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A B S T R A C T

Background Older age is the most powerful risk factor for adverse coronavirus disease-19 (COVID-19) out-
comes. It is uncertain whether leucocyte telomere length (LTL), previously proposed as a marker of biological
age, is also associated with COVID-19 outcomes.
Methods We associated LTL values obtained from participants recruited into UK Biobank (UKB) during
2006�2010 with adverse COVID-19 outcomes recorded by 30 November 2020, defined as a composite of any
of the following: hospital admission, need for critical care, respiratory support, or mortality. Using informa-
tion on 130 LTL-associated genetic variants, we conducted exploratory Mendelian randomisation (MR) analy-
ses in UKB to evaluate whether observational associations might reflect cause-and-effect relationships.
Findings Of 6775 participants in UKB who tested positive for infection with SARS-CoV-2 in the community,
there were 914 (13.5%) with adverse COVID-19 outcomes. The odds ratio (OR) for adverse COVID-19 out-
comes was 1¢17 (95% CI 1¢05�1¢30; P = 0¢004) per 1-SD shorter usual LTL, after adjustment for age, sex and
ethnicity. Similar ORs were observed in analyses that: adjusted for additional risk factors; disaggregated the
composite outcome and reduced the scope for selection or collider bias. In MR analyses, the OR for adverse
COVID-19 outcomes was directionally concordant but non-significant.
Interpretation Shorter LTL is associated with higher risk of adverse COVID-19 outcomes, independent of sev-
eral major risk factors for COVID-19 including age. Further data are needed to determine whether this associ-
ation reflects causality.
Funding UK Medical Research Council, Biotechnology and Biological Sciences Research Council and British
Heart Foundation.
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Research in context

Evidence before this study

We searched PubMed for articles with the terms “telomere
length” and “COVID-19” to identify publications relating to
telomere length and COVID-19 outcomes. We retained only
research articles that used telomere length as a biomarker,
identifying three articles. All of these studies showed a relation-
ship between shorter telomere length and either COVID-19
severity or outcome. However, all had measured leucocyte telo-
mere length (TL) after SARS-CoV-2 infection making it difficult
to interpret whether shorter TL preceded infection or was due
to higher white cell turnover in response to infection.

Added value of this study

Our study is the largest study to date on the association of inter-
individual variation in leucocyte telomere length with adverse
outcomes from COVID-19 and the first to analyse telomere
length that was measured prior to SARS-CoV-2 infection.

Implications of all the available evidence

Our study suggests that independently of age, leucocyte telo-
mere length is associated with greater risk of poor outcome
from COVID-19, possibly through an effect on immune cell
senescence, and that this explains some of the heterogeneity in
inter-individual response to the infection.

2 Q. Wang et al. / EBioMedicine 70 (2021) 103485
1. Introduction

Older age has emerged as the most powerful risk factor for
severe infection, requiring hospitalisation or critical care, and
mortality from coronavirus disease 19 (COVID-19) caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
[1,2]. One potential mediator of this effect is ageing of the
immune system, leading to increased levels of pro-inflammatory
senescent cells and reduced proliferative capacity of immune pre-
cursor cells [3,4]. Telomere length (TL) is a key determinant of
proliferative capacity and cellular lifespan, triggering senescence
once a critically short TL is reached [5]. TL � commonly measured
in leucocytes (LTL) � shows a consistent negative association
with age in cross sectional population cohorts and has previously
been proposed as a marker of biological age for an individual.
However, age only accounts for a small proportion of the substan-
tial inter-individual variation in LTL [6] that exists at all ages,
including birth [7]. More recently, TL has also been proposed as a
marker of replicative capacity and repair ability [8], both of
which, within the haematopoietic system, could potentially
impair an individual’s response to SARS-CoV-2 infection, above
any effect of age [9,10].

A few small case-control studies, in which LTL was measured
after SARS-CoV-2 infection at the time of hospital admission,
have reported associations of shorter LTL with hospitalisation and
severe outcomes [11�13]. However, their interpretation is com-
plicated by the possibility that LTL measurements could have
been influenced by white cell turnover in response to infection.
To our knowledge, no study to date has reported on associations
of prior (pre-infection) LTL values and adverse COVID-19 out-
comes.

Here, we examine whether LTL measured several years prior to
SARS-CoV-2 infection is associated with adverse COVID-19 outcomes,
leveraging our recent completion of LTL measurements in 474,074
participants aged 40�69 at time of recruitment into UK Biobank
(UKB) [6] between 2006 and 2010 [14,15].
2. Methods

Participants: Participants in UKB have been characterised in detail
using questionnaires, physical measurements, urinary and plasma
biomarker measurements, genomic assays and longitudinal linkage
with multiple health record systems, including Hospital Episode Sta-
tistics (HES) and Office for National Statistics (ONS) mortality data
[16]. We have described the associations of inter-individual variation
in LTL with multiple biomedical traits and risk of several diseases in
UKB [15]. Since the onset of the COVID-19 pandemic, UKB has also
linked participants with results from clinically indicated SARS-CoV-2
testing and COVID-19 outcomes. By linking participants in UKB to
SARS-CoV-2 testing datasets of Public Health England (PHE),[17] we
identified participants who tested positive between 16 March 2020
and 30 November 2020; the latter date corresponds to the latest
release of HES data to UKB. We used HES records to identify SARS-
CoV-2 positive participants who were admitted to hospital due to
COVID-19 (ICD-10 code ‘U07.1’) within 28 days after a positive SARS-
CoV-2 test. We further extracted information on need for critical care
admission and respiratory support, due to COVID-19 (ICD-10 code
‘U07.1’), via linkage to the ICNARC (Intensive Care National Audit and
Research Centre) database, and deaths due to COVID-19 (ICD-10 code
‘U07.1’), from the Office for National Statistics (ONS) death registry
data.

The UK Biobank has ethical approval from the North West
Centre for Research Ethics Committee (Application 11/NW/0382),
which covers the UK. UK Biobank obtained informed consent
from all participants. Full details can be found at https://www.
ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/ethics.
The generation and use of the data presented in this paper was
approved by the UK Biobank access committee under UK Biobank
application number 6077.

LTL measurements: Full details of the LTL measurements in UKB
are provided elsewhere [6]. Briefly, LTL was measured using an estab-
lished PCR method that expresses LTL as a ratio (T/S ratio) [6]. LTL
measurements were adjusted for technical variation, loge trans-
formed and Z-standardised [6]. In order to assess and adjust for
within individual variability in LTL we measured LTL at two time-
points (mean interval: 5¢5 years) for 1351 participants, yielding a
regression-dilution ratio of ~0¢68. Results in this study have been cor-
rected for within-person variability of LTL values over time (abbrevi-
ated "usual LTL"), as described previously [6,15].

Outcome definitions: Our study’s primary outcome was a compos-
ite of COVID-19-related outcomes (ICD-10 code ‘U07.1’): hospital
admission, requirement for critical care, respiratory support, or mor-
tality. We defined cases as those participants in UKB who tested posi-
tive for SARS-CoV-2 and had the primary outcome. For our primary
outcome, controls were those who tested positive for SARS-CoV-2
but were not hospitalised within 28 days. To reduce the scope for col-
lider bias [18] we included only participants with positive SARS-CoV-
2 tests done outside of hospital settings, since hospital admission
itself may increase the likelihood of SARS-CoV-2 testing. The age, sex
and ethnicity adjusted odds ratio (OR) for having a SARS-CoV-2 test
(n = 43,574) at any location, was 1¢03, (95% CI 1¢01-1¢05; logistic
regression P = 1¢0 £ 10�4) per 1-SD shorter usual LTL.

We conducted several secondary analyses. First, we examined
associations with each component of the primary composite end-
point. Second, we analysed the primary outcome using the rest of
UKB participants as controls, as testing was unlikely to be random
and the restriction to SARS-CoV-2 positive controls only is potentially
subject to selection bias related to factors associated with infection
[19]. Third, to ensure that apparently post-COVID-19 outcomes were
not re-admissions or influenced by proximate medical events prior to
infection, we excluded participants with any hospital admission in
the previous 6 months. Finally, we consider the impact of inflamma-
tion and baseline disease prevalence on LTL, to minimise the
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Table 2
Results of the main and secondary/sensitivity analyses.

N cases N controls Odds Ratio (95%CI) P-value

Composite outcome
LTL (age-adjusted) (per

1 SD shorter)
914 5861 1¢17 (1¢05, 1¢30) 0¢004

Age at COVID-19 test
(per 5 yrs older)

1¢58 (1¢51, 1¢65) <0¢001

Sex (male vs female) 1¢88 (1¢62, 2¢19) <0¢001
Ethnicity (non-White vs

White)
1¢80 (1¢39, 2¢34) <0¢001

Separate components as outcome*
Hospitalisation 672 5861 1¢17 (1¢03, 1¢32) 0¢013
Critical care support 383 1¢31 (1¢12, 1¢53) <0¢001
Respiratory support 279 1¢36 (1¢13, 1¢64) <0¢001
Death 157 1¢36 (1¢07, 1¢72) 0¢013
Population controls
LTL (age-adjusted) (per

1 SD shorter)
914 465,946 1¢19 (1¢08, 1¢31) <0¢001

Excluding participants with recent hospitalisation
LTL (age-adjusted) (per

1 SD shorter)
732 5861 1¢15 (1¢02, 1¢30) 0¢019

Mendelian Randomisation
MR IVW 914 5861 1¢30 (0¢85, 2¢00) 0¢224
MR-median 1¢25 (0¢62, 2¢50) 0¢537

The main analysis is based on our composite outcome and the full multivariable
model estimates are shown for each risk factor. *For each component of the composite
outcome analysed separately, the results shown for these are labelled by outcome
component but represent the LTL (age-adjusted) estimate (per 1 SD shorter). For each
analysis, the numbers of cases and controls are given alongside the odds ratio, 95%
confidence interval and P-value (from logistic regression models or MR). MR IVW:
Mendelian randomisation inverse-variance weighted method. MR-median: Mende-
lian randomisation weighted median method.
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potential confounding from these factors on any LTL-COVID-19 out-
comes relationship.

Statistical analysis: Univariable tests were performed using T-tests
for continuous traits and Fishers exact or x2 tests for categorical traits
as appropriate. Analyses involved multivariable logistic regression,
adjusting for age (at SARS-CoV-2 positive test), sex and ethnicity. Due
to small numbers, ethnic groups other than White were combined
and participants with missing ethnicity (n = 14 cases and 46 controls)
were excluded. To remove the correlation between LTL and age, we
used the residuals of LTL adjusted for age at baseline within the sta-
tistical models. In specific models to estimate the impact on the asso-
ciation due to inflammation or disease prevalence we re-estimated
LTL residuals adjusting for age at baseline and C-reactive protein or
any of 123 curated diseases [15] (Supplementary Table), respectively.
ORs were further adjusted for baseline smoking status and body-
mass index (BMI) recorded at entry into UKB. Results are described as
ORs associated with the outcome per one standard deviation (SD)
shorter LTL residual, with associated 95% confidence intervals (CI)
and p-values.

In an exploratory analysis, we conducted one-sample Mendelian
randomisation (MR) analyses in UKB [20] to evaluate a causal rela-
tionship between shorter LTL and adverse COVID-19 outcomes, using
the inverse-variance weighted (IVW) [21] and weighted median [22]
methods with a set of 130 genome-wide significant
(P < 8.31 £ 10�9), conditionally independent, uncorrelated and non-
pleiotropic genetic variants we recently identified as genetic instru-
ments for LTL [15]. We used MR-Egger regression to assess robust-
ness to horizontal pleiotropy [23].

Role of the funding body: The Funders had no role in study design,
data collection, data analyses, interpretation, or writing of this study.

3. Results

By 30 November 2020, 914 participants were identified with an
adverse COVID-19 related outcome and 5861 participants were iden-
tified as primary controls (positive community test for COVID-19 but
not hospitalised). Their characteristics are summarised in Table 1. On
average, compared to controls, cases were older and more likely to
be male and from a non-White background. At time of their entry
into UKB, they also had a higher BMI and more likely to be current
smokers. (Table 1).

LTL at entry to UKB was on average shorter in cases compared
with controls (Table 1). The OR for the primary outcome was 1¢17
(95% CI 1¢05-1¢30; logistic regression P = 0¢004) per 1-SD shorter
usual LTL, after adjustment for age, sex and ethnicity (Table 2). The
Table 1
Characteristics of participants by case status.

Trait Cases N = 914 Controls N = 5861 P-value

Age at COVID-19 test 70 (8¢00) 64 (8¢00) 1¢85E-95
BMI 29¢61 (5¢39) 27¢97 (4¢86) 1¢55E-20
Sex Male 573 (62¢69) 2675 (45¢64) 8¢20E-22

Female 341 (37¢31) 3186 (54¢36)
Ethnicity Asian 33 (3¢61) 217 (3¢70) 0¢006

Black 5 (0¢55) 38 (0¢65)
Chinese 3 (0¢33) 9 (0¢15)
Mixed 36 (3¢94) 117 (2¢00)
Other 8 (0¢88) 78 (1¢33)
White 829 (90¢70) 5402 (92¢17)

Smoking Never 358 (39¢43) 3236 (55¢38) 1.27E-18
Ex-smoker 408 (44¢93) 2001 (34¢25)
Current 142 (15¢64) 606 (10¢37)

LTL (age adjusted) -0¢14 (0.97) -0¢03 (1¢00) 0¢002
Data shown are mean (SD) for continuous traits or n (%) for categorical traits. LTL,
smoking status, BMI, sex and ethnicity are from baseline information. LTL is log-
transformed and Z-standardised. P-values were obtained via t-tests for continuous
traits, Ethnicity was assessed using Fishers exact test and other categorical traits
were tested using a x2 test.
OR only slightly attenuated after further adjustment for smoking sta-
tus and BMI (OR = 1¢15, 1¢03-1¢28), and after adjustment for the pres-
ence of any of 123 diseases recorded at baseline (OR = 1¢14, 1¢02-
1¢26), while adjusting for CRP slightly increased the estimated effect
size (OR = 1¢19, 1¢06-1¢33). As expected, older age, male sex and non-
White ethnicity were each associated with higher risk of adverse
COVID-19 outcomes independently of usual LTL (Table 2).

Sub-components of our study’s primary composite outcome were
not mutually exclusive, as 46 cases contributed to all four sub-com-
ponents (Fig. 1). Shorter usual LTL was significantly associated with
higher risk of each sub-component (Table 2). ORs were broadly simi-
lar to the main findings in analyses that replaced the SARS-CoV-2-
positive control group with all UKB participants as controls or that
excluded any participant with a hospital admission in the six months
prior to testing positive for SARS-CoV-2 (Table 2).

In MR analyses, the IVW odds ratio was 1¢30 (0¢85�2¢00; MR-IVW
P = 0¢224) per 1-SD shorter genetically-determined LTL, a non-signifi-
cant result directionally concordant with the observational finding
(Table 2). Results were similar using the weighted median method
(Table 2) and there was no evidence of horizontal pleiotropy (MR-
Egger intercept P = 0¢591).

4. Discussion

In a study of 6,775 participants with a positive test for SARS-CoV-2
(nested within the 500,000-participant UKB), we have shown that
individuals with shorter LTL assessed several years prior to SARS-
CoV-2 infection had higher risk of adverse COVID-19 outcomes, even
after adjustment for several established risk factors for COVID-19
including age. This finding suggests that shorter LTL is likely to be
independently associated with COVID-19 hospitalisation and sever-
ity. The results of analysis of LTL-associated genetic variants and
COVID-19 were directionally concordant with our observational find-
ings but non-significant. Our results, therefore, encourage further
investigation of the potential causal relevance of TL to adverse
COVID-19 outcomes.



Fig. 1. Venn diagram showing the distribution of the individual components of the primary outcome. Where N is the frequency and: Hospitalised, due to COVID-19; Critical care
admission, due to COVID-19; respiratory support needed, while in critical care due to COVID-19; death due to COVID-19.
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The validity of our results is supported by several observations.
First, our study found associations between older age, male sex, and
non-White ethnicity that have previously been linked with adverse
COVID-19 outcomes in the UK [2]. Each of these factors was associ-
ated much more strongly with COVID-19 outcomes than was shorter
LTL. Second, we found significant associations of shorter LTL with
each sub-component of our study’s primary composite outcome.
Third, our main findings persisted after adjustment for multiple risk
factors. Fourth, our overall result was robust to sensitivity analyses
designed to minimise the scope for potential biases. For example, col-
lider bias can lead to false associations between a risk factor and an
outcome, [18] as highlighted by studies related to understanding of
COVID-19 disease risk and severity [19]. Indeed, we found evidence
for potential colliders in our own analysis, observing a small but sig-
nificant association between shorter LTL and higher likelihood of
SARS-CoV-2 testing. Hence, we only included participants with a pos-
itive SARS-CoV-2 test outside the hospital setting, as hospitalisation
itself may increase the likelihood of testing. Finally, considering the
potential impact of inflammageing on the observed result we further
adjusted for C-reactive protein and found no meaningful changes in
the association.

The biological mechanisms through which shorter LTL might
increase risk of adverse outcomes from SARS-CoV-2 infection remain
to be clarified. Our finding that the association was not substantially
attenuated when we adjusted for the association of LTL with multiple
diseases at baseline, suggest that, if this association is causal, it is
probably not simply a reflection of co-morbidity due to the impact of
shorter LTL on risk of these diseases. A potential mechanism relates
to the impact of telomere length dynamics on aging of the immune
system [24] and the potential role of senescence in severe SARS-CoV-
2 infection [3,4,25]. While we have measured TL in leucocytes we
believe these results likely reflects TL within T-cells in this scenario,
although further studies would be required to confirm this. When
challenged with infection, individuals with shorter LTL prior to
infection would potentially have less proliferative capacity within
the T-cell population required for an efficient response to SARS-
CoV2, coupled with reduced lymphopoiesis following infection
[9,26]. Individuals with shorter LTL may also potentially already
harbour a higher proportion of senescent T-cells, reducing the
number of functional cells that are able to respond to infection
[25]. Additionally, senescent cells are known to adopt a pro-
inflammatory phenotype, secreting high levels of cytokines,
which can further drive inflammation in COVID-19 patients [25].
Our results are also in concordance with previous studies show-
ing that shorter LTL increases the risk of adverse outcome in
other infections [27,28].

Our study has several limitations. UKB is not representative of the
general UK population; only 6% of those invited to participate did so
[29]. The age distribution within UK Biobank includes participants
aged 40�70 at baseline, who will be about 10�15 years older now,
limiting the ability to assess association in individuals in other age
groups. We were unable to fully assess ethnicity due to small num-
bers, though over time this limitation can be resolved with increased
case numbers. Risk factor levels and mortality rates are lower than in
the general population, although risk factor associations with mortal-
ity for a range of diseases are similar [30]. Hence, further studies are
warranted in other populations. Our one-sample Mendelian random-
isation analysis in UKB had limited power to reliably estimate causal
effects as fewer than one thousand participants had been hospitalised
after a positive SARS-CoV-2 test and our genetic instrument of 130
variants, while using the most up to date information on LTL-associ-
ated variants, accounts for only ~4% of inter-individual variation in
LTL [15]. While there are data from large genetic studies of COVID-19
[31], they could not be used in our analysis because the outcome defi-
nitions differed substantially from those we used, and because of
their inclusion of within hospital testing that is potentially a collider
with LTL and COVID-19 outcomes. Larger sample sizes with compara-
ble disease phenotypes should, therefore, enable more precise
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evaluation of a potential causal association between shorter LTL and
adverse COVID-19 outcomes.

In conclusion, in the largest study to date, we provide evidence
that shorter LTL is associated with higher risk of adverse COVID-19
outcomes, independent of several major risk factors for COVID-19.
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