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Abstract— In this paper, we present a backstepping adap-
tive hybrid force/position control based on Barrier Lyapunov
Function for a robotic manipulator to prevent constraint
violation of applied force and position simultaneously. First,
the task space is partitioned according to the constrained and
unconstrained directions, and a new representation of dynamics
is introduced. Next, force/position control is applied using the
strict-feedback backstepping technique, in which a time-varying
Barrier Lyapunov Function is employed to ensure that the force
and position do not violate their constraints. Finally, to deal
with uncertainty, disturbance and non-linearity of the system,
an adaptive radial basis function neural network (RBFNN) is
also implemented in the control algorithm. Stability proof of the
proposed control method is presented, and simulation studies
on a 2-link manipulator show the effectiveness as well as the
performance of the proposed controller in preventing constraint
violation.

I. INTRODUCTION
For many contact tasks performed by robot manipula-

tors (e.g. grinding, scribing, deburring and assembly-related
tasks), it is desired to control the interaction force between
end-effector and the environment while following a pre-
scribed motion trajectory [1]. To achieve these tasks, several
approaches have been introduced in the robotic literature
which have been categorized as compliant motion control,
pure force control and hybrid force/motion control [2].

Raibert and Craig [3] proposed a simple approach to con-
trol compliant motions of a robot manipulator. They divided
the manipulator task configuration into position constraints
along the normals to a generalized task surface and force con-
straints along the tangents of that surface. Slotine and Li [4]
extended their joint-space adaptive control approach to free
and constrained motions in Cartesian space and introduced
adaptive strategies for hybrid force/motion control. Khatib
[5] introduced a unified approach for motion and force
control of robot manipulators in which he developed a frame-
work for the analysis and control of manipulator systems
with respect to the dynamic behaviour of end-effectors. He
also defined the generalized task specification matrices which
involved end-effector motion (both position and orientation)
and contact forces (both forces and moments) described in
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the frame of reference. Lozano and Brogliato [2] introduced
an approach to decompose representation of robot dynamic
which enables one to clearly distinguish force, position and
redundancy in joint and Cartesian space. C.M Kwan [6]
also used the same approach to introduce a sliding-adaptive
technique. Kouya et al. [1] presented a general scheme of
an adaptive force/position control using the strict-feedback
backstepping technique.

Intelligent control techniques such as neural network and
fuzzy logic systems have been applied in control systems
to approximate uncertainties and estimate the non-linearity
of systems due to their learning capability. Kwan et al. [7]
proposed a tuning scheme for a class of general nonlinear
systems using neural networks (NNs) based on backstepping
technique. Kwan [8] also applied the NN controller with on-
line tuning algorithm to achieve force and motion control of
constrained rigid robots.

One of the biggest challenges in robotic force control
is the high impact force during the transition from non-
contact phase to contact phase. A force overshoot would
damage the workpiece, or result in chattering effect, where
the tool keeps hitting the workpiece and bouncing back. One
common approach to reduce the force overshoot is to let the
robot approach the workpiece slowly. However, this increases
the overall cycle time. To achieve both a minimal force
overshoot and high speed response, Lai [9], [10] proposed
a nonlinear damping control scheme. However, this method
does not guarantee a limit of force within the constraints.
This motivated us to propose a solution based on using
a time-varying Asymmetric Barrier Lyapunov Function to
prevent constraint violation as presented in this paper.

Although employing a suitable Lyapunov candidate func-
tion for investigating of the stability of control system is a
common practice in the robotics, this approach would not
guarantee to prevent constraint violation. However, the Bar-
rier Lyapunov Function (BLF) has only recently received sig-
nificant attention from the control community for its ability to
prevent constraint violations. Tee et al [11] presented control
designs for SISO non-linear systems in strict feedback form
with an output constraint. Tee et al [12] also introduced
an adaptive control which uses a time-varying BLF (TV-
BLF). The TV-BLF can lead to a significant improvement
because the set of feasible initial positions is expanded to
the entire constrained task space. Liu et al [13] proposed
an adaptive control-based neutral network to estimate the
unknown function of a system and used TV-BLF to overcome



the violation of constraints.
This paper takes advantage of TV-BLF to design force and

position control systems that achieve a hybrid force/position
control which does not violate the constraints. In order to
design the controller, the task space is divided into two
subspaces to introduce a new presentation of manipulator
dynamics along the constrained and unconsidered direction.
Since the dynamics can be written in a strict-feedback form,
a backstepping controller incorporating the TV-BLF is used
to stabilise the system and guarantee the boundedness of the
position/force response. An adaptive radial basis neural net-
work estimator is also employed to cope with uncertainties
and nonlinearities of the manipulator. A stability analysis is
performed to show the stability of the closed loop system,
and simulation studies demonstrate the effectiveness of the
proposed control algorithm.

The remainder of this paper is organized as follows. In
section II, the joint and Cartesian representation of robot’s
dynamics, the model of the environment, and the problem
formulation are presented. Section III is devoted to the de-
velopment of hybrid force/motion control in the sense of TV-
BLF. In section IV, a simple two-arm robot in contact with
a wall is used to demonstrate the efficacy and performance
of the proposed control scheme, followed by the conclusions
in section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Dynamics of Rigid Robots

Consider an n-link manipulator described in joint space:

M (q) q̈+Vm (q, q̇) q̇+G(q)+F (q̇)+ τd = τact − τint (1)

where q, q̇, q̈ ∈ Rn×1 are the vector of generalized dis-
placement, velocity, and acceleration respectively in joint
coordinate, M (q) ∈ Rn×n is a symmetric positive definite
inertia and mass matrix, Vm (q, q̇) ∈ Rn×n is a matrix of the
Coriolis and centrifugal forces, F (q̇) ∈ Rn×1 represents the
friction terms, G(q) ∈ Rn×1 denotes the vector of gravity
forces, τact , τint ,τd ∈ Rn×1 are the joint input torque, the
joint torque due to interaction force with the environment,
and the disturbance torque respectively.

The Cartesian space is related to the joint space as follows:

X = Ω(q) , Ẋ =
∂Ω

∂q
q̇≡ J (q) q̇ (2)

where X = [X1,X2, . . . ,Xm]
> ∈Rm (m≤ 6) is the vector of

Cartesian position and orientation of the manipulator end-
effector in a frame of reference R0 fixed on the robot base,
and Ẋ ∈ Rm is the derivatives of X with respect to time.
J (q) ∈ Rm×n is the Jacobian matrix.

In addition, based on the principle of conservation of
energy [14], the relationship between the interaction force
and the joint torque is:

τint = J> (q)Fint (3)

where Fint ∈ Rm×1 is the interaction force with the environ-
ment in the frame of reference R0. Therefore, the Cartesian

representation of (1) can be written as follows:

Mx(X)Ẍ +Vmx(X , Ẋ)Ẋ +Gx(X)+Fx(Ẋ)+Fd = Fact −Fint
(4)

B. Model of Environment

Let us to consider a transformation matrix R ∈ Rm×m

between compliance and operational coordinates and X ,F
and Xc,Fc as position and force parameters with respect to
based frame and compliance frame respectively. Now, same
as [15], the environment can be modelled as a frictionless and
deformable plane. Thus, the elastic model of the environment
leads to: {

Fc
int = K (Xc−Xc

env) , Xc ≥ Xc
env,

Fc
int = 0, Xc < Xc

env.
(5)

where Xc = R>(t)X , Fc = R>(t)F and K ∈ Rm×m is a
diagonal constant stiffness matrix and Xc

env ∈ Rm×1 is the
contact position when the robot starts to exert force on the
environment.

C. Problem Formulation

In the presence of force and position constraints in opera-
tional and compliance frames, the control system is required
to ensure that the robot exerts the desired force normal to
a given surface without violating a given force constraint,
while following a desired motion trajectory tangential to the
surface, also without breaching a motion constraint. Let us
assume that the force and motion outputs with respect to
compliance frame are Fc and Xc, where both are required to
remain in the following bounded set:

Bc
f i(t)≤ Fc

i ≤ Bc
f i(t) ∀t ≥ 0 and i≤ p

Bc
xi(t)≤ Xc

i ≤ Bc
xi(t) ∀t ≥ 0 and i > p

(6)

By using (5), (6) becomes:

Bc
f i(t)

Ki
+Xc

envi ≤ Xc
i ≤

Bc
f i(t)

Ki
+Xc

envi ∀t ≥ 0 and i≤ p

Bc
xi(t)≤ Xc

i ≤ Bc
xi(t) ∀t ≥ 0 and i > p

(7)

To express both force and position in term of position only,
we can define:

Bc(t)≤ Xc ≤ Bc
(t) (8)

where:

Bc(t) = [
Bc

f 1(t)

K1
+Xc

env1, . . . ,
Bc

f p(t)

Kp
+Xc

envp,

Bc
x(p+1)(t) , . . . ,Bc

xm(t) ]

(9)

and

Bc(t) = [
Bc

f 1(t)
K1

+Xc
env1, . . . ,

Bx f p(t)
Kp

+Xc
envp,

Bc
x(p+1)(t) , . . . ,Bc

xm(t) ]

(10)

By using R−1 = R> and Xc = R>(t)X , (8) becomes:

B(t)≤ X ≤ B(t) (11)



where B(t) = RBc(t) and B(t) = RBc(t).

The control objective is to track the desired forces and
position trajectories while ensuring that all closed loop
signals are bounded and that the output constraint is not
violated. The desired force and position trajectories are:

[Fc
intd1

,Fc
intd2

, . . . ,Fc
intd p
|,Xc

d p+1 . . . ,Xc
dm]
> (12)

which can also be expressed in terms of positions only:

Xc
d = [

Fc
intd1

K1
+Xc

env1, . . . ,
Fc

intd p

Kp
+Xc

envp,

Xc
d p+1 . . . ,Xc

dm]

(13)

by using Xc = R>(t)X in (13), we obtain:

Xd = R−>Xc
d (14)

Some assumptions are required to facilitate the control
system design:
Assumption 1: There exist constants Bi1, Bi2, Bi1 and Bi2
such that |Bi| ≤ Bi1, |Bi| ≥ Bi1, |Ḃi| ≤ Bi2, and |Ḃi| ≥ Bi2
∀t > 0.
Assumption 2: There exist functions X i0 : R+ → R+ and
X i0 : R+ → R+ that satisfy X i0 < Bi and X i0 > Bi ∀t, and
positive constants X i1 and X i1 such that the desired trajectory
Xid and its time derivative satisfy X i0 < Xid < X i0 and X i1 <
Ẋid < X i1.

Several lemmas are also required to facilitate the control
design. Due to the page limitation, reference for lemmas will
be given without providing the details:
Lemma 1: Barrier Lyapunov Function theory in [12] will be
used to establish constraint satisfaction and performance.
Lemma 2: Logarithm inequalities in [16] will be used in the
stability analysis.
Lemma 3: Young’s inequality in [17] will be also used in
the stability analysis, especially in transforming matrices of
the neural network weight to the norm of those matrices.

III. TIME-VARYING BLF-BASED CONTROL

Let us define η1 = X and η2 = Ẋ , which lead to the strict
feedback representation of equation (4) as follow:

η̇1 = η2

η̇2 = M−1
x
[
Fact −Vmxη2−Gx−Fd

−RK
(
R>η1−Xc

env
)] (15)

where all the arguments of the functions are not shown
for the sake of clarity. The controller can then be designed
through the following steps:
Step 1: Design a fictitious control α1 such that the state
η1 tracks the desired position Xd . To this end, only an
upper bound is required for forces since an excessive force
overshoot may damage the workpiece or result in chattering.
Thus, the lower bound can be ignored. In this case, the
asymmetric barrier Lyapunov Function is an excellent tool to
deal with this requirement, as it allows different upper and

lower limits. In this work, the asymmetric barrier Lyapunov
function proposed in the literature is chosen as follows:

V1(z1) =
1
2r

n

∑
i=1

log
1

1−ξ 2r
i
. (16)

where z1 =η1−Xd is the tracking error, and the time-varying
barriers are given by

Bai := Xdi−Bi(t)

Bbi := Bi(t)−Xdi
(17)

h(z1i) :=

{
1 z1i > 0
0. z1i ≤ 0

(18)

and

ξai =
z1i

Bai
,ξbi =

z1i

Bbi
, and ξi = hiξbi +(1−hi)ξai (19)

Note that the condition |ξi(t)| < 1 holds iff −Bai < z1i <
Bbi [16].

Throughout this paper, for ease of notation, we abbreviate
each function by omitting its arguments, unless otherwise
stated.

It is clear that V1 is positive definite and continuously
differentiable in the set |ξi|< 1. V̇1 is given by

V̇1 =
n

∑
i=1

ξ̇iξ
2r−1
i

1−ξ 2r
i

=
n

∑
i=1

hiξ
2r−1
bi

Bbi(1−ξ 2r
bi )

(
ż1i− z1i

Ḃbi

Bbi

)
+

n

∑
i=1

(1−hi)ξ
2r−1
ai

Bai(1−ξ 2r
ai )

(
ż1i− z1i

Ḃai

Bai

) (20)

Define z2 = η2−α1 which is another tracking error, where
α1 is a stabilizing function to be designed. Since z1 = η1−
Xd , ż1 = η̇1− Ẋd = η2− Ẋd = z2 +α1− Ẋd . The stabilizing
function α1 is then designed as:

α1 =−Λ1z1 + Ẋd (21)

where Λ1 = diag
[
λ11 +λ 11,λ12 +λ 12, . . . ,λ1n +λ 1n

]
∈

Rn×n
+ and

λ 1i (t) =

√(
Ḃai

Bai

)2

+

(
Ḃbi

Bbi

)2

+βi (22)

where λ1i and βi are positive design parameters which ensure
that the time derivatives of α1 are bounded even when both
Ḃai and Ḃbi are zero. By defining

µi =
h1i

B2r
bi − z2r

1i
+

1−h1i

B2r
ai − z2r

1i
(23)

and the fact that

λ 1i +h1i
Ḃbi

Bbi
+(1−h1i)

Ḃai

Bai
≥ 0. (24)

by substituting (21) in to the equation (20), we obtain

V̇1 ≤−
n

∑
i=1

λ1iξ
2r
i

1−ξ 2r
i

+
n

∑
i=1

µiz2r−1
1i z2i. (25)



As the first term of (25) is negative-definite in the |ξi|< 1
domain, it can be concluded that V̇1 will become negative-
definite if the second terms is negative semi-definite. This
will be ensured through the subsequent step, where the
second term is cancelled.

Step 2: Design the controller Fact such that z2 approaches
zero, or equivalently η2 tracks α1 (which was designed in
step 1). Since η2 does not need to be constrained, consider
a Lyapunov Function (LF) candidate by augmenting V1 with
a quadratic function [13] [11]:

V2 =V1 +
1
2

z>2 z2 (26)

Differentiating V2 leads to

V̇2 = V̇ 1 + z>2 ż2 =⇒ V̇ 2 = V̇ 1 + z>2 (η̇2− α̇1) (27)

and by defining:

U(Z) = [U1(Z), . . . ,Un(Z)]>

=−M−1
x [Vmxη2 +Gx +Fd+

RK
(
RT

η1−Xc
env
)
+Mxα̇1]

(28)

equation (27) becomes:

V̇2 = V̇ 1 + z>2
[
M−1

x Fact +U(Z)
]
. (29)

By substituting (25) in (29), we obtain:

V̇2 ≤−
n

∑
i=1

λ1iξ
2r
i

1−ξ 2r
i

+
n

∑
i=1

µiz2r−1
1i z2i + z>2

[
M−1

x Fact +U(Z)
]
.

(30)
If U(Z) were fully known, Fact could be designed as:

Fact =−Mx [Λ2z2 +U(Z)+A] (31)

where Λ2 = diag [λ21,λ22, . . . ,λ2n] ∈ Rn×n
+ is the di-

agonal control gain matrix with λ2i > 0.5 and A is
[µ1z2r−1

11 ,µ2z2r−1
12 , . . . ,µnz2r−1

1n ]>.
Substituting (31) into (30) leads to

V̇2 ≤−
n

∑
i=1

λ1iξ
2r
i

1−ξ 2r
i
−

n

∑
i=1

λ2iz2
2i (32)

which means the chosen ABLF (16) and LF (26) are stable
and the tracking errors, z1 and z2, converge to a small
neighborhood of zero.

In equation (31), Fact has been designed assuming that
U(Z) is known. However, in practical applications, this term
is quite difficult to be obtained accurately as there are many
model uncertainties and disturbances. Therefore, U(Z) will
be handled separately in the next step.

Step 3: Design an adaptive neural network to compen-
sate for the unknown function U(Z). In this work, the
unknown function U(Z) will be estimated via a radial basis
function neural network (RBFNN), whose input is Z =
[X>, Ẋ>, α>1 , α̇>1 ]> ∈ ΩZ . The unknown function U(Z)
can be modeled as:

Ui(Z) =W ∗Ti Si(Z)+ εi(Z) (33)

where Si(Z) = [Si1(Z),Si2(Z), . . . ,Sisi(Z)]
> ∈ Rsi , si > 1 is

the number of nodes in the RBFNN and Si j(Z) is selected
as a Gaussian function which is given by,

Si j(Z) = exp
(
−(Z−Zi j)

>(Z−Zi j)

ϕ2
i

)
(34)

where Zi is the center of the ith input and ϕi is the width
of the Gaussian function. εi(Z) is the neural network ap-
proximation error, whereas W ∗i is the optimal neural network
weight for which εi(Z) would be the smallest.

Since U(Z) is unknown, W ∗ is also unknown. Therefore,
the RBFNN has to be implemented as

Ui,NN = Ŵ>i Si(Z) (35)

where Ŵ is an estimate for W ∗. Fact in (31) is now imple-
mented as:

Fact =−Mx [Λ2z2 +UNN(Z)+A] (36)

Substituting (33), (35), (36) into (30) leads to:

V̇2 ≤−
n

∑
i=1

λ1iξ
2r
i

1−ξ 2r
i
−

n

∑
i=1

λ2iz2
2i +

n

∑
i=1

z2iεi(Z)

−
n

∑
i=1

z2iW̃>i Si(Z)
(37)

where
W̃i = Ŵ −W ∗i (38)

is the neural weight error. To reduce the W̃i while maintaining
the stability of all states, consider the following Lyapunov
function:

V3 =V2 +
1
2

n

∑
i=1

W̃ T
i Γ
−1
i W̃ i. (39)

Differentiating (39) and using (37) gives:

V̇3 ≤−
n

∑
i=1

λ1iξ
2r
i

1−ξ 2r
i
−

n

∑
i=1

λ2iz2
2i +

n

∑
i=1

z2iεi(Z)

−
n

∑
i=1

z2iW̃>i Si(Z)+
n

∑
i=1

W̃>i Γ
−1
i

˙̂Wi.

(40)

The adaptive control law is designed as follows [13]:

˙̂Wi = Γi
[
z2iSi(Z)−σiŴi

]
(41)

where Γi = Γ>i > 0 is the gain matrix, and σi > 0, i =
1,2, . . . ,n is a small constant.

By using the adaptive control law (41), (40) becomes:

V̇3 ≤−
n

∑
i=1

λ1iξ
2r
i

1−ξ 2r
i
−

n

∑
i=1

λ2iz2
2i +

n

∑
i=1

z2iεi(Z)

−
n

∑
i=1

σiW̃>i Ŵi

(42)

Based on lemma 2 and 3 and by substituting (38) into (42)
we can obtain:



Fig. 1: Two link manipulator

V̇3 ≤−
n

∑
i=1

λ1i log
1

1−ξ 2r
i
−

n

∑
i=1

(
λ2i−

1
2

)
z2

2i +
1
2

n

∑
i=1

ε
2
i (Z)

− 1
2

n

∑
i=1

σi‖W̃i‖2 +
1
2

n

∑
i=1

σi‖W ∗i ‖2.

(43)

By selecting parameters ρ and C as follows:

ρ = min [2rλ1i,2λ2i−1,σiλmin(Γi)]

C =
1
2

n

∑
i=1

σi‖W ∗i ‖2 +
1
2

n

∑
i=1

ε
2
i (Z)

(44)

where λmin(Γi) is the minimum eigenvalue of Γi, (43)
becomes

V̇3 ≤−ρV3 +C. (45)

Therefore, based on Lemma 1, z1, z2 and Ŵ in the close-
loop system will remain uniformly ultimately bounded. By
multiplying both side of (45) by eρt and integrating over
[0, t], we can indicate that V3 is bounded as follows:

0≤V3(t)≤V3(0)e−ρt +
C
ρ
. (46)

Now, by assuming that ξ → 1, then the Lyapunov function
V3→∞ which contradicts the boundedness of the Lyapunov
function. This means that ξ cannot grow to 1.

IV. SIMULATION

Consider a two link robot with two revolute joints as
shown in Fig.1. The robot model and its parameters can be
found in [18].

In this particular case, R(θ = 30°) is a constant matrix
and the desired force and position are given as 10 N and
−0.4sin(t)exp(−t) m respectively. It should be noted that
force and position are also required to remain in the set:
max(Fc−Fc

d )< 1N and max(Xc−Xc
d )< 0.06m.

The performance of the proposed controller in tracking the
desired position and force trajectories are shown in figures 2
and 3 respectively. As can be seen, the proposed controller
successfully prevented the violation of the force and position
constraints. Figures 4 and 5 show that the force and position
errors converge to small values around zero.

Finally, the corresponding neural network weights are
given in figure 6. It can be seen that the weights slowly
converges and will not grow unbounded.

Fig. 2: Force Trajectory

Fig. 3: Position Trajectory

Fig. 4: Force Error

Fig. 5: Position Error

For comparison purpose, we also ran a simulation for a
controller which is derived purely based on conventional
Quadratic Lyapunov Function (QLF) which does not take
constraints into consideration. The comparison result is
shown in figure 7, in which we can see that the applied
force exceeded the desired bounds using the QLF approach,
whereas with the BLF approach the applied force remained
in desired set.

V. CONCLUSION

In this paper, a backstepping adaptive hybrid force/position
control which takes the manipulator dynamics into consid-
eration has been introduced to prevent constraint violation
of the applied force and position. Firstly, we introduced a
new representation of dynamics based on the constrained and



Fig. 6: Neural network weights

Fig. 7: BLF compared with QLF

unconstrained directions. Next, based on the strict-feedback
backstepping technique, a force/position control was de-
signed by incorporating a Time-Varying Barrier Lyapunov
Function (BLF), which grows to infinity when its arguments
approach some finite limits. By defining proper bounded set
for both force and position, the Barrier-Lyapunov-Function-
based controller in the closed loop ensures that these limits
are not transgressed. Finally, an appropriate RBFNN weight
update law were implemented to compensate uncertainty,
disturbance and non-linearity of the system and improve the
system robustness. A stability analysis has been provided,
and finally, the effectiveness of the proposed controller
was illustrated via simulations on a two-link manipulator.
Simulations showed that the actual force and position do not
exceed the limits by using the BLF controller, in contrast
to the case of using a conventional quadratic Lyapunov
Function.
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