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Abstract
Purpose Development and performance measurement of a fully automated pipeline that localizes and segments the locus
coeruleus in so-called neuromelanin-sensitive magnetic resonance imaging data for the derivation of quantitative biomarkers
of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease.
Methods We propose a pipeline composed of several 3D-Unet-based convolutional neural networks for iterative multi-scale
localization and multi-rater segmentation and non-deep learning-based components for automated biomarker extraction. We
trained on the healthy aging cohort and did not carry out any adaption or fine-tuning prior to the application to Parkinson’s
disease subjects.
Results The localization and segmentation pipeline demonstrated sufficient performance as measured by Euclidean distance
(on average around 1.3mmonhealthy aging subjects and 2.2mm inParkinson’s disease subjects) andDice similarity coefficient
(overall around 71% on healthy aging subjects and 60% for subjects with Parkinson’s disease) as well as promising agreement
with respect to contrast ratios in terms of intraclass correlation coefficient of ≥ 0.80 for healthy aging subjects compared
to a manual segmentation procedure. Lower values (≥ 0.48) for Parkinson’s disease subjects indicate the need for further
investigation and tests before the application to clinical samples.
Conclusion These promising results suggest the usability of the proposed algorithm for data of healthy aging subjects and
pave the way for further investigations using this approach on different clinical datasets to validate its practical usability more
conclusively.
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Introduction

The locus coeruleus (LC), a small cylindrical structure in
the brainstem of about 2mm in diameter and 12 to 17mm
in length [10], is gaining rapidly increasing interest in the
neuroscientific community. The LC is one of the earli-
est structures to be affected in neurodegenerative diseases
such as Alzheimer’s disease (AD) [4] and Parkinson’s dis-
ease (PD) [5]. Thus, there has been considerable interest
to develop magnetic resonance imaging (MRI) techniques
to assess the integrity of the LC in vivo. Through utiliz-
ing so-called neuromelanin-sensitive MRI techniques, that
take advantage of the large amounts of neuromelanin—a
pigmented polymer produced from the oxidation of cate-
cholamines including noradrenaline in the LC—it is now
possible to investigate the LC in vivo. This may help to
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further understand the pathogenesis of neurodegenerative
diseases [3] and provide novel insights into cognitive and
behavioral symptoms necessary to develop effective thera-
pies [24].

A reliable segmentation is often the requirement for a
robust extraction of (potential) biomarkers. In the case of
in vivo LC segmentation, this poses considerable challenges
due to the small size of the structure and the compara-
tively coarse resolution of MRI acquisitions. An increase
in the resolution, however, jeopardizes the already relatively
low signal-to-noise ratio (SNR). Although reasonable com-
promises can be found [2], the issue remains challenging.
This is reflected by low inter-rater agreement between expert
raters, which ranges between a Dice similarity coefficient
(DSC) of 0.499 [1], 0.64 [25] and 0.68 (ours). However,
properties of the measured hyperintense regions on so-called
neuromelanin-sensitive MR images have been shown to cor-
respond to LC properties determined in post-mortem studies,
such as general position and dimensions, as well as LC cell
density [15] and age-related effects of neuromelanin aggre-
gation [2].

Reliable methods for automated LC segmentation and
extraction of potential, imaging-based LC biomarkers are
highly desirable to improve objectivity and comparability
between studies and facilitate the ongoing search for early,
in vivo imaging-based biomarkers for neurodegenerative dis-
eases. This work offers four contributions to this field. First,
we propose a novel iterative, multi-scale strategy for the LC
localization network, which is significantly more precise,
requires less graphics processing unit (GPU) memory and
less training time than our previously published method [8].
Secondly, we investigate the usage and advantages of the
availability of multiple raters. We propose two different
approaches that make use of multiple manually segmented
LC masks for the training of the segmenter network and
found improved performance compared to single rater train-
ing. Third, we apply our pipeline trained on a healthy aging
dataset to unseen data of PD subjects without any fine-tuning
and evaluate its performance. Finally, we enable fully auto-
mated LC analysis based on the most commonly extracted
potential biomarker, contrast ratios (CRs) [17], by segment-
ing the pons using a 3D-Unet [6,9] and applying several
robust post-processing steps.

Related work

The vast majority of publications analyzing the LC rely on
purely manual methods [17]. However, very few (semi-)
automatic approaches have been proposed which mostly
build on atlas registration [15,27] or dynamic atlas-based
methods yielding moderate performance (DSC of 0.45 ±
0.25 [21] and 0.4 [1]). Furthermore, several more classical

methods have been applied to the task: region growing [20],
clustering with Gaussian mixture models and anatomical
prior knowledge [18], intensity and shapemodels [26], active
contours [22] as well as a variety of essentially intensity
thresholding-based approaches [7,12].

To the best of our knowledge, our previous work that
explored the use of a 3D-Unet [6] variant for this task [9]
as well as a preceding coordinate regression-based localiza-
tion [8] are the only publications to date to investigate deep
learning-based methods in segmenting the LC. However, for
the Substantia Nigra, which can be visualized using the same
MRI acquisitions, there are a few publications that make use
of deep learning-based approaches, most notably [16] and
[23]. In fact, our approach shares several similarities to [16],
but we deviate for instance in using a different localization
approach and employing multi-rater trainings for the seg-
mentation.

Methods andmaterials

This section describes our proposed pipeline. As visualized
in Fig. 1, a preceding localization of the LC is used to extract
a Region of Interest (ROI), which is then processed by net-
works to segment the LC itself as well as several brainstem
substructures. The latter include the pons, which is needed
to derive the reference regions required for the extraction of
CRs.

Datasets

We used two different datasets: one dataset comprising
healthy aging subjects [2,8], which was used for the devel-
opment, training and evaluation of the method as well as one
comprising PD subjects, that was usedmerely for evaluation.
The healthy aging dataset (HAD) comprises data of 82 sub-
jects, of which 25 are younger (22–30 years old; 13 male,
12 female) and 57 are older healthy adults (61–80 years;
19 male, 38 female). The LCs were manually segmented by
two expert raters (R1, R2). The Parkinson’s disease dataset
(PDD) contains data of 22 subjects (10 male, 12 female) that
have been diagnosed with PD according to UK Parkinson’s
Disease Brain Bank criteria [13]. Their age ranges between
48 and 77 years and is 65.55 on average. The LCs were seg-
mented by just one of the raters (R1).

HADandPDDwere acquiredusing the sameprotocol, i.e.,
applying T1-weighted FLASH 3T MRI whole-brain acqui-
sitions with an isotropic resolution of 0.75mm3. Prior to
delineation, the data was upsampled to 0.375mm3 by means
of a sinc filter. Additionally, a bias field correction was
applied. The final step of the pre-processing was normal-
ization of the data, such that the intensity values of each
acquisition had a mean of 0 and a standard deviation of 1.

123



International Journal of Computer Assisted Radiology and Surgery (2021) 16:2129–2135 2131

Fig. 1 Schematic illustration of
the proposed approach for an
automated LC analysis pipeline.
The output of the brainstem
substructure (BS) segmentation
network are masks for midbrain
(MB), pons (P), medulla
oblongata (MO) and superior
cerebellar peduncle (SCP)

Iterative multi-scale localization of the LC

As described in previous work [8], we use a preceding
localization network, which regresses the center of mass
of the LC. This allows focusing just on the nucleus itself
and its vicinity for the following processes and reduces
the amount of false positives. The localization architec-
ture, CoRe-Unet, combines a 3D-Unet and a Differentiable
Spatial to Numerical Transform (DSNT) layer [19], which
enables the direct regression of coordinates utilizing the
Unet’s output, a heatmap, that gives insights into the net-
work’s behavior. The Euclidean distance was used as the loss
function. Augmentations in the form of mild random affine
transformations have been applied as they have shown to
yield preferable performance in earlierwork.We investigated
two different approaches for the training and application of
this network: In the first approach, and in accordance with
priorwork,we used the acquisitions in their original isotropic
resolution of 0.75mm3 as a whole for training and inference,
which dictated the upper limit of the batch size (2) due to
GPU memory limitations. We refer to this version simply as
CoRe-Unet. In the second approach, we investigated a new
iterative multi-scale approach, that exposes the network to
patches (643 voxels) of different resolutions of the data dur-
ing training: 0.375mm3, 0.75mm3, 1.5mm3 and 3mm3. In
the inference case, the network is applied four times consec-
utively to patches of the input volume that are interpolated
to increasing resolutions with increasing iteration. In this
process, the network’s prediction of the LC position in the
current iteration is used to extract the patch of the next stage
(with higher resolution). Due to the smaller patches that can
be used, training time and required GPU memory were dras-
tically reduced, allowing a batch size of 32 and an increased
number of feature maps in the network, making it equivalent
to the segmenter architectures. We refer to this version as
MS-CoRe-Unet.

Multi-rater segmentation of the LC

The segmentation networks in the proposed pipeline are all
based on a slightly adapted version of 3D-Unet [6,9]. They
were trained with a fuzzy DSC loss function in a patch-
based manner (643 voxels) and a batch size of 32. Apart

from a random translation, no further augmentation tech-
niques were applied to avoid the need for interpolation of
both, the target masks and the already weak imaging signal.
As a post-processing step to address remaining false posi-
tive regions, we performed a connected component analysis
and kept only the largest connected component as the final
prediction.

As the training target for LC segmentation, we used man-
ual masks created by two expert raters. Besides training a
network with each of them (resulting in NetR1 and NetR2),
we explored two ways of combining them and investigat-
ing possible improvements in terms of objectiveness of the
segmentation results. Hence, we trained a network with the
intersection of the two raters’ masks (NetInt) and another
with randomly switching between both raters during the
training (NetRnd).

Fully automated LC analysis

To complete the goal of fully automated CR-based analy-
sis [2,17], we require the reference regions that are used to
calculate the median or maximum LC intensity ratio with
respect to the median/maximum intensity of the surround-
ings and are typically positioned in both hemispheres of the
pons to account for lateral bias effects [2]. Previously, they
were generated semi-automatically [2] by manually placing
a fixed-sized cuboid in a template which was then prop-
agated to each sample space requiring several registration
operations.We propose a faster, fully automated approach by
training a 3D-Unet analogously to the LC segmenter to cre-
ate ponsmasks and then, apply several robust post-processing
steps to obtain valid reference regions. To this end, the pons
masks are split in a Voronoi diagram fashion. That is every
pons voxel is assigned to the LC center point that has the
shortest distance to it, thus creating a separation layer which
is defined by the previously determined LC centers. At the
position of the respective center points of the resulting pons
halves, a fixed-sized cuboid (203 voxels) is placed.

As a target for the pons segmentation, we used the
results of the Brainstem Substructure functionality [14] in
FreeSurfer [11] (version 7.1.0), which can provide masks for
midbrain (MB), pons (P), medulla oblongata (MO) and supe-
rior cerebellar peduncle (SCP). For its application, however,
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the resolution of the data had to be reduced by means of sinc
interpolation to a third, i.e., 1.125mm3 isotropic resolution.
Thus, the obtained substructure masks showed slight inter-
polation artifacts after upscaling them to be used as a target
with the same resolution as the other masks. Furthermore,
one of the samples had to be excluded for the pons segmen-
tation training because theBrainstemSubstructure tool failed
to generate an output mask. Although our network is able to
segment all four subregions, we solely utilized the ponsmask
in thiswork. Using a neural network instead of the FreeSurfer
pipeline has the principle advantage of faster processing since
an inference of the network requires merely seconds while
the application of the FreeSurfer pipeline typically requires
several hours.

Evaluation scheme andmetrics

To minimize the chance of a possible bias in both validation
and test sets as well as to assess the effect of set composi-
tion (combinations of subjects in the sets), we used a nested
cross-validation scheme with three outer folds and five inner
folds for evaluation. Hence, the data was randomly split into
three subsets and for three iterations. One of them was used
as the test set, while the other two are once more randomly
split into five subsets. On each of these, another fivefold
cross-validationwas performed to yield validation (one of the
subsets) and training sets (the remaining four subsets). In the
resulting 15 combinations, we used the respective validation
loss for early stopping and calculated the performances of the
five versions of the inner cross-validation on their respective
test set. We maintained the same ratio of younger to older
subjects in every subset throughout the process.

We quantified the localization error using the Euclidean
distance (measured in millimeter). As for the agreement of
the segmentations,we determine theDSCand false discovery
rate (FDR) to individual raters aswell as their intersection and

propose a multi-rater Dice similarity coefficient (MRDSC)
to assess the agreement to the set of all raters jointly. It is
defined as follows:

MRDSCP (R1, ..., Rn) = 2
∑n

i=1 |P ∩ Ri |
n|P| + ∑n

i=1 |Ri |

with P the predicted set of LC voxels of the network and
Ri the i th rater’s selection. We evaluated the similarity of
extracted CRswith intraclass correlation coefficients (ICCs).
We assessed the statistical significance of all differences we
mention using the Welch t test, but report the p value only
for certain cases for the sake of clarity.

Results

We report the results from the previously described evalua-
tion procedure. Although the vast majority of the folds of the
nested cross-validations showed no significant differences in
performance between them, we found slight deviations in a
few cases, indicating that the method and evaluation could
profit from an increased dataset size to more conclusively
cover the variance of this challenging task.

Localizer. As can be seen in Fig. 2, the localization
error on the HAD is 1.470 ± 0.877mm for CoRe-Unet and
1.284±0.838mmfor its iterativemulti-scale alternative,MS-
CoRe-Unet, which was found to be statistically significantly
better than for CoRe-Unet. Larger errors were found for both
methods on the PDD with 2.733 ± 1.312mm (CoRe-Unet)
and 2.224 ± 1.425mm (MS-CoRe-Unet), but the significant
distance in performance between the approaches persisted.
Most of the error in both cases stems from deviations along
the axial axis, i.e., the axis along the rostrocaudal extent of the
LC. The dimension-wise average absolute errors in-plane of
MS-CoRe-Unet range between 0.238 and 0.395mm, while
in the axial direction, 1.138mm and 1.156mm for left and
right LC were measured on HAD, but the same effect can

Fig. 2 Boxplots of Euclidean
distance errors measured in
millimeter. MS-CoRe-Unet
resulted in statistically
significantly smaller errors on
both, HAD (p value =
1.16e − 11) and PDD (p value =
6.17e − 6). Three outliers on the
PDD have been omitted for
better visualization
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Table 1 Means (bold) and standard deviations ofDSC (andMRDSC) agreement of the differently trained segmenters on the two datasets.Multi-rater
comparison was possible on the HAD only. The inter-rater agreement between R1 and R2 on HAD is 67.54 ± 10.03%

Net Healthy aging dataset PD dataset

R1 R2 Intersection MRDSC R1

NetR1 70.53% ± 11.12% 69.27% ± 11.19% 69.14% ± 11.94% 69.87% ± 9.84% 57.89% ± 12.90%

NetR2 68.82% ± 11.32% 71.49% ± 11.79% 70.77% ± 11.56% 70.04% ± 10.33% 59.16% ± 12.98%

NetInt 66.06% ± 13.45% 68.41% ± 13.67% 73.92% ± 11.72% 66.81% ± 12.63% 54.13% ± 15.28%

NetRnd 71.59% ± 10.08% 71.83% ± 10.51% 70.77% ± 11.02% 71.71% ± 8.81% 60.87% ± 12.83%

be seen on PDD as well. The precision was in all cases of
both datasets high enough for the resulting patch (1283) to
include the LC masks of both raters entirely.

Multi-rater Segmentation. Table 1 shows statistics of the
performance obtained with the different segmentation net-
works on the two datasets. The HAD allows comparisons
with the different raters as well as their intersection and
the calculation of the MRDSC, that expresses the agreement
to both raters jointly. On HAD, the nested cross-validation
showedmost of the networks to be in or above the range of the
inter-rater agreement (67.54±10.03%). A notable exception
is NetInt, for which lower DSCs were obtained. However,
NetInt also produces significantly lower FDRs, which were
on average consistently at least 10% less than those ofNetR1,
NetR2 and NetRnd, regardless of which mask was used as
a target (R1 or R2). NetRnd performs statistically signifi-
cantly better than NetR1 on R2, the intersection, MRDSC
and even R1 itself. It outperforms NetR2 on R1 as well as
the MRDSC. Furthermore, NetRnd performs better than all
other nets on the PDD as well. Nonetheless, all networks
show lower agreements on the unseen data of PD subjects.

Fully Automated Pipeline for CR Analysis. The ICCs
reported in Table 2 suggest strong agreement of the method
on both datasets when semi-automated reference regions are
used. ForHAD, good agreementwas found for the automated
reference regions too, while lower values were determined
on the PDD.

Discussion

The iterative multi-scale approach toward LC localization
outperformed our previously published method [8] signifi-

Table 2 Agreement of CRs (in terms of ICCs) from automated LC
masks and automatic/semi-automatic reference regions to manual LC
masks and semi-automated reference regions. The reported ICCs refer
to CRs with median of left LC, median of right LC, maximum of left
LC and maximum of right LC, in this order

Reference Healthy aging dataset PD dataset

Automatic 0.86, 0.85, 0.80, 0.90 0.50, 0.81, 0.48, 0.63

Semi-automatic 0.91, 0.91, 0.94, 0.99 0.81, 0.94, 0.85, 0.93

cantly on both datasets in terms of Euclidean distance error.
It furthermore has the advantages of requiring less time for
training and lower GPU memory consumption. As observed
in [8], the Euclidean distance errors of around 1.3mm on
HAD and 2.2mm on PDD are mostly caused by deviations
along the axial axis. Since this roughly corresponds to the
rostrocaudal axis of the cylindrical LC, which typically has
a length between 12 and 17mm, the performance is better
than the Euclidean distance might indicate. The precision
is therefore more than sufficient for extracting a 1283 voxel
patch that contains the entire structure and for consecutively
performing the segmentation.

The multi-rater trainings showed several interesting
effects.Mostly, the LC segmentation performancewas on the
same level as the inter-rater agreement, which is arguably the
sensible upper limit as further agreement with a single rater
would suggest overfitting to this particular rater’s delineation
style. That is why it is important to analyze the results wrt.
multiple raters. Although NetInt showed comparatively low
agreement to both individual raters, the high agreement with
their intersection and the concomitantly significantly lower
FDRmight indicate a more reserved segmentation style, that
appears to focus on the more certain regions. NetRnd on the
other hand seems to have found a common ground and shows
good agreement with both raters, which is especially indi-
cated by the comparison based on MRDSC. It even obtained
better agreementwithR1 thanNetR1, showing that increased
rating variancemay be beneficial during the training. It might
have achieved improved objectivity, since it performed better
on the unseen data as well.

When using semi-automatically determined reference
regions, our method is able to obtain CRs that show strong
agreement with the manually determined ones on both, the
HAD and the unseen PDD, suggesting practical usability in
this case. The automated reference regions may be used on
cohorts with subjects of healthy aging, but caused reduced
agreement on PD subjects. The influence of the specific posi-
tioning of the cuboid reference region within the pons halves
on the respective CRs is an effect that should be quantified
in future work. Repeated slight repositioning could yield a
variance of considerable magnitude of the feature that could
be incorporated in further analyses.
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Fig. 3 Axial and coronal views of qualitative examples of NetRnd
results on PDD. Yellow: agreement with R1, green: false negative
region, red: false positive region. a) shows a representative example

(left LC: 60.87%, right LC: 60.33% (DSC with R1)) and b) shows one
of the worst results on a low intensity sample (left LC: 31.93%, right
LC: 0% (DSC with R1))

Figure 3 depicts a representative aswell as theworst exam-
ple of the results of NetRnd on PDD. Qualitative assessment
suggests that the drop of performance asmeasured inDSC on
PDD is potentially caused by two aspects. First, the presence
ofmotion artifacts that inferswith theweakLC signal consid-
erably and second, increased variance indicated for instance
by lower LC signal intensity (see Fig. 3b) likely attributed
to pathology. Means of adaption to this variance need to be
explored to obtain higher and more consistent segmentation
performance.

Conclusion

In this work, we advanced our existing deep learning-based
framework [8] in several ways. An iterative multi-scale
approach to the LC localization achieved higher precision.
Furthermore,we investigated the use ofmultiple ratersmasks
and found our approach of random switching between them
during training to perform best and more objectively. By
deriving reference regions from pons masks, we could fully
automatize the extraction of the most popular (potential)
MRI biomarker, CRs, for assessment of LC structure in vivo.
Besides the advantage of being substantially faster, since the
inference of a network takesmerely seconds, thorough inves-
tigationof the results showedgoodagreement onbothhealthy
aging as well as unseen PD cohorts with semi-automatically
generated reference regions and the values derived from the
manual procedure indicating high potential for future clini-
cal applicability. The fully automated CR extraction on the
other hand requires further analyses and adaption to variance
introduced by different subject cohorts in order to pave the
way for clinical applicability.

Future work should focus on several open questions. A
direct comparison to the few concurrent methods and atlases
should be carried out. To further validate the usability of the
approach in practical scenarios, a comprehensive evaluation
on more datasets should be considered such that not only
the effects of more and different subjects cohorts, e.g., with

different neurodegenerative pathologies, but also of MRI
scanner properties, scanning protocols and motion artifacts
on the performance can be assessed and addressed. Find-
ing means of adaption to unseen cohort variance may also
enable the exploration of new, more sophisticated potential
biomarkers, such as volume [17] or regional intensity gradi-
ents [2].
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