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Abstract—This paper presents a pose fusion method that
accounts for the possible correlations among measurements.
The proposed method can handle data fusion problems whose
uncertainty has both independent part and dependent part.
Different from the existing methods, the uncertainties of the
various states or measurements are modeled on the Lie algebra
and projected to the manifold through the exponential map,
which is more precise than that modeled in the vector space. The
dealing of the correlation is based on the theory of covariance
intersection, where the independent and dependent parts are split
to yield a more consistent result. In this paper, we provide a novel
method for correlated pose fusion algorithm on the manifold.
Theoretical derivation and analysis are detailed first, and then
the experimental results are presented to support the proposed
theory. The main contributions are threefold: (1) We provide a
theoretical foundation for the split covariance intersection filter
performed on the manifold, where the uncertainty is associated
on the Lie algebra. (2) The proposed method gives an explicit
fusion formalism on SE(3) and SE(2), which covers the most
use cases in the field of robotics. (3) We present a localization
framework that can work both for single robot and multi-robots
systems, where not only the fusion with possible correlation is
derived on the manifold, the state evolution and relative pose
computation are also performed on the manifold. Experimental
results validate its advantage over state-of-the-art methods.

Index Terms—Pose fusion, localization, Lie group, covariance
intersection

I. INTRODUCTION

DATA fusion is a key technique in the field of robotics
in many tasks, such as Simultaneous Localization And

Mapping (SLAM) [1]–[3], object tracking [4]–[6], and robot
controlling [7]–[9]. The basic problem of data fusion is to
obtain a fused estimate given several measurements of the
same state. An important use case of the fusion algorithm
is the pose estimate for robots, as we have various manners of
measuring the robots’ movement, i.e., inertial measurement
unit (IMU), wheel encoder, visual odometer, LiDAR-based
localization, GPS, relative pose estimation among robots via
communication. The problem of how to yield a more consis-
tent and robust pose estimate from all the available sources
is an interesting research topic for several decades [10]–[14].
One noteworthy fact is that there are possible correlations
among the various types of measurements, which is hard
to measure beforehand. Because the estimate by different
measurements may be based on the redundant information
across different sensors or algorithms. Another fact is that the
robot naturally moves on the Lie group of SE(3) or SE(2),
and linearizing it in vector space causes an error for the fusion,
composition, and relative pose measurement process [15],
[16]. Developing an algorithm that takes the correlation into

consideration and models robot movement and measurement
uncertainty on the Lie group is still to be investigated.

The filtering-based method takes the robot kinematics and
estimation from measurement into consideration concurrently,
where the procedure of pose evolution and measurement
update proceed alternatively. Kalman filter [17] and its variants
[18]–[20] are the most commonly used algorithms for filtering-
based pose fusion. Kalman filter assumes Gaussian noise in the
state evolution and measurement update, where no correlation
is considered. Particle filter [21]–[23] utilizes the Monte Carlo
method to sample the posterior probability by forming the
filtering as a maximum a posteriori (MAP) problem. The
benefit of the particle filter is that it does not require Gaussian
distribution of the noise or approximation of the nonlinearity
by Taylor expansion. So, it is usually more accurate and robust
than the Kalman filter when there is enough number of parti-
cles. While on the other hand, the computational efficiency of
the particle filter is usually much lower than that of the Kalman
filter. Neither of these two types of fusion methods can take the
possible correlation among measurements into consideration.
To associate the correlation, covariance intersection filter [24]
was utilized in the task of robot pose fusion [25]–[27],
especially for the multi-robot systems. The idea of splitting
dependent and independent parts of the measurements and
tackling them separately was introduced in [28]–[30], which
is called split covariance intersection filter.

One drawback of the methods mentioned above is that the
uncertainties of the state or measurements are modeled in the
vector space. While in reality, the robots’ movement is on
the special Euclidean Lie group SE(3), approximate the pose
and uncertainty in vector space induces error for estimation. To
address this problem, some studies [15], [16] estimate the pose
directly on the Lie group. In these works, the authors model
the uncertainty of the robot pose estimation on Lie algebra,
then project it onto the Lie group when computing the pose.
Results therein show the advantage of uncertainty modeled
on Lie algebra over that in the vector space. Compared with
[15], the method in [16] takes correlation into consideration
for pose composition, inverse, and relative pose computation.
Nevertheless [16] assumes the correlation is known, which
is not the case in reality. Besides, it did not deduce the
fusion strategy but only composition, inverse, and relative pose
computation, as the derivation of fusion multi-measurements
is not straightforward like that of composition, inverse, and
relative pose computation.

To fill the gap of correlated pose fusion on the Lie group,
we propose the split covariance intersection filter on the Lie
group in this paper. The uncertainty is split into dependent
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and independent parts. First, we derive the filtering strategy of
split covariance intersection, where the uncertainty is modeled
on Lie algebra. Then we give the explicit formalism of pose
estimation algorithm for a multi-agent system for the partial
observation case, where the propagation of uncertainty and
state is incorporated. The organization of the rest of this paper
is as follows. In Section II, related works towards pose fusion
for robots are reviewed. Section III give some preliminaries
for the derivation of the split covariance intersection filter
on the Lie group, which includes the covariance intersection
theory and knowledge of Lie group. Section IV presents the
split covariance intersection filter on the Lie group and its
theoretical analysis in detail, which is the core part of this
paper. Experimental results and comparison with state-of-the-
art methods are presented in Section V. Finally, Section VI
concludes the paper.

II. RELATED WORKS

Given two or more measurements of the same variable
where we know the level of uncertainty for every measure-
ment, the fusion algorithm aims to estimate a more consistent
value of the state that utilizes all the measurements. It is not
always the more measurements to be fused, the better the result
will be. As the measurement with large uncertainty may draw
the fused result farther from the ground truth, though its effect
decreases as its uncertainty increases. If we assume the system
is linear and the uncertainty is Gaussian, then the fusion
problem can be solved by Kalman filter [31]. While in reality,
the system is usually nonlinear, e.g., robot pose estimation
is nonlinear as rotation incorporated. Extended Kalman filter
(EKF) [32] approximates the nonlinearity by using the first-
order Taylor expansion. Unscented Kalman filter (UKF) [33]
approximates the nonlinearity with unscented transform, which
can approximate the nonlinearity with the second order. Thus,
it is more accurate than EKF. Recently, cubature rule was
used to approximate the nonlinear integrals, which yields the
cubature Kalman filter (CKF) [34]. CKF can approximate
the nonlinearity with the fifth order, which means it is more
accurate than EKF and UKF. The Kalman filter family is
based on the state-space model with the predictive update
using the system model and the observation update using the
measurement model. Usually, the measurement is not the state
directly, and these two procedures proceed alternatively.

To avoid the assumption of Gaussian noise of system and
measurement, particle filter [35] models the fusion system in
a probabilistic manner. It utilizes the Monte Carlo algorithm
to compute the posterior distributions. The objective is to
maximize the posterior probability given the prior knowledge
and the likelihood of the measurements. Because it does
not rely on any linearization or Gaussian assumption, the
particle filter is more generalized than the Kalman filter family.
Especially when the noise is not Gaussian, particle filter can
perform better than the Kalman filter. While particle filter has
the sampling degeneracy problem as the iteration goes on,
various resampling algorithms [36]–[39] have been proposed
to deal with this problem. Besides, the computation complexity
of the particle filter is much higher than the Kalman filter,

especially when the number of particles need to be drawn is
large.

Kalman filter and particle filter assume the measurements
are independent, while in reality, especially the multi-agent
systems, this assumption does not hold. To incorporate the
scheme of correlation, authors in [40] proposed the covariance
intersection (CI) algorithm. CI regards the measurements to
be fused as totally correlated and adjusts the correlation
through a parameter. When there are independent parts, results
by CI may be pessimistic. The same authors proposed the
split covariance intersection in [30], where the dependent
and independent parts of the source estimates are tackled
separately. Consistency of CI and Split Covariance Intersection
(SCI) has been proved in [29], [30], [40]. Its advantage
over Kalman filter has also been presented therein, especially
for the decentralized localization of multi-agent systems, the
benefit is remarkable. All the methods mentioned so far are
operated in the vector space, i.e., the uncertainty of states and
measurements are small perturbation around the vectorized
parameter (translation and rotation, three parameters in 2D
case, and six parameters in 3D case). While for the robot pose
estimation problem, the state and measurement are nonlinear
and forms Lie group naturally. There are offset between the
linearized vector space and the real state on Lie group when
implementing the algorithms directly.

In [15], [41], the authors addressed this problem by mod-
eling the uncertainty on Lie algebra and projecting it to Lie
group by exponential map. The authors derived propagation
and fusion case therein and applied it for pose estimation with
a nonlinear camera model. But [15], [41] did not consider the
correlation between different source estimates, i.e., it assume
all the states are independent. To incorporate the correlation,
authors in [16] characterized the uncertainty of jointly dis-
tributed poses in the lie algebra. Besides propagation, they also
derived the form of inverse pose given a single measurement,
and the relative pose given two measurements originate from
the same point. Results on simulation data and real-world
SLAM datasets validate the advantage of that method. But
the method in [16] assumed the measurements are totally
correlated and did not consider the partially correlated case.
Here the partially correlated means the noise consists of two
parts; The first part is independent component, which is not
correlated by any other noise; The second part is the dependent
component, which is jointly corrupted with the noise of other
measurements. In contrast, totally correlated case only has
the dependent component. Extending it to partially correlated
case is not straightforward. Besides, they did not derive the
form of fusion case, which is more complicated than that of
propagation, inverse, and relative pose computation.

Authors in [42]–[44] proposed the Invariant Extended
Kalman Filter (IEKF), which extend the fusion on Lie group
to the dynamic system. For IEKF, the state and error are
defined on the Lie group, which makes it independent from
the true state that needs to be estimated. It is proved in [44]
that IEKF is stable under any trajectory compared to the
standard EKF which can be only stable around the ground-
truth trajectory. This means that its is convergence guaranteed
with arbitary initialization. In [45], it is further pointed out
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that IEKF can be extended to handle nonlinear constraints by
geometric equalities other than that of the Lie group. In [46],
[47], the authors prove that the observability of the IEKF is
consistent with the nonlinear system therein. It means that
the IEKF-based algorithm can avoid inconsistency caused by
the linearization points in the standard EKF. IEKF achieves
better performance than the standard EKF in many robotics-
related tasks, e.g., SLAM [48], [49], attitude estimation [43],
robot state estimation [47]. But the IEKF does not consider the
underlying correlation between different observation sources,
which makes the estimation over-confident under the circum-
stances that the correlation really exists. This is one of the
motivations for this paper. It is not difficult to verify that
IEKF is a special case of the proposed method when we
do not consider the underlying correlation and takes the first-
order term as approximation in the Lie algebra. In [50], [51],
the authors make a further extension which assumes that the
observation is also on the Lie group. In [52], the unscented
transform is used to approximate the system dynamics on the
Lie group, the results therein show that UKF-based algorithm
is more robust than IEKF when the noise become bigger. In
[53], the authors extend the multistate constraint Kalman filter
to the Lie group based on the idea of Invariant EKF, and then
applied it to the visual inertial odometry system. While the
correlation was still not considered in these literatures.

To the best of the authors’ knowledge, there is no algorithm
that gives the formalism of partially correlated pose fusion
whose uncertainty is modeled on Lie algebra so far, which
is the main motivation of this paper. In the theoretical level,
we give the full pipeline and derivation of correlation pose
fusion scheme on Lie group, which can be regarded as the
extension of SCI to manifold. In the application level, we give
the form of system evolution and update for partial observation
case. The proposed method is validated through a multi-
robot localization experiment, comparison, and discussion with
respect to the baseline, and state-of-the-art methods are also
presented.

III. PRELIMINARIES

A. Split Covariance Intersection Filter

First, we give a brief review of Kalman fusion scheme. If
we have multiple estimate sources with white Gaussian noise
for the same state (we take two sources for instance in this
paper, cases of more than two is easily to extend), estimate
sources here refers to algorithms or hardware that provide the
estimation of robot pose. the Kalman filter fuse these sources
using the following criteria:

Σ̂−1 =Σ−11 + Σ−12

p̂ =Σ̂(Σ−11 p1 + Σ−12 p2)
(1)

where p1 and p2 are the estimate sources, Σ1 and Σ2 are
their covariance respectively. p̂, Σ̂ are the fused estimate
and covariance. The intuition behind Kalman filter can be
interpreted as minimization of Mahalanobis distance, as we
assume Gaussian noise of the estimate sources. But in many
applications, p1 and p2 do not measure the same state. For
discrete fusion case, we usually fuse the result of previous step

with the system model, which we call the predictive update.
Then we fuse the predictive result with the measurement from
the sensors or algorithms, which we call the measurement
update. These two procedures proceed alternatively in an
iterative manner. Given a state space model:

xk =Fxk−1 + Buk + wk

yk =Hxk + vk
(2)

where xk is the state at time k, uk is the known control input,
yk is the measurement. F, B, and H are the state transform
matrix, input matrix, and measurement matrix. wk and vk are
the white Gaussian noise, whose covariance are Qk and Rk.
Then the predictive update is:

x̂k|k−1 =Fx̂k−1|k−1 + Buk

Pk|k−1 =FPk−1|k−1F
T + Qk

(3)

The measurement update is:

Kk =Pk|k−1H
T
(
HPk|k−1H

T + Rk

)−1
x̂k|k =x̂k|k−1 + Kk(yk −Hx̂k|k−1)

Pk|k = (I−KkH) Pk|k−1

(4)

where Kk is called the Kalman gain.
As mentioned in Section I, Kalman filter does not consider

possible correlation between the estimate sources p1 and p2.
In [40], the authors proposed CI to take correlation into
consideration. The fusion strategy of CI can be denoted as:

Σ̂−1 =

(
Σ1

ω

)−1
+

(
Σ2

1− ω

)−1
p̂ =Σ̂

[(
Σ1

ω

)−1
p1 +

(
Σ2

1− ω

)−1
p2

] (5)

where ω ∈ [0, 1] is a coefficient to measure correlation level
between the estimate sources. CI assumes the estimate sources
are totally correlated, which may yield too conservative result
when there are independent parts of the sources. An improved
version of CI called SCI was proposed in [30], the fusion
strategy of SCI is:

Σ1 =
Σ1,d

ω
+ Σ1,i,Σ2 =

Σ2,d

1− ω
+ Σ2,i

Σ̂−1 = Σ−11 + Σ−12 , p̂ = Σ̂(Σ−11 p1 + Σ−12 p2)

Σ̂i = Σ̂(Σ−11 Σ1,iΣ
−1
1 + Σ−12 Σ2,iΣ

−1
2 )Σ̂, Σ̂d = Σ̂− Σ̂i

(6)

where Σd denotes the covariance of dependent part of p, and
Σi denotes the covariance of independent part of p, and Σ̂,
Σ̂i, Σ̂d denote the corresponding estimated covariance. SCI
is a general extension of CI, if Σ1,i = Σ2,i = 0, it reduces
to CI. The partial observation case based on the state space
model can be deduced from equation (2) to equation (4), and
can also be found in [29], [30].

B. Lie Group Theory

In [15], the authors give a detailed derivation of the uncer-
tianty modeld on Lie group. Inspired by that, we list some
of the important formulas from [15] that will be used in the
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derivation in the following to make this paper self-contained.
The robot’s pose can be denoted as T that lies on the special
Euclidean Lie group of SE(3) and can be expressed as a 4×4
matrix:

T =

[
R t
0T 1

]
(7)

where R is a 3 × 3 rotation matrix that forms the special
orthogonal Lie group of SO(3), t is a 3D vector denotes the
translation. The Lie algebra of SO(3) is denoted as so(3) can
be represented as skew-symmetric matrix. Since the dimension
of so(3) is 3, we can define an operator ∧ that transform an
element of R3 to an element of so(3):

φ∧ =

φ1φ2
φ3

∧ =

 0 −φ3 φ2
φ3 0 −φ1
−φ2 φ1 0

 (8)

A measurement of the pose T can be denoted as x1 =
exp(ξ∧1 )⊕T1, where T1 ∈ SE(3) is a noise free mean value,
ξ1 = [ρT1 ,φ

T
1 ]T =

[
ρ1,1 ρ1,2 ρ1,3 φ1,1 φ1,2 φ1,3

]T ∈
R6 is a noisy perturbation, and it is unbiased Gaussian with
ξ1 ∼ N (0,Σ1). The operator ⊕ is the group plus operation,
e.g., matrix multiplication for SE(3), similarly we can also
define the group minus operation as 	. For convenience of
representation, we omit it if it is matrix multiplication on
SE(2) or SE(3) in the following of this paper. The operator
∧ casts the vector onto Lie algebra se(3) which lies on the
tangent space of SE(3):

ξ∧1 =


0 −φ1,3 φ1,2 ρ1,1
φ1,3 0 −φ1,1 ρ1,2
−φ1,2 φ1,1 0 ρ1,3

0 0 0 0

 (9)

where the left top 3 × 3 corner is Lie algebra φ∧1 ∈ so(3)
of SO(3) and is skew-symmetric. We can also define the
inverse operation ∨ that (ξ∧)∨ = ξ. The Lie algebra and Lie
group are related by exponential map and logarithm map, i.e.,
exp(ξ∧) ∈ SE(3) and log(T) ∈ se(3). The exponential map
can be expressed as:

exp(ξ∧) =

∞∑
k=1

(ξ∧)k

k!
= I + ξ∧ +

(ξ∧)2

2
+ . . . (10)

The logarithm map can be expanded in a similar way. The
strategy here is that we model the uncertainty in tangent space
with Gaussian distribution and then wrap it the Lie group
through exponential map, the process can be seen in Fig.1.
We can define the probability density function (PDF) of x1

over SE(3):

p(T) = C(Σ1) exp

−1

2
([log(TT−11 )]∨︸ ︷︷ ︸

εT1

)TΣ−11 εT1

 (11)

where C(Σ1) is the normalization constant. Note that we
project the geodesic from the mean to variant on Lie group
onto its tangent space with vector representation, which is
Gaussian. Another interesting relationship between the Lie
group and Lie algebra is the Baker-Campbell-Hausdorff for-
mula (BCH) [54]. Given two Lie algebra elements ξ∧1 and ξ∧2 ,

Fig. 1. An illustration of the uncertainty around point ”A” in the Lie algebra,
and then project the uncertainty to the Lie group through exponential map.
Shadow on the plane denotes uncertainty in the vector space around ”A”.
Then it is wrapped to the Lie group denoted in green blow, where red circle
denotes the uncertainty. The outmost circle corresponds to the boundary of
the shadow in the vector space. The more inside the circle is, the higher
probability the uncertainty affects.

the Lie algebra of the exponential composition of them can be
expressed as:

ξ∧1,2 = log(exp(ξ∧1 ) exp(ξ∧2 ))

=

∞∑
n=1

(−1)n−1

n

∑
ri+si>0
i∈[1,n]

(ξ∧1 )r1(ξ∧2 )s1 · · · (ξ∧1 )rn(ξ∧2 )sn

r1!s1! · · · rn!sn!

= ξ∧1 + ξ∧2 +
1

2
[ξ∧1 , ξ

∧
2 ]

+
1

12
([ξ∧1 , [ξ

∧
1 , ξ

∧
2 ]] + [ξ∧2 , [ξ

∧
2 , ξ

∧
1 ]]) + · · ·

(12)

where [·, ·] is the Lie bracket, and [ξ∧1 , ξ
∧
2 ] = ξ∧1 ξ

∧
2 −ξ∧2 ξ∧1 on

se(3), ri, si ∈ N. According to [15], if we define the operator
f as:

ξfi =

[
ρi
φi

]f
=

[
φ∧i ρ∧i
0 φ∧i

]
(13)

where the operator ∧ is defined as equation (8) shows. Then
the Lie bracket can be expressed as [ξ∧1 , ξ

∧
2 ] = (ξf1 ξ2)∧. So,

the BCH formula is:

ξ∧1,2 =ξ∧1 + ξ∧2 +
1

2
(ξf1 ξ2)∧

+
1

12
((ξf1 ξ

f
1 ξ2)∧ + (ξf2 ξ

f
2 ξ1)∧) + . . .

(14)

Further, if we assume one of the variant is small and ignore
the high-order of it, takes ∨ operator, then we can get:

ξ12 ≈ ξ2 + J−12 ξ1 ≈ ξ1 + J−11 ξ2 (15)

where J−1i is the inverse Jacobian related to ξi:

J−1i =

∞∑
n=0

Bn
n!

(ξfi )n (16)

and Bn are the Bernoulli numbers:

B0 = 1, B1 = −1

2
, B2 =

1

6
, B3 = 0, . . . , (17)
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It was pointed in [15] that Ji is the left Jacobian of SE(3)
with definition:

Ji =

∞∑
n=0

1

(n+ 1)!
(ξfi )n =

∫ 1

0

exp(ξ∧i )αdα (18)

We also introduce the adjoint operation as follows:

AdT(ξ∧) := AdTξ
∧ = log(T exp(ξ∧)T−1) (19)

which can yield the following formation:

T exp(ξ∧) = exp(AdTξ)T (20)

IV. METHODOLOGY

A. Problem Definition

Given two estimate sources of the ground-truth robot pose,
the fusion algorithm aims to yield a better estimate. In this
paper, we give the derivation of split covariance intersection
case, as the totally correlated fusion can be seen as a special
case of split covariance intersection with the independent part
as zero. Different from [29], state here is computated on Lie
group, and uncertainty of the estimate source is modeled on
Lie algebra and projected to the Lie group. Different from
[15], both the dependent and independent parts of the state are
considered in the process of fusion. We assume the estimate
sources are corrupted by white Gaussian noise, and denote
them as:

x1 = {p1,Σ1,i + Σ1,d},x2 = {p2,Σ2,i + Σ2,d} (21)

where the expectations p1 and p2 are elements on the
Lie group, e.g., SE(3), SE(2). The measurement x1 =
exp(ξ∧1 )p1, x2 = exp(ξ∧2 )p2, ξ1 and ξ2 are the perturbation
around their expectations, whose covariance are Σ1,i + Σ1,d

and Σ2,i+Σ2,d respectively. Σ1,i and Σ2,i are the independent
covariance, Σ1,d and Σ2,d are the dependent covariance. Here
the uncertainty is modeled using a Gaussian distribution on
the Lie algebra, and then projected on the Lie group by the
exponential map. It is meaningful for both left and right
multiplication, [15] indicates that left multiplication of the
uncertainty has advantage over the right counterpart. The
problem to be investigated in this paper is how to compute
a better estimate x̂, specifically the fused expectation p̂, and
the covariance on the Lie algebra Σi, Σd, with x1 and x2.
An illustration of the pose fusion problem can be seen in Fig.
2.

B. Fusion Strategy

As the uncertainty perturbs the measurement on Lie group,
the uncertainties of different measurements located at different
points need to be associated on the Lie group. First, the
intuition behind the fusion needs to be clarified. The fused
result can be regarded as a convex combination of the two
estimate sources. Given two estimates and their covariance
x1 = {p1,Σ1}, x2 = {p2,Σ2}, the fused result can be
denoted as:

p̂ = W1p1 + W2p2 (22)

where W1 > 0, W2 > 0 are positive definite coefficients, and
we also have W1+W2 = I. Then, these two coefficients need

Fig. 2. An illustration of the pose fusion problem with uncertainty modeled in
Lie algebra. The two measurements are pose estimate from ”i” to ”j” denoted
in orange and green, respectively. The fusion result is denoted in blue. The
ellipses denote uncertainties in the Lie algebra, and they have both dependent
and independent parts.

to be solved according to the optimization criteria. Usually,
the result is obtained by minimizing Mahalanobis distance or
determinant of the fused covariance. The covariance of the
fused result can be defined as:

Σ = E
[
(p̂− p̄)(p̂− p̄)T

]
= E [(W1(p1 − p̄)

+W2(p2 − p̄))(W1(p1 − p̄) + W2(p2 − p̄))T
] (23)

where p̄ is the ground truth of p. If we assume x1 and
x2 are independent, i.e., E[(p1 − p̄)(p2 − p̄)T ] = 0, then
Σ = W1Σ1W

T
1 + W2Σ2W

T
2 . Substituting W2 = I−W1,

taking the derivative with respect to W1 and setting to zero
will exactly lead to the result shown in equation (1). If the
two estimates are dependent, i.e., E[(p1 − p̄)(p2 − p̄)T ] =
Σ12 6= 0, then Σ = W1Σ1W

T
1 +W2Σ2W

T
2 +W1Σ12W

T
2 +

W2Σ21W
T
2 . Usually, the correlation Σ12 is unknown, ignor-

ing it may cause inconsistent problem for the fusion. In [30],
the authors proposed that Σ always lies within the intersection
of Σ1 and Σ2 no matter what the choice of Σ1,2 is. To prevent
inconsistency of correlated fusion, [30] proposed to add a
parameter in the fusion, which guarantees that uncertainty of
the fused result covers the intersection of the uncertainties
of the estimated sources. The fusion strategy of [30] is as
equation (5) shows. This is based on the fact that

[
Σ1 Σ1,2

Σ2,1 Σ2

]
6

[
ωΣ−11 0

0 (1− ω)Σ−12

]−1
(24)

always holds no matter what Σ1,2 is.
The previous fusion is derived in the vector space, for fusion

on the manifold, the strategy is quite different. Influence of the
uncertainty is not linearly imposed on the estimate. Following
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the idea of [15], error between the estimate source and the
optimal estimate p∗ can be expressed as:

εk = log(p∗p−1k )∨ = log
(
exp(ξ∧)p̂p−1k

)∨
= log (exp(ξ∧) exp(ξ∧k ))

∨ (25)

where ξ = log(p∗p̂−1)∨ is the difference between the optimal
estimate and our best guess so far, and ξk = log(p̂p−1k )∨ is the
difference between our best guess so far and each individual
estimate. Applying BCH formula in equation (12), the error
can be expressed as:

εk ≈ ξk + J−1k ξ (26)

According to equation (16), the inverse Jacobian is:

J−1k =

∞∑
n=0

Bn
n!

(ξfk )n (27)

Here we assume ξ is small, i.e., there is no big difference
between the current best estimate and the optima. At the
beginning, there may be a gap between the estimate and
the optima if we do not have a good initialization. As the
iteration goes on, the gap will become smaller and smaller.
And in the last several iterations, this assumption will hold.
This means that we still ignore the higher-order terms of ξ
at the beginning. Though this approximation is not accurate
enough for first several iterations, it still can minimize the
error and drive the estimate towards the real optima.

We need to get an optimal solution of ξ to compensate the
current best estimate proceeding to the real optimal estimate.
As the error is an approximation, the result is not analytic nor
optimal for one optimization step, this compensation procedure
needs to be implemented iteratively until ξ is small enough.
Because initialization is not close enough to the optimal value,
and after every iteration, it moves closer to the optima. The
criteria to get the optimal value at every step is to minimize
Mahalanobis distance with respect to ξ. We define the cost
function using Mahalanobis distance as:

V =
1

2

[
ε1
ε2

]T [
Σ1 Σ1,2

Σ2,1 Σ2

]−1 [
ε1
ε2

]
(28)

where Σ2,1 = ΣT
1,2 is unknown. According to equation (21),

Σ1 = Σ1,i + Σ1,d, Σ2 = Σ2,i + Σ2,d, where Σ1,i and
Σ2,i denote the independent parts, Σ1,d and Σ2,d denote the
dependent parts. Combining with equation (24), we have:[

Σ1 Σ1,2

Σ2,1 Σ2

]
=

[
Σ1,i 0

0 Σ2,i

]
+

[
Σ1,d Σ1,2

Σ2,1 Σ2,d

]
6

[
Σ1,i + 1

ωΣ1,d 0
0 Σ2,i + 1

1−ωΣ2,d

] (29)

Then, we model a more conservative cost function by substi-
tuting the covariance matrix with:

V =
1

2

[
ε1
ε2

]T [
Σ1,i + 1

ωΣ1,d 0
0 Σ2,i + 1

1−ωΣ2,d

]−1 [
ε1
ε2

]
=

1

2
(ξ1 + J−11 ξ)T (Σ1,i +

1

ω
Σ1,d)

−1(ξ1 + J−11 ξ)+

1

2
(ξ2 + J−12 ξ)T (Σ2,i +

1

1− ω
Σ2,d)

−1(ξ2 + J−12 ξ)

(30)

Taking the derivative of V with respect to ξ and set it to zero,
we can get:

ξ = −
(
J−T1 (Σ1,i +

1

ω
Σ1,d)

−1J−11 + J−T2 (Σ2,i

+
1

1− ω
Σ2,d)

−1J−12

)−1(
J−T1 (Σ1,i +

1

ω
Σ1,d)

−1ξ1

+J−T2 (Σ2,i +
1

1− ω
Σ2,d)

−1ξ2

)
(31)

The updated covariance is:

Σ =

(
J−T1 (Σ1,i +

1

ω
Σ1,d)

−1J−11 + J−T2 (Σ2,i

+
1

1− ω
Σ2,d)

−1J−12

)−1 (32)

The choice of ω can be determined by optimizing the update
with respect to different performance criteria, such as mini-
mizing the trace or the determinant of Σ. As the cost function
is convex to ω, lots of convex optimization algorithms can
be used here, e.g., Newton-Raphson, semidefinite and convex
programming.

At the last iteration, we can compute the independent and
dependent covariance of the fusion result. Let ξ = ξi + ξd,
where ξi and ξd denote the independent and correlated com-
ponents of the uncertainty respectively. At every iteration,
the uncertainty of ξk lies on the estimate source pk, as the
previous estimate p̂ can be regarded as constant. So, we have:

ξ = ξi + ξd = −Σ

(
J−T1 (Σ1,i +

1

ω
Σ1,d)

−1ξ1

+J−T2 (Σ2,i +
1

1− ω
Σ2,d)

−1ξ2

) (33)

Squaring both sides, taking expectations, and collecting the
independent terms, the updated independent covariance is:

Σi = Σ

(
J−T1 (Σ1,i +

1

ω
Σ1,d)

−1Σ1,i(Σ1,i +
1

ω
Σ1,d)

−TJ−11 +

J−T2 (Σ2,i +
1

1− ω
Σ2,d)

−1Σ2,i(Σ2,i +
1

1− ω
Σ2,d)

−TJ−12

)
Σ

(34)

The updated dependent covariance is Σd = Σ−Σi. We can
update the estimate by:

p̂←− exp(ξ∧)p̂ (35)

This is easily to extend to fusion case of various estimate
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sources:

ξ =−

(
n∑
k=1

J−Tk (Σk,i +
1

ωk
Σk,d)

−1J−1k

)−1
·(

n∑
k=1

J−Tk (Σk,i +
1

ωk
Σk,d)

−1ξk

)

Σ =

(
n∑
k=1

J−Tk (Σk,i +
1

ωk
Σk,d)

−1J−1k

)−1
p̂← exp(ξ∧)p̂

Σi =Σ

(
n∑
k=1

J−Tk (Σk,i +
1

ωk
Σk,d)

−1Σk,i

·(Σk,i +
1

ωk
Σk,d)

−TJ−1k

)
Σ

ωk ∈[0, 1],

n∑
k=1

ωk = 1

(36)

The fusion strategy is summarized in Algorithm 1.

Algorithm 1: Split Covariance Intersection on Lie Group
Input: Esimate sources: pk
Output: Fusion result: p∗

1 Initialize: p̂, ξk = log(p̂p−1k )∨

2 Compute the updated covariance:

Σ =
(∑n

k=1 J
−T
k (Σk,i + 1

ωk
Σk,d)

−1J−1k

)−1
3 Minimize trace of Σ to get ω
4 while not converge do
5 Compute the compensation of the pose:

6 ξ = Σ
(∑n

k=1 J
−T
k (Σk,i + 1

ωk
Σk,d)

−1ξk

)
7 Update the estimate: p̂← exp(ξ∧)p̂
8 end
9 Update the independent covariance Σi as equation (34)

10 Compute the dependent covariance: Σd = Σ−Σi

C. Fusion for Partial Observation Case

We consider a more general case in terms of pose estimation
for robots, i.e., the two estimate sources do not reflect the
same states. This is quite common in the field of robotics, for
example, one estimate is 6D movement measurement from
IMU, while the other is just 3D position from GPS. The state
space model on Lie group is different from that in the vector
space shown in equation (2), which can be expressed as:

Xk =Xk−1 ⊕ uk

Yk = exp(ξh∧)H(Xk)
(37)

where uk = exp(ξu∧k )ūk is the control input at time step k,
with measurement ūk and uncertainty ξuk whose covariance
is Σu. H is the transition function which can be linear or
nonlinear, uncertainty of it is denoted by ξh on the Lie algebra
whose covariance is Σ2,i + Σ2,d. The measurement can be in
the vector space, which can be regarded as a special case of

the Lie group. It also satisfies the above definition. Here we as-
sume that the predictive process is not corrupted by correlated
noise, as the measurements from IMU, wheel encoders are
independent from each other at different timestamp, and are
independent from the observation as well. The fusion strategy
consists of two steps: predictive update and measurement
update. The predictive update is based on the predictive model
(first equation of equation (37)), which updates the estimate
according to the control input. The measurement update is
based on the measurement model (second equation of equation
(37)), which updates the estimate when new measurement
arrives. Next, the formula of these two steps will be derived
in detail.

Predictive update Both the estimate and its uncertainty are
propagated in the predictive update. Inspired by [16], formula
of the predictive update can be expressed as:

exp(ξ∧k|k−1)pk|k−1 = exp(ξ∧k−1|k−1)pk−1|k−1 exp(ξu∧k )ūk

= exp(ξ∧k−1|k−1) exp(Adpk−1|k−1
ξu∧k )pk−1|k−1ūk

(38)

where the second equal sign holds because of equation (19).
So, we can predict the estimate as:

pk|k−1 = pk−1|k−1ūk (39)

Then the uncertainty part is:

exp(ξ∧k|k−1) = exp(ξ∧k−1|k−1) exp(Adpk−1|k−1
ξu∧k ) (40)

Using the BCH formula shown in equation (14), we can get:

ξk|k−1 = ξk−1|k−1 + ξu′k +
1

2
ξfk−1|k−1ξ

u′
k +

1

12
ξfk−1|k−1ξ

f
k−1|k−1ξ

u′
k +

1

12
ξu′fk ξu′fk ξk−1|k−1−

1

24
ξu′fk ξfk−1|k−1ξ

f
k−1|k−1ξ

u′
k + . . .

(41)

where ξu′k = Adpk−1|k−1
ξuk . To compute the covariance after

prediction, we can derive it from the definition:

E[ξk|k−1ξ
T
k|k−1] ≈ E

ξk−1|k−1ξTk−1|k−1 + ξu′k ξ
u′T
k︸ ︷︷ ︸

2nd Order Diagonal Terms

+ ξk−1|k−1ξ
u′T
k + ξu′k ξ

T
k−1|k−1︸ ︷︷ ︸

2nd Order Cross Terms

+ · · ·︸︷︷︸
Higher Order Terms


(42)

As we assume the predictive noise is independent, expectation
of all the cross terms are zeros. Ignoring the higher order
terms, a first order estimate of the covariance is:

E[ξk|k−1ξ
T
k|k−1] ≈ E

[
ξk−1|k−1ξ

T
k−1|k−1

]
+ E

[
ξu′k ξ

u′T
k

]
(43)

which yields:

Σk|k−1 ≈ Σk−1|k−1 +Adpk−1|k−1
Σu
kAd

T
pk−1|k−1

(44)

In equation (44), the frist term is the uncertainty last timestep,
the second term is uncertainty from the control input prop-
agating to the current prediction. Based on the independent
assupmtion, we can also have:

Σi
k|k−1 = Σi

k−1|k−1 +Adpk−1|k−1
Σu
kAd

T
pk−1|k−1

(45)
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The correlated uncertainty remains the same Σd
k|k−1 =

Σd
k−1|k−1.
Measurement update The estimate and its uncertainty are

updated by fusing the predicted result and the measurement in
this step. Different from that in the vector space, measurement
update on the Lie group needs to be optimized iteratively. We
needs to utilize the theorem presented in Section IV-B. Error
computation for the predictive estimate is same, we only need
to take a closer look at error computation for the measurement
estimate:

ε2 = log (H(p∗)	 yk)
∨

= log (H(exp(ξ∧)⊕ p̂)	 yk)
∨

= log

exp(JHξ∧)︸ ︷︷ ︸
exp(ξ′∧)

⊕(H(p̂)	 yk︸ ︷︷ ︸
exp(ξ∧2 )

)


∨

(46)

where the third equal sign is based on the form of left Jacobian
in [55] (equation (45) therein), JH is the left Jacobian of
function H, which can be expressed as:

JH =
DH(p̂)

Dp̂
=
∂ log(H(exp(τ )⊕ p̂)	H(p̂))

∂τ

∣∣∣∣∣
τ=0

(47)

Note that the function H can be a function by which the mea-
surement is still an element on the manifold (different from
the original element or manifold). In this case, we compensate
the error between the current and optimal estimates on the
original manifold and transform it by the same function. Or the
function H transforms the Lie group to the vector space, which
can be regarded as a special case of the manifold. Then, H
in equation (46) denotes the Jacobian computed from the Lie
group. Applying the BCH formula twice gives the following
form:

ε2 ≈ ξ2 + J−12 ξ′ = ξ2 + J−12 JHξ (48)

Applying the formula in Section IV-B, the update criteria at
one step can be given as:

Σ1 = Σi
k|k−1 +

1

ω
Σd
k|k−1

Σ2 = Σ2,i +
1

1− ω
Σ2,d

Σk|k =
(
J−T1 Σ−11 J

−1
1 + J THJ−T2 Σ−12 J

−1
2 JH

)−1
ξ1 = log(pk|kp

−1
k|k−1)∨, ξ2 = log(H(pk|k)	 yk)∨

ξ = −Σk|k
(
J−T1 Σ−11 ξ1 + J THJ−T2 Σ−12 ξ2

)
pk|k ←− exp(ξ∧)pk|k

(49)

After the last iteration, the independent and correlated covari-
ance of the fusion can be updated as:

Σi
k|k = Σk|k

(
J−T1 Σ−11 Σi

k|k−1Σ
−T
1 J

−1
1

+J THJ−T2 Σ−12 Σ2,iΣ
−T
2 J

−1
2 JH

)
Σk|k

Σd
k|k = Σk|k −Σi

k|k

(50)

It can be verified that the above fusion strategy for partial
observation case is consistent with that of Kalman filter
method (proved in the Appendix), what is different here is that
the fusion is derived on the Lie group. The fusion strategy for
the partial observation case is summarized in Algorithm 2.

Algorithm 2: SCI-LG for Partial Observation
Input: Control inputs uk, and measurements yk
Output: Fusion result pk|k

1 Initialize: p0

2 Predictive update:
3 State propogation: pk|k−1 = pk−1|k−1ūk
4 Uncertainty prediction: Σd

k|k−1 = Σd
k−1|k−1,

Σi
k|k−1 = Σi

k−1|k−1 +Adpk−1|k−1
Σu
kAd

T
pk−1|k−1

5 Measurement update:
6 Initialize pk|k = pk|k−1
7 Update the covariance Σk|k as equation (49)
8 Minimize trace of Σk|k with respect to ω
9 while not converge do

10 Compute the compensation ξ as equation (49)
11 Update estimate pk|k as equation (49)
12 end
13 Update the independent covariance as equation (50)
14 Compute the correlated covariance as equation (50)

D. Theoretical Analysis

Finally, in this section, we analyze the consistency of the
proposed method. Different from the consistency defined for
purely independent or dependent sources fusion, the case for
partially dependent fusion needs to consider both parts. In [29],
the authors give the definition and proof of split covariance
intersection filter in vector space. In this paper, we extend it to
the Lie group. Following the framework in [29], we discuss the
consistency in two cases: A-split consistency which is tightly
consistent, and B-split consistency which is relatively loosely
consistent.

A-split consistency: Given an estimate on the Lie group
{p,Σi + Σd} (we can image the uncertainty also has two
parts, i.e., ξ = ξi + ξd), it is A-split consistent if it satisfies:

Σd ≥ Σ∗d = E(ξ̄dξ̄
T
d ) Σi ≥ Σ∗i = E(ξ̄iξ̄

T
i ) (51)

where ξ̄i, and ξ̄d denote the real uncertainty of their estimate
respectively.

B-split consistency: Given an estimate on the Lie group
{p,Σi + Σd}, it is A-split consistent if it satisfies:

Σd ≥ Σ∗d = E(ξ̄dξ̄
T
d ) Σ ≥ Σ∗ = E(ξ̄ξ̄T ) (52)

Theorem 1: If the two estimate sources are both A-split
consistent, then the fusion result by the proposed method
shown in Algorithm 1 is A-split consistent for any ω ∈ [0, 1].

Proof 1: According to equation (33), we have:

ξi = −Σ

J−T1 (Σ1,i +
1

ω
Σ1,d)

−1︸ ︷︷ ︸
Q1

ξ1,i

+J−T2 (Σ2,i +
1

1− ω
Σ2,d)

−1︸ ︷︷ ︸
Q2

ξ2,i


(53)
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The independent covariance after fusion is as equation (34)
shows, then we have:

Σi − E[ξ̄iξ̄
T
i ] = Σ

(
Q1Σ1,iQ

T
1 + Q2Σ2,iQ

T
2

)
Σ−

Σ
(
Q1E[ξ̄1,iξ̄

T
1,i]Q

T
1 + Q2E[ξ̄2,iξ̄

T
2,i]Q

T
2

)
Σ =

Σ
(
Q1(Σ1,i − E[ξ̄1,iξ̄

T
1,i])Q

T
1 + Q2(Σ2,i − E[ξ̄2,iξ̄

T
2,i])Q

T
2

)
Σ

(54)

As the estimate sources are both A-split consistent, we have:

Σ1,i ≥ E[ξ̄1,iξ̄
T
1,i] Σ2,i ≥ E[ξ̄2,iξ̄

T
2,i] (55)

So, we can get:

Σi − E[ξ̄iξ̄
T
i ] ≥ 0 (56)

For the dependent part, because the estimate sources are
both A-split consistent, then

Σ1,d ≥ E[ξ̄1,dξ̄
T
1,d] Σ2,d ≥ E[ξ̄2,dξ̄

T
2,d] (57)

which yields:

Σd − E[ξ̄dξ̄
T
d ] = Σ−Σi −Σ

(
Q1E[ξ̄1,dξ̄

T
1,d]Q

T
1 +︸ ︷︷ ︸

Q2E[ξ̄2,dξ̄
T
2,d]Q

T
2 + Q1E[ξ̄1,dξ̄

T
2,d]Q

T
2 + Q2E[ξ̄2,dξ̄

T
1,d]Q

T
1︸ ︷︷ ︸

R


·Σ = Σ

(
Q1

1

ω
Σ1,dQ

T
1 + Q2

1

1− ω
Σ2,dQ

T
2 −R

)
Σ

≥ Σ

(
Q1

1− ω
ω

E[ξ̄1,dξ̄
T
1,d]Q

T
1 + Q2

ω

1− ω
E[ξ̄2,dξ̄

T
2,d]Q

T
2−

Q1E[ξ̄1,dξ̄
T
2,d]Q

T
2 −Q2E[ξ̄2,dξ̄

T
1,d]Q

T
1

)
Σ

= ΣE


[√

1− ω
ω

Q1ξ̄1,d −
√

ω

1− ω
Q2ξ̄2,d

]
︸ ︷︷ ︸

H

HT

Σ ≥ 0

(58)

Thus, A-split consistency of the fusion result based on the
proposed method has been proved. �

Theorem 2: If the two estimate sources are both B-split
consistent, then the fusion result by the proposed method
shown in Algorithm 1 is B-split consistent for any ω ∈ [0, 1].

Proof 2: According to Theorem 1, if we have Σd ≥
E[ξ̄1,dξ̄

T
1,d] and Σ2,d ≥ E[ξ̄2,dξ̄

T
2,d], then Σd −E[ξ̄dξ̄

T
d ] ≥ 0.

We only need to examine the other condition for the B-
split consistency. As the estimate sources are both B-split
consistent, we have:

Σ1 = Σ1,i+Σ1,d ≥ E(ξ̄1ξ̄
T
1 ),Σ2 = Σ2,i+Σ2,d ≥ E(ξ̄2ξ̄

T
2 )

(59)

which yields:

Σ− E[ξ̄ξ̄T ] = Σ

(
Q1(Σ1i +

1

ω
Σ1,d)Q

T
1 +

Q2(Σ2,i +
1

1− ω
Σ2,d)Q

T
2

)
Σ− E[ξ̄ξ̄T ]

= Σ

(
Q1(Σ1,i +

1

ω
Σ1,d − E[ξ̄1,iξ̄

T
1,i]− E[ξ̄1,dξ̄

T
1,d])Q

T
1 +

Q2(Σ2,i +
1

1− ω
Σ2,d − E[ξ̄2,iξ̄

T
2,i]− E[ξ̄2,dξ̄

T
2,d])Q

T
2

−Q1E[ξ̄1,dξ̄
T
2,d]Q

T
2 −Q2E[ξ̄2,dξ̄

T
1,d]Q

T
1

)
Σ

≥ Σ

(
Q1

1− ω
ω

E[ξ̄1,dξ̄
T
1,d]Q

T
1 + Q2

ω

1− ω
E[ξ̄2,dξ̄

T
2,d]Q

T
2−

Q1E[ξ̄1,dξ̄
T
2,d]Q

T
2 −Q2E[ξ̄2,dξ̄

T
1,d]Q

T
1

)
Σ

= ΣE


[√

1− ω
ω

Q1ξ̄1,d −
√

ω

1− ω
Q2ξ̄2,d

]
︸ ︷︷ ︸

H

HT

Σ ≥ 0

(60)

Thus, B-split consistency of the fusion result based on the
proposed method has been proved. �

V. RESULTS

This section presents the experimental results based on the
proposed method. We also compare it with some state-of-the-
art methods, after which discussion on the performance of
different methods is given.

A. Experiment Setup

The experiment consists of three parts, and the first part
presents a numerical study where we assume two fully ob-
served states of the robot pose are available. These two
estimates are corrupted by noises which both have independent
and dependent parts, respectively. The estimate is on SE(3)
Lie group which has 3D rotation and 3D translation. In this
experiment, we also test how the hyper-parameters affect
the precision of the fusion. Two hyper-parameters are tested
herein, i.e., the order of the inverse Jacobian J−1, and the
number of iterations for optimization of the final fusion result.
This gives a hint on the parameters we use for the second
experiment. Besides hyper-parameter testing, we also compare
the proposed method with state-of-the-art methods.

The second experiment is the joint localization simulation
of the multi-robot system which consists of several unmanned
aerial vehicles (UAV). Different from the ground vehicle
systems [29] whose pose estimate is implemented on SE(2),
motion of UAV is on SE(3). In this experiment, the estimate
sources come from three kinds of measurements: absolute
positioning measurement (APM), motion measurement (MM),
and relative positioning measurement (RPM). The APM gives
the absolute position of the vehicles; orientations of the
vehicles cannot be obtained by APM. Thus, it is a partial
observation as stated in Section IV-C. The frequency of this
measurement is usually not very high, e.g., 10Hz. Some typi-
cal examples of APM are the global positioning system (GPS),
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beacon-based localization system for indoor applications. MM
can give a fully 6D motion estimate between two timestamps.
Robot pose can be predicted based on it as described in
Section IV-C. The frequency of it is usually high, e.g., 100Hz.
A typical example of MM is the inertial measurement unit
(IMU). RPM gives relative pose between two vehicles. It can
provide the 3D position or 6D fully measurement according to
the method and hardware used. A typical example of RPM is
ad hoc networks through V2V communication. The framework
of pose estimation is that when a new MM arrives, the robots’
poses are predicted based on the received data. When a new
APM or RPM arrives, the robots’ poses are updated according
to the measurement update criteria shown in Section IV-C.
Some state-of-the-art or baseline methods are compared in this
experiment, i.e., Kalman filtering-based fusion in the vector
space [56], covariance intersection (CI)-based fusion in the
vector space [30], split covariance intersection (SCI)-based
fusion in the vector space [29], fusion ignoring the correlation
on the Lie group [15].

The third experiment is joint localization on the real plat-
form which consists of six micro intelligent vehicles (Mi-
croIV). There are also APM, MM and RPM in the system.
State to be estimated is on SE(2), i.e., we only estimate
x, y position and orientation (yaw) of the vehicles. We also
compare results of the baselines as that in the UAV simulation.
Details of this real-world experiment can be found in Section
V-D.

B. Numerical Experiment

We show the effects of hyper-parameters in this subsection.
Ground truth of the simulation is set as:

pgt = exp(ξ∧gt), ξgt =
[
15 30 0 0 0 π

4

]
There are two estimates of the ground truth pose, each is
corrupted by both independent and dependent noise modeled
on the Lie algebra. Covariance of the noise are:

Σ1,i = α
[
3 2 0.01 0.01 0.01 0.1

]
Σ1,d = α

[
5 3 2 0.1 0.2 0.1

]
Σ2,i = α

[
2 1 0.1 0.01 0.01 0.1

]
Σ2,d = α

[
5 5 2 0.1 0.1 0.2

]
Σ1,2 = α

[
2 1 0.5 0 0 0.1

]
where α is the coefficient, in the simulation we set α = 3. The
uncertainty is drawn from ξ1,i ∼ N (0,Σ1,i) ∈ R6, ξ2,i ∼
N (0, ξ2,i) ∈ R6, and [ξ1,d, ξ2,d] ∼ N (0,Σd) ∈ R12, where
the dependent covariance matrix is

Σd =

[
Σ1,d Σ1,2

ΣT
1,2 Σ2,d

]
In the experiment, we assume the correlated covariance Σ1,2

is unknown. The two measurements are obtained by p1 =
exp((ξ1,i + ξ1,d)

∧)pgt, p2 = exp((ξ2,i + ξ2,d)
∧)pgt. Two

kinds of metrics are exploited to measure the performance of
different methods. The first is Mahalanobis distance between
the observations and the estimate as shown in equation (28).
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Fig. 3. Test results of the proposed split covariance intersection on Lie group
in terms of different orders in Inverse Jacobian.

The second metric is the Root mean square (RMS) error, which
measures difference between the estimates and ground truth
over M trials as:

ε =

√√√√ 1

M

M∑
m=1

εTmεm (61)

where εm is the error of the m-th estimate in vector space:

εm = log(pgtp̄m)∨ (62)

First, we test the effect of order kept in the inverse Jacobian
as shown in equation (16). The result is presented in Fig.
3. Here, we show the Mahalanobis distance and RMS under
different orders of the inverse Jacobian, and we select seven
different cases to present, i.e., order from one to six, and
that of infinity. The order of infinity is same as the analytical
expression derived in [15], which keeps all the terms in the
expansion. It will not be elaborated here, please refer to
equation (100) in [15] for a detailed derivation. For every test
of the order, we run 1000 trials then compute the average
Mahalanobis distance and RMS, and iteration for every trial
is 20. As can be seen, both the Mahalanobis distance and
RMS decrease as the number of terms in the inverse Jabobian
increases. But after the case that the inverse Jacobian has four
terms, the decrease is very small and can be neglected. This
is similar to that for the fully independent pose fusion in [15].
Thus, without loss of generality in the following experiments,
we can set the term to be N = 4.

Next, we test the effect of iteration number as shown
in Algorithm 1. The result is shown in Fig. 4. Here only
we present the Mahalanobis distance which is the objective
function to be optimized. From the figure, we can see that
the Mahalanobis distance decreases as the iteration goes on.
The number of terms in the inverse Jacobian also affects the
minimization of Mahalanobis distance as can be seen in the
right of Fig. 4. The inverse Jacobian that has four terms
performs better than that has two terms, but the difference
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Fig. 4. Test result of the proposed split covariance intersection on Lie group
in terms of Malahanobis distance as the iteration goes on.

between four and infinite terms is marginal, which is consistent
with that shown in Fig. 3. It can be seen that the Mahalanobis
distance almost does not change after ten iterations, which
means the algorithm can converge within ten iterations.

Finally, we compare the proposed method with state-of-the-
art methods. The result is shown in Fig. 5. Here, we present
box plot of different methods. We implemented 100 trials, and
the ground truth for each trial is not the same, where we add
a small random perturbation. For every trial, we also conduct
the fusion for 1000 running and compute the average error,
here the coefficient α = 3. From the figure, it can be seen
that modeling the uncertainty on the Lie group can reduce the
error compared with that modeled in the vector space. One
thing that needs to note here is that CI or SCI in the vector
space performs not well as that of KF which does not consider
correlation. This is because the correlation is on the Lie group
in reality, modeling it in the vector space brings larger error
than ignoring it, though the estimated covariance maybe better
than KF. It can be seen that errors by the proposed method
and that of the indenpendent fusion [15] are at the same level,
even though error by the proposed method is smaller than the
method in [15] marginally. Although the improvement in terms
of accuracy is marginal in one fusion step, the benefit of the
proposed method is consistency compared to the independent
fusion [15], as proved in Section IV-D. As a result, it can affect
the accuracy in a time evolving system (see Section V-C).
Because the proposed method considers the correlation on the
Lie group, and yields a more consistent estimate. Here we
compare the estimated uncertainty errors between the proposed
method and the independent fusion in [15]. The covariance
error is defined as follows:

ε =
√
tr((Σ−Σmc)T (Σ−Σmc)) (63)

where Σmc denotes the covariance of the Monte Carlo sim-
ulation, and we use the covariance of all the fused results
as the Monte Carlo simulation covariance. For every noise
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Fig. 5. Box plots of the errors by different methods for 100 trials.

0 0.5 1 1.5 2 2.5 3

Noise scaling ( )

0

0.5

1

1.5

2

2.5

3

C
o

v
a

ri
a

n
c
e

 e
rr

o
r 

(
)

Indep. fusion on Lie group ([15])

SCI on Lie group (proposed)

Fig. 6. Error of estimated uncertainty as the noise scaling α increases.

scaling, we run the tests for 10000 trials. The result is shown
in Fig. 6, and here we increase the noise scaling α gradually
to see how the covariance error changes. Increasing α will
increase the overall noise level, and the correlation increases
at the same time. As can be seen in the figure, the covariance
error of the independent fusion increases linearly as the noise
scaling increases. The covariance error of the proposed method
is almost not affected by the correlation when the noise is
small. It has some perturbations because Σmc also has some
small offset to the real uncertainty at some points, and there
are some errors for the estimated covariance.

To give a viusal understanding of how the proposed methdo
is more consistent compared with the fusion algorithm in
[15] that does not consider the correlation, a 2D fusion (set
the third-dimensional components to be zeros) experiment is
conducted over 1000 trials. The result is shown in Fig.7, here
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solid curves. Dash curves are boundaries of the fused results.

we show the measurements before fusion, estimated pose after
fusion by the two methods, and their corresponding 1-sigma
covariance ellipse. This experiment is conducted over 1000
trials to see the real covariance after fusion. From the result,
we can see that ignoring the correlation between measurements
makes the estimated covariance over-confident, as the green
ellipse is obviously smaller than the real uncertainty. In
contrast, covariance by the proposed method is much closer
to the real uncertainty. It will affect next-step estimation for a
dynamic system propagating through time.

C. Joint Localization Simulation

In this subsection, we present the simulation results of joint
localization for UAVs. The designed system consists of six
UAVs, where each UAV is equipped with APM and MM, and
there are RPM between them by V2V communication. The
movement of all the UAVs are in 3D space, i.e., elements on
special Euclidean group SE(3). Ground truth trajectories of
all the vehicles are displayed in Fig.8. All the UAVs fly sixty
seconds, frequency of the MM is 100Hz, frequency of the
APM, and RPM are all 10Hz. We assume all the sensors on
the UAVs are the same, i.e., they have the same covariance for
the same type of sensors. The covariances for the APM and
RPM are similar to that of the numerical studies, and the only
difference is that α = 1 here. Variance of MM is 1 × 10−5

for linear velocity and 1× 10−6 for the angular velocity.
The pose estimation for every UAV is decentralized, i.e.,

every UAV estimates its own pose and position according to
the AMP, MM on itself and RPM through communication
between other UAVs. We fuse the available information using
various methods, where motion estimate between two times-
tamps by MM, absolute poses at some timestamps, and relative
poses among UAVs at some timestamps are all utilized. To
achieve this, we design different timestamp functions that
make the estimates or observations are obtained by certain

Fig. 8. Ground truth trajectories of all the six UAVs. Starting points are
denoted by dots.

frequencies. For a clearer comparison, we only show the
position errors by dead reckoning, invariant extended Kalman
filter, and the proposed method in Fig.9. As results in lots of
existing literatures (e.g. [44], [47], [49]) have verified fusion
on the Lie group outperforms the counterpart in the vector
space. The quantitative results by EKF, CI, and SCI in the
vector space are presented in Table I. From Fig.9, we can see
that errors by dead reckoning always increase as time elapses
due to IMU drift, because it does not have the correction
scheme by observation as that of the filtering-based methods.
Position errors by the proposed method are smaller than that by
invariant extended Kalman filter in all the six cases. Because
the underlying correlation among different observations are
modeled in the proposed algorithm. Table I shows the average
errors in position and orientation for 100 trials as only con-
ducting once is unfair due to the randomness. For the position
error, it can be seen that errors of the proposed method is much
smaller than that of the other methods. Errors of invariant EKF
are smaller than that of SCI in the vector space except UAV
1. This indicates that estimating the system on Lie group can
reduce more errors than modelling the split correlation in most
cases, but it is not always guaranteed. Position errors of KF
and CI are larger than that of SCI in vector space, which
means ignoring the correlation or igonring the indepdent the
part of covariance make the estimation less accurate compared
with modelling the split correlation even though in the vector
space. Errors of KF and CI are at the same level though the
result of KF is better than CI marginally. This phenomenon
means that ignoring independent or dependent covariance both
contribute error of the estimation. Only splitting the correlation
can make the estimte result more accurate and robust. For
the orientation error, the different is not that obvious while
errors of the proposed method are still a little smaller than
others marginally. From the table, we can see that errors by
the proposed method reduce about 70% compared with that of
the independent fusion. If the correlation increases, this effect
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(a) UAV1
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(b) UAV2
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(c) UAV3
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(d) UAV4
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(e) UAV5
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Fig. 9. Mean absolute errors in position and orientation of the six UAVs by various methods.

TABLE I
COMPARISON OF THE ABSOLUTE MEAN ERRORS IN POSITION AND ORIENTATION BY THE PROPOSED METHOD AND BASELINES FOR ALL THE SIX UAVS

UAV number SCI on Lie group (Proposed) Invariant EKF KF CI SCI
Position Orientation Position Orientation Position Orientation Position Orientation Position Orientation

UAV1 1.04m 0.049rad 4.04m 0.057rad 5.32m 0.075rad 5.51m 0.076rad 3.81m 0.074rad
UAV2 1.23m 0.039rad 4.52m 0.043rad 5.33m 0.039rad 5.73m 0.039rad 4.91m 0.039rad
UAV3 1.24m 0.035rad 4.42m 0.040rad 5.91m 0.034rad 6.36m 0.032rad 4.68m 0.034rad
UAV4 1.27m 0.050rad 5.20m 0.051rad 9.05m 0.107rad 9.78m 0.108rad 7.53m 0.106rad
UAV5 1.29m 0.048rad 5.40m 0.050rad 11.56m 0.092rad 11.66m 0.093rad 7.56m 0.092rad
UAV6 1.27m 0.046rad 6.04m 0.048rad 10.39m 0.105rad 11.26m 0.106rad 8.80m 0.104rad

can enhance further.

D. Results on the real platform

To verify the effectiveness of the proposed method, we
conduct a localization experiment on the robotic platform in
the real world. The system consists of six MicroIVs, and each
of them is equipped with the same hardware configuration as
can be seen in Fig. 10. The different modules can provide
different positioning information:
• APM: The absolute positioning is achieved by a motion

capture system, which consists of 12 external cameras
fixed on the ceiling. And the camera we use is Flex13
produced by Natural Point for this purpose. On each
vehicle, refelective markers are installed to be detected
by the cameras. The positioning result by this system is
accurate enough to serve as the ground truth (millimeter-
level accuracy). We add some extra noise to the position-

ing result from the camera capture system to mimic the
absolute positioning measurements in practise.

• MM: Each vehicle is installed with an odometer to
measure movement of the vehicle at a high frequency.

• RPM: The relative positioning is achived by V2V com-
munication, which is via XBee-Pro module. Relative
position between the vehicles are calculated by the cap-
ture camera system and broadcast by the communication
module.

Size of the test field is 6.6m × 6.4m × 2.6m, which can
cover multiple transportation scenarios, e.g., road, intersection,
parking. Details of the hardware configuration can be found
in our previous work [57]. The relative positioning between
vehicles is also fused, where the position of one vehicle is
deduced from the estimated positions of other vehicles and the
relative positionings between them. Since the RPMs are fused
mutually, the absolute position of one specific vehicle deduced
from the relative positioning source is dependent on the pre-
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(a) MicroIV (b) Hardware configuration [57]

(c) Testing filed

Fig. 10. The platform for the real-world fusion experiment. The exterior,
hardware configuration and the testing filed are shown in (a), (b) and (c)
respectively.

vious estimates of the this vehicle. For example, the position
of vehicle i deduced from the relative positioning with vehicle
j at time k denoted as pi,jk is a combination of the estimate
of vehicle j pjk and the relative measurement rpi,jk , whereas
the estimate of pjk also has relation with pik or pik−1. So, pi,jk
is correlated with pik. Moreover, the positioning deduced from
RPM is also based on absolute positioning which is already
fused for the estimation. In this sense, the RPMs are partially
correlated, and the RPM is also partially correlated with the
APM. Though the exact value of the correlation is not easy to
set or estimate beforehand, our method can handle it by tuning
the parameter ω. A comparison of the position error by the
proposed method and other baselines is presented in Fig. 11.
Here the error box plots of all the six MicroIVs by the five
methods are presented. From the figure, it is clear to see that
errors by the proposed method is smaller than that of invariant
EKF, which is consistent with the results of simulation on
UAVs shown in Fig. 9. The quantitative results for all the
six MicroIVs in both position and orientation by the proposed
method and baselines are presented in Table II. From the table,
we can see that the proposed algorithm performs best among
all the five methods. As our method identifies the correlation
of the noise among the different measurements, and also does
not ignore the independent part of the noise.

E. Observability analysis

As that in [47], [58], we also analyze the observability of
the proposed method. It is pointed out in [47] that the invariant
EKF can handle the observability automatically in their robot
estimation problem. It avoid the inconsistency that exists in the
EKF in the vector space, which is brought by the unobservable
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Fig. 11. Box plots of the positional error by different methods

states. Moreover, it does not need to perform a nonlinear
observability analysis for determining the unobservable states.
Inspired by [47], we also analyze the observability of the
system in this paper. The measurement matrix is the Jacobian
of the measurement model, i.e., C = JH. In the case of UAV
simulation, we have the measurement of the abosulte pose,
thus we have C = [0, I] according to the definition of equation
(47). Similarly, the system matrix is the Jocabian of the system
model, i.e., A = J1. If we only keeps the first order, then it

becomes A = I + 1
2ξ

f =

[
I + φ∧ ρ∧

0 I + φ∧

]
according to

equation (13) and equation (18).

O =


C

CA
CA2

...

 =


0 I
0 I + φ∧

0 (I + φ∧)2

...
...

 (64)

From equation (64) it is clear that the first three colomns are all
zeros, which indicates the absolute rotations are unobservable.
Herein, we also do not need to carry out the nonlinear observ-
ability which is computationally expensive. So, for the UAV
simulation, the proposed method has the same unobservable
states as the nonlinear system, which can solve the problem
of systemic inconsistency caused by the linearization point.
Derivation of the micro IV is similar to this but on SE(2)
which is not elaborated here.

VI. CONCLUSION

In this paper, we present a fusion strategy where the states
are on the Lie group, and the uncertainties are modeled on
its Lie algebra. The possible correlation between the different
estimate sources are considered, whilst the independent parts
of the noises are kept. Moreover, the correlation between esti-
mate sources is assumed to be unknown. This is achieved by
extending the split covariance intersection in the vector space
to the Lie group. We model it as an optimization problem,
in which the objective function is the Mahalanobis distance
relaxed by a more conservative covariance matrix. The fusion
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TABLE II
COMPARISON OF THE ABSOLUTE MEAN ERRORS IN POSITION AND ORIENTATION BY THE PROPOSED METHOD AND BASELINES FOR ALL THE SIX

MICROIVS

MicroIV number SCI on Lie group (Proposed) Invariant EKF KF CI SCI
Position Orientation Position Orientation Position Orientation Position Orientation Position Orientation

MicroIV1 0.064m 0.010rad 0.075m 0.014rad 0.159m 0.026rad 0.137m 0.019rad 0.089m 0.019rad
MicroIV2 0.065m 0.011rad 0.078m 0.014rad 0.133m 0.018rad 0.086m 0.017rad 0.084m 0.018rad
MicroIV3 0.063m 0.014rad 0.070m 0.014rad 0.112m 0.025rad 0.082m 0.022rad 0.069m 0.022rad
MicroIV4 0.045m 0.015rad 0.049m 0.022rad 0.129m 0.033rad 0.108m 0.028rad 0.051m 0.023rad
MicroIV5 0.046m 0.016rad 0.047m 0.018rad 0.136m 0.039rad 0.114m 0.033rad 0.045m 0.024rad
MicroIV6 0.066m 0.015rad 0.078m 0.019rad 0.114m 0.035rad 0.087m 0.029rad 0.076m 0.021rad

strategy for a partial observation case is also derived on the Lie
group. Experimental results with joint localization on multi-
UAV systems demonstrate the advantages of the proposed
method compared with state-of-the-art and baseline methods.
For future work, we plan to use the proposed method in
formation, platooning, and other vehicle cooperation tasks.

APPENDIX

Lemma 1: Matrix inversion lemma [59], given matrices with
proper dimension, the following equation holds:

(
A + BD−1C

)−1
= A−1−A−1B

(
D + CA−1B

)−1
CA−1

(65)
Theorem 3: Fusion for partial observation case presented in

Section IV-C is an extension of Kalman filtering strategy on
the Lie group, which has the form:

Σ1 = Σi
k|k−1 +

1

ω
Σd
k|k−1

Σ2 = Σ2i +
1

1− ω
Σ2d

K = J1Σ1J T1 J TH(JHJ1Σ1J T1 J TH + J2Σ2J T2 )−1

Σk|k = (I−KJH)J1Σ1J T1
s = J2ξ2 − JHJ1ξ1
ξ = ξ1 + Ks

(66)

Proof 3: According to Lemma 1, we have:

Σk|k =

J−T1 Σ−11 J
−1
1︸ ︷︷ ︸

A

+ J TH︸︷︷︸
B

J−T2 Σ−12 J
−1
2︸ ︷︷ ︸

D−1

JH︸︷︷︸
C


−1

= J1Σ1J T1 − J1Σ1J T1 J TH(J2Σ2J T2 + JHJ1Σ1J T1 J TH)−1

· JHJ1Σ1J T1 = (I−KJH)J1Σ1J T1
(67)

where we call K the Kalman gain. For the compensation, we

have:
ξ = −Σk|k

(
J−T1 Σ−11 ξ1 + J THJ−T2 Σ−12 ξ2

)
= −(I−KJH)J1Σ1J T1

(
J−T1 Σ−11 ξ1 + J THJ−T2 Σ−12 ξ2

)
= −(I−KJH)J1ξ1 − (I−KJH)J1Σ1J T1 J THJ−T2 Σ−12 ξ2

= −(I−KJH)J1ξ1 −
(
J−T1 Σ−11 J

−1
1 + J THJ−T2 Σ−12 J

−1
2

×JH)
−1 J THJ−T2 Σ−12 ξ2 = −(I−KJH)J1ξ1 − J1Σ1J T1

× J TH(J TH + J THJ−T2 Σ−12 J
−1
2 JHJ1Σ1J T1 J TH)−1J THJ−T2

×Σ−12 ξ2 = −(I−KJH)J1ξ1 − J1Σ1J T1 J TH(JHJ1Σ1

× J T1 J TH + J2Σ2J T2 )−1J2ξ2
= −(J1ξ1 + Ks)

(68)

where s is called innovation.
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