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Abstract

Moessner’s theorem describes a procedure for generating a sequence of n
integer sequences that lead unexpectedly to the sequence of nth powers 1n,
2n, 3n, . . . . Several generalizations of Moessner’s theorem exist. Recently,
Kozen and Silva gave an algebraic proof of a general theorem that subsumes
Moessner’s original theorem and its known generalizations. In this note, we
describe the formalization of this theorem that the first author did in Nuprl.
On the one hand, the formalization remains remarkably close to the original
proof. On the other hand, it leads to new insights in the proof, pointing to
small gaps and ambiguities that would never raise any objections in pen and
pencil proofs, but which must be resolved in machine formalization.
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1. Introduction

Proof assistants or interactive theorem provers are software tools used for
formalizing properties and proofs of those properties. The holy grail of mech-
anized theorem proving is to give formalized, machine-checked mathematical
proofs that are as close to the human written proofs as possible.

The Nuprl2 proof development system is based on a formal account of
deduction. Proofs are the main characters and are used not only to establish
truth but also to denote evidence, including computational evidence in the
form of programs (functional and distributed). The idea of a proof term is a
key abstraction; it is a meaningful mathematical expression denoting evidence
for truth.

In this note, we describe the formalization in Nuprl of the recent proof
of Kozen and Silva [5] of Moessner’s theorem and its generalizations. The
process of formalization uncovered several idiosyncrasies that forced us to
be much more precise in several points than we had been in the paper proof.
The main challenge was to build all the needed mathematical background.
Once this was in place, the formal statements and their proofs turned out to
be relatively straightforward and close to the originals.

We will omit most of the details of the proofs, referring the reader to
[5] for further details. Instead, we will walk the reader through the steps
that had to be taken to obtain a full formalization and we will point out the
unexpected differences with the proof in [5] and the challenges faced during
the formalization. But first, let us describe the problem we will formalize.

Consider the following procedure for generating n ≥ 1 infinite sequences
of positive integers. To generate the first sequence, write down the positive
integers 1, 2, 3, . . ., then cross out every nth element. For the second sequence,
compute the prefix sums of the first sequence, ignoring the crossed-out ele-
ments, then cross out every (n−1)st element. For the third sequence, compute
the prefix sums of the second sequence, then cross out every (n−2)nd element,
and so on. For example, for n = 4,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 3 6 11 17 24 33 43 54 67 81 96 113 131 150 171 193 216

1 4 15 32 65 108 175 256 369 500 671 864

1 16 81 256 625 1296

2Pronounced “new pearl”
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Moessner’s theorem says that the final sequence is 1n, 2n, 3n, . . . .
This construction is an interesting combinatorial curiosity that has at-

tracted much attention over the years. The theorem was never proved by
its eponymous discoverer [9]. The first proof was given by Perron [12]. The
theorem has been the subject of several popular accounts [1, 3, 8].

In the construction of Moessner’s theorem, the initial step size n is constant.
What happens if we increase it in each step? Let us repeat the construction
starting with a step size of one and increasing the step size by one each time.
Thus, in the first sequence, we cross out 1, 3, 6, 10, . . . ,

(
k+1
2

)
, . . . .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 6 11 18 26 35 46 58 71 85 101 118 136 155 175

6 24 50 96 154 225 326 444 580 735

24 120 274 60010441624

120 7201764

720

Now the final sequence consists of the factorials 1, 2, 6, 24, 120, . . . = 1!, 2!,
3!, 4!, 5!, . . . .

Let us now increment the increment by one in each step, thus incrementing
the step size by 1, 2, 3, 4, . . . in successive steps, crossing out 1, 4, 10, 20,
. . . ,

(
k+2
3

)
, . . . .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...

2 5 10 16 23 31 40 51 63 76 80 95 ...

2 12 28 51 82 133 196 272 352 ...

12 40 91 224 420 692 ...

12 52 276 696 ...

12 288 984 ...

2881272 ...

288 ...

288 ...

288 ...

The final sequence consists of the superfactorials

1, 2, 12, 288, . . . = 1!, 2!1!, 3!2!1!, 4!3!2!1!, . . . = 1!!, 2!!, 3!!, 4!!, . . . .

The generalization of Moessner’s theorem that handles these cases is
known as Paasche’s theorem [11].

Long [7, 8] discovered the following alternative procedure and generaliza-
tion. Consider the figure illustrating the Moessner construction for n = 4
above. Breaking the figure into separate triangles and adding a row of 1’s at
the top, the first four triangles are
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 3 6 11 17 24 33 43 54 67 81 96

1 4 15 32 65 108 175 256

1 16 81 256

Call these the level-n Moessner triangles. The first triangle is the Pascal
triangle. However, note that all the triangles satisfy the Pascal property : each
interior element is the sum of the elements immediately above it and to its
left.

Instead of a sequence of sequences of integers, Long described how to
generate a single sequence of triangles. To generate the (k + 1)st triangle
from the kth, consider the nth northeast-to-southwest row. (For the second
triangle above, this would be 1 8 24 32 16.) Let the first column of the next
triangle be the prefix sums of this sequence (in our example, 1 9 33 65 81),
and let the first row be a sequence of 1’s. Complete the triangle using the
Pascal property. Note that Long’s construction of the triangles above is really
a reformulation of Moessner’s result, since from the triangles one can indeed
read off horizontally the (construction of the) sequence of powers again.

Long [7, 8] also generalized Moessner’s result to apply to the situation in
which the first sequence is not the sequence of successive integers 1, 2, 3, . . .
but the arithmetic progression a, a + d, a + 2d, . . . . This corresponds to a
sequence of triangles with d, d, d, . . . along the top and d, a, a, a, . . . as the first
column of the first triangle. They showed that the final sequence obtained by
the Moessner construction is a · 1n−1, (a + d) · 2n−1, (a + 2d) · 3n−1, . . . .

More recently, Hinze [2] and Niqui and Rutten [10] have given proofs
involving concepts from functional programming, Hinze using calculational
scans and Niqui and Rutten using coalgebra of streams. The proof of Hinze
covers Moessner’s and Paasche’s result whereas Rutten and Niqui only provide
a proof of the original Moessner theorem. Rutten and Niqui’s proof has been
formalized in Coq [6]. The Coq formalisation in [6] is fundamentally different
than what we will see in this paper, as the proofs use very different techniques.
It is a good illustration of the basic coinduction principles built in Coq while
highlighting at the same time its limitations in terms of more expressive
extensions (such as coinduction up-to or any coinductive hypothesis that does
not strictly fall into the guardedness requirement) that are needed in more
advanced coinductive proofs.

The proof Kozen and Silva presented in [5], and hence the formalization
presented in the present paper, has the advantage of covering all the theorems
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mentioned above and, furthermore, opening the door to new generalizations
of Moessner’s original result.

In the following, all the Nuprl code snippets (displayed in blue) are hyper-
links to complete proofs in the Nuprl library. The whole formalisation, which
contains additional libraries for formal power series, can be accessed from
http://www.nuprl.org/wip/Standard2/power!series/. We estimate the
the whole project was a one man-month of effort.

2. Algebraic Representation: Formal Power Series

Kozen and Silva described Long’s construction in terms of multidimen-
sional generating functions, also known as formal power series in multiple
variables. In this section, we will revisit all the steps of the proof, starting
with setting basic definitions, building up to the main theorem (Theorem 2.4),
which will have as corollaries Moessner’s (Corollary 2.5), and Paasche’s (Corol-
lary 2.6) results. We will explain the very few details where the formalisation
differs from the original pen-and-paper proof, but the goal of this section is
to also highlight how Nuprl proofs stay very close to the original proof and
enable the detection of minor omissions in the mathematical presentation.

The first step in the Nuprl formalization was to formalize the theory of
formal power series. In Nuprl, there were already formalizations of basic
algebraic structures, such as monoids, groups and rings (described in Paul
Jackson’s thesis [4]) and also of multisets (or bags). This made it possibly to
incrementally build the theory of formal power series: a formal power series is
represented as a map between monomials and coefficients taken from a ring.
A monomial, in turn, is just a multiset of variables. The operations on formal
power series, such as sum and convolution product, were then simply defined
reusing existing operations on multisets. The details of this formalization are
not important for understanding the rest of the paper and will therefore be
omitted.

The triangles were represented as elements of the rational function field
Z(x, y). For example, the Pascal triangle ∆ = ∆(x, y) is

∆(x, y) =
1

1− (x + y)
. (1)

In Nuprl, this is represented concisely by the statement:

∆(x,y) == (1÷(1-(<{x}>+<{y}>)))

5

http://www.nuprl.org/wip/Standard2/power!series/
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard2/power!series/fps-pascal.html


Note the close similarity to the formula (1) above.
To describe the operation of “completing the triangle using the Pascal

property,” we need some notation and lemmas. A power series in x, y is called
Pascal if the coefficient of every interior monomial m (a monomial of positive
degree in both x and y) is the sum of the coefficients of m/x and m/y. The
following lemma from [5] characterizes the Pascal property of a power series:

Lemma 2.1 ([5]). f = f(x, y) is Pascal iff

f = ((1− x)f(x, 0) + (1− y)f(0, y)− f(0, 0)) ·∆.

In Nuprl the formal statement of this lemma is very close to the original
formulation:

∀[r:CRng]. ∀[x,y:Atom]. ∀[f:PowerSeries(r)].
fps-Pascal(r;x;y;f)

⇐⇒ f = (((((1-y)*f(x:=0))

+((1-x)*f(y:=0)))-f(x:=0)(y:=0))*∆(x,y))

supposing ¬(x = y)

Here we see how the formalization forces us to be more precise: when one
writes x and y for the variable names, one is implicitly assuming that they
are different. However, in the formalization this needs to be said explicitly.
The same applies to quantification: in the formulation of Lemma 2.1 above,
the symbol f refers to any formal power series, which is made precise in the
∀ quantification of the Nuprl code. Furthermore, note that we need not
restrict ourselves to the ring of integers as in the original proof, but instead
can generalize to any commutative ring, which we denote by r:CRng.

Before describing how the successive triangles are constructed, one more
result is needed: that any two given series g ∈ Z(x) and f ∈ Z(y) with the
same constant coefficient can be extended uniquely to a p ∈ Z(x, y) satisfying
the Pascal property.

Lemma 2.2 ([5]). If g ∈ Z(x), f ∈ Z(y), and g(0) = f(0), then

p = ((1− x)g + (1− y)f − f(0)) ·∆ (2)

is the unique p ∈ Z(x, y) such that (i) p(x, 0) = g(x), (ii) p(0, y) = f(y), and
(iii) p is Pascal.

To formalize this, we first define the equation (2) as
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Pascal-completion(r;f;g;x;y)

== ((1-y)*f)+(1-x)*g)-f(y:=0))*∆(x,y)

In the original proof, a parameter p0 was used in place of f(0) = g(0) so
that the statement of the theorem would be symmetric in g and f . Here we
have used f(0) (in Nuprl, f(y:=0)) instead. This breaks the symmetry but
avoids having to define the extra parameter p0. The term f(y:=0) is the
power series one gets by setting all the y variables to 0.

We note that the use of variable r in the above definition, though at first
sight unbounded, provides the type of the basic ring operations used in the
definition, e.g. +. If one inspects the Nuprl code of the above equation, in
the section Definitions occuring in Statement one will find that one of
the functions used is e.g. fps add (f + g) and inspecting this reveals:

(f+g) == λb.(+r f[b] g[b])

which explicitly states that power series addition uses the + from the ring r,
pointwise. The display form (f + g), used in Pascal-completion(r;f;g;x;y),
does not show the parameter r, but it is really there.

Next, to finish the formalization of Lemma 2.2, we need to state and prove
the uniqueness of p, which we are here denoting by Pascal-completion(r;f;g;x;y):

∀[r:CRng]. ∀[f,g:PowerSeries(r)]. ∀[x,y:Atom].
((Pascal-completion(r;f;g;x;y)(x:=0) = f)

∧ (Pascal-completion(r;f;g;x;y)(y:=0) = g)

∧ fps-Pascal(r;x;y;Pascal-completion(r;f;g;x;y)))

∧ (∀h:PowerSeries(r)
(fps-Pascal(r;x;y;h)

⇒ (h(x:=0) = f)

⇒ (h(y:=0) = g)

⇒ (h = Pascal-completion(r;f;g;x;y))))

supposing (¬(1 = 0)) ∧ (¬(x = y)) ∧
(f(x:=0) = f) ∧ (g(y:=0) = g) ∧ (f(y:=0) =

g(x:=0))

The first three conjuncts correspond to (i), (ii) and (iii) in Lemma 2.2
and the last conjunct to the statement of uniqueness.

Some remarks are in order for the code after the supposing clause. First,
in the formalization above, we have not actually restricted f and g to be
power series in one variable. Instead, we take any series in any number of
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variables, then require that f and g satisfy the condition (f(x:=0) = f) ∧
(g(y:=0) = g), which is enough for the proof. This is a generalization of
the original Lemma 2.2 above. Moreover, in the process of doing the proof,
we discovered that the statement does not hold for the trivial ring, thus we
need the additional assumption (¬(1 = 0)). The original proof was done in
the ring of integers, in which this statement holds trivially.

Each successive level-n Moessner triangle is obtained from the previous
by taking the homogeneous component of degree n, evaluating at y = 1, and
multiplying by ∆. In other words, if we define inductively

h0(x, y) = 1 hk+1(x, y) = [hk(x, 1) ·∆(x, y)]n , (3)

then the kth level-n Moessner triangle is hk(x, 1) ·∆ and the final sequence in
the Moessner construction is the lead coefficient of hk(x, 1) for k = 1, 2, 3, . . . .

We first need to define the operation of taking the homogeneous component
of degree n. Because of the formalization of power series using bags of
monomials, this is a rather simple operation:

[f]_n == λb.if (bag-size(b) =z n) then f b else 0 fi

Next, we formalize the operation of evaluating at y = 1:

[f]_n(y:=1) ==

λb.if 0 <z (#y in b) ∨b n <z bag-size(b)

then 0

else f[b + bag-rep(n - bag-size(b);y)] fi

We are now ready to state and formalize the main lemma of the paper.

Lemma 2.3 ([5]). Let h(x, y) be homogeneous of degree n and let d ≥ 0.
Then

[h(x, 1) ·∆(x, y)]n+d = (x + y)dh(x, x + y).

In Nuprl, this was formalized as:

∀[r:CRng]. ∀[x,y:Atom]. ∀[h:PowerSeries(r)]. ∀[n,m:N].
[([h]_n(y:=1)*∆(x,y))]_m = ([h]_n(y:=(x+y))*((x+y))^(m

- n))

supposing (n ≤ m) ∧ (¬(x = y))
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The main difference between this formalization and Lemma 2.3 is that we
do not assume h(x, y) to be homogeneous of degree n, but instead take its
homogeneous component of degree n: [h] n. Variable m in the formalization
above corresponds to n + d in Lemma 2.3.

This proof is a bit different from that of [5]. Instead, we proved a lemma
that said that any two linear, uniformly continuous functions on power series
that agree on monomials must agree on all power series. This allows the
proof of the main lemma to be reduced to the easier case of monomials.
One must also prove that all the operations on power series used in the
lemma are uniformly continuous, but this is true of every function definable
in constructive logic.

Next, we present the main theorem of the paper, which has as corol-
laries Moessner’s theorem and the several generalizations mentioned in the
introduction.

Theorem 2.4 ([5]). Let hk be the sequence defined by (3). For all k ≥ 0,

hk(x, y) =
k−1∏
i=0

((k − i)x + y)d(i) · h0(x, kx + y).

The formalization in Nuprl is:

∀[r:CRng]. ∀[x,y:Atom].
∀[h:PowerSeries(r)]. ∀[d:N → N]. ∀[k:N].

Moessner(r;x;y;h;d;k) = ([h]_d0(y:=((k · r 1)*x + y))

* Π(i ∈ upto(k)).((((k - i) · r 1)*x + y))^(d (i +

1)))

supposing ¬(x = y)

Paasche’s, Long’s, and Moessner’s theorems are now immediate conse-
quences of Theorem 2.4. Paasche’s second theorem on the superfactorials and
Long’s theorem are omitted here, but the construction is similar, and they
are available in the Nuprl library.

Corollary 2.5 (Moessner’s Theorem). If h0 = 1, d(0) = n, and d(k) = 0 for
k ≥ 1, then the lead coefficient of hk(x, 1) is kn for all k ≥ 1.

The formalization in Nuprl is:
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∀[x,y:Atom].
∀[n:N]. ∀[k:N+].

(Moessner(Z-rng;x;y;1;λi.if (i =z 0) then 0

if (i =z 1) then n else 0 fi

;k)[bag-rep(n;x)]

= k^n)

supposing ¬(x = y)

Corollary 2.6 (Paasche’s Theorem). For h0 = 1 and any sequence d, the
lead coefficient of hk(x, 1) is

k−1∏
i=0

(k − i)d(i)

for all k ≥ 0. In particular, the sequences d = 1, 1, 1, . . . and d = 1, 2, 3, . . .
yield the factorials and superfactorials, respectively.

The formalization in Nuprl is:

∀[x,y:Atom].
∀[d:N → N]. ∀[k:N].

(Moessner(Z-rng;x;y;1;λi.if (i =z 0) then 0

else d (i - 1) fi ;k)[bag-rep(Σ(d i | i <

k);x)]

= Π(k - i^d i | i < k))

supposing ¬(x = y)

∀[x,y:Atom]. ∀[k:N].
(Moessner(Z-rng;x;y;1;λi.if (i =z 0) then 0

else 1 fi ;k)[bag-rep(k;x)] = (k)!)

supposing ¬(x = y)

3. Conclusion

We have described a machine formalization of the algebraic proof presented
in [5] of Moessner’s theorem and related theorems in Nuprl. Although the
machine proof closely models the paper and pencil proof of [5], the very
process of formalization reveals several implicit assumptions and highlights
the need for engineering decisions that would not otherwise be apparent.
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