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The model outlined here embodies three distinct, successive processes which both define and characterise the Sun’s 

chromosphere, transition region and corona. Operating experience from fusion research shows how Spitzer resistivity 

may render ohmic heating in the chromosphere self-limiting and thus serve to define the lower margin of the transition 

region; its upper margin is at ~6.103 K, where radiative cooling of He/H plasma decelerates sharply. The third and  last 

stage in the proposed scheme is expansion into the tenuous plasma of space, which leads to the acceleration of  ions to 

high energies, long recorded by spacecraft instruments as He++. There is thus dynamic continuity all the way from the 

solar interior - the energy source for spinning columns in the Rayleigh–Bénard setting of the convection zone - to the 

coronal exhalation of the solar wind, a finding which should benefit the analysis of space weather, witness the 

association between helium  in the solar wind and the incidence of coronal mass ejections. 

 

     The high temperature (≥ 1-2.106 K) of the Sun’s outermost  atmosphere or corona was identified in 1939 but has still

to be explained. The mechanisms currently most in favour emphasise magnetic reconnection or waves of some kind and

they treat the chromosphere and corona together (Amari et al 2015). This paper develops an alternative scheme (Vita-

Finzi 2018) which links the Sun’s interior with its atmosphere in three stages corresponding to (and indeed identifying) 

the photosphere-chromosphere, the transition region and the corona.   

     Bearing in mind that any analogy between processes on the Sun and in terrestrial laboratories -- particularly fusion 

(Morse 2018) -- is only approximate, there are instructive parallels between the first step in our model and the early 

stages of a conventional tokamak operation especially as laboratory experiments for these conditions are not available. 

There a toroidal current serves the dual purpose of confining the plasma and heating it. As the main contours of the 

solar body represent the interplay between gravitational contraction and thermal expansion, the solar environment 

performs confinement effectively though imperfectly, thus freeing the available magnetic energy from this task. In fact, 

as indicated by the solar wind, there is a net surplus of plasma to sustain the chromosphere.

Step 1

  

        Plasma composition as well as induction heating shows qualified kinship between Sun and laboratory, although in 

a tokamak the favoured fuel – deuterium-tritium – is fully ionised at the temperatures required for fusion (c 108 K). The 

H:He ratio may dominate discussion of the influence of elemental abundance on chromospheric heating,  with a 

photospheric bulk composition of  H 90.965% and He 8.89% (NASA 2018). Sodium, magnesium, calcium, and iron are

also present, a fact that is exploited in particular in the assessment of fractionation between the photosphere and 

different varieties of solar wind (Peter & Marsch 1998). The impurities that have been detected during the ohmic 

heating phase of JET operation, such as reactor wall material (Ni, Cr, Fe), oxygen, carbon, molybdenum and chlorine, 

lead to radiation losses (Behringer et al. 1986) and presumably do so in the solar reactor.

     The accepted view (NASA 2018) is that the temperature of the chromosphere rises from 66.102 K at its contact with 

the photosphere to ~3.104 K over a distance of  ~25.105 m. In our proposed tripartite scheme the weakly ionised Hα of 

the chromosphere is subject to ohmic (or Joule) heating. In accordance with the account by Spitzer (1958) the 

resistance and thus the efficacy of ohmic heating decrease in proportion to the electron temperature as Te 
-3/2 ., so that 



there is a point at which ohmic heating stalls. Owing to operational constraints (O’Brien & Robinson 1993) ohmic 

heating at startup in most tokamaks can attain at most ~ 1 keV , say 107 K, as is the case with the JET tokamak (ESA 

2013).

     It has been suggested that the temperature of the chromosphere ‘steadfastly refuses to rise above 104 K until 

hydrogen becomes fully ionized’ perhaps because ‘ionization of hydrogen leads to a high specific heat’ (Judge & Peter 

1998, 190). The issue of specific heat had previously been raised in a study of the Jovian atmosphere for which an 

atmospheric composition of hydrogen and helium was postulated (Nelson 1971). A nondimensional plot of specific heat

against temperature at 1-6.104  K for particle densities from 10-10 to 10-6 g cm-3  and for hydrogen unit volumes of 0.333  

and 1.0 (equivalent to 50 % and of 100 % hydrogen  by volume)  yields two prominent peaks (Fig 1). The greater is at 

2.5-4.104 K, which may be manifested as a heightened  but shortlived response to ohmic heating when the transiting gas

attains a critical temperature. Thus specific heat imposes an upper limit on the chromospheric temperature well below 

the Spitzer limit. Indeed, the temperature in the Sun, after a temporary reversal, increases only to ~ 2.104 K some 3.103 

km above the photosphere. 

Fig 1 Plot of specific heat against temperature at 1-6.104  K for particle  densities from 10-10 to 10-6 g cm-3  and for  
hydrogen unit volumes of 0.333  and 1.0 equivalent to 50 % and of 100 % hydrogen  by volume  (from  Nelson 1971).

      In our model of the Sun, induction is by way of electromagnetic energy derived from spinning convective pseudo-

Taylor columns in the Rayleigh-Bénard setting of the convection zone -- pseudo in the sense that they  may develop in a

fluid subject to strong rotation and thermal forcing although without the basal obstacle of the original definition (Taylor

1921; Grooms et al. 2010; King & Aurnou 2012).  Large-scale vortices are a possible outcome of  rotating planar 

convection in an electrically conducting Boussinesq fluid (Guervilly et al. 2014). The associated dynamos generate  

magnetic fields that are concentrated in the shear layers surrounding the vortices, although for Rayleigh numbers just 

above a critical value the convection takes the form of elongated columns with a small horizontal cross-section and 

aligned with the rotation axis (Guervilly et al 2015). These are the structures  that govern photospheric granulation 

(Vita-Finzi 2018). 
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     The columnar model evidently differs from the classic notion of a primarily convective mechanism for granulation 

(e.g. November 1994). The summit of the columns is manifested as mesogranulation and supergranulation; the surface 

flow field is accordingly in close agreement with the magnetic field (Simon et al 1988). The columns are free to spin, 

even if closely packed, because they are insulated mechanically by sheaths (Sprague et al.  2006). Indeed, Spacelab-2 

white-light images illustrate both clockwise and anticklockwise spin; they also show that photospheric vorticities can 

twist a magnetic flux tube by 360° in < 3 hr (Simon et al 1988), that is an average of  >2°/min. Tangential (vortical) 

flows associated with the average supergranule outflow are indeed reported to reach about 10 m s−1 (Langfellner et al. 

2015). 

     The fluid uppermost photosphere in which they spin is partly ionised and therefore electrically conducting. The 

cylindrical support is irrelevant except insofar as it creates quasi-regular spacing of planar rotating discs at the 

photospheric surface. Large-scale-vortex dynamos, which call for magnetic Reynolds numbers  ~100-550 (Guervilly et 

al. 2017; Bushby et al. 2018), are here proposed as the source of basal chromospheric heating. Analogy with the H/He 

atmospheric evolution of young terrestrial planets (Erkaev et al 2013) points to XUV radiation as a plausible 

supplementary heating source; XUV emission by the upper chromosphere and the TR was demonstrated by a slit 

spectrograph observation from Skylab (Doscheck et al 1975).

    Magnetic energy flux at the photosphere  has been evaluated  at active regions, such as NOAA 11158 (Kazachenko 

et al. 2015), by modelling complemented by Hinode satellite observations. At one plage region the vertical Poynting 

flux had values of about 5±1 x 107 erg cm-1s-1 (Welsch 2015), close to the energy loss (~2 x107 erg cm-2 s-1) estimated 

for active-region fields in the chromosphere (Withbroe & Noyes 1977). The  dominant heating mechanism, one of three

discussed by Goodman (2000), is resistive dissipation of the proton (Pedersen) currents driven by the convection 

electric field that we have visualised as spinning columns. 

     Indeed, the modelling by Goodman (2004a) leads to the proposition consistent with the theme of this paper that the 

chromosphere of the Sun (away from flaring regions) is created by Pedersen current dissipation. Heating by Pedersen 

current dissipation is very inefficient when the plasma is fully ionized and strongly magnetised, somewhat above  

~2170 km (Goodman 2004b), consistent with the value of 2500 km for the lower boundary of the Transition Region 

(NASA 2018) cited earlier.

       Joule dissipation due to  dynamo action is thought by Kan & Yamaguchi (1989) to account for heating in the 

photosphere-chromosphere and to amount in nonactive regions, on the basis of  the classic quiet Sun  model by 

Vernazza et al (1981),  to  ~2.4 x 107 erg cm-2s-1  . The electromagnetic energy employed by  induction may be 

approximated by the observed energy losses  suffered, again during quiet Sun conditions , by the low chromosphere, 

which Withbroe & Noyes (1977)  put at   2 × 10∼ 6 erg cm−2 s−1 .

     Step II

     

       In a preliminary version of the tripartite scheme (Vita-Finzi 2018) the Joule-Thomson (J-T) effect was put forward 

as the pertinent heating system for the transition region (TR) though without the throttling that was included in the 

classic experiments by Thomson & Joule (1853). In the absence of experimental data for the temperatures at issue the 

term J-T is provisionally retained for the heating of a H/He plasma  which is associated with a reduction  in electron 

density ne from  ~ 1019 to  1015 m-3, that is to say when a strong negative density gradient in the quiet Sun coincides with 

a strong positive temperature gradient (Lemaire 1999). 

     In a widely reproduced diagram (Peter 2004; Fig 2) the onset of the TR corresponds to a plasma particle density N

(as  distinct  from  ‘plasma  density’ commonly  used  to  signify  electron  density)  of  slightly  more  than  1016 m-3.
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Photoionisation of hydrogen reduces its cooling efficiency by some six orders of magnitude so that at high temperatures

(104-108 K) neutral hydrogen cools at about 10-18 erg cm3 s-1  compared to 2.10-24 erg cm3 s-1 for ionised hydrogen, with a

peak (to judge from the published data) at  ~ 103  K (Gnat & Ferland 2012). Photoionisation has a similar effect on

helium (Oppenheimer & Schaye 2013), which when partially ionised  cools very efficiently by blackbody radiation and

direct coupling to the helium Lyman continuum. Once fully ionised by further heating, however, it no longer couples

well to the continuum (the Lyman limit being 91.2 nm, 13.6 eV). This signals the end of radiative loss or, in other

words, the onset of uninhibited heating, and temperatures of 106 K are rapidly attained. In short the trigger is more in

the nature of a safety catch which is released at the critical temperature.

   

Fig 2 Proposed heating episodes and the intervening triggers set against major subdivisions of the solar atmosphere and
plots of temperature (T) and  plasma particle density (N). EM = electromagnetic energy, pi = photoionisation, rc =
radiative cooling;   T  and  N after  Peter (2004). 

       A value of ~ 6.103 K signals the region where cooling by radiation begins to nullify EUV heating  as shown by  

radiative cooling functions for  3HeH+ and 4HeH+ (Coppola et al. 2011)(Fig 3). Here the rate of cooling attains between 

10-10-10-9 erg/s. Indeed the  calculated radiative cooling function (in erg cm-3 s-1) at temperatures >104 K for plasmas at 

low densities with solar abundances in collisional ionisation equilibrium K drops rapidly from 105 to 107.5 K (Draine 

2011).

                                                          

 Fig 3  Radiative cooling function (erg/s) of  HeH plasma (from Coppola et al. 2011). a =  3HeH+, b = 4HeH+
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 Step III

 

     The upper limit of the TR may be defined about 5.106 m above the photosphere, where the solar plasma has attained 

a value of 2.5 x 105 K, by a deceleration in the temperature increase then in progress.    The onset of the TR corresponds

to a plasma particle density N  of slightly more than 1016 m-3  (Peter 2004; Fig 2). Photoionisation of hydrogen reduces 

its cooling efficiency by some six orders of magnitude so that at high temperatures (104-108 K) neutral hydrogen cools 

at about 10-18 erg cm3 s-1  compared to 2.10-24 erg cm3 s-1 for ionised hydrogen, with a peak (to judge from the published 

data) at ~ 103 K (Gnat & Ferland 2012). Photoionisation has a similar effect on helium (Oppenheimer & Schaye 2013).  

Thereafter heating, triggered by propinquity to the near-vacuum of space, continues  equably in response to plasma 

expansion. Gurevich et al. (1966) and Gurevich & Pitaevsky (1975) were perhaps the first to show that the expansion of

a plasma into a vacuum or a more tenuous plasma could result in the acceleration of ions to high energies (Samir et al. 

1983), a process for which the self-similar solution indicates a logarithmic increase in velocity (Crow et al. 1975). 

      Plasma expansion has been investigated experimentally as well as theoretically (Chan 1986; Elkamash & Kourakis 

2016) even though the circumstances that concern us here, viz. temperatures of 106 K and coronal pressures of perhaps 

1.3 10-11 Pa, present even more serious laboratory limitations than does the ohmic heating of plasmas in the 

chromosphere. But heating of He++ ions in the solar wind  has long been recorded by spacecraft (Ofman et al. 2015).

     The bearing of this effect on space phenomena was made explicit by the interaction of an obstacle with a plasma. A 

relation between pressure fall and temperature in an astronomical context was assumed by Kothari (1938) when he 

showed that, for a relativistically degenerate gas (i.e. one nearing its ground state) undergoing Joule-Thomson 

expansion, the degree of heating per unit fall of pressure increased with the degree of degeneracy. Samir & Wrenn 

(1972) reported that ionospheric electron temperature measured by a Langmuir probe in the near wake of an artificial 

satellite (Explorer 31) was raised above that of the ambient electron gas by as much as 50 %. They referred to earlier 

work (Medved 1969) on the Gemini/Agena spacecraft in which wake temperature was 1700 K greater than the ambient 

temperature in one experiment and 764 K in another. The Moon’s wake provided scope for related work; the increase in

the electron temperature in the lunar wake found by the SWE plasma instrument on the WIND spacecraft amounted to a

factor of four although ion temperatures were little changed (Ogilvie et al. 1996). Laboratory investigations based on 

immersion of a plate in a single-ion, collisionless, streaming plasma, saw ‘early time expansion’ result in ion 

acceleration into the wake (Wright et al. 1985).        

        

    Conclusions

   

     Contrary to the accepted puzzling notion that the transition region and even the chromosphere are heated inwards 

from the corona (NASA 2018), the temperature rise is cumulatively radial. What is more, structuring of the solar 

atmosphere into three major zones is notthe source of our stepwise heting sequence but its outcome.

    The coherence between solar wind variations and sunspot activity (Fig 4) is consistent with our proposed tripartite 

heating scheme: induction heating, which brings temperatures up to 20,000 K and triggers Joule-Thomson heating, 

which in turn results in temperatures of 250,000 K at the  TR, and thereafter plasma expansion into the near vacuum of 

space, which is here proposed as the mechanism by which temperatures of 1-2 million K are raised in the corona before

it grades into interstellar space.
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Fig 4  Irradiance variation for 1 Jan-1 July 2012 for photosphere, major subdivisions of the solar atmosphere, and solar 
wind . Plots and scale details (W m-2) in Vita-Finzi 2018. 

    The long-term record of the Sun’s activity, essential for robust interpretation of paleoclimates as well as for assessing

the solar factor in weather, requires detailed information on the source of EUV fluctuations. Measurements by the EVE 

instrument on the Solar Dynamics Observatory satellite combined with neutrino data suggest that the UV flux is 

modulated primarily by rotation of the solar interior (provisionally named the Dicke Cycle:Vita-Finzi 2009) rather than 

the passage of active areas across the solar disc. Thus periodicities recorded by cosmogenic isotopes such as 10Be, 

which respond to oscillations in the strength of the solar wind, are better guides to  the solar factor than observed 

sunspot records and have the advantage of spanning >105 yr rather than a mere 4.102 yr. In short, the solar wind 

emerges as the one dependable indicator of solar activity. Sunspot data are compromised by their indirect relation to the

Sun’s irradiance: the rotation of active areas explains no more than 42% of its variation (Li et al 2012).  

     The proposed scheme could help to explain heating in other bodies (such as Titan) which display a radial increase in 

temperature and a decrease in plasma density as well as sustained gas outflow. It may also bear on the thermal 

evolution of other coronal stars. 
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