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Abstract 

The Saarbrücken Voice Database contains speech and 

simultaneous electroglottography recordings of 1002 speakers 

exhibiting a wide range of voice disorders, together with 

recordings of 851 controls. Previous studies have used this 

database to build systems for automated detection of voice 

disorders and for differential diagnosis. These studies have 

varied considerably in the subset of pathologies tested, the 

audio materials analyzed, the cross-validation method used 

and the performance metric reported. This variation has made 

it hard to determine the most promising approaches to the 

problem of detecting voice disorders. In this study we re-

implement three recently published systems that have been 

trained to detect pathology using the SVD and compare their 

performance on the same pathologies with the same audio 

materials using a common cross-validation protocol and 

performance metric. We show that under this approach, there 

is much less difference in performance across systems than in 

their original publication. We also show that voice disorder 

detection on the basis of a short phrase gives similar 

performance to that based on a sequence of vowels of different 

pitch. Our evaluation protocol may be useful for future studies 

on voice disorder detection with the SVD. 

Index Terms: voice disorders, machine learning, health 

applications 

1. Introduction 

Automated systems for the detection and diagnosis of voice 

disorders from audio recordings could be useful for screening, 

for clinical assessment, and for monitoring the progress of 

patients after therapy. There have been many published studies 

that use machine learning approaches for the automated 

detection of voice disorders, but they vary considerably in 

materials and pathologies, such that they are difficult to 

compare and evaluate [3]. In this paper we compare the 

performance of previously published systems for the 

automated detection of voice disorders that have been trained 

and evaluated on the Saarbrücken Voice Database (SVD) [1]. 

Our aim is to explore how well these systems compare when 

evaluated using a common protocol. We first describe the 

contents of SVD, outline ways in which it has been used for 

automated detection of voice disorders and set out the 

objectives of our study.  

1.1. Background to the corpus 

The Saarbrücken Voice Database contains recordings of 1002 

speakers exhibiting a wide range of voice disorders (454 male 

and 548 female), together with recordings of 851 controls (423 

male and 428 female). The age of speakers varies from 6-94 

years (pathological) and 9-84 years (control). There are an 

average of 1.2 recording sessions per speaker (max=24) 

leading to a total of 2225 sessions. Each recording session 

contains recordings of /i/, /a/ and /u/ vowels recorded on 

typical, higher, lower, rising and falling pitch, together with 

the short phrase “Guten Morgen, wie geht es Ihnen?”. Audio 

and electroglottograph (EGG) recordings are available 

sampled at 16-bit precision at 50k samples/sec.  

A wide range of pathologies are represented in the 

database [2]. There are 71 different pathology labels used, but 

263 sessions are assigned more than one label. Some 

pathologies are much better represented than others. Of the 

1093 pathological recordings with a single diagnostic label, 

the most frequent are: Vocal fold paralysis (197), 

Hyperfunctional dysphonia (143) and Laryngitis (82); while 

there are 19 pathologies which only occur once. 

While the SVD is an extremely useful resource, it is not an 

easy database to partition for use in machine learning. The 

imbalance in the frequency of pathologies, the assignment of 

multiple pathologies to speakers, and the presence of multiple 

recordings per speaker could easily bias classification 

performance. For example, of the 62 examples of Spastic 

Dysphonia, 54 come from only three speakers. A system for 

detecting Spastic Dysphonia would do well if all it did was to 

recognize these speakers. Also, any cross-validation process 

that did not take speaker into account could allow the same 

speaker to be present in both training and testing partitions, 

artificially boosting performance. 

1.2. Previous studies 

Table 1 shows results of some selected studies of pathology 

detection on the SVD. The table shows that studies vary not 

only in terms of technique, but also in both the audio materials 

chosen for analysis, and how subsets of pathologies are used 

for classification. A more extensive review of previous studies 

can be found in [3]. 

Studies A, B and C in Table 1 demonstrate that extremely 

high disorder detection accuracy can be obtained from a single 

/a/ vowel when the data comes from a limited set of 

pathologies in the database. Studies B and C are limited to 

only the most significant structural disorders of the larynx. 

Studies D and E both use a convolutional neural network to 

analyze an /a/ vowel, and yet report very different success. 

This may also be due to a different choice of pathologies 

tested. Study F uses much more audio material per speaker 

than other studies, which should provide higher accuracy, and 

yet reports worse performance than studies A-E. 

The database issues raised in section 1.1 may also be 

playing a role in this variation: the studies do not make clear 

how they are dealing with multiple recordings per speaker, or 

multiple diagnoses per recording. Overall, replication studies 

using a common protocol are required to adequately compare 

these studies. 
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1.3. Goals of this study 

The lack of consistency in the use of the recordings in the 

SVD by previous studies makes it impossible to determine the 

most promising approaches for the automated detection of 

voice disorders. In this study we aim to replicate in part three 

studies using a common testing protocol. We look at study F 

in Table 1 [9] since it uses a widely available feature set 

(OpenSMILE) and classifier (Support Vector Machine, SVM). 

We choose study D [7] since it uses a radically different 

approach with a spectrographic input into a convolutional 

neural network (CNN). We choose study E [8] since it uses a 

pretrained CNN with a proven architecture for image 

recognition (RESNET), and which also promises outstanding 

performance. This comparison will not only provide 

information about the relative performance of these methods 

on the same data but will also set out a standardized way of 

working with the multiple recordings and multiple diagnoses 

per speaker found in the SVD. 

As secondary aims, we would like to explore the effect of 

pathology subset on performance, looking at all pathologies 

and a subset of organic pathologies. We will also evaluate the 

SVM method on single vowel, multiple vowels, and the short 

phrase to explore the impact of audio materials on 

performance. 

The following sections will set out the methods used for 

evaluation, present comparable results for the three methods, 

discuss their implications, and suggest avenues for further 

work. 

2. Methods 

2.1. Database selection 

We evaluate two different pathology subsets of the SVD. The 

first comprises all pathological recordings and all control 

recordings, including all repeated sessions. This is up to 869 

control recordings and 1356 pathological recordings, although 

there are a few missing recordings depending on material type. 

Secondly we construct a subset of pathologies that can be 

associated with organic damage or malfunction, in contrast to 

disorders that are psychological in origin. The motivation for 

this is that clinical therapies are distinct for organic vs non-

organic disorders [9]. Organic pathologies include: Laryngitis, 

Leukoplakia, Polyps, Contact ulcer, Reinke’s Oedema, Spastic 

Dysphonia, Paralysis, and Cancer. Non-organic pathologies 

excluded include Functional Dysphonia and Psychogenic 

Dysphonia. We also exclude diagnoses which are vague as to 

cause, for example: Dysphonia, Vox Senilis. Here we only 

include diagnoses with multiple diagnostic labels if both labels 

refer to organic disorders. This leads to a subset with up to 869 

control recordings and 597 pathological recordings. 

2.2. Audio selection and pre-processing 

For these experiments, we have chosen three sets of audio 

materials: the /a/ vowel recording produced on a neutral pitch, 

the recording of all vowels on all pitch levels, and the 

recording of the spoken phrase. The /a/ vowel will be used in 

replicating the CNN & RESNET methods, while all three 

types of material will be used to replicate the SVM method. 

Audio materials were downsampled to 20kHz for the 

SMILE feature extraction used for the SVM and 16kHz for the 

CNN spectrogram. Audio levels were also normalized 

to -20dB RMS re: full-scale. 

2.3. Feature extraction and normalisation 

For the SVM method, the OpenSMILE toolkit [10] was used 

to extract features using the ComParE feature set [11] as used 

in the 2013 Interspeech Computational Paralinguistics 

challenge. This delivers 6373 features computed as summative 

functionals over 126 low level signal features computed every 

10ms. These features were normalized either by computing z-

scores or by brute force Gaussianisation. Gaussianisation was 

performed by the bestNormalize package [12] in ‘R’, which 

maps the rank of each value into a sample from a cumulative 

gaussian pdf. Both types of normalization were performed as 

part of cross-validation, such that only the training data in 

each fold were used to define the normalizing transform. 

For the spectrographic representation used with the CNN 

methods, the signal was pre-emphasised, divided into 50ms 

hamming windowed segments stepped by 4ms, and a 32768-

point FFT was computed. The amplitude spectrum was then 

interpolated onto a log frequency scale between 62.5Hz and 

8000Hz. Next the amplitude was converted to deciBels and 

the first two time derivatives computed. The amplitude 

spectrum was then floored to -50dB from the maximum 

amplitude and z-score normalisation was applied over all 

amplitude values and deltas. Finally the spectrogram was 

packed into a 224x224x3 image format. The red channel 

contained the amplitude, and the green and blue channels 

contained the first and second time derivatives. If the audio 

Table 1 Selected previous studies on voice pathology detection with the SVD 

 Study Pathology Subset Material Features Classifier Test 

Score 

A Hemmerling et al, 

2016 [4] 

Selected mix of pathologies /a/ neutral PCA on acoustic 

features 

Random 

Forest 

99% 

B Al-Nasheri et al, 

2017 [5] 

Cysts, polyps, paralysis /a/ neutral MDVP SVM 99% 

C Muhammad et al 

,2017 [6] 

Cysts, polyps, paralysis /a/ neutral Spectro-temporal 

pattern 

SVM (RBF) 93% 

D Wu & Lowit, 

2018 [7] 

Most common structural 

pathologies only 

/a/ neutral Spectrogram CNN 77% 

E Mohammed et al, 

2020 [8] 

Mix of pathologies /a/ neutral Spectrogram RESNET 94% 

F Barche et al,  

2020 [9] 

Structural, neurogenic, 

non-organic 

/iau/ at low, mid, 

high pitch 

SMILE SVM (Poly) 83% 
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recording contained fewer than 224 frames, then the image 

was padded with silence. If the audio recording was greater 

than 224 frames, then the central 224 frames were selected. 

Analysis parameters were chosen to ensure that a 1s recording 

fitted into 224 pixels. Examples of spectrographic images are 

shown in Figure 1. 

 

 

Figure 1 Spectrographic representation used for CNN 

methods 

2.4. Feature selection 

For the SMILE features, we also tested the value of a simple 

feature selection method. This is based on calculating the F-

ratio for each feature, that is the ratio of variance of the feature 

values across all data to variance within the separate control 

and pathology subsets. Features with the largest F-ratio vary 

most between control and pathology classes, and the best N 

features can be selected for classification. We performed 

feature selection as part of cross-validation, such that for each 

fold features are selected from the training set alone. 

2.5. Classifier construction 

For the Support Vector Machine (SVM) classifier, this was 

implemented in R using the e1071 package [13]. Both radial 

basis function and polynomial kernels were tested, and a 

simple grid-search established to find optimum values for the 

cost parameter and (for the polynomial) the degree and 

constant parameters. The gamma parameter was set to the 

reciprocal of the number of features.  

For the CNN classifier replicated from [7], a six layer 

CNN network was constructed in the Keras toolkit [14]. Input 

to the lower convolutional layers was the spectrographic 

image format described in 2.3. Convolutional kernels were set 

to 8x8, with a stride of 1 in layers 1 and 2, and set to 2 and 4 

in layers 3 and 4. Max pooling with a kernel of 4x4 and a 

stride of 1 was placed between convolutional layers. The 

flattened output of the last convolutional layer was sent to a 

dense layer of 16 units and a single output unit. This is a 

slightly simplified implementation of the CNN used in the 

original study. 

For the CNN classifier replicated from [8], the pre-trained 

implementation of RESNET50 available in the Keras toolkit 

was used. This CNN is designed for image classification and 

contains a large number of convolutional, pass-through and 

pooling layers. The highest layers of the network are removed 

exposing a globally pooled layer of 2048 units. To this are 

added a dense layer of 16 units and a single output unit with a 

sigmoid activation delivering the probability of a pathological 

sample.  

Both CNN networks were trained using binary cross-

entropy and the adam optimizer with a learning weight of 

0.0001. Training is performed for 25 epochs, with 10% of the 

training data held out for validation and a batch size of 32. 

Sample weights were used to compensate for class imbalance. 

The training epoch that delivered the highest area-under-curve 

(AUC) on the validation data was chosen for testing.  

2.6. Cross-validation and performance statistic 

Both SVM and the CNNs were evaluated using five-fold 

cross-validation. Assignment of recordings to the cross-

validation fold was done on the basis of speaker number, to 

ensure that the same speaker did not appear in more than one 

fold. 

Performance is reported as unweighted average recall 

(UAR), which is just the average of the accuracies in correctly 

labelling the control recordings and pathological recordings. 

This would be the accuracy of the system if the test data had 

equal numbers of normal and pathological cases. 

Table 2 Summary of SVM classifier performance. Baseline=All 6373 features, gender independent, z-score normalisation, 

allow multiple recordings per speaker, radial basis function kernel. 

UAR % All Pathologies Organic Pathologies Only  

Condition Vowel IAU Phrase Vowel IAU Phrase Average 

Baseline 67.93 81.93 79.84 73.49 84.58 85.66 78.91 

+Best 1000 features 69.74 80.24 80.54 73.38 83.75 86.68 79.06 

+Gender dependent 68.40 80.11 78.93 76.44 82.93 85.20 78.67 

+Gaussianisation  69.30 81.86 80.71 74.08 85.69 86.73 79.73 

+Polynomial kernel 68.33 82.30 80.38 72.67 84.15 86.18 79.00 

+Single recording 69.05 82.15 80.36 72.85 83.59 84.86 78.81 
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3. Results 

3.1. Replication of SVM experiment 

For evaluation of the SVM method with the SMILE features, a 

number of test variants were compared against a baseline 

configuration. For the baseline, all of the 6373 SMILE 

features were used, with a single model for both genders, 

using z-score normalisation, and a radial basis function kernel, 

using all recordings, including multiple recordings per 

speaker. Variations included the use of the best 1000 features, 

separate models for male and female speakers, 

Gaussianisation normalisation, use of the degree 2 polynomial 

kernel, and single recordings per speaker were evaluated. A 

summary of test scores after cross validation is shown in Table 

2. 

3.2. Replication of CNN experiments 

For evaluation of the two CNN methods, only the vowel 

recordings were used, with the input being the spectrographic 

image as described in 2.3. We explored many variations of 

training data augmentation to reduce over-training. The results 

shown in Table 3 were derived from training with random 

gaussian noise with sd=0.05 added to the input patterns, 

together with random multiplicative scaling between 0.8 and 

1.25. 

Table 3 Summary of CNN classifier performance 

based on single vowel compared to published 

accuracy. 

UAR% 
All 

Pathologies 

Organic 

Pathologies 
Published 

CNN 67.81 69.71 77 

RESNET 

pre-trained 

weights 

69.27 70.87 94 

4. Discussion 

This paper has looked at re-implementing three previous 

systems for detecting disordered voice using materials from 

the SVD. These have been evaluated on common subsets of 

the database, and using the same protocol for cross-validation, 

to try and generate results that can be compared against one 

another. 

For the SMILE+SVM method, results show that 

performance is better on the organic pathology subset 

compared to all pathologies. Also performance using all 

vowels from a speaker are better than when only one vowel 

per speaker is used. Performance from the short phrase alone 

is as good as the performance from all vowels and pitches. 

Overall the results match the results published in [9], with 

about 85% accuracy for an organic pathology subset from all 

vowels. 

We found that feature selection, changing to a gender 

dependent classifier, Gaussian normalisation, or changes to the 

SVM kernel had very little effect on performance. No one 

combination gave the best performance in all test conditions. 

The variant providing the best value was the use of a gender-

dependent system for classification of a single vowel. When 

the method was limited to operating from one recording per 

speaker, performance decreased slightly. It is not possible to 

tell whether this is due to the removal of repeated speakers in 

testing, or because of a reduction in the overall amount of data 

available for training. 

The two CNN methods gave very similar performance 

with each other and with the SVM methods from the single 

vowel on all pathologies. The CNN methods improved in 

performance on the organic pathology subset, but not as much 

as the SVM method. This may be because these methods are 

more severely affected by the reduction in number of training 

samples. The performance of our CNN re-implementation is 

slightly worse than that published in [7]. This may be due to 

differences in the spectrographic format and number of 

network layers and training protocol, as well as differences in 

pathology subset and cross-validation. The performance of our 

RESNET re-implementation is significantly worse than that 

published in [8]. In training the RESNET architecture, we 

found over-training to be a big problem since there are over 

23M parameters in the network and only ~2000 training 

samples. It may be that the authors of [8] had particular ways 

to train their network to avoid this. Visual inspection of the 

spectrographic images used as input to the CNN methods 

(shown in Fig.1) do not show clear differences between 

control and pathological samples. Thus it is not surprising that 

the CNN methods proved difficult to train. 

Taking our results overall, there is agreement that voice 

disorder can be recognized with about 70% accuracy from a 

single vowel if all pathologies are included – independently of 

the classifier algorithm. Using all the recorded vowels or 

using the short phrase, this accuracy rises to about 80% with 

the SVM classifier. If the pathologies are limited to only 

organic pathologies, then accuracy rises by about 5% for the 

SVM classifier, but less than 2% for the CNN classifiers. 

In this work we have set out a particular way of using the 

SVD for training and evaluating automated methods for the 

detection of voice disorders. The fact that three very different 

approaches achieve similar performance once evaluated using 

the same pathologies and cross-validation protocol shows that 

these aspects are essential when comparing different studies. 

We hope that future studies will copy the approach set out 

here. Please contact the first author for details of the organic 

pathology subset. 

There are clearly many opportunities for further work on 

the SVD to establish in more detail which acoustic properties 

of the recordings are most useful in both detecting disorder 

and discriminating between different types of disorder. In 

particular the EGG recordings seem very underexploited, 

although some preliminary analysis is available in [6]. 

Fundamentally, it is yet to be established whether the EGG 

waveforms in the SVD contain information that aids detection 

or diagnosis of disorder that is not present in the audio 

recording. If EGG waveforms do contain additional 

information, then a subsequent question would be whether a 

system which imputed the EGG waveform from the Speech 

signal would also extract that information. There is recent 

work in [15] which goes in this direction. 
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