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Abstract 
 
Electrohydrodynamic (EHD) processes are promising healthcare fabrication technologies, as 
evidenced by the number of commercialised and food-and-drug administration (FDA)-approved 
products produced by these processes. Their ability to produce both rapidly and precisely nano-
sized products provides them with a unique set of qualities that cannot be matched by other 
fabrication technologies. Consequently, this has stimulated the development of EHD processing 
to tackle other healthcare challenges. However, as with most technologies, time and resources 
will be needed to realise fully the potential EHD processes can offer. To address this bottleneck, 
researchers are adopting machine learning (ML), a subset of artificial intelligence, into their 
workflow. ML has already made ground-breaking advancements in the healthcare sector, and it 
is anticipated to do the same in the materials domain. Presently, the application of ML in 
fabrication technologies lags behind other sectors. To that end, this review showcases the 
progress made by ML for EHD workflows, demonstrating how the latter can benefit greatly from 
the former. In addition, we provide an introduction to the ML pipeline, to help encourage the use 
of ML for other EHD researchers. As discussed, the merger of ML with EHD has the potential to 
expedite novel discoveries and to automate the EHD workflow.  
 
Keywords: 3D printing drug products; Continuous Manufacturing; Nanotechnology; Digital 
Healthcare Technology; Informatics; Functional Materials; 2D materials. 
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Precise, Rapid, and Timely 
 
Electrohydrodynamic (EHD) processes are a collection of state-of-the-art fabrication techniques 
that are capable of generating structural features in the order of micron to nano-size [1, 2]. EHD 
techniques have been used to fabricate nanofibers, nanoribbons, and spherical nanoparticles [3-
7]. The technology leverages voltage-control for high precision fabrication in a reproducible 
manner [8]. Moreover, the standard EHD setup is simple, inexpensive and compact. As it is a 
solvent-based fabrication technique and does not require high heat, a wide range of polymers 
can be used. However, in contrast to other solvent-based techniques, the drying times are 
considerably fast, making it a uniquely rapid-fabrication process. In addition, as high temperature 
is not required, biological and thermally-labile materials can be incorporated, as well as 
hybridised products containing ceramics and metals [1, 9]. Furthermore, highly porous structures, 
up to 90% porosity, can be obtained yielding high surface area-to-volume ratio, which is a 
requirement for certain applications [3, 10, 11]. These aforementioned remarkable properties of 
EHD highlight why the technology is employed across a number of sectors, including drug delivery, 
tissue engineering, sensors and energy harvesting [12, 13]. With its broad application and several 
EHD products successfully progressed towards clinical or industrial application (Table 1), the 
technology warrants further research.  
 
One promising research is the transition from two- to three-dimensional printing (3DP) EHD 
processes. For example, EHD can achieve features on a scale magnitude smaller than that of 
current 3DP technologies, resulting in highly sensitive biosensor electrodes. Moreover, the 
morphology of some products has been found to replicate the extracellular matrix that facilitates 
biocompatibility, and which current 3DP technology-based scaffolds are unable to. Hence, due 
to these specialised properties, 3DP-EHD technologies are expected to become a staple 3DP 
technology complimenting existing 3DP technologies [14].  
 
The transition to a 3DP technology will undoubtedly require a period of optimisation in order to 
realise this aim. Recent research has revealed that 3DP technologies that are an extension of 
conventional 2D fabrication technologies were not always compatible with existing formulations. 
In addition, the conventional 2D-EHD processes are far from having their full potential realised. 
For one, large scale production are yet to be realised, despite the technology being around for 
decades. The technology is highly complex, with each parameter playing an important role and 
has interdependent influence on the characteristics of the particles or fibres produced. Of course, 
the ability of EHD to accommodate a wide range of materials is advantageous, however, it is 
inescapable that exploring the influence of each parameter will be laborious (Table 2). The 
currently used trial-and-error approach is antiquated and unsustainable, requiring large 
resources of materials and time. In addition, some healthcare applications of EHD, such as point-
of-care wound dressing fabrication, will ideally need to be situated in healthcare facilities – 
nearer to the patient, on-demand and personalised. However, this will require on-site expertise, 
which can be costly for healthcare institutes.  
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Table 1. Examples of EHD products both food and drug administration (FDA) approved and in 
clinical trials. 

Brand name  Manufacture
r  

Product  Material  Approval  References   

SurgiCLOT St Theresa 
Medical 

Bone healing Dextran 
nanofibers 

Clinical Use (St Teresa 
Medical, 

2021) 

PK Papyrus Biotronik Coronary 
stent system 

Polyurethane 
fibres 

FDA (Biotronik, 
n.d.) 

Spincare Nanomedic  
Technologies 

Portable 
bedside 

wound-care 
device 

Customised  
polymers 

CE certified (Nanomedic T
echnologies, 

2020) 

NanoCare Nanofiber 
Solutions 

ECM-like 
fibre 

structure for 
wound 
healing 

FDA-
approved 
polymers 

FDA (NanoFiber S
olutions, 

2021) 

ReBOSSIS ORTHOReBIR
TH 

Synthetic 
bone-filling 

Cottony-type 
Bone-void 

filling 
material: 

 
β-Tricalcium 

Phosphate (β-
TCP)  

Bioabsorbabl
e Polymer   

Silicone-
containing 

Calcium 
Carbonate (Si

V) 

FDA (ORTHOReBIR
TH, n.d.) 

Rivelin Patch AFYX 
Therapeutics 

Patch drug 
delivery 

system to 
mucosal 

lining for Oral
 Lichen 
Planus 

Patch 
containing clo

betaso 

Phase 2 
Clinical trial 

Cleared 

(AFYX 
Therapeutics, 

2020)  
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Table 2. Processing parameters for EHD 

Processing parameters 

Flow rate 

Applied voltage 

Distance between nozzle and 
collection plate 

Needle/nozzle diameter 

Solution parameters  

Type of polymer 

Polymer solution concentration 

Drug carried and concentration 

Type of solvent 

Viscosity 

Surface tension 

Ambient/environmental parameters 
Temperature 

Humidity 

 
To help expedite this process, modelling techniques have recently been incorporated to simulate 
the EHD process [15-18]. Such simulations help to reduce the exhaustive trial-and-error approach 
to obtaining data whilst minimising material consumption. The state-of-the-art in modelling is 
Machine learning (ML), a subset of artificial intelligence (AI) that is strongly implicated in the next 
healthcare revolution [19-21]. ML is the process of developing algorithms to learn from data and 
help develop predictive models therefrom [22, 23]. ML is a widely versatile predictive technique, 
capable of making predictions from a variety of inputs, including numeric, text, images and videos. 
In addition, the predictions can be made in a matter of seconds, making it suitable for time-
sensitive applications, such as in healthcare [24]. The recent application of deep learning, a 
subset of ML, has demonstrated that algorithms can be developed that improve their predictions 
as the data size grows, having previously considered ‘Big data’ to be an obstacle in ML. Due to 
these outstanding and unprecedented properties, the success of both AI and ML has garnered 
much attention, with well-publicised success stories such as AlphaGo and AlphaFold, and some 
algorithms have outperformed clinicians in diagnostic tests [25-27]. As a consequence, a number 
of research disciplines have incorporated ML, chief among them the drug discovery discipline [28] 
and other healthcare-related applications (Table 3). However, the adoption of ML in the wider 
material science and engineering field has not been thoroughly explored, even though the field 
is heavily data-driven. Hence, given the large existing available data, there is potential to employ 
ML in material science to help expedite research and development.  

 
To that end, the current paper reviews the application of ML applied in EHD processes, the 
principal objective being to introduce ML to the EHD community. A section providing essential 
background to ML is presented first, highlighting the examples of common ML techniques (MLT) 
and their learning methods, as well as describing the overall ML pipeline itself. The following 
section summarises the application of ML in EHD, before concluding the paper by providing a 
perspective on the outlook on this emerging multidisciplinary field.  
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Table 3. A number of Machine Learning Algorithms are being investigated for clinical use. 

Algorithm Clinical Application Ref  

Random Forest Clinical Trial design [29] 

Artificial Neural Networks Powering Exoskeletons [30] 

Convolutional Neural Networks Image recognition software [31] 

Principal Component Analysis diagnostic [32] 

k-means diagnostic [32] 

Support Vector Machine Diagnostics [33] 

Recurrent Neural Networks Diagnostics [34] 

Gaussian Mixture Model Imaging [35] 

 
 

Machine Learning Principles  
 
ML focuses on algorithms that train prediction- or decision-making models based on data 
provided [36].The exponential increase of computational power and the advancement of ML 
algorithms have enormously accelerated the application of ML in a myriad of fields not limited 
to computer science but also biology [25], chemistry [37], materials science [38, 39], and 
pharmaceutical science [40-43]. On top of applications in academia, ML is also having a huge 
impact on industries, of which facial recognition, text translation, and self-driving cars are classic 
examples [44-46]. ML encompasses several categories of learning methods. Depending on the 
information the training data contains, ML can be divided into two major categories of supervised 
learning and unsupervised learning [47, 48]. These algorithms are discussed in detail in the 
following section. 
 

Supervised learning 
 
Supervised learning is a popular and widely used method in ML [48]. During the training process, 
the data are fed into the learning algorithm f in the form of (𝑓𝑒𝑎𝑡𝑢𝑟𝑒, 𝑙𝑎𝑏𝑒𝑙) pairs. Taking linear 
regression as an example, dots that contain (𝑥, 𝑦) positions are the (𝑓𝑒𝑎𝑡𝑢𝑟𝑒, 𝑙𝑎𝑏𝑒𝑙) pairs in the 
training step. Training with (𝑥, 𝑦) pairs allows the regression algorithm 𝑓𝑟𝑒𝑔 to build up a model 

that gives a prediction of �̂�  with a query input 𝑥 . Other than numeric (𝑥, 𝑦) input, the input 
features can also be medical images, molecular graphs, or texts (DNA sequence or simplified 
molecular-input line-entry system (SMILES)) in different algorithms [49-51]. Table 4 shows 
different learning algorithms in supervised learning to which the well-known multiple linear 
regression, support vector classification (SVC), and multilayer perceptron (MLP) belong.  
 
An illustration of several ML techniques is shown in Figure 1. Briefly, multiple linear regression 
(MLR) learns a linear combination of features �̂� = 𝜽𝑻𝒙 + 𝑏 that minimizes the squared error of 
the predicted value to the ground truth value. Similarly, logistic regression (LR) uses a linear 
combination of features 𝜽𝑻𝒙 + 𝑏 but then takes the combined result and feeds it into a logistic 
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function to do classification tasks. k-Nearest neighbours (kNN) algorithm approaches 
classification by a simple plurality vote of k nearest neighbours. The label of the predicting sample 
will be assigned to the most common class amongst its neighbours. Support vector classification 
seeks the hyperplane 𝜽𝑻𝒙 + 𝑏 = 0  that separates samples of different categories the most. 
Moreover, non-linear classification can be performed by SVC with the help of kernel methods 
[52]. Naïve Bayes algorithm adopts the Bayes’ theorem to calculate the posterior probability of 
the predicting sample’s label based on prior known samples in the training step [36]. Decision 
tree (DT) uses a series of simple rules (e.g., comparing with criteria) to predict [53]. Random 
forest (RF) uses an ensemble learning method ‘bagging’ which combines the prediction results 
from many different decision trees and gives a final prediction by a majority vote in classification 
or averaging the output in regression [54]. Also based on DT, gradient boost decision tree (GBDT) 
belongs to the ‘boosting’ ensemble learning method. GBDT takes the output of one decision tree 
and feed it to another decision tree, forming a series connection of models [55]. MLP is a basic 
structure of artificial neural networks (ANN) consisting of multiple layers of neurons [56]. Here 
we adopt a broader definition of MLP where the activation function is not limited to the threshold 
function. A classic structure of MLP consists the input layer, hidden layer(s), and the output layer. 
These layers are connected by activation functions like rectified linear function (ReLU), sigmoid 
function, or tanh function. Backpropagation (BP) trains parameters in the MLP network, 
minimizing the loss function. Because of the non-linear nature of the activation functions, MLP 
performs well in capturing non-linear relationships between the features and the labels [57]. 
Supervised convolutional neural networks (CNN) and recurrent neural networks (RNN) are 
specialized neural networks designed to handle image and serial (e.g., texts and audio) inputs [44, 
58, 59]. 
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Figure 1. Schematic representation of frequently used supervised ML algorithms (MLR – 
multiple linear regression; LR – logistic regression; SVC – support vector classification; DT – 
decision tree; RF – random forest; GBDT – gradient boost decision tree; MLP – multi-layer 
perceptron). (y – response variable; 𝜽𝑻𝒙 – denotes the input features; P- is probability; fkernel – 
kernel function; ℝ - real numbers; n - number).   

 
  

Unsupervised learning 
 
Unlike supervised learning, the input data of unsupervised learning algorithms are without labels 
[60]. Unsupervised learning algorithms are able to find the intrinsic patterns of data based on 
different assumptions [48]. Several unsupervised learning algorithms are shown in Table 4. 
Conventional unsupervised learning algorithms mainly tackle two tasks: clustering and 
dimensionality reduction [60]. Figure 2 includes some unsupervised learning algorithms. k-means 
clustering algorithm partitions the data to k clusters by finding out the minimum in-cluster 
variance. Gaussian mixture model (GMM) assumes data are generated from several Gaussian 
distributions with unknown parameters and aims to find out the underlying distributions to 
cluster the data. Dimensionality reduction aims to address the ‘curse of dimensionality’, caused 
by the sparsity of data (i.e. not enough data to fill up the high-dimensional feature space to reach 
statistical significant conclusions), by detecting and removing the redundancy in features. 
Principal component analysis (PCA) finds a lower-dimensional representation by linearly 
transforming original data while maximizing the variance in the new sample space [61]. Recently, 
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novel unsupervised learning algorithms including variational autoencoder (VAE) and generative 
adversarial networks (GAN) target new data generation from the learned latent pattern of 
training data [62, 63]. In certain scenarios, pre-trained CNN and RNN are used for unsupervised 
feature extraction for image and text data. 

 

 
Figure 2. More schematic representation of ML algorithms commonly used (CNN – convolution 
neural network; RNN – recurrent neural network; GMM – gaussian mixture model; PCA – 
principal component analysis). (fpca – PCA function; ℝ - real numbers; n – number). 

 
Table 4. Machine Learning Algorithms 

ML Algorithms Category Description Applications Ref 

Linear models 

Multiple Linear 
Regression 

Supervised, 
Regression 

Correlate 
multiple input 
features to the 
targeting label 
by a linear 
regression 
model 

Structural-
properties 
relationship 
models 

[64, 65] 

Logistic 
Regression 

Supervised, 
Classification 

Using logistic 
function to do 
binary 
classification 

Classification 
models, feature 
importance 
analysis 

[66, 67]  

Tree-based Ensemble Learning 
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Random Forests Supervised, 
Classification or 
Regression 

A bagging 
ensemble 
learning 
algorithm 

Structural-
properties 
relationship 
models, 
classification 
models  

[68, 69] 

Gradient 
Boosting 
Decision Tree  

Supervised, 
Classification or 
Regression 

A boosting 
ensemble 
learning 
algorithm 

Structural-
properties 
relationship 
models 

[70, 71] 

Neural Networks 

Multilayer 
Perceptron  

Supervised, 
Classification or 
Regression 

A type of simple 
artificial neural 
network with a 
few hidden 
layers 

Structural-
properties 
relationship 
models, 
classification 
models, 
materials design 

[72-74] 

Recurrent 
Neural Networks  

Supervised or 
Unsupervised 

A type of neural 
networks with 
recurrent units, 
specialized in 
handling 
sequential data 

Translation, text 
information 
extraction, 
retrosynthesis 
analysis 

[37, 39, 44]  

Convolutional 
Neural Networks  

Supervised or 
Unsupervised 

A type of neural 
networks with 
convolutional 
layers, 
specialized in 
handling image 
data 

Image 
information 
extraction, 
molecular 
featurization 

[58, 75, 76] 

Other 

Support Vector 
Machine  

Supervised or 
Unsupervised 

An algorithm 
usually 
combined with 
kernel method 
to seek for 
decision 
boundaries 

Structural-
properties 
relationship 
models, 
classification 
models, 
materials design 

[77-79] 

k-Nearest 
Neighbours 

Supervised, 
Classification or 
Regression 

A simple 
algorithm based 
on plurality 
votes or the 

Structural-
properties 
relationship 
models, 

[80, 81] 
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average value of 
k nearest 
neighbours 

classification 
models 

Naïve Bayes Supervised, 
Classification 

An algorithm 
using Bayes’ 
theorem to 
classify data 
with an 
assumption of 
naïve 
independence 
between data 
features 

Classification 
models 

[82] 

k-means 
Clustering 

Unsupervised, 
Clustering 

A clustering 
algorithm 
assuming data 
come from k 
clusters  

Exploring inner 
relationships 
within data 

[83, 84] 

Gaussian 
Mixture Model 

Unsupervised, 
Clustering 

A clustering 
algorithm 
assuming data 
come from 
different 
gaussian 
distributions 

Exploring inner 
relationships 
within data 

[84, 85] 

Principal 
Component 
Analysis 

Unsupervised, 
Dimensionality 
Reduction 

A dimensionality 
reduction 
algorithm to 
linearly reduce 
data dimension  

Small dataset 
training, 
dimensionality 
reduction 

[86, 87] 

Deep Generative 
Models 

Unsupervised, 
Generative 

A subset of 
algorithms with 
the ability to 
generate new 
data from the 
same statistical 
distribution as 
the given data 

Molecular 
design, material 
design 

[88-90] 
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Feature Engineering 
 
Feature engineering includes processing raw data to computer-understandable data and the 
refinement of extracted features [91]. Most of the time, unprocessed raw data will dramatically 
limit, if not completely hinder, the performance of ML algorithms. Especially in materials science 
and chemistry, crystal and molecular information is represented by a chemical formula or a 
molecular graph which can be easily understood and interpreted by human experts. However, 
such information is not sufficient nor valid as the input of ML algorithms like multiple linear 
regression. Hence, appropriate feature engineering should be carried out on the raw data. For 
organic molecules and crystals, molecular fingerprints and crystal descriptors are introduced to 
enable computers to understand chemical and structural information [92, 93]. Apart from 
molecules, different data types usually require specific feature engineering techniques [91]. 
Numeric data need to be normalized or transformed into the logarithm scale. Image data need 
to be resized or cropped. Text data should be vectorized by featurization methods like bag-of-
words. Regarding the refinement of extracted features, the number of features is the major 
concern. Furthermore, in feature engineering, some unsupervised learning algorithms like PCA 
are applied to rule out the redundancy in data [91, 94]. In short, feature engineering is the 
preparation of raw data and making it ready for the further training process. A summary of 
common feature engineering techniques is presented in Table 5. 
 
 
Table 5 Summary of common Feature Engineering Techniques 

Feature Engineering 
Techniques  

Input Benefits Ref 

Scaling, 
normalization, log-
transform 

Numerical Speed up 
convergence, balance 
weight between 
features, prevent fast 
saturation of 
activation functions  

[91] 

Bag-of-Words, 
Word2Vec 

Text Embed words into 
vectors 

[95] 

Convolutional Neural 
Networks 

Image Extract edges and 
structural features in 
images 

[58, 59] 

Simplified molecular-
input line-entry 
system (SMILES) 

Molecules Transfer molecular 
information into text 
expression 

[96-98] 

Morgan fingerprints, 
Mol2Vec, Molecular 
ACCess System 
(MACCS) 

Molecules Transfer molecular 
information into 
vector expression 

[99-101] 
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Matminer, ElemNet Inorganic Crystals Describe inorganic 
materials with crystal 
information 

[102, 103] 

 
 

Model training and hyper-parameter tuning  
 
As the parameters of EHD need to be optimized (Table 2, e.g. voltage, collector distance, etc.), 
so do the parameters for the ML algorithms. In most ML algorithms, hyper-parameters are 
available for further adjustment of the structure or learning behaviour of the model. For instance, 
in MLP, the number of neurons and hidden layers determine the complexity of the network, 
making them critical hyperparameters in the model which govern the overfitting or underfitting 
of the network [104]. Overfitting refers to the conditions where the network remembers all the 
training data, resulting in the training accuracy close to 100%. However, the overfitted model is 
not robust and yields weaker prediction accuracy in the following evaluation process. Hyper-
parameters should be fine-tuned based on different training tasks to optimize the model 
performance. Common methods of hyper-parameter searching include random search, grid 
search, and Bayesian optimization [105]. These methods try out different hyper-parameters in a 
pre-set manner, compare the performance of each hyper-parameter set, and present the one 
with the best performance measured by user-determined performance metrics [106].  
 
As the name suggests, random search explores the parameter space in a random manner, and 
selects the parameters that yielded the optimum prediction value (e.g. highest accuracy) [107]. 
Grid search, on the other hand, is more structured to tuning the parameters, where the user 
selects the range of parameters to examine. Taking neural network as an example, the user will 
request specific values of hidden layers to be examined [108]. 
 
 

Model Evaluation 
 
Evaluating the model provides essential information about the performance. The data can be 
first divided into training/validation/test sets before training. Model performance on the test set 
is regarded as the performance of a model in real application scenarios. Sometimes validation 
and test sets are not distinguished, and the data will only be separated into training/test sets. 
The ratio of the training set to the test set is not fixed but is normally taken as 80/20 [42]. In 
datasets with limited data size, cross-validation (CV) is a useful technique performed to make full 
use of all data [109]. Multiple methods are available for CV [110]. By splitting the training set into 
𝑘 groups, 𝑘 − 1 groups are treated as the training set and the remaining one group is used as the 
validation set, as shown in Figure 3(A). Then, model training and validation are performed 𝑘 
times so that all groups have been treated as the validation set. This technique is called 𝑘-fold 
CV. In extreme conditions where 𝑘 equals to the sample size 𝑛 such that one group only has one 
sample, the technique is referred to as leave-one-out CV (LOOCV). The overall performance of a 
model in CV is calculated by averaging the performance metrics over all rounds of CV [111, 112]. 
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There is a wide range of metrics that are used [110]. For classification tasks, accuracy is the salient 
metric, which is the ratio of correct predictions to that of the total number of predictions. Other 
common metrics include sensitivity and specificity, which are common in medical diagnostics 
since it is pertinent to evaluate both the true positives and true negatives. An illustration of a few 
metrics applied in ML tasks is shown in Figure 3(B). The matrix here between the predicted and 
ground truth value is known as the confusion matrix. In material science domain, researchers are 
mainly interested in the true positives (i.e. ‘Does it work?’). For example, ML was applied to 3D 
printing where researchers were only interested in how well an algorithm was able to identify 
which formulations were printable, and less interested in how well the algorithm was able to 
identify which formulations were unprintable [24]. Here, the metrics precision and recall were 
applied. Precision evaluates how well an algorithm is able to identify the true positives from all 
that are predicted as positives. Taking the 3D printing study as an example, a precision of 80% 
resulted in 20% of formulations being predicted as printable which were in fact not printable. 
Moreover, the F1-score, calculated from the harmonic mean of precision, is widely used in 
classification tasks by taking both aspects into consideration. A valuable question in ML is how to 
establish a baseline value for classification tasks, such that the prediction of the ML algorithm is 
useful. Here, the Cohen’s kappa (k), the Matthew’s correlation coefficient (MCC), the receiver 
operating characteristic curve (ROC) and the area under the receiver operating characteristic 
curve (AUROC) have been employed. These metrics compare the performance of the ML 
algorithm to random prediction, where a value of 0 for Cohen’s kappa and MCC and a value of 
0.5 for AUROC indicates the ML performance to be the same as random prediction [113-115].  
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Figure 3 (A) Train-Test split and cross-validation step. (B) The confusion matrix and metrics used 
for evaluating ML model performance. (k – constant; TP – true positive; TN – true negative; FP – 

false positive; FN – false negative) 

 
For regression tasks, the metrics aim to measure the difference between the predicted value �̂� 
to the ground truth value 𝑦.  A well-known and widely used metric is mean squared error (MSE), 
expressed as: 
 

𝟏

𝒏
∑ (𝒚𝒊 − �̂�𝒊)

𝟐
𝒏

𝒊
 

 

Equation 1 

 
(where n is the number of samples, i is the index and ∑ is the summation). For which the square 
root is sometimes taken, giving the root mean squared error (RMSE). The RMSE and MSE metrics 
are used extensively in linear regression scenarios to evaluate the performance of regression. 
Similarly, the mean absolute error (MAE) takes the absolute value of the difference between �̂� 
and 𝑦: 
 

𝟏

𝒏
∑ |𝒚𝒊 − �̂�𝒊|

𝒏

𝒊
 

 

Equation 2 

 
The coefficient of determination, also known as the R2 score, represents the goodness of the fit. 
However, relying only on the R2 score does not necessarily guarantee a good fitting model. The 
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R2 metric is normally reported with other metrics including MSE and MAE. These metrics, 
together with a plot that depict 𝑦 − �̂� relationship, are often used to represent the performance 
of a regression model [116]. 
 

Model Deployment 
 
Another advantage of machine learning is the ability to integrate it into a production-ready 
platform. The convention in research when developing an optimization model, such as design of 
experiment (DoE) or finite element analysis (FEA), is to report the findings and possibly the effects 
of the different input parameters. In contrast, deploying ML in the form of a web-based software, 
which has been countlessly performed  [24, 117-120], allows other researchers to leverage the 
optimization technique without needing prior knowledge in developing ML models. Further to 
deploying ML models in the form of web-based services, ML models have also been embedded 
in sensors [121, 122].  
 
There are many considerations when translating into production ready products [123]. For 
computational performance consideration needs to be given to the scalability of the algorithm 
[124]. Moreover, as most algorithms are not autonomous, they will have to be regularly trained 
as the dataset expands [125]. Lastly, models tend to degrade, and thus will require regular 
inspection [126, 127]. The complete ML pipeline is illustratively summarised in Figure 4.  
 
 

 
Figure 4. Schematic depicting the stages of the ML pipeline. 

 

Machine Learning for Electrohydrodynamic Processes 
 
The goal of ML for EHD processes is to expedite the workflow through predicting key processing 
parameters that otherwise would require an exhaustive trial-and-error approach. Moreover, 
working with relatively expensive materials such as poly-lactic-co-glycolic acid (PLGA) can result 
in a costly endeavour for the sake of optimization. Recently, numerous studies have 
demonstrated that ML can predict key processing variables; the most common ML application in 
EHD processing has been the prediction of fibre dimensions using ANN (Figure 5 & Table 6). The 
dimensions of electrospun fibres govern the quality of the product, influencing characteristics 
such as mechanical strength and porosity, through to more niche applications such as drug 
release in pharmaceutics and conductivity in biosensors [128]. Given the thickness of the fibres 
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typically ranging from nano to micrometer, most studies employ SEM imaging to measure the 
fibre diameter. However, SEM is a costly and sample-destructive characterization technique; thus 
the use of ML can minimise the need for SEM imaging. The importance of predicting the fibre 
diameter has attracted a great deal of interest, with researchers using DoE to establish a viable 
optimization technique. However, DoE requires specific experiments to be conducted, seldom 
applied to data already obtained, and struggles to handle noisy and highly correlated data. 
Moreover, even if a given experiment is known to fail, DoE will still need the experiment to be 
performed in order to build the model, at the expense of material and time. ML on the other 
hand can overcome the aforementioned issues, and hence less effort is spent by researchers in 
preparing the data. A more pertinent advantage is that ML was reported to outperform a DoE 
quadratic model in predicting fibre diameter (Figure 5(D)) [129, 130]. 
 
Inputs used to build ANN models, i.e. the independent parameter, generally include polymer 
weight fraction, solvent concentration, temperature of the media, applied voltage and the 
collector distance; these are readily obtainable and do not require additional characterisation 
techniques. This strategy has been successful in predicting the fibre diameter for a broad range 
of polymers, including polyethylene oxide, nylon, polyacrylonitrile, polyurethane, 
polycaprolactone, as well as biopolymers such as gelatin, chitosan blended with polyvinyl alcohol 
and kefiran (Table 6). The neural network architectures developed do vary between the different 
studies, generally ranging from 1 to 3 hidden layers, suggesting that a deep and complex 
architecture is not necessarily needed to predict the fibre diameter, and thus the models are 
computationally undemanding. The models developed have been on small datasets of fewer than 
50 formulations, which demonstrates that a model with good accuracy can be rapidly developed. 
The popularity of using ANN is further highlighted when compared with other ML algorithms. 
Two studies by Kalantary et al. (2019 & 2020) demonstrated ANN outperformed SVM and MLR 
(Figure 5(C)) [131, 132]. In one study, they reported R2 of 0.83 and 0.96 for SVM and ANN, 
respectively. The MAE were 60 and 0.097, respectively. In other words, ANN was able to achieve 
a remarkable error of +/- 0.097 nm on average in predicting the fibre diameter. When comparing 
ANN to MLR, the former yielded a superior accuracy, with R2 of 0.96 and 0.56, respectively. The 
inability of MLR to achieve a good agreement in modelling the fibre diameter infers that the 
relationship between the input and target variables are nonlinear, whereas ANN can model 
nonlinear relationships. Further research is needed to confirm this hypothesis. 
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Figure 5 ANN is a powerful modelling technique in EHD. (A(i)) An example of ANN used to 
predict the fibre diameter using three inputs. (A(ii)) The number of hidden neurons can vary 
but this study found that increasing the number of hidden neurones resulted in lower 
prediction error [133]. (B) ANN can also simultaneously predict multiple outputs, which in this 
study was the drug release at 24, 48 and 96 hours, as well as whether burst release was 
observed (Y4) [134]. (C(i)) High accuracies were obtained using ANN, (C(ii)) particularly when 
compared to multi-linear regression [131]. (D(i)) Study revealed that DoE performed poorly in 
predicting fibre diameter compared to (D(ii)) ANN [129]. (X – denotes the input feature; Y – 
denotes the target variable; T – target) 

 
Table 6. ML applications of EHD 

Author Polymer ML 
Algorithm 

Inputs* Prediction Accuracy 
(metric) 

Nasouri 
[135] 

PVP ANN Voltage, 
Distance, 

Concentration 

Fibre 
diameter 

0.981 
(R2) 

Majidi et al. 
[136] 

Nylon-6,6 ANN Voltage, 
Distance, 

Concentration, 
Flow rate 

Fibre 
diameter 

0.91 
(R2) 

Mirzaei et al. 
[137] 

PEO ANN Polymer 
concentration, 

solvent 
concentration, 

voltage, 
temperature 

Fibre 
diameter 

0.83 
(R2) 

Premasudha 
et al. [129]  

Starch ANN polymer 
concentration, 
solution feed 
rate, applied 

voltage, 
nozzle to 
collector 
distance 

Fibre 
diameter 

0.92 
(R2) 

Kalantary et 
al. [131] 

PCL/gelatin MLR, 
ANN, 
SVM 

weight ratio, 
applied 
voltage, 

injection rate, 
and distance 

Fibre 
diameter 

0.96 
(R2); 

0.097 
(MAE) 

Maurya et 
al. [138] 

PVA ANN flow rate, 
voltage, 

distance, and 
collector 

rotating speed 

 

Fibre 
diameter 

0.79 
(R2) 
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Siafaka et 
al. [134] 

PLA/PBAD MLR, 
ANN 

Polymer and 
drug 

concentration 

Drug 
dissolution 
behaviour 

0.873-
0.892 
(R2) 

Reisi-
dehkordi et 

al. [139] 

PAN ANN precursor, 
temperature 
oxidation, 
residence 

time, LTC and 
HTC 

Fibre 
strength 

0.972 
(R2) 

Vatankhah 
et al. [140] 

PCL/gelatin ANN composition, 
fibre diameter, 

alignment 
index and 
alignment 
direction 

Elastic 
modulus 

0.92-
0.97 
(R2) 

Ieracitano et 
al. [141] 

 Neural 
Networks 

SEM images Fibre 
homogeneity 

 

Ziaee et al. 
[142] 

HPMCP, 
HPMCAS 

PCA, k-
means 

Raman 
Spectroscopy 

Molecular 
properties 

- 

Ball et al. 
[143] 

PEDOT:PSS ANN voltage, 
distance, flow 

rate 

Droplet 
diameter 

2.51% 
(AAPD) 

Mahmoodi 
et al. [144] 

Zeolite- 
Chitosan/PVA 

ANN pH, time, MG 
concentration, 

and ZIF-
8@CS/PVA-

ENF(2)) 
dosage 

Dye 
concentration 
absorption/ 
remediation 

0.99 
(R2) 
1.97 

(RMSE) 

Jamalabadi 
et al. [145] 

PPy-ZnO ANN, 
PCA 

Concentration Sensor 
response 

0.81-
0.98 
(R2) 

Ciaburro et 
al. [146] 

PVP-silica ANN Mass, 
Frequency 

Sound 
Absorption 
Coefficient 

0.94 
(R) 

0.057 
(MAE) 

*Distance refers to needle-to-collector distance 

(PVP – polyvinylpolypyrrolidone; PEO – polyethylene oxide; PCL – polycaprolactone; PVA – polyvinyl alcohol; PLA – 
polylactide; PBAD – poly butylene adipate; PAN – polyacrylonitrile; HPMCP – Hypromellose phthalate; HPMCAS – 
Hypromellose acetate succinate; PEDOT:PSS - Poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrenesulfonate); PPy – 
polypyrrole; ZnO – zinc oxide; SEM – scanning electron microscopy)
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Figure 6. ANN are used to generate sensitivity analysis to determine the importance of the 
input variables. Generally, the starting composition has the largest influence on the final 

product, where analysed. The figure presents examples of sensitivity analysis for (A) the elastic 
modulus of Polycaprolactone/gelatin blend [140]; and the fibre diameter for (B) 

polycaptolactone/gelatin blends [131]; (C) polyurethane [147]; (D) poly(vinyl pyrrolidone) [135]; 
and poly vinyl alcohol composite [138]. (S – denotes Significance) 
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Some of the studies using ANN applied sensitivity analysis to determine the relationship between 
electrospinning parameters and fibre diameter [129], whereas others used surface response 
plots to determine the relationship. Sensitivity analysis is used to identify how ‘sensitive’ a model 
is to change when the input is varied [148]. For producing starch fibres, the ANN modelling 
elucidated an inverse relationship between fibre diameter and both spinning distance (5-8 cm) 
and voltage (6-10 kV), whereas a proportional relationship between starch concentration and 
fibre diameter was observed (10-15 w/v%) [129]. For PVP, increasing the polymer concentration 
(8-20 wt%) or voltage (13-23) was found to increase fibre diameter (10-20 cm), whereas 
increasing the spinning distance was found to decrease fibre diameter [135]. The analysis was 
more complicated for electrospinning nylon fibres [136]. Although the relationship between 
nylon concentration (16-25 w/v%) and fibre diameter was the same as the aforementioned 
studies, both the effect of spinning distance (6-20 cm) and voltage (16-26 kV) varied depending 
on the nylon concentration. For example, low and high polymer concentrations revealed an 
inverse relationship between spinning distance and fibre diameter, whereas at medium 
concentration the relationship was proportional. Maurya et al. (2020) investigated the 
relationship between processing parameters at specific fibre diameters of 280 and 500 nm of 
polyvinyl alcohol fibres blended with iron oxide nanoparticles [138]. A relative importance was 
derived from the ANN model, that revealed flow rate was positively correlated to fibre diameter, 
whereas voltage had a negative effect, and the rotating drug speed had a negligible effect. 
Interestingly, the study revealed the spinning distance to have a positive correlation on fibre 
diameter for producing fibres with 280 nm diameters, however the distance was found to have 
a negligible effect for fabricating fibres at the larger diameter of 500 nm. Thus, from these results 
it is evident that the relationship between processing parameters and fibre diameters can vary 
with the starting polymer. Figure 6 presents examples of sensitivity analysis. 
 
Aside from fibre diameter, the mechanical properties of the fibres have also been modelled using 
ML (Table 6). Although EHD can produce aligned fibres once optimised, electrospun materials 
typically result in non-uniform, anisotropic mechanical properties, which are difficult to model. 
Previous work has used finite element analysis (FEA) to model the mechanical properties of 
electrospun fibres, demonstrating a high resemblance to experimental data [149, 150]. However, 
FEA requires the properties of the investigated materials to be known before modelling, which 
may not be accessible. In contrast, ML does not require additional characterisation techniques 
to develop a model, thereby obviating the need for costly experiments to be conducted. A further 
minor drawback is that FEA are known to be computationally demanding. On the other hand, the 
go-to ML algorithm, ANN, was able to achieve R2 values above 0.9 for the elastic modulus and 
fibre strength (Table 6). In predicting the elastic modulus, a sensitivity analysis was performed to 
assess the relative importance of various input variables in ANN simulations. When a high 
accurate model is obtained, a sensitivity analysis can be informative, aiding EHD users on which 
parameters to control to yield a maximum impact. In the aforementioned study, the sensitivity 
analysis revealed that the polymer composition was the most important factor in affecting the 
elastic modulus of samples. This confirms that the ANN model is learning the relationship 
between the input and output data, just as an expert user would but in a considerably shorter 
period. Interestingly, the same study used fibre diameter as an input in predicting the elastic 
modulus, where the fibre diameter was obtained via SEM imaging. As discussed earlier in this 
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section, the fibre diameter can be effectively predicted using ML, thereby potentially reducing 
the need for SEM or other post processing characterisation techniques in future studies for 
predicting the elastic modulus.  
 

Applications of ML in EHD Processing Workflow 
 
ML has also been applied to domain-specific applications. One area where EHD is garnering 
interest is in drug delivery because of its high degree of control over formulation design [151]. 
Although dissolution studies are necessity for the US FDA approval, the analysis for sustained 
release of drugs can last in the order of days to weeks. Hence, simulating this in vitro study can 
facilitate researchers in adjusting their formulations to meet a desired drug release profile, and 
thereby obviating the need to perform many protracted studies. Another domain-specific 
application of ML is predicting the removal of pollutants in wastewater treatment [144]. This is 
another field where EHD is attracting interest owing to its ability to process nano-sized features, 
and porosity design. Collectively, these studies illustrate that ML can be applied to applications 
where the users are more concerned with end product performance, rather than understanding 
the fundamentals of the processing design parameters (e.g. fibre diameter). Understandably, the 
complexity of domain-specific applications increases, making it challenging to be modelled with, 
for example, mechanistic models. In this respect, using ML may prove to be a simpler modelling 
approach. For example, in the case of drug dissolution, including information about drug 
solubility, dissolution pH and dissolution volume – in addition to EHD processing parameters – 
will result in a complex modelling relationship, which fortunately ML can model. 
 
The aforementioned studies demonstrate the utility of ANN for achieving good predictive 
performance on low-sample datasets. It is worth acknowledging that the transferability of the 
models is yet to be tested, whether it is changing the EHD process parameters (e.g. applied 
voltage, needle gauge, collecting distance, etc.), or using the same polymer but with a different 
molecular weight. Moreover, the models cannot be transferred to novel polymers, and so will 
become time consuming when a large number of polymers need to be modelled. Alternatively, 
polymer informatics can be exploited, wherein the inputs of the polymer pertain to their chemical 
structure [152]. Thus, once the ML model learns the relationship between the chemical structure 
to e.g. fibre diameter, it can be generalised to new polymers not found in the training set. 
Nevertheless, the aforementioned examples demonstrate the potency of ANN for small-scale 
production. 
 

Machine Learning for Image Classification 
 
What is also remarkable about ML is that a pipeline can be developed for image analysis. 
Undeniably, imaging is an important aspect of quality control, ensuring a defect-free product has 
been produced. Despite their importance, the process of scanning and analysing images can be 
laborious, and subject to human bias in interpreting the results. Recent work has investigated the 
possibility of employing ML for image classification to overcome the aforementioned issues, 
where it was reported that ML is capable of emulating experts in detecting defects in electrospun 
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fibres [141]. When combined with the fact that the predictions can be made in a matter of 
seconds, ML does indeed offer a powerful strategy to classifying images manually [141, 153].  
 
The ‘gold standard’ in ML algorithms for images is CNN, which is a network-based ML, but 
compared with neural networks with similar sized layers, CNNs have fewer connections and 
parameters, and thus are easier to train [154]. Moreover, CNNs are able to capture the non-
linearity in datasets; non-linearity is commonly found in images, such as photographs and 
electron micrographs, because of a number of elements [155-160]. Two studies have 
demonstrated the feasibility of utilising CNN for EHD process monitoring. One study investigated 
CNN for classifying images of the “Taylor cone jet”, which is the optimal jetting behaviour of EHD, 
produced during EHD processing, obtained from a digital microscope [161]. Given that 
environmental parameters such as humidity and temperature can have distinct effects on the 
Taylor cone jet mode, the processing parameters will need to be accommodated accordingly. 
Hence, an efficient monitoring system is required. For that work, 5000 images were taken of EHD 
processing of PCL solutions, in which between 500-4000 images were used to train the CNN 
model, 500 images were used for validation and a further 500 images were used for testing. The 
images were classified into eight different Taylor cone modes. It was revealed that the test 
accuracy increased as the training size increased from 88.9% for training on 500 images to 94.7% 
for training on 4000 images. In a separate study, ML was used to classify images obtained from a 
polarized light microscope [162]. This imaging modality is also suitable for real-time 
measurements. For this particular approach, pairing polarized images with CNN was found to 
predict accurately the morphology of electrospun PLLA and PCL, with a test accuracy of 96.15% 
in classifying whether the fibres were smooth, microporous or beaded [162].  
 
Despite its high performing results, a key drawback to CNN is that the algorithm is data hungry, 
requiring large numbers of samples to achieve high accuracies, which may not be feasible to users 
who are unable to generate large datasets due to time or cost constraints. Fortunately, an 
alternative approach was recently demonstrated by Leracitano et al. (2020) who combined an 
Autoencoder (AE) with ANN, to identify defects in electrospun fibres [141]. Feature selection and 
dimensionality reduction are widely employed to improve the performance of MLTs [163, 164]. 
Although one feature of ML is its ability to compute high-dimensionality data, not every 
additional feature is useful (i.e. noisy). Thus, dimensionality reduction algorithms are employed 
to minimise the number of dimensions, with both PCA and AE found to be effective at reducing 
the noise in high-dimensional data [165]. PCA is the more commonly-used technique for 
identifying the most relevant features to use from an image, thanks to its simplicity. There is, of 
course, the added benefit that reducing the number of inputs can also reduce the computational 
demands of the process, resulting in a faster prediction time. Whilst PCA has been demonstrated 
to be effective for feature selection, it is limited to linear features. AE on the other hand can 
handle both linear and non-linear datasets. An AE takes in all the features of an image as a node, 
and discards redundant features, providing an output of nodes with the most relevant features 
[166, 167].  Leracitano et al. (2020) employed an AE as a feature extraction to extract the most 
relevant features from SEM micrographs of electrospun fibres. Finding the features that are 
distinct between different classes of images is indeed a near-impossible task for researchers to 
perform manually, given the considerably large number of pixels an image can generate, and that 
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each pixel can possess a wide range of colour shades. However, this is an easy task for a well-
trained AE and thus employing an Autoencoder can relieve a user of this daunting task. For their 
study, Leracitano et al. (2020) developed a model using 160 images and an AE to differentiate 
between the features obtained from images containing an undesirable bead to that of 
micrographs containing homogenous fibres. Following the feature extraction, ANN was used to 
classify the data. This two-step ML approach resulted in a classification accuracy of 92.5%, which 
was higher than the 80% accuracy obtained by CNN using the same sample size. The ability of ML 
to accommodate different data formats broadens their applicability. Table 7 provides a summary 
of the advantages of ML algorithms, as well as their drawbacks. 
 
 
Table 7. A summary of the advantages and drawbacks of ML algorithms. 

Algorithm Advantages Drawbacks 

MLR • Transparent • Not suitable for non-linear data 

LR • Transparent • Not suitable for non-linear data 

RF • Insensitive to outliers • Computationally expensive 

GBDT • Insensitive to outliers • Computationally expensive 

MLP • Can handle non-linear data • Requires pre-processing of data 

CNN • Can handle images • Requires a large dataset 

RNN • Learns sequential events, such as 
dynamic systems 

• Complex building stage 

SVM • Can handle both linear and non-linear 
data 

• Computationally expensive 

• Sensitive to outliers 

kNN • Simple to use • Accuracy decreases with high-
dimensional data 

NB • Minimal parameter tuning • Accuracy decreases if the input 
features are dependent  

k-means • Can cluster on large dataset • Does not perform well in global 
searching 

GMM • Speed 

• Training stability 

• Complex building stage 

PCA • Can de-noise the dataset • Not suitable for non-linear data 

Generative 
Models 

• Generates new data • Model training can be unstable 

 
 

Outlook and Concluding Remarks 
 
The aforementioned examples highlight the potential of ML for image classification to facilitate 
EHD processing, and to expedite the translation of impactful research into clinical applications. 
The ability to distinguish between the Taylor cone jet modes can help towards building a reliable 
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automated monitoring system, particularly for complex systems such as multi-nozzle EHD. The 
possibility to build ML models on relatively small datasets is indeed appealing. This has been a 
subject of interest to the ML community. As a response, ‘few shot’ and ‘one shot’ learning models 
have been developed, and they have had profound benefits across a number of disciplines [168, 
169]. As the name suggests, such models require either a few or one, respectively, samples to 
develop a model. Hence, researchers in EHD have several ML options available, depending on 
their constraints. Needless to say, the use of ML image classification remains nascent, and there 
is opportunity to explore other imaging modalities, such as x-ray microtomography, transmission 
electron microscopy, and hyperspectral images [170-173]. 
 
In the past decade, with the increasing knowledge in the area of nanotechnology, there is a 
widespread demand in the use of simple, versatile and cost-effective processing techniques for 
the fabrication of nanostructures. EHD process has recently drawn an enormous attention due 
to its capability to produce products in nano to micron- size range from various types of raw 
materials. The successful commercialisation and FDA approval of a number of nanofiber products 
produced by electrospinning, and the great potential in the development of novel polymeric 
nano/microparticles from the related electrospraying process, should drive extensive efforts in 
the advancement into the field to improve the EHD process monitoring and control.  
 
Despite numerous studies developing theoretical models and simulations for better 
understanding of the mechanisms involved in the process of EHD, large-scale production of 
micro/nano features from this technique is still hindered by the complex behaviour of the 
electrified jets and lack of predictive models that encompass a plethora of process parameters. 
Whilst EHD process exhibits high flexibility towards processing of a variety of materials with 
multiple functionalities through co-axial and multi-axial technologies, there is still a strong need 
to address issues concerning large-volume processing as well as accuracy and reproducibility. In 
addition, translation of the EHD process to industry requires the know-how and multidisciplinary 
knowledge by the operators and users of the equipment. With the aid of the state-of-the-art 
predictive models such as ML, the key EHD process parameters as well as the overall EHD 
workflow can be regulated to achieve a more sustainable manufacturing process in the near 
future. ML can facilitate process monitoring and quality control through in-line systems and 
automation. The EHD process can become more intelligent and efficient through integration with 
ML, reducing the production time and enhancing the product quality. As discussed in this review, 
so far, there has only been a few attempts to develop ML algorithms in the EHD process workflow. 
Notwithstanding, continuous research efforts are still required to develop more accurate ML 
models to allow improvements in the current EHD technologies. It is evident that the industry is 
undergoing a paradigm shift with engineering principals and product-process design guiding 
manufacturing. Further developments in ML for the EHD process can eventually transform this 
technology and its products toward commercialisation. 
 
Ultimately, EHD processes have the potential to address gaps in healthcare research. Further 
work is needed to refine the EHD processes, particularly to advance EHD processes that can 
develop 3D products. Here, ML will be required to help expedite the formulation development 
stage of advanced EHD processes, and to minimise the empirical trial-and-error methodology 
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that will not yield sustainable research in the future. The application of ML for EHD processes is 
beginning to garner interest, however, a cross-disciplinary workforce encompassing ML 
practitioners, informaticians and EHD researchers, will be needed to harness the prospect of ML 
for EHD processes.  
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