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Abstract Glaucoma is a group of neurodegenerative diseases and a leading cause of 

irreversible blindness. It significantly affects the quality of life and has a substantial economic 

impact. Regular eye examinations are important for detecting the disease early and preventing 

deterioration of vision and quality of life. Current methods of measuring disease activity are 

powerful in describing the functional and structural changes in glaucomatous eyes. However, 

there is still a need for a novel tool to detect glaucoma earlier and more accurately. Tear fluid 

biomarker analyzing and newer imaging technology are able to provide new surrogate 

endpoints of glaucoma. Artificial intelligence is a post-diagnostic tool can analyse ophthalmic 

test results. This paper presents a review of currently used clinical tests in glaucoma and 

highlights the advanced technologies for glaucoma measurement which can identify specific 

disease characteristics. The mechanism, performance and future perspectives of these devices 

are introduced. With the development in imaging tools, sensor technologies and artificial 

intelligence, diagnostic evaluation of this disease must assess more variables to facilitate earlier 

diagnosis and management decisions in the future. 

Keywords Glaucoma, Routine Tests, Glaucoma Biomarkers, Detection of Apoptosing Retinal 

Cells, Artificial Intelligence  

1. Introduction 

Glaucoma is a leading cause of irreversible blindness worldwide reason group of ocular 

neuropathies related to a progressive degeneration of optic nerve and damage to retinal 

ganglion cells (RGCs)(Davis et al. 2016) (Figure 1). Glaucomatous neurodegeneration results 

in disconnection in the visual signal between the retina and the brain, subsequently leading to 

irreversible blindness. It is estimated that around 111.8 million people will be affected by 

glaucoma by 2040(Tham et al. 2014). Glaucoma often progresses asymptomatically and 

remains undetected until the later stages(Muramatsu et al. 2010). Indeed, as Weinreb et al 



discuss, only 10 - 50% of patients are aware of having glaucoma(Weinreb et al. 2014). 

Moreover, the resultant visual impairment can lead to anxiety and depression contributing to a 

significant psychological burden(Quaranta et al. 2016). 

Aside from the physical and psychological aspects, glaucoma has a substantial economic 

impact. One study estimated that in 2005 primary open angle glaucoma (POAG) cost the 

Australian healthcare system 355 million Australian Dollars with costs expected to rise to 784 

million by 2025(Dirani et al. 2011). However, the true cost could be higher, as patients often 

remain asymptomatic and do not seek treatment until the disease is at an advanced stage(Varma 

et al. 2011). There are few papers suggest the effect is more profound than in the developed 

world(Lazcano-Gomez et al. 2016). This is compounded by the fact that as the disease 

progresses it gets more expensive to manage(Varma et al. 2011) (Traverso et al. 2005). A study 

showed that the direct costs of suspected or early glaucoma (stage 0) were around 623 US 

Dollars per person per year. For stages one to five, the costs increased to 1480, 1765, 1915, 

2464 and 2511 US Dollars per person per year, respectively(Lee et al. 2006). Considering this, 

early detection of glaucoma should be a priority to prevent the progression of disease, safeguard 

a patient’s wellbeing and reduce personal and national expenditure. 

Current methods of identifying glaucoma include intraocular pressure (IOP) measurements, 

visual field (VF) testing, and optical coherence tomography (OCT) with each technique 

examining different features of the disease process (Figure 1)(Phu et al. 2020). It is particularly 

well established that an increase in IOP increases the risk of glaucoma progression. VF testing 

directly reflects the level of functional damage, and the rate of progression of visual field loss 

can be used as a predictor of future disease. OCT can assess the retinal nerve fibre layer(RNFL) 

and the rate of loss of RNFL can be used in predicting progression – 18 months before visual 

field(Harasymowycz et al. 2016; Phu et al. 2020; Yap et al. 2020a) (Wu and Medeiros 2018). 

Despite these methods, there is still a lack of agreement among glaucoma specialists due to 



lack of consistent and quantitative clinical criteria(Phu et al. 2020). Therefore, research is 

ongoing to develop diagnostic tools that are more specific and can detect glaucoma earlier. 

Tear fluid analysis and Detection of Apoptosing Retinal Cells (DARC) are currently in 

development(Cordeiro et al. 2021). Both of these methods rely on different features of the 

disease process to estimate the risk of glaucoma. Besides, Artificial Intelligence (AI) has a 

great potential to help analyse functional and structural parameters of eyes(Devalla et al. 2020) 

. 

 

Figure 1. Schematic illustrations of diagnostic tool of glaucoma. Traditionally, methods of 

identifying glaucoma IOP measurements, VF testing, and OCT. Tear fluid analysis and DARC 



have great potential to detect glaucoma progression with high accuracy. AI provides a novel 

platform to analyse the results of clinical tests.  

This review aims to discuss the clinical measures of activity in glaucoma and their current use 

in research and clinical practice. It summarises the current techniques for the measurement of 

glaucoma disease activity, including IOP testing, VF testing and OCT. Furthermore, several 

promising methods in development are discussed, including tear molecular biomarkers 

analysis, DARC, genetic testing and AI. These techniques help us assess different features of 

the disease process, including molecular change, neurodegeneration, and genetic abnormality 

which may help identify the disease at an early stage and guide treatment. 

2. Current clinical measurements of glaucoma 

At present, a diagnosis of glaucoma is based on several measures of disease activity including 

clinical history, IOP measurement, VF testing  and OCT images(Harasymowycz et al. 2016). 

Measurement of IOP plays an important role in determining the diagnosis(Schuster et al. 2020). 

VF testing is a powerful tool to estimate functional loss of vision. OCT is useful for identifying 

glaucomatous changes in the back of eye and can provide objective measurement of the retinal 

nerve fibre layer (RNFL), optic nerve head (ONH) and macula, which all can indicate the 

severity of glaucoma(Jampel et al. 2009).  

2.1 Intraocular Pressure Test 

IOP is a measurement of the fluid pressure within the eye and is maintained through a balance 

of aqueous humour production and outflow(Acott et al. 2014; Costagliola et al. 2020). Several 

clinical trials demonstrating that even a small increase in IOP can affect the visual 

function(Jayanetti et al. 2020; Nuyen and Mansouri 2015). Considering this, measures the IOP 

precisely plays an important part in managing glaucoma. 

2.1.1 Goldmann Applanation Tonometry  



Goldmann applanation tonometry (GAT) is one of the most widely used devices to measure 

IOP(Chen et al. 2019). The measurement of IOP follows the Imbert-Fick law. The eyeball can 

be regarded as a sphere filled with liquid and surrounded by a wall. The pressure inside 

therefore equal to the counter pressure which flattens the membrane(Castro et al. 2016). Thus, 

the estimation of the IOP follows the equation: 

IOP estimation = F/A.                                      (Eq. 1) 

F represents the force required to flatten a certain area of the cornea and A is the size of the 

flattened area(Nuyen and Mansouri 2015). The GAT is attached to a slit lamp (Figure 2a). 

Patients must be topically anesthetized before the test and a fluorescein dye applied to visualise 

the patients’ tear film. A prism (Figure 2b) attached to a tonometer head is used to produce an 

applanating force to flatten the centre of the cornea with the size of 7.35 mm2 (Kim et al. 2017a) 

(Figure 1c).  



 

Figure 2. Goldmann Applanation Tonometry a. GAT mounted on a slit lamp. Adapted with 

permission from Haag-Streit Diagnostics. Copyright ©HAAG-STREIT AG, 3098 Koeniz, 

Switzerland 4. Edition / 2020 – 02.b. Diagram of GAT. c. Diagram of IOP reading, the 

tonometer head flattens the area of the cornea (size: 7.35 mm2, diameter 3.06 mm). F represent 

the force applied to applanate the cornea. Adapted with permission from (Kim et al. 2017a). 

Copyright © 2017 Kim et al. d. A Perkins handheld tonometer. Adapted with permission from 

Haag-Streit Diagnostics. Copyright ©HAAG-STREIT UK 2020. 

GAT shows great validity, reliability, and reproducibility in clinical practice, therefore it is 

regarded as the gold standard for IOP measurement (Table 1)(Chen et al. 2019). A population-



based study showed that GAT has both low inter and intra-observer variability. In this study, 

40 patients were included in inter-observer variability (the difference between multiple 

measurements taken by different examiners) experiments. The IOP was tested in both left and 

right eye three times by one clinician. After 10 minutes, the test was repeated by another 

clinician. The mean difference between the first measurements was 1.79 mmHg with the 

standard deviation (SD) 2.41 mmHg and the mean difference between the median value of 

three measurements was 1.60 (SD 2.15) mmHg(Dielemans et al. 1994). Researchers also 

explored intra-observer variability (the difference between measurements taken by the same 

examiner) by recruiting 22 patients and measuring the IOP of each eye by the same clinician. 

The mean difference between the first and median measurements was 1.64 (SD 2.07) mmHg 

and 1.50 (SD 1.96) mmHg(Dielemans et al. 1994), respectively. This demonstrates that GAT 

results are reliable when obtained by an appropriately trained clinician.  

Despite its strengths GAT is not without its limitations. Corneal biomechanics such as central 

corneal thickness (CCT) can influence the results obtained with GAT. A raised CCT can result 

in artificially higher IOP measurements with GAT (Gelaw 2012; McCann et al. 2020). A study 

demonstrated that the most correct reading was obtained in an eye with CCT of about 520μm, 

and every 100μm resulted in 7 mmHg error(Sng et al. 2017). Furthermore, corneal 

irregularities, such as a flat cornea, conical corneal shape and corneal surgery significantly 

influence the accuracy of GAT measurement(Ceruti et al. 2009; Nuyen and Mansouri 2015; 

Papastergiou et al. 2008). Other limitations to be considered during the measuring process 

include inaccurate usage of fluorescein dye or topical anaesthetics and application of 

inappropriate pressure directly to the cornea surface. A further limitation of GAT is that it must 

be mounted on a slit lamp, which may not be suitable for children, elderly, or those with 

disabilities(Aziz and Friedman 2018; Nuyen and Mansouri 2015; Stamper 2011). 



Perkins Handheld Tonometer (Figure 2d) is an alternative device used for IOP measurement 

which follows a similar principle to GAT(ElMallah and Asrani 2008). It does not require a slit 

lamp, making it more suitable for patients unable to sit upright. PHT has similar advantages 

and disadvantages to GAT(ElMallah and Asrani 2008). A study comparing Perkins Handheld 

Tonometer and GAT by obtaining IOP measurement from 100 eyes found that the difference 

between reading from these two methods was only 0.22 (SD 0.44) mmHg (P < 0.001)(Table 

1). The Perkins Handheld Tonometer yielded similar readings to GAT demonstrating that it 

can be useful in clinical practice especially in patients unable to sit at the slit lamp(Arora et al. 

2014). 

2.1.2 Non-Contact Tonometry  

Non-contact Tonometry is an applanation tonometry and follow the similar principle as GAT 

to measure IOP. It use a pulse of air to applanate the cornea rather than the prism(Chen et al. 

2019), which significantly reduced the risk of infection(Nuyen and Mansouri 2015). A low 

intensity beam is generated by the light emitter and reflected by the cornea into the detector at 

the opposite side(Figure 3a). A pulse of air is blown onto the cornea at increasing pressures 

until the system detects that the cornea is flattened. The pressure of air required to applanate 

the cornea is used as an analogue of IOP (Jedzierowska and Koprowski 2019). The Ocular 

Response Analyser (ORA) and the Corvis ST are modern examples of the non-contact 

tonometry (Esporcatte et al. 2020). 

ORA can provide a Goldmann-like IOP and a Corneal-Compensated IOP (IOPcc) by using an 

algorithm to correct for errors introduced by structural factors such as corneal thickness 

(Kilavuzoglu et al. 2019). A study compared the IOPcc assessed by ORA with the IOP reading 

of GAT in 94 healthy subjects. The mean value of mean IOPcc was 15.6 ± 3.3 mmHg and Mean 

GAT-IOP was 12.9 ± 2.4 mmHg indicating that IOPcc overestimated GAT-IOP (p < 

0.001)(Table 1)(Ramm et al. 2019). However, it is thought that this difference is caused by the 



biomechanical correction and that overall GAT-IOP and IOPcc measurements remain 

consistent with each other(Ramm et al. 2019). In addition to measuring IOP, ORA can also 

provide a special parameter known as Corneal Hysteresis (CH) (Okafor and Brandt 2015). 

During the measuring process, the force of the air pulse continues to increase despite the cornea 

being flattened until a slight indentation is formed. The force then decreases, and the cornea 

flattens again. This results in two IOP values and the difference is referred to as CH (Figure 

3b)(Fujishiro et al. 2020). Evidence shows that the CH is lower in POAG compared with 

controls (Sayah et al. 2020). However, ORA is a non-portable device, and so may not be 

suitable for some patients.  

Corvis ST can not only provide the IOP reading but can also record the cornea reaction during 

the measurement. An ultra-high-speed Scheimpflug camera replaces the light system and 

allows a detailed analysis of corneal movement and calculation of the IOP(Wang et al. 2021). 

The Corvis ST is able to reduce the biomechanical effect on the IOP measurement by specific 

algorithm and provids biomechanically corrected IOP (bIOP)(Vinciguerra et al. 2020).  Eliasy 

et al used a fixed pressure transducer to detect the “true” IOP of 5 cadaver eyes in an ex-vivo 

environment and found the bIOP was very close to the true IOP(Eliasy et al. 2018). Another 

in-vivo study compared the bIOP with GAT-IOP amongst patients with glaucoma and healthy 

individuals. In all groups, bIOP was significantly lower than GAT-IOP(Vinciguerra et al. 

2020). Sedaghat et al found that the bIOP had a less association with corneal thickness 

(Sedaghat et al. 2019), which permits greater accuracy in measuring IOP. 



 

Figure 3. Principle of Non-Contact Tonometry (NCT). a. The air pulse is used to flatten the 

cornea. A light emitter and a photodetector are located at different sides of eye to detect the 

flattening of the cornea. Adapted with permission from (Kim et al. 2017a). Copyright © 2017 

Kim et al. b. Hysteresis explanation diagram. The force of air steadily increases. When the 

cornea is flattened, the force is recorded and keeps increasing until a slight indentation form. 

The force then decreases and there is another applanation point, and the force is recorded again. 

The difference between these two readings is the corneal hysteresis. 

2.1.3 Other common tonometers  

The iCare Rebound Tonometer (iCare) uses a magnetised probe that accelerates upon being 

propelled towards the cornea. When it hits the cornea, it decelerates. In high IOP, the 

deceleration of the probe is rapid, and it rebounds quicker. When the IOP is low the rebound 

takes longer due to slower deceleration. The IOP is calculated according to the speed of 

deceleration and the time of probe rebound (Liu et al. 2020). Subramaniam et al found that the 

iCare significantly underestimated the GAT IOP by 4.1 mmHg (12.1 mmHg vs 16.2 mmHg) 

(Table 1)(p < 0.0001) (Subramaniam et al. 2020). Due to the high speed of the probe and short-

lived contact with the cornea, iCare does not require topical anaesthesia making it particularly 

useful in young children(Uzlu et al. 2020). Additionally, iCare is a relatively straightforward 



device that patients can even be trained to test the IOP by themselves(Tan et al. 2017). 

However, it should be noted that iCare is more susceptible to corneal biomechanical properties 

than GAT (Gao et al. 2017; Zakrzewska et al. 2019).  

To mitigate the effect of  corneal biomechanics on IOP readings, a dynamic contour tonometer 

(DCT) was developed(Nuyen and Mansouri 2015).  DCT measure the IOP by tightly attaching 

to the cornea and applying a hydrostatic pressure to part of the cornea. When this part of the 

cornea becomes relaxed, the hydrostatic pressure is equal to the IOP(Fuest et al. 2017). As the 

cornea is not deformed during the measurement, DCT is less affected by corneal biomechanics 

(Katsimpris et al. 2015; Olyntho Junior et al. 2020). However, the DCT tip needs to be in direct 

contact with the cornea for 5 seconds to obtain repeated measurements which patients may not 

be able to tolerate. A study showed the DCT reading was significantly higher than the GAT 

reading in both glaucoma patients normal people, with differences of 2.19 ± 2.24 mmHg and 

2.56 ± 1.94 mmHg (p < 0.01) respectively(Table 1)(Yildiz and Yasar 2018). Moreover, DCT 

is a slit lamp mounted device and requires an appropriately trained clinician. Despite this, DCT 

shows promise as a tonometer unencumbered by the biomechanical influence of the cornea.  

Table 1. Summary of current devices for IOP testing. 

Device 

Mean difference of 

IOP measurement 

compare with GAT 

(mmHg) 

Advantages Limitations Reference 

Goldmann 

Applanation 

Tonometry  

- 

Low inter and intra-

observer variability. 

Gold standard for IOP 

measurement. 

Affected by Corneal 

biomechanics. 

Fluorescein dye and topical 

anaesthetics required. 

Non-portable. 

 

Dielemans et 

al., 1994; 

Chen et al. 

2019;  

Perkins 

Handheld 

Tonometer  

0.22 ± 0.44, P<0.001 

Low inter and intra-

observer variability. 

Portable. 

Affected by Corneal 

biomechanics. 

Fluorescein dye and topical 

anaesthetics required. 

ElMallah and 

Asrani 2008; 

Arora et al. 

2014 



Non-contact 

Tonometry  
2.7 ± 3, P<0.001 

Less risk of infection. 

Less affected by 

structural factors. 

Provide parameters 

about corneal 

structure. 

 

Non-portable 

Ramm et al., 

2019; Nuyen 

and Mansouri 

2015; 

Kilavuzoglu et 

al. 2019 

iCare 

rebound 

tonometer 

−0.22±3.07, P=0.19 

No requirement for 

topical anaesthesia 

and fluorescein dye. 

Portable 

Patients can be trained 

to test IOP by 

themselves. 

More susceptible to corneal 

biomechanical properties. 

Underestimate the GAT IOP.  

Gao et al. 

2017; 

Zakrzewska et 

al. 2019; 

Subramaniam 

et al. 2020 

Dynamic 

contour 

tonometer  

Glaucoma: 2.19 ± 

2.24, P<0.01 

Normal: 2.56 ± 1.94, 

P<0.01 

Less affected by 

corneal biomechanics 

The test process may not be 

tolerated by some patients. 

IOP reading higher than 

GAT. 

Non-portable. 

Katsimpris et 

al. 2015; 

Olyntho Junior 

et al. 2020; 

Yildiz and 

Yasar 2018 

 

2.2 Visual Field Test 

The term visual field refers to the entire area that can be seen when the eye looks forward in a 

fixed direction (Figure 4a)(Phu et al. 2017). A blind spot is a particular area of reduced or total 

absence of vision located temporally between 10 and 20 degrees (black spot in Figure 3a). VF 

loss is one of the most common characteristics of glaucoma(Casson et al. 2012). Early and 

effective intervention can help to slow down the disease progression (Figure 4b) (De Moraes 

et al. 2017). This highlights the importance of accurate detection and measurement of VF 

progression in glaucoma patients. 

 



Figure 4. Normal visual field and the effect of ophthalmic intervention on the visual field loss 

progression at different times. a. the normal visual field extends 50 degrees superiorly, 70 

degrees inferiorly, 60 degrees nasally and 100 degrees temporally. The blind spot (black spot) 

is located between 10 and 20 degrees.  b. Intervention started at different time points results in 

different outcomes. Early intervention significantly slows down the drop in visual function. 

2.2.1 Humphrey field analyser (HFA) 

The HFA is the most widely used perimetry(Alencar and Medeiros 2011; Camp and Weinreb 

2017). A series of achromatic (white) light stimuli of fixed size (Goldmann size III, GIII) but 

differing intensities (varies from 0 to 51 dB, 0 dB being the brightest stimuli) (Nouri-Mahdavi 

2014) are projected from a large, white bowl. Patients are instructed to press the hand-held 

button when they see the stimulus. Automated algorithms such as Swedish Interactive 

Thresholding Algorithm (SITA) are used to calculate the patients’ capability to recognise the 

light stimulus at varying intensities and finally locate the damaged area of patient’s visual 

field(De Moraes et al. 2017). Up to now, SITA fast and SITA Faster were developed to further 

shorten the detection time without influencing the accuracy and reliability of the data(Heijl et 

al. 2019).  

There are several test protocols, including 10-2, 24-2 and 30-2 which detect different area of 

the visual field. For example, 24-2 means measuring 24 degrees temporally and 30 degrees 

nasally(Nouri-Mahdavi 2014). The second number 2 indicate the pattern of the points tested. 

It is crucial to select the appropriate protocol best suited to the patient’s condition. For 

glaucoma monitoring, 24-2 testing model is the most widely accepted pattern due to smaller 

variability and being faster than other pattern(Wang and Henson 2013).  The 10-2 pattern 

provides a more detailed test of the central area than the 24-2 pattern(Park et al. 2013) (Garg 

et al. 2018). Although it is known that visual field damage usually starts at the peripheries and 

central vision tends to be spared until later stages of the disease(Sugisaki et al. 2020). Some 



studies have indicated that glaucomatous changes could be found at the central region in the 

earlier stages of glaucoma(Hood et al. 2013; Wu et al. 2018). Consequently, 10-2 testing 

strategy helps to estimate the damage to central vision and can be a beneficial addition to 24-2 

test(Tomairek et al. 2020). 

Analysing an HFA printout can be challenging. The reliability indices (Figure 5b) of the HFA 

printout reflects the extent to which the patient's results are reliable. Fixation losses indicate 

the steadiness of gaze throughout the test. The lower the number of fixation losses, the more 

reliable the test. False positives occur when a patient reports a stimulus in the absence of the 

stimulus. High false positives represent glaucomatous visual loss and indicate worse results 

than the one produced by the report. False negatives are detected when a brighter (9 dB) 

stimulus appears at the location where the threshold has already been determined but patient 

had not responded. High false negatives indicate that the visual loss is less than what is reported 

in the test result. The numerical display (Figure 5c) contains the threshold values of each tested 

point. Lower numbers mean that the patient can only see brighter light. The grey scale (Figure 

5d) represents a graphical form of the numerical display. The darker the shade, the lower the 

sensitivity.  

Total deviation (Figure 5e) is the difference between the threshold obtained by the VF test at 

each point compared against a corresponding reference value obtained from a healthy general 

population and corrected for age. It is depicted as a numerical plot and a probability plot. The 

negative values indicate that the sensitivity is lower than normal, whereas positive indicate a 

higher sensitivity. The pattern deviation (Figure 5f) is derived from total deviation values. It 

can correct for common causes of decreased visual sensitivity such as lens opacity. Darker 

spots indicate that a defect is more likely to be significant. 

Glaucoma Hemifield Test (GHT) (Figure 5g) provide the asymmetry of corresponding points 

above and below the horizontal meridian. Visual field index (VFI) (Figure 5h) reflects the 



overall visual field function that 100% represents a perfect age-adjusted visual field. Mean 

deviation (MD) (Figure 4h) indicates the overall sensitivity of the visual field and it is derived 

from the total deviation. Normal MD ranges from 0 dB to −2 dB and a negative value is 

consistent with a field loss. Pattern standard deviation (PSD) (Figure 5h) is a measure of focal 

loss within the visual field. A higher PSD is better than MD in estimating the glaucomatous 

damage. An upstroke signal and high-frequency movements decrease the accuracy of the test. 

A downstroke means that the tracker has lost the view of the pupil either due to blinking or 

droopy upper eyelid(Aggarwal et al. 2018; Yaqub 2012).  

Even though HFA has been regarded as a reliable and accurate measure of visual field loss for 

a long time, it has its drawbacks. HFA testing is a subjective test, the co-operation and 

responses of the patient play crucial roles in obtaining a reliable result and requires a high level 

of understanding from patients(Szatmáry et al. 2002). It is can be difficult to perform HFA in 

certain groups of patients such as children or the elderly. Additionally, learning effect is another 

factor influencing the accuracy of the test. Learning effect is a phenomenon where the 

reliability and VF indexes improve when patients become familiar with the visual field 

test(Aydin et al. 2015). To minimise the learning effect, at least 3 repetitions may be needed(De 

Tarso Pierre-Filho et al. 2010).  



 

Figure 5. A Humphrey visual field printout. a. Test type; b. Reliability Indices; c. Numeric 

(dB) Results; d. Grayscale Results; e&f. Deviation Plots; g. Glaucoma Hemifield Test (GHT); 

h. Global Indices; i. Probability Symbols; j. Gaze tracker. Image Courtesy of ZEISS.  

2.2.2 Octopus Perimetry  

Octopus perimetry is one of the most widely used methods for detecting a visual filed defect. 

It has the large white bowl with a radius of 30 cm and projects stimuli of different sizes and 

intensity (Bevers et al. 2019). This perimetry can not only perform standard static tests using 

30-2, 24-2 and 10-2 patterns like in HFA, but it also provides two unique strategies: The G-

(a)

(b)

(c) (d)

(e) (f)

(g)

(h)

(i)

(j)



Program that tests the 30-degree field and is used for glaucoma assessment as well as the M-

Program for analysing the macula area (in central 10 degrees).  

A sensitivity Cluster Analysis is used in detection of glaucomatous visual field defects. It 

groups visual field defects according to the nerve fibre bundles. The cluster MD (mean defect) 

highlights the key pathological areas (Figure 6a). Moreover, the glaucomatous progression can 

be reflected by displaying the change of visual sensitivity (in dB/year) for each visual cluster: 

deterioration, improvement of sensitivity and fluctuation at both at 1% and 5% significance 

levels (Figure 6b). 

 

Figure 6. Cluster analysis of Octopus perimetry. a. Visual field defects are grouped according 

to the nerve fibre bundles.  Numbers represent the cluster MD (mean defect). b. Cluster Trend 

shows the glaucomatous damage in every cluster. Deterioration was highlighted by red 

downward-pointing arrows. Green upward-pointing arrows represent improvement and blue 

diamonds show fluctuation at both at 1% and 5% significance levels. 

Rowe et al recruited 126 patients of advanced glaucoma and performed VF test by Octopus 

900. They found it was able to effectively detect the peripheral visual field loss. This is useful 

in clinical decision-making and  disease monitoring in advanced-stage glaucoma(Rowe et al. 

2021). Furthermore, Roberti et al improved Octopus perimetry, so that it could accurately 

detect a central visual field defect in an early glaucomatous eye (Roberti et al. 2017). In 



summary, Octopus perimetry is capable of supporting routine glaucoma visual field testing and 

combine the central and peripheral visual field information to make the results more reliable.  

2.2.3 Head-mounted automated perimeter ‘imo’ 

‘imo’ is a novel portable head-mounted perimeter. It consists of a head-mounted perimeter unit, 

a separate response button and a tablet which is controlled by the operator (Figure 7a). The 

perimeter unit is connected to the tablet via Wi-Fi and the response button is connected by 

Bluetooth (Figure 7a). Due to this wireless connection, the device is highly portable, and 

patients can be tested in any position they prefer. There are two separate optical systems (Figure 

8b), one assigned to each eye. The device can measure the VF within 35° of the 

foveae(Matsumoto et al. 2016). 

‘Imo’ uses an algorithm called Ambient Interactive ZEST (AIZE) which significantly reduces 

test duration(Kimura et al. 2019). HFA 30-2, 24-2 and 10-2 test patterns are compatible with 

‘imo’, and it has its own unique test pattern “24 plus”. There are 78 test points in the 24 plus 

(1-2) test pattern which include 54 test points similar to the HFA 24-2 pattern (Figure 7c) plus 

an extra 24 test points in the central 10° VF (Figure 7d). Therefore, it provides more 

information about the central visual field loss compared to 24-2 pattern. 24 plus (1) test pattern 

emphasises the area corresponding to the retinal nerve fibre layer and includes 36 test points 

(Figure 8e)  



 

Figure 7. The images of ‘imo’ and the it’s test patterns. a. ‘imo’ consists of a main perimeter 

unit, a user control tablet, and a patient response button. Adapted with permission from 

Matsumoto et al. Copyright © 2016 Matsumoto et al. b. There are 2 totally isolated optical 

systems for the right and left eyes. Adapted with permission from Matsumoto et al. Copyright 

© 2016 Matsumoto et al. c. Test pattern of HFA 24-2, d. ‘imo’ 24 plus (1-2) and e. ‘imo’ 24 

plus (1). HFA 24-2 test pattern has 54 test points. ‘imo’ 24 plus (1-2) adds 24 points within the 

central 10 degrees and has 78 test points. ‘imo’ 24plus (1) has 36 points. 

‘imo’ can perform a monocular test that examines left and right eye separately because there 

are two separate testing systems (Figure 8a). The binocular random single-eye test mode is a 

novel approach. The stimulus randomly displays to either eye (Figure 8b), and both eyes can 

be generated from a single test. In addition, it can also perform a simultaneous binocular eye 

test. In this mode, a test target is shown in both eyes at a similar location, size and intensity 



(Figure 8c)(Kumagai et al. 2020). ‘imo’ can track the pupil during the test and can correct for 

pupil deviation of ± 5 degrees. A study showed that this pupil tracking system can significantly 

stabilise the fixation compared to HFA(Goukon et al. 2019).  

 

Figure 8. Test modes of imo. a. Monocular test examines left and right eyes separately without 

occlusion. b. Binocular random single-eye test: the test stimulus randomly presents to either 

eye, it examines both visual fields in both eyes simultaneously during a single examination c. 

In a binocular simultaneous test, the target presents simultaneously in both eyes at similar 

location, size, and intensity. 

Since the development of imo, several studies have been done to evaluate its performance. 

Kimura et al compared both Global Indices and Reliability Indices obtained from HFA and 

imo. They found there was no significant difference between the MD obtained by HFA and 

imo. The average examination time was significantly shorter by 30.8% for imo (10:54 ± 2:19 

minutes) versus HFA (15:23 ± 2:07 minutes) (P < 0.01) (Kimura et al. 2019). This suggests 

that reliable IOP measurements can be obtained faster with imo rather than HFA. Additionally, 

they also compared the data obtained when imo was head-mounted or fixed in a standing 

position and demonstrated that  IOP measurements with imo are not significantly affected by 



the position of the device(Kimura et al. 2019). ‘imo’ is a reliable device that can be used in 

every setting and provides an ideal approach for those unable to sit in the HFA. Further studies 

should be done to better determine the clinical potential of it. 

Table 2. Summary of current device for visual field test. 

Device  References 
Performance 

parameter 

Advantages of 

VF test 
Limitations of VF test 

HFA 
(Wang and 

Henson 2013) 

Sensitivity: 97.4% 

Selectivity: 58.6% 
VF test is the 

routine test that 

directly reflect the 

function change. 

Devices like 

“imo” allow test 

being performed 

in any posture 

which make it 

suitable for 

certain patients. 

HFA and Octopus are 

non-portable devices 

VF test is a subjective 

test, difficult to perform 

HFA in certain groups of 

patients such as children or 

the elderly. 

Learning effect that 

patients become familiar 

with VF test and increase 

false positive. 

Visual field defects are 

only noticed at advanced 

glaucoma 

Octopus  

(Rowe and 

Rowlands 

2014) 

Sensitivity: 96% 

Selectivity: 55% 

imo 
Kimura et al., 

2019;  

R2 of MD and 

VFI>0.81 for HFA 

vs imo 

R2: Correlation coefficients  

2.3 Optical coherence tomography  

Visual function test such as visual field sensitivity test plays crucial roles in assessing the 

disease activity in glaucoma patients. However, some patients experience structural changes 

without any abnormalities in the VF(Tatham and Medeiros 2017). Therefore, it is value able to 

detect the of structural changes to assess the severity of glaucoma and determining the efficacy 

of treatment. The principle of OCT is somewhat like the ultrasound B that replaces sound with 

light. When a beam of light from the OCT is directed onto the retina, the retinal layers reflect 

and scatter the light. The structure is analysed  by measuring  the “echo” time delay, which is 

detected by correlation or interferometry techniques and intensity of backscattered light 

waves(Fujimoto et al. 2000). Several parameters can be obtained from the OCT include RNFL, 

ONH and macula parameters, which is known to be useful and effective measures of disease 

activity in glaucoma(Dong et al. 2016). All these parameters have their unique characteristics 

and are complementary to each other.  

2.3.1 Retinal nerve fibre layer thickness 



RNFL thinning caused by RGCs loss is one of the major hallmarks of glaucoma(Lee et al. 

2016b). Wu et al indicated the RNFL thickness had great diagnostic capability for detecting 

glaucoma (Wu et al. 2012). Moreover, A study has shown that the change in RNFL thickness 

can be detected by OCT before the appearance of visual functional defects. Kuang et al 

included 75 eyes from 75 people with suspected glaucoma. Around 35% of eyes were found 

that had an abnormal average RNFL thickness 4 years prior to visual field loss. In 19% of the 

cohort, abnormalities in RNFL thickness preceded the VF loss by as much as 8 years(Kuang et 

al. 2015). Therefore, RNFL thickness has been shown to discriminate normal and 

glaucomatous eyes at early stages of the disease(Mwanza and Budenz 2016). The scanning 

area can be divided into “temporal-superior-nasal-inferior” areas(Figure 9)(Vazquez et al. 

2021). A study indicated that the RNFL thickness of the inferior quadrant, clock-hour 7 

segment as well as the total average thickness of the RNFL have greater diagnostic ability in 

detecting glaucomatous damage(Mwanza et al. 2011). Moreover, due to the high 

reproducibility, OCT RNFL progression analysis has a unique advantage in assessing 

glaucoma progression(Leung 2014). 



 

Figure 9. Report of the RNFL parameters. a. The scanning area of right and left eyes. (OD 

represent right eye and OS represent the left eye) And the area can be divided into “temporal-

superior-nasal-inferior” pattern. b. The real image of retina. c. The analysis part of the report. 

In this example, the structure of right eye of the patient was normal. However, the RNFL 

thinning was recoded in superior and inferior quadrants. Adapted with permission from Wu et 

al. 2012 Copyright © 2012 Elsevier Inc. 

2.3.2 Optic nerve head parameters  

The optic nerve head, also known as the “optic disc” is the place where ganglion cell axons 

leave the eye. OCT produces detailed pictures of the ONH and can reflect the differences in 

the underlying structure. It provides information about the neuro-retinal rim (NRR) which 

represents the distance between the margin of the optic cup and head. Studies have shown that 

(a)

(b)

(c)



the NRR measurement is a useful parameter to assess the severity of glaucoma and is very 

reproducible. Pilat et al indicated that the NRR area had great diagnostic abilities with PPV 

and NPV 82.8% and 83.3% , respectively(Pilat et al. 2019). 

Bruch’s membrane opening (BMO) is a widely used parameter to estimate the structure of the 

ONH(Takada et al. 2016). The termination of the Bruch’s membrane at ONH forms an opening 

where retinal ganglion cells leave and form the outer border of optic nerve(Chauhan and 

Burgoyne 2013). This opening is called a “Bruch’s membrane opening”. Bruch's membrane 

opening–minimum rim width (BMO-MRW) is the minimal distance between the BMO and the 

internal limiting membrane (Miri et al. 2017) (Figure 10). It is valuable in estimating the 

glaucomatous damage of the ONH(Araie et al. 2017). It has already been proved that BMO-

MRW has diagnostic power to reflect glaucomatous damages(Leaney et al. 2020) (Enders et 

al. 2018). Moreover, Enders et al found that the BMO-MRW was significantly reduced in 

patients with more severe visual loss(Enders et al. 2018). The horizontal rim width  represents 

the distance between the BMO and ILM (Figure 11) and has the potential to help assess changes 

in the ONH structure(Muth and Hirneiss 2015). However, age is a factor that can affect the 

BMO-MRW as demonstrated by a study in Japan which found that BMO-MRW declined with 

age(Araie et al. 2017).  Considering this, correlation of BMO-MRW and other BMO-based 

parameters should be adjusted to accommodate these factors.  

Figure 10. Diagram of BMO-based parameters. a. An OCT image showing the ILM and BMO. 

Adapted with permission from Miri et al. Copyright © 2017 Elsevier B.V.134 b. Schematic 



illustration of BMO-based parameter: BMO-MRW which represents the minimal horizontal 

distance between the BMO and the ILM.   

Macula parameters 

The macular region accounts for less than 2% of the retina but contains over 50% of all RGCs 

making it susceptible to glaucomatous structural deficits(Hood et al. 2013). Development of 

the SD-OCT segmentation algorithms allows detection of individual layers within the 

macula(Bussel et al. 2014). The three innermost layers form the ganglion cell complex (GCC) 

which include the retinal nerve fibre layer (RNFL), the ganglion cell layer (GCL) and the inner 

plexiform layer (IPL) (Verticchio Vercellin et al. 2018). GCC-based parameters have already 

been proved to be reliable markers of structural change with high PPV of 98.9%(Garas et al. 

2011). Moreover, the GCC thinning rate was also shown to correlate with the rate of visual 

function deterioration in glaucoma patients(Kurysheva and Lepeshkina 2021), which indicated 

GCC thinning could predict the functional loss. 

It is known that a normal eye has inter-ocular and inter-hemispheric symmetrical properties 

i.e., the structure and function of each eye or hemisphere are similar. This symmetry could be 

affected in glaucoma, resulting in persistent asymmetry between glaucomatous eyes(Lee et al. 

2016a). Based on this idea, a posterior pole asymmetry analysis (PPAA) was developed. The 

report of a PPAA test presents the central 24 degrees area divided into 64 (8×8 array) sectors 

centred on the fovea with the thickness of each area displayed (Figure 11a). The asymmetry 

map represents the difference in thickness between the corresponding cells in the left and right 

eyes (Figure 11b) as well as superior and inferior hemispheres (Figure 11c&d). The grey scales 

of asymmetry represent the difference between corresponding cells. The darker the shade, the 

bigger the difference(Pekel et al. 2015). A population-based experimental study looked at 122 

eyes in healthy and glaucoma subjects in different stages. The AUC of asymmetry indices for 

preperimetric, early and advanced glaucoma patients were 0.773–0.994, 0.861–0.998 and 



0.819–0.996 respectively(Yamada et al. 2014a). The asymmetry index was effective in 

distinguishing between a normal eye and varying stages of glaucoma, in particular the index of 

the ganglion cell layer (with AUC 0.994–0.998)(Yamada et al. 2014a). Lee et al produced 

similar results, suggesting that the PPAA was able to serve as a potential tool to estimate 

disease activity(Lee et al. 2016a). Moreover, PPAA can accurately distinguish between normal 

people and PACG patients even without any specific symptoms such as vision loss or increased 

intraocular pressure (IOP), suggesting that PPAA could be an indicator of PACG (Zha et al. 

2019).  

 

Figure 11. A posterior pole asymmetry examination report. a. The colourful 8x8 analysis grid 

graph displaying the central 24 degrees divided into 64 (8×8 array) sectors centred on the fovea. 

The number in each cell represents thickness. b. OD-OS and OS-OD asymmetry analysis 

report. The thickness of cells between eyes are compared. c. The hemisphere asymmetry 

analysis grey scale. d. Mean retinal thickness of superior and inferior hemisphere. Image 

courtesy of Heidelberg Engineering. 

(a) (b)

(c) (d)



The OCT parameters are all able to estimate the structural damage and monitor disease 

progression with good accuracy and reproducibility(Table 3). Due to advancements in the 

imaging technology and improved algorithms, the OCT graphs have become more accurate 

and with better resolution. Further developments in the analysis of these parameters could 

enrich our understanding of glaucoma. OCT is an indispensable tool to estimate disease 

progression and monitoring in glaucoma. 

Table 3. Summary of OCT parameters  

Parameter Reference AUC  
PPV and 

NPV %  

Sensitivity& 

specificity % 

Advantages of 

OCT test 

Limitations of 

OCT test 

RNFL 

thickness 

Wu et al. 

2012 
0.952 

PPV: 89.1 

NPV: 86.8 

Sensitivity: 80.3 

Specificity: 92.9 

OCT test is 

an objective 

test and 

quantify the 

structure 

change. 

Development 

of algorithms 

improve the 

accuracy and 

resolution. 

The co-

operation and 

responses of 

patients are 

required.  

Requirement 

for well-

trained 

operators.  

NRR area 
Pilat et al. 

2019 
- 

PPV: 82.8 

NPV: 83.3 

Sensitivity: 88.9 

Specificity: 75.0 

BMO-MRW 
Leaney et al. 

2020 
0.95 

PPV: 86.0 

NPV: 94.0 

Sensitivity: 89.0  

Specificity: 93.0 

GCC  
Garas et al. 

2011 
- 

PPV: 98.9 

NPV: 47.6 

Sensitivity: 48.2  

Specificity: 98.9 

PPAA 
Yamada et 

al. 2014a 

0.994-

0.998 
- - 

3. Advanced Technologies for Glaucoma Measurement 

The clinical tests discussed so far have been used in clinical practice for decades. However, 

studies continue to investigate other possible measures of disease activity, with several recent 

developments(Normando et al. 2020; Shpak et al. 2018). There has been an enormous 

advancement in tear fluid investigation. Paper-based microfluidic devices and contact lenses 

provide excellent platforms to rapidly detect and analyse the tear fluid components(Yetisen et 

al. 2017). Another development is DARC which is a novel technique that directly reflect the 

survival of retinal ganglion cells by using fluorescent dye allowing dead cells to be 

quantified(Normando et al. 2020). AI provides a platform to analyse a huge amount of data and 

to improve the accuracy. In this section, we will discuss several technologies that have potential 

in the detection and monitoring of glaucoma.  

3.1 Tear fluid analysis and molecular biomarkers of glaucoma 



Tears are a complex mixture composed of electrolytes, water, proteins, mucin, and lipid 

(Moshirfar et al. 2014). Recent proteomic studies have shown that there are approximately 

1500 types of proteins in tears(Hagan et al. 2016). As the “proximal fluid” consists of tear film 

which covers the eye surface, tears may directly reflect ocular disorders(Hagan et al. 2016). 

Several studies have indicated that changes in certain components are related to 

glaucoma(Ghaffariyeh et al. 2009; Sahay et al. 2017; Shpak et al. 2018). These molecules can 

be considered to be biomarkers. 

Aiming to improve the early assessment of disease activity, biomarkers are currently a hot topic 

in research(McNally and O'Brien 2014). Biomarkers are able to predict the severity and course 

of the disease at early stage(Bhattacharya et al. 2013). Although not all pathogenic mechanisms 

of glaucoma are well understood, certain factors involved in the disease process have been 

identified. These include neurodegeneration, immune reaction, ischemia, and oxidative 

stress(Beykin and Goldberg 2019). The concentrations of molecules related to these processes 

are different in glaucoma patients when compared to healthy individuals. Therefore, these 

molecules may serve as potential biomarkers of glaucoma. There are several sources of 

biomarkers, including tears, aqueous humour and blood(Dammeier et al. 2018; Oddone et al. 

2017; Pan et al. 2020). However, obtaining a sample of aqueous humour or blood, is an invasive 

and complex procedure limiting their use. Considering this, tears have the potential to be an 

ideal resource for biomarker analysis due to the ease with which they can be collected.  

3.1.1 Molecular biomarkers  

BDNF is a type of regulatory protein in the central nervous system and helps to promote 

proliferation, differentiation, survival and functioning of neurons(Shpak et al. 2018). BDNF is 

produced in the superior colliculus and transported to retinal ganglion cells via a retrograde 

axonal transportation system (Ghaffariyeh et al. 2009). Damage to the optic nerve axons blocks 



the retrograde axonal transportation system(Mysona et al. 2017). Therefore, tear levels of 

BDNF may be very useful in assessing disease activity in glaucoma. 

Ghaffariyeh et al was first to measure and compare the BDNF concentration in tears of healthy 

and  normal tension glaucoma (NTG) eyes(Ghaffariyeh et al. 2009). They found mean 

concentration of BDNF in normal people was 77.09 ± 4.84 ng/ mL, compared to 24.33 ± 1.48 

ng/mL in NTG patients (Ghaffariyeh et al. 2009). Findings demonstrated that the BDNF 

concentration was significantly lower in patients with normal tension glaucoma with P < 0.05. 

Shpak et al focused on patients with POAG (Shpak et al. 2018). They found that the 

concentration of BDNF in tears of POAG patients was 78.0 ± 25.1 pg/mL, compared to 116.2 

± 43.1pg/mL in the control group with P < 0.001. The trend of decreased BDNF in 

glaucomatous eyes was similar to the previous study. In addition, they were able to detect 

varying levels of tear BDNF in eyes at different stages of POAG. The results showed a 

pronounced decline in BDNF in the early stage of POAG with a relative increase in BDNF 

levels in following stages. The concentration in blood serum and aqueous humour showed the 

same trend(Shpak et al. 2018).  

Matrix metalloproteinases (MMPs) are a group of protein play important roles in remodelling 

the extra cellular matrix in the trabecular meshwork. Interestingly, MMPs are also involved in 

the death of RGCs and changes in MMPs levels are seen in glaucoma(Singh et al. 2015). 

Several studies demonstrated the link between MMPs and glaucoma.  Sahay et al tested the 

difference in expression of MMP 2 and 9 in tears from 113 patients with different subtypes of 

glaucoma and compared them with normal people(Sahay et al. 2017). Results indicated that 

both activity and expression levels of MMP 9 were significantly increased in primary 

glaucoma, especially in the early stage (P < 0.001)(Sahay et al. 2017). Another study found the 

overexpression of MMP 9 was also observed in POAG patients(Kim et al. 2021).   



The role of immune system in glaucoma pathologies has attracted increasing attention(Rieck 

2013; Tezel and Wax 2004). Immune response and inflammation induced by glial cells such 

as astrocytes, Muller cells and microglia is also related to glaucomatous damage(Chen et al. 

2018) (Adornetto et al. 2019). Therefore, factors related to these inflammatory responses may 

serve as biomarkers of glaucoma. Chua et al indicated that the levels of interleukin (IL)-9, IL-

10, IL-12, interferon (IFN)-α, IFN-γ, and monokines induced by interferon-gamma were 

significantly raised in glaucomatous eyes (Chua et al. 2012) Moreover, proteomics identified 

some factors involved in inflammation and immune response including beta-2-microglobulin, 

heat shock protein beta-1, Ig alpha-1 chain C region, Ig alpha-2 chain C region, 

immunoglobulin J chain, Ig kappa chain C region, Lactotransferri, lysozyme C, polymeric 

immunoglobulin receptor, serotransferrin  and serum albumin. All of them are overexpressed 

in tears from patients with POAG(Pieragostino et al. 2013).  

Mucins are types of glycoproteins that form a major part of tear fluid. MUC5AC is a main 

component of the tear film. A study demonstrated that MUC5AC concentration was 

significantly downregulated in glaucoma patients compared with healthy people, with the mean 

concentration of 16.95 ± 12.86 ng/ml and 32.39 ± 18.44 ng/ml respectively (p < 0.05)(Liu et 

al. 2010). Furthermore, Roedl et al. investigated the role of Homocysteine (Hcy), which is an 

amino acid involved in pathological changes in glaucoma. They reported that the Hcy level in 

tears from glaucomatous eyes was 205 ± 84 nmol/L, compared with 130 ± 53 nmol/l in the 

control group which indicated that the Hcy expression was higher in POAG patients(Roedl et 

al. 2008).  

Notably, research into molecular biomarkers has undergone a revolutionary change in recent 

years. There is rising interest in non-invasive methods of detecting biomarkers in patients, with 

tear fluid analysis becoming an attractive option for measuring disease activity. Technological 

advances have facilitated the analysis of tear composition. Some of the components may serve 



as biomarkers of glaucoma, however, it is necessary to characterise the normal concentration 

range of molecules in healthy people. All things considered; further studies should be done to 

identify a molecular biomarker which can be used clinically. 

3.1.2 Tear fluid analysis platforms 

Tear fluid analysis tests have been present for a long time. The first ones were developed over 

a hundred years ago, such as Schirmer's test for tear volume measurement(Saleh et al. 2006).  

Phenol red thread test was also introduced at that time and was used to detect the tear volume 

based on the pH value(Tomlinson et al. 2001). More recently, new devices have been 

developed that can rapidly detect and analyse the tear fluid components.  

Lateral flow assay (LFA) is one of the broadly used devices in rapid diagnostics (Yetisen et al. 

2013). LFA strips are made of several parts including a sample pad, conjugate pad, reaction 

membrane and absorbance pad(Koczula and Gallotta 2016). The liquid sample is introduced 

onto the sample pad and migrates to the conjugate pad (Figure 12a). The conjugate pad is 

impregnated with labelled antibodies which can interact with analytes in the sample. The 

labelled analytes then migrate to the reaction membrane where antibodies for the desired 

analyte are fixed at a certain area (test line), if the sample contains the desired analyte they are 

captured at this area and form a visible line indicating a positive test (Figure 12b)(Koczula and 

Gallotta 2016; Miocevic et al. 2017; Yetisen et al. 2013). InflammaDry (Figure 12c&d) is a 

LFA device that is able to measure MMP-9 level in the tear fluid with great sensitivity 

(85%)(Bang et al. 2020; Sambursky et al. 2013). Several studies demonstrated InflammaDry 

was able to provide reliable results reflective of patients’ symptoms(Messmer et al. 2016; 

Sambursky et al. 2014). Notably, this study also indicated that untrained operators were capable 

of performing the InflammaDry test successfully. One of the major advantages of tear fluid 

analysis is the health economics. Due to its low cost (for example only $16 per InflammaDry 

test), short response time, clear visual results, long shelf life and the fact that refrigeration is 



not required for storage, LFA has a great potential to be a novel point-of-care diagnostic tool. 

However, most LFA devices only provide qualitative or semi-quantitative results. Specialized 

reading devices are strongly required to quantify certain analytes, but the cost and response 

time will also increase. On the other hand, it is a big challenge to preparing the sample for LFA 

test.  

 

Figure 12. Lateral flow assay. a. Schematic illustration of a typical lLFA strip. Labelled 

antibody is packed in the conjugate pad. The liquid sample containing certain analytes is 

introduced at the sample pad and subsequently released onto the conjugate pad. Then, the 

labelled analytes move to the reaction membrane, where the bound target analyte is captured 



at the test line. Adapted with permission from Koczula and Gallotta. Copyright © 2016 

Katarzyna M. Koczula et al. b. A commonly used LFA strip and possible results of test. 

Adapted with permission from Koczula and Gallotta. Copyright © 2016 Katarzyna M. Koczula 

et al. c. InflammaDry LFA test kit. The kit contains a test cassette, sample collector and a vial 

of buffer. Adapted with permission from Bang et al. Copyright © 2020 Seung Pil Bang et al. 

d. The result zone of InflammaDry. A red test line represents the concentration of MMP-9 is 

higher than 40 ng/mL. And A blue control line indicates that the test is valid. Adapted with 

permission from Bang et al. Copyright © 2020 Seung Pil Bang et al 

Numerous studies have focused on improving paper-based analytical devices μPAD (Sonobe 

et al. 2019; Yamada et al. 2014b). μPAD contains a hydrophilic paper platform, and 

hydrophobic barriers which allows the liquid sample can then easily flow through the μPAD 

(Lam et al. 2017). Due to low-costs as well as simple, safe and requiring a small sample volume, 

μPAD could be successfully used in several areas(Yamada et al. 2014b). Yamada et al used 

μPAD (Figure 13a) to quantify the concentration of lactoferrin in tears. Inkjet printing 

technology was used to form the hydrophilic channel. Terbium (Tb3+), which binds lactoferrin, 

was deposited onto the paper to generate detectable fluorescent emission, reflecting the 

concentration of lactoferrin(Yamada et al. 2014b). Moreover, the production cost of each 

μPAD was only $0.013(Yamada et al. 2014b). Yetisen et al introduced a paper-based 

microfluidic device (Figure 13b) for quantitative analysis of electrolytes (Na+, K+, Ca2+ ions) 

in tears(Yetisen et al. 2017). The device provided the diagnostic results within only 3 minutes. 

Moreover, smart phones camera could be used to capture the image of colour change of test 

strips. ImageJ was then used to quantify the coloristic change(Yetisen et al. 2017). The μPAD 

can provide objective evidence of underlying ocular diseases. However, analytic devices are 

required to improve its accuracy and sensitivity.  



Contact lenses are a commonly used optical device(Moreddu et al. 2019). Recently, they have 

showed a potential as a platform for tear analysis due to its relatively non-invasive properties 

and its ability to provide real-time monitoring of tears(Park et al. 2018a). Yetisen et al 

introduced a contact lens device capable of detecting electrolytes in tears(Yetisen et al. 2020). 

Moreover, Moreddu et al integrated biosensors within the contact lenses (Figure 13c). This 

allowed for the multiplexed detection of tear components, including: proteins, glucose, nitrites, 

and the pH value (Figure 13d) of tear within 5 seconds(Moreddu et al. 2020). Contact lens 

devices is able to be valuable point-of-care fluid analysers capable of monitoring a range of 

ocular diseases including glaucoma. However, the possible adverse effects of wearing contact 

lenses, such as discomfort, microbial keratitis, and other corneal complications must be taken 

into consideration. 

 

Figure 13. μPAD and contact lens device for tear analysis.  a. A μPAD device patterned by 

inkjet printer. Two similar square areas were used for sample deposition (sampling area) and 



sample reaction (sensing area). Adapted with permission from Yamada et al. Copyright © 2014 

RSC publishing. b. A paper-based microfluidic device developed to analyse the electrolytes in 

tears. Tear fluid was collected by a capillary tube and temporarily stored in a reservoir. Adapted 

with permission from Yetisen et al. Copyright © 2014 RSC publishing. c. A contact lens with 

different sensors. Scale bar: 5.0 mm. Adapted with permission from Moreddu et al. Copyright 

© 2020 Elsevier B.V. d. Sensors were embedded in the contact lens. The pH value and 

concentration of glucose, protein and nitrate were indicated by colour. Scale bar: 1.0 mm. 

Adapted with permission from Moreddu et al. Copyright © 2020 Elsevier B.V. 

Table 4. Summary of Tear fluid analysis platforms 

Technique Reference Analytes Sensitivity/LOD Advantages Limitation 

InflammaDry 

(Lateral flow 

assay) 

Bang et al. 
2020; 

Sambursky 

et al. 2013 

MMP-9 85% 

Cheap: $16 per test 
Fast: 10mins per test 

Easy-to-use 

clear visual results 

long shelf life 

Need to 

prepare sample 

before test. 
Specialized 

reading devices 

are required to 

quantify 

analytes. 

 μPAD 

Yamada et 

al. 2014b 
Lactoferrin LOD: 0.30 mg mL−1 

Cheap: $0.0131 per 

uPAD 

Fast: 15 mins per test 

Small sample volume 
Specific 

reading devices 

are required to 

improve the 

accuracy and 

repeatability. 

Yetisen et 

al. 2017 

Electrolyte 

 

Na+ sensor: 2.7 

mmol L−1 

K+ sensor: 1.4 mmol 

L−1 

Ca2+ sensor: 0.02 

mmol L−1 

 

Fast: response in 3 secs  

Low-cost 

Multiple analytes get 

tests similarity 

Sensitive 

Contact lens 

Yetisen et 

al. 2020 
Electrolyte  

Na+ sensor: 6.7 

mmol L−1 

K+ sensor: 0.8 mmol 

L−1 

Ca2+ sensor: 0.02–

0.05 mmol L−1 

Mg2+ sensor: 0.10–

0.44 mmol L−1 

 

Fast: response in 5 

mins  

Multiplexed detection 

of tear components 

Cost-effective  

Sensitive  

May cause 

adverse effects 

such as 

discomfort, 

microbial 

keratitis, and 

other corneal 

complications. 
Moreddu 

et al. 2020 

pH; 

glucose; 

protein; 

nitrite ions 

pH sensor: 12.23 

nm/pH unit  

Glucose sensor: 1.4 

nm/mmol L−1 

Protein sensor: 0.49 

nm/g L−1 

Nitrites sensor: 0.03 

nm/μmol L−1 

Fast: response in 15 

secs  

Sensitive 

Suitable for point-of-

care settings 



LOD: The limit of detection 

3.2 Detection of Apoptosing Retinal Cells (DARC) 

RGCs death and the optic nerve loss are the major characteristics of glaucoma. It is reported 

that approximately 20–40% of the RGCs have already been lost before the visual defect 

becomes apparent(Ahmad 2017). RGC death is caused by several pathological events including 

ischemia or axonal injury. RGCs can also undergo programmed cell death: apoptosis(Ahmad 

2017). The RGCs subsequently shrink, membrane blebbing takes place, chromatin is 

condensed and pyknotic nuclei develop. Phosphatidylserine (PS) is believed to be one of the 

markers of apoptosis(Yap et al. 2020b). PS is usually located in the inner leaflet and 

asymmetrically distributed across the cell membrane.  When the RGCs undergo apoptosis, 

more PS starts to appear on the outer leaflet (Figure 14)(Ahmad 2017; Yap et al. 2020b).  

 

Figure 14. Diagram of phosphatidylserine location and annexin V binding. Phosphatidylserine 

(PS) is located in the inner leaflet of cell membrane. More PS appears on the outer leaflet when 

apoptosis start. Annexin A5 has a high affinity for PS. 



DARC is a technique that allows the identification and visualisation of apoptosing RGCs by 

using fluorescently labelled annexin A5 (Yap et al. 2018b). Annexins use calcium (Ca2+) to 

bind to phospholipids. Annexin A5 has a high affinity to PS. Therefore annexin A5 is regarded 

as an ideal indicator of an apoptosing cell(Normando et al. 2013). In DARC, the annexin A5 is 

conjugated with either a 488 nm (ANX488) or 776 nm (ANX776) fluorophore. In humans, the 

dye is administered intravenously. The annexin V-bound fluorophore is then excited by a laser 

and a photodetector system is used to detect the fluorescent light emission. A confocal scanning 

laser ophthalmoscope (cLSO) is required to analyse the retina(Bizrah et al. 2014; Yap et al. 

2020b). 

DARC has already been used in rat studies including an intravitreal staurosporine-induced 

model and some transgenic murine models. According to these studies, the RGC apoptosis was 

successfully visualised by DARC. Moreover, DARC was also used to analyse the pathogenesis 

of neurodegeneration. Interestingly, effects of novel agents such as memantine can be 

investigated by assessing RGC with this technology(Yap et al. 2018a). A human trial was also 

performed. It involved 8 patients with progressing glaucoma and 8 healthy people. Both groups 

received intravenous injections of fluorescent labelled annexin 5. The doses ranged from 0.1, 

0.2, 0.4 to 0.5 mg. Results showed the DARC counts (the total number of unique ANX776-

labelled spots) was significantly increased in glaucoma patients. Furthermore, ANX776 was 

proved to be safe and did not cause any serious adverse events(Cordeiro et al. 2017).  

In summary, DARC provides a promising method to directly measure structural changes in 

RGCs and improve understanding of the cellular mechanisms involved in the development of 

RGC degeneration. Importantly, DARC significantly reduce the detection time of glaucoma 

because the Annexin V binding only takes a few minutes(Ahmad 2017). However, further 

human studies are required.  

3.3 Artificial intelligence (AI) in glaucoma  



AI is an artificial entity capable of performing certain human tasks such as decision making 

and recognition of the features of certain subjects(Zheng et al. 2019). AI has flourished in 

recent times. Previously, computers could only execute instructions by a series of if-then 

statements programmed by a human. Advances in AI has led to Machine Learning (ML), 

whereby a computer can learn patterns of data rather than being programmed. However, it was 

not until Deep Learning (DL) algorithms were developed in 2010 that AI became more widely 

used in medicine (Salazar et al. 2021). DL is a subfield of ML. The artificial neural networks 

(ANN) form the backbone of DL. The ANN imitates the biological information processing 

pattern of the human brain. ANN consists of input layers, output layers and one or more 

intervening layers. A simple mathematical operation is regarded as an “artificial neuron” and 

several “neurons” form different layers(Mayro et al. 2019; Wu and Feng 2017). The “deep” in 

DL actually refers to the depth of intervening layers which significantly inprove the data 

analysis ability of DL(Salazar et al. 2021). Convolutional neural networks (CNN) are a type of 

DL construct particularly suited to recognising images(Salazar et al. 2021). The input or the 

image undergoes feature extraction and classification, this data is processed and the results are 

output (Figure 15). Features (such as special tissue or pathology) are extracted by several 

hidden layers following the input layer. The hidden layers work in hierarchy, so a hidden layer 

analyses the features extracted by the previous layer, with more layers allowing the extraction 

of more sophisticated features(Kaur and Khosla 2020).  



 

Figure 15. Diagram of Convolutional neural networks. In the convolutional neural network 

framework (CNN) portions of the image (red box) are reduced into mathematical 

representations and features are analysed in the hidden layers. Features are characterised by 

data and similar data is combined. Several repetitions in multiple layers produce the final 

output. 

An important part of AI is data volume and due to the retinal imaging and functional data in 

ophthalmology comprising big datasets, there have been increasing interest in using AI for 

diagnostic and prediction in diseases such as glaucoma.   

3.3.1 AI for glaucoma diagnosis 

Measures of disease activity in glaucoma are based on assessing the structural and functional 

damage using techniques such as IOP, VF test, fundus images and OCT(Prabhakar et al. 2021). 

However, analysis of the results of these investigations poses a challenge and is dependent on 

the experience of doctors with differing opinions leading to disagreements in 

management(Wang et al. 2019). AI has been shown to have a significant potential in assisting 

complex data and image analysis which allow AI to differentiate glaucomatous functional 

and/or structural changes form normal eyes(Zheng et al. 2019). 



VF testing is a routine test to measure the disease activity in glaucoma because it directly 

assesses visual function. The application of computer algorithm in automated visual field 

testing is a significant advancement(Mayro et al. 2019). Algorithms provide several reliability 

parameters, a numeric figure of visual sensitivity and global indices which improve the 

accuracy of VF test. Recently, AI has been shown to be capable of differentiating glaucomatous 

visual field from normal eyes(Zheng et al. 2019). Goldbaum et al firstly developed a two-layer 

artificial neural network for the analysis of the visual field damage in 1994 and the results were 

comparable with the diagnosis provided by 2 specialists (Goldbaum et al. 1994). In the 

subsequent studies, huge number of AI systems were developed. For instance, Kucur et al 

developed a CNN algorithm that differentiated glaucoma patients from normal people with 

great average precision of 0.874±0.095(Kucur et al. 2018). Li et al also introduced a DL 

algorithm that detected glaucomatous change with the accuracy of 0.876, and the accuracy was 

higher than other machine learning models(Li et al. 2018a).  

Assessing structural change plays important roles in diagnosis of glaucoma. Fundus 

photographs is one of the simplest methods to assess structural change of optic disc and plays 

important roles in glaucoma screening(Benzebouchi et al. 2018; Mursch-Edlmayr et al. 2020). 

Combining AI with fundus photography has already been proved to be a powerful approach to 

measure the structural change. For instance, Raghavendra et al developed a eighteen-layer 

CNN system which was able to signigicantly detected the glaucomatous structural changes 

from fundus photography(Raghavendra et al. 2018). The system was trained in 1426 images 

and the accuracy reached to 98.13% with PPV (positive predictive value) of 

98.79%(Raghavendra et al. 2018).  Li et al enlarged their training set to 48000 fundus 

photographs which allowed their DL systems detect the optic neuropathy accurately (Li et al. 

2018b; Liu et al. 2019).  



OCT is regarded as the standard measures of assessing structural damage in glaucoma due to 

its accuracy and reproducibility. Many AI programs have been developed for the analysis of 

OCT images(García et al. 2020). One example is a DL algorithm developed to assess the RNFL 

thickness(Ran et al. 2019). The algorithm was able to analyse the OCT images and generated 

heatmaps which indicated the glaucomatous neuropathy area (Figure 16) (Ran et al. 2019). Li 

et al introduced a AI system which was able to adjust the influence of age, gender, and ocular 

biometric parameters and improve the accuracy of diagnosis based on RNFL thickness(Li et 

al. 2021). García et al introduced a deep learning system which could highlight the 

glaucomatous structural change in the circumpapillary OCT images(García et al. 2020). 

Devalla et al developed a DL algorithm analysed ONH from OCT images which has been 

proven to perform well in differentiating glaucoma from normal individuals, with high 

sensitivity, specificity and accuracy(Devalla et al. 2018). Another study focused on BMO-

MRW. Thompson et al. developed a deep learning algorithm to quantify the glaucomatous 

damage of optic nerve via BMO-MRW(Thompson et al. 2019). It showed a high accuracy 

(0.945 AUC) in detecting and glaucoma(Thompson et al. 2019). Moreover, there are also 

several programs which have been developed to measure the disease activity in glaucoma using 

a macular vessel density, optic disc, and cup parameters(Miri et al. 2015; Park et al. 2018b).  



 

Figure 16. Examples of OCT images and corresponding heatmaps of normal, mild glaucoma, 

moderate glaucoma and advanced glaucoma.  a. The cross-sectional OCT images and heatmaps. 

b. The en face OCT images and heatmaps. The value of 1 (red) indicate the greatest diagnosis 

ability to discriminate glaucomatous damage, whereas the 0 (blue) represent the greatest 

diagnosis ability to discriminate normal tissue. Adapted with permission from Ran et al. 

Copyright © 2019 Ran et al. Published by Elsevier Ltd. 

To improve the discriminatory power of AI, some research groups tried to combination 

functional and structural damage. One study trained the ANN on the optic nerve head (ONH) 

parameters and VF indices. They found that the accuracy of the ANN was higher when trained 

with both parameters (88%) than trained with only one parameter (80% for the ONH parameter 

and 84% for VF indices)(Devalla et al. 2020).  Kim et al built several AI modals which were 

able to combine the data of RNFL thickness and visual field(Kim et al. 2017b). Even though it 



is challenging to train AI on both functional and structural parameters, such AI models show 

impressive performance for glaucoma detection. Apart from functional and structural damage 

in glaucomatous eyes, researchers also focused on combination of genetic data to develop a 

new approach for glaucoma assessment(Devalla et al. 2020).  

3.3.2 AI for prediction in glaucoma progression  

Prediction the progression plays important roles in management of glaucoma. To predict the 

progression, patients could receive several tests over lots of visits, and managing these data is 

time consuming and requires the expertise of clinicians(Devalla et al. 2020). Several studies 

have evaluated the accuracy of AI in the forecasting of glaucomatous disease. For instance, 

Wen et al indicated the deep learning network could  forecast the visual field loss(Figure 

17)(Wen et al. 2018). They developed, trained and tested the DL network with the results of 

24–2 Humphrey Visual Field test from 1998 to 2018 from a university database. The model 

successfully forecasted visual field of glaucoma patients up to 5.5 years. The average difference 

between predicted and actual loss was only 0.41 dB and the correlation of mean deviation (MD) 

was 0.92(Wen et al. 2018). Similarity, Yousefi et al indicated that machine learning was 

capable of detecting glaucoma progression early even for slowly progressing eyes(Yousefi et 

al. 2018). 



 

Figure 17. The actual visual field and the AI predicted visual field. The point-wise mean 

absolute errors for the VF input 1 was 3.8, 3.8, 5.1, and 4.0 dB for 1.1, 2.7, 3.6 and 4.5 years, 

respectively. And the point-wise mean absolute errors for the VF input 2 was 2.3, 2.5, 3.2, and 

3.2 dB for 1.2, 2.0, 3.0 and 4.1 years, respectively. Adapted with permission from Wen et al. 

Copyright © 2019 Wen et al. 

AI systems were also trained to predict glaucoma progression based on structural change 

assessment. Christopher et al developed a ML system and applied it to OCT 

images(Christopher et al. 2018). The system significantly detected the glaucomatous structural 

change and could predict the glaucoma progression by analysing circumpapillary retinal nerve 

fiber layer (cpRNFL) thickness (AUC 0.74)(Christopher et al. 2018). A CNN-aided algorithm 

was developed to automatically measure DARC counts, a novel technology to visualize the 

dead retinal ganglion cells. The CNN system overcame several limitations of manual 

assessment such as intra- and inter-operator variability. Most importantly, the study showed 

the system had a potential to predict OCT structural progression of glaucoma(Normando et al. 

2020), using a cellular activity measurement.  



All things considered, AI has a great potential to enhance glaucoma assessment and monitoring 

with a reasonable efficiency and accuracy. However, it still has some limitations. For example, 

huge numbers of images are required to train the AI and the quality of images greatly affects 

the accuracy of the results. It is challenging and expensive to obtain a vast number of high-

quality images to serve as a training set(Devalla et al. 2020; Zheng et al. 2019). Moreover, few 

studies report the positive predictive value as a measure of accuracy of the AI algorithm. In 

comparison, the indices that are commonly used to describe the accuracy of AI such as AUC, 

sensitivity and specificity are subjective, do not really provide the evidence that the probability 

that subjects with a positive screening test truly have the disease and cannot be directly 

compared with different studies. Therefore, there is insufficient evidence to summarise the 

diagnostic performance of an AI model only based on these indices.  Further studies are 

required prior to employing these techniques on a large scale in glaucoma management. 

Table 5. Summary of AI studies in glaucoma 

Data type Assessment Sensitivity  Selectivity  PPV& NPV Comments Reference 

VF Diagnostic - - - 

Average 

precision: 

87.4±9.5% 

Kucur et al. 

2018 

VF Diagnostic 93.2% 82.6% - 
Accuracy: 

87.60% 

Li et al. 

2018a 

Fundus 

photography 
Diagnostic 98.00% 98.30% PPV: 98.79% 

Accuracy: 

98.13% 

Raghavendra 

et al. 2018 

Fundus 

photography 
Diagnostic 98.5% 93.3% 

PPV: 92.1% 

NPV: 98.8% 
AUC: 0.98 

Benzebouchi 

et al. 2018 

RNFL OCT 

image 
Diagnostic 81.1% 77.9% 

PPV: 78.6% 

NPV: 80.5% 

Accuracy: 

79.5% 

Li et al. 

2021 

Circumpapillary 

OCT image 
Diagnostic 85.1% 96.88% 

PPV: 94.44% 

NPV: 91.18% 

Accuracy:  

92.3% 

AUC: 0.9594 

García et al. 

2020 

ONH + VF Diagnostic 90% 84% - Accuracy: 88%  
Brigatti et al. 

1996 

RNFL + VF  Diagnostic 98.3% 97.5% - 
Accuracy: 98% 

AUC: 0.979 

Kim et al. 

2017b 

VF Progression - - - 

Forecasted VF 

loss up to 5 

years 

Wen et al. 

2018 

RNFL Progression - - - AUC: 0.74 
Christopher 

et al. 2018 

DARC Progression 85.7% 91.7% - 
Accuracy: 

89.0% 

Normando et 

al. 2020 

 



4. Conclusion  

Glaucoma is regarded as a significant public health challenge worldwide(Allison et al. 2020).  

It significantly impacts the quality of life and has substantial economic effects on both patients 

and society(Dirani et al. 2011; Quaranta et al. 2016). Early diagnosis of glaucoma therefore is 

urgently needed. This review summarised both the current clinical tests and emerging 

technologies to measure the disease activity in glaucoma include IOP test, VF test and 

OCT(Phu et al. 2020). However, they are suboptimal in some cases. Moreover, sophisticated 

equipment and well-trained operators are necessary to perform these examinations, making 

these tests less accessible(Nduaguba and Lee 2006). On the other hand, a study indicated the 

cost of the conventional glaucoma detection methods (include optic disk tomography, nerve 

fiber analysis, and tonometry) reached to 1,435€ per case in Spain(Anton et al. 2017). To meet 

the need of improving glaucoma detection and monitoring, new technologies in development 

could be valuable supplements to traditional methods. 

As a relatively easily accessed fluid of the ocular system, the tear fluid is considered a good 

source of molecular biomarkers(Hagan et al. 2016). Development of tear-analysing 

technologies such as microfluidic paper-based devices and contact lenses significantly improve 

the sensitivity and accuracy of molecular biomarker detection in tears(Park et al. 2018a; 

Yetisen et al. 2017). More importantly, compared with traditional clinical tests of glaucoma, 

these devices are more rapid, inexpensive, and user-friendly, which makes them suitable in 

clinics and at point-of-care settings(Moreddu et al. 2020). However, the analysis of the results 

remains challenging. Future work will focus on improving novel approaches for more sensitive 

and specific detection techniques as well as providing clear guideline for sample addition and 

data processing to increase the reproducibility of the test.  

The DARC assesses a unique marker of glaucoma by directly visualising the apoptosis of 

retinal ganglion cells. The Phase I clinical trial successfully demonstrated the safety and 



tolerability of DARC, and it is now undergoing Phase 2 clinical trials(Yap et al. 2020a). It has 

already been shown to possess the potential to estimate the neurodegeneration in glaucoma 

patients faster and more cost-effective. With its implementation of artificial intelligence, it can 

minimise errors caused by manual assessment. However, DARC is a fairly new and 

experimental technology, further trials are needed in the future. The development of AI 

significantly increases its diagnostic ability for glaucoma. AI can potentially be an essential 

adjunct to glaucoma diagnosis in the future. However, getting a large and high-quality training 

set with several ophthalmic conditions (such as severity of glaucoma or other diseases) and 

covers all ages, ethnicities is highly recommended to improve the diagnosis ability of AI. 

Moreover, clear medical guidelines and agreements are also necessary to make it more 

acceptable. Therefore, in the future, development of AI technologies and multiple 

comparations between AI tools and traditional diagnostic practice are still needed. Clinicals 

can expect the AI tools are able to help in diagnosis in the future.  

These promising methods could produce more reliable results in an easier way reducing the 

reliance on operator skills and environment leading to better glaucoma diagnosis and 

monitoring. We hope this review will aid future work on the development of novel strategies 

to monitor glaucoma.  
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