphic testing,” in QSIC, October 2007, pp. 404–409.

[37] S. Yoo, “Metamorphic testing of stochastic optimisation,” in Proceedings
of the 2010 Third International Conference on Software Testing, Veri-
fication, and Validation Workshops, ser. ICSTW ’10. IEEE Computer
Society, 2010, pp. 192–201.

[38] A. M. Memon and M. B. Cohen, “Automated testing of GUI applica-
tions: models, tools, and controlling flakiness,” in 35th International
Conference on Software Engineering (ICSE 2013), D. Notkin, B. H. C.
Cheng, and K. Pohl, Eds. San Francisco, CA, USA: IEEE Computer
Society, May 18-26 2013, pp. 1479–1480.

[39] C. Sadowski, J. van Gogh, C. Jaspan, E. Söderberg, and C. Winter,
“Tricorder: Building a program analysis ecosystem,” in 37th IEEE/ACM
International Conference on Software Engineering, ICSE 2015, Flo-
rence, Italy, May 16-24, 2015, Volume 1, 2015, pp. 598–608.

[40] N. Alshahwan and M. Harman, “Automated web application testing
using search based software engineering,” in 26th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE 2011),
Lawrence, Kansas, USA, 6th - 10th November 2011, pp. 3 – 12.

[41] M. A. Chang, B. Tschaen, T. Benson, and L. Vanbever, “Chaos Monkey:
Increasing SDN reliability through systematic network destruction,”
Computer Communication Review, vol. 45, no. 5, pp. 371–372, 2015.

[42] D. G. Feitelson, E. Frachtenberg, and K. L. Beck, “Development and
deployment at Facebook,” IEEE Internet Computing, vol. 17, no. 4, pp.
8–17, 2013.

[43] F. Ferrucci, M. Harman, J. Ren, and F. Sarro, “Not going to take this
anymore: Multi-objective overtime planning for software engineering
projects,” in 35th ACM/IEEE International Conference on Software
Engineering (ICSE 2013), San Francisco, USA, 2013.

[44] T. Y. Chen, F.-C. Kuo, T. H. Tse, and Z. Q. Zhou, “Metamorphic testing
and beyond,” in Proceedings of the International Workshop on Software
Technology and Engineering Practice (STEP 2003), September 2004,
pp. 94–100.

[45] W. Chan, S. Cheung, and K. R. Leung, A metamorphic testing approach
for online testing of service-oriented software applications. IGI Global,
2009, ch. 7, pp. 2894–2914.

[46] S. Segura, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés, “Auto-
mated metamorphic testing on the analyses of feature models,” Infor-
mation and Software Technology, vol. 53, no. 3, pp. 245 – 258, 2011.

[47] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Computing Surveys, vol. 43, no. 2, pp. 11:1 – 11:29, 2011.

[48] J. Petke, M. B. Cohen, M. Harman, and S. Yoo, “Practical combinatorial
interaction testing: Empirical findings on efficiency and early fault
detection,” IEEE Transactions on Software Engineering, vol. 41, no. 9,
pp. 901–924, 2015.

[49] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a feather:
Homophily in social networks,” Annual Review of Sociology, vol. 27,
no. 1, pp. 415–444, 2001.

[50] L. Backstrom, P. Boldi, M. Rosa, J. Ugander, and S. Vigna, “Four
degrees of separation,” CoRR, vol. abs/1111.4570v3, 2012.

[51] S. J. Eglen, “CODECHECK certificate for paper: Report 9: impact of
non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality
and healthcare demand,” May 2020.

[52] J. M. Voas and K. W. Miller, “Software testability: The new verification,”
IEEE Software, vol. 12, no. 3, pp. 17–28, May 1995.

[53] M. Harman, L. Hu, R. M. Hierons, J. Wegener, H. Sthamer, A. Bare-
sel, and M. Roper, “Testability transformation,” IEEE Transactions on
Software Engineering, vol. 30, no. 1, pp. 3–16, Jan. 2004.

[54] A. Zeller, “Beautiful debugging,” in Beautiful Code, A. Oram and
G. Wilson, Eds. Sebastopol, CA 95472: O’Reilly & Associates, Inc.,
2007, pp. 463–476, chapter 28.

[55] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Trans. Software Eng, vol. 42, no. 8,
pp. 707–740, 2016.

[56] X. Xie, F.-C. Kuo, T. Y. Chen, S. Yoo, and M. Harman, “Provably
optimal and human-competitive results in SBSE for spectrum based fault
localisation,” in 5th International Symposium on Search Based Software
Engineering (SSBSE ’13), vol. 8084. St. Petersburg, Russia: Springer,
24-26 August 2013, pp. 224–238.

[57] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
generic method for automatic software repair,” IEEE Transactions on
Software Engineering, vol. 38, no. 1, pp. 54–72, 2012.

