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Cutting edge: Valuation adjustment

Efficient XVA management: pricing,
hedging and allocation
Banks must manage their trading books, not just value them. Valuing includes valuation adjustments collectively known as
XVA (credit, funding, capital and tax, at least). Here, Chris Kenyon and Andrew Green show how three technical elements
can be combined to radically simplify XVA management, both for calculation and implementation

B
anks must calculate and manage valuation adjustments (XVA)
across their entire trading portfolio. XVA includes the effects
of credit (CVA, DVA), funding (FVA, MVA) (Burgard & Kjaer

2013; Green & Kenyon 2015a), capital (KVA) (Green, Kenyon &
Dennis 2014) and tax (TVA) (Kenyon & Green 2015). XVA man-
agement includes allocation, hedging and pricing. Allocation refers
to the allocation of XVA, and XVA hedging costs, to desks. Hedg-
ing costs require the computation of both first-order sensitivities and
second-order sensitivities, such as interest rate-credit cross-gamma.
Incremental allocation is required for daily trading.

Here, we provide an analytically rigorous method for managing
XVA efficiently, which combines three elements: trade-level regres-
sion, analytic computation of sensitivities and global conditioning.
Regression has been demonstrated in MVA to speed things up by one-
to-two orders of magnitude, even on vanilla instruments for medium-
sized portfolios (1,000–10,000 swaps) (Green & Kenyon 2015a).Ana-
lytic computation of sensitivities gives one-to-two orders of magnitude
(Capriotti, Lee & Peacock 2011; Giles & Glasserman 2006) (the more
sensitivities required, the more improvement). Global conditioning can
give a 40:1 improvement for MVA. These are point examples; our con-
tribution is to make these improvements systematically available and
extend them generally across trading book XVA management. Tech-
nically, this paper generalises Green & Kenyon (2015a) from MVA
to XVA, and adds sensitivities and allocation; it also makes explicit
elements that are implicit in Green & Kenyon (2014).

Regression-based CVA was developed in Cesari et al (2010). We
apply regression to all trades; ie, including non-callable trades and
European callable trades. Wang & Caflish (2009) used regressions for
sensitivities, but were limited to the regression variables themselves.
We cover all sensitivities by including sensitivities of the underlyings to
hedging instruments via the chain rule. Sensitivities of underlyings to
hedging instruments can be calculated using analytic derivatives (AD)
(Broadie & Glasserman 1996) or adjoint algorithmic differentiation
(AAD) (Capriotti, Lee & Peacock 2011) – we use A/AD as a label
for both. Examples of allocation methods for capital and CVA include
Tasche (2008). We extend to other XVAs and their sensitivities, which
requires a general global conditioning approach to cover MVA when
based on expected shortfall (ES) as well as CVA, DVA and FVA.

The contribution of this paper is to show how to systematically com-
bine trade-level regression, analytic computation of sensitivities and
global conditioning to make XVA management computations radically
more efficient. Each element alone is useful, but only in combination
does the step-change in efficiency of computation and implementation
appear. This methodology naturally handles wrong-way risk (see, for

A. Trade-level regression example

Basis functions
x0 x1 x2

Coefficients of Regression equation
basis functions f.x/

Trade #1 �0.2 1 0.1 �0:2C 1xC 0:1x2

Trade #2 1 2 0.2 1C 2xC 0:2x2

Trade #3 2 3 �0.2 2C 3x � 0:2x2

Portfolio 2.8 6 0.1 2:8C 6xC 0:1x2

Scenario
A B C

x �0.6 0.1 1.1
Trade #1 �0.764 �0.099 1.021
Trade #2 �0.128 1.202 3.442
Trade #3 0.128 2.298 5.058
Total �0.764 3.401 9.521
Portfolio �0.764 3.401 9.521

When regressions are linear in their coefficients, calculating from the sum of the basis
function coefficients (the portfolio regression) is identical to calculating the sum of each
trade regression

example, (2)) and is suitable for parallel implementation on graphics
processing units (GPUs).

Examples
We start with a set of examples of XVA management cases on toy
problems.
� Values with trade-level regression. We show that computing
portfolio prices from a portfolio regression is identical to computing
the sum of the individual trade regressions. The basis function coeffi-
cients of the portfolio regression are the sums of the trade basis function
coefficients.

We start with three trades, with a regression equation for each one;
these are shown in table A. Each equation has three basis functions,
fx0; x1; x2g, and so is quadratic in the underlying x but linear in the
coefficients of the basis functions. Table A considers three scenarios
fA;B;Cg. These might be Monte Carlo realisations and there would
generally be many thousands of them. Pricing with individual trade-
level regressions and pricing with their sum are identical. Each scenario
fA;B;Cg is distinguished by the value of the underlying x, which
might, for example, be a stock price or the price of an interest rate
swap.
� First-order sensitivities with trade-level regression. This
example has three objectives: (1) to show how to compute the first-
order sensitivity of each trade with respect to any calibration instru-
ment s; (2) to demonstrate the resulting trade-level sensitivity regres-
sions sum, as before, to the portfolio sensitivity regression; and
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Cutting edge: Valuation adjustment

B. First-order sensitivity example, s, is any calibration instrument

Basis functions
x0 x1 x2

Coefficients of df.x/=dx
basis functions equation

Trade #1 1 0.2 0 1C 0:2xC 0x2

Trade #2 2 0.4 0 2C 0:4xC 0x2

Trade #3 3 �0.4 0 3� 0:4xC 0x2

Portfolio 6 0.2 0 6C 0:2xC 0x2

Scenario
A B C

x �0.6 0.1 1.1
dx=ds 0.2 �0.3 0.1
Trade #1 0.176 �0.306 0.122
Trade #2 0.352 �0.612 0.244
Trade #3 0.648 �0.888 0.256
Total 1.176 �1.806 0.622
Portfolio 1.176 �1.806 0.622

Calculation from trade sensitivity equations or portfolio sensitivity equation is identical.
Portfolio sensitivity equation is identical to the sum of the individual trade equations

(3) to demonstrate the implementation effort is radically reduced with
respect to non-regression-plus-A/AD approaches. We reuse the setup
from the previous example.

To get the first-order sensitivity of any trade regression f .x/ to the
calibration instrument s we use the chain rule:

@f .x/

@s
D
@f .x/

@x

@x

@s
(1)

This is also valid for the portfolio regression. In addition, the coef-
ficients of the basis functions of the sensitivity regressions sum, as
before, to give the coefficients of the basis functions of the portfolio
regression. Equation (1) is valid for all first-order sensitivities. Each
separate first-order sensitivity is distinguished by a different s and
therefore different @x=@s.

The derivative of the regression with respect to the underlying is gen-
erally trivial to compute analytically. The derivative of the underlying
with respect to the calibration instrument is generally more involved
and can be tackled using A/AD.

By separating the derivative into two parts, we radically reduce
the implementation effort of A/AD, because the second part @x=@s
is the same for all trades, while the first part @f .x/=@x is gener-
ally trivial analytically. Both a regression approach and A/AD are
required.

Second-order sensitivities work just like first-order sensitivities.

� CVA calculation and exact allocation. This example introduces
global conditioning, and demonstrates its use for CVA and exact allo-
cation. Global conditioning means we first identify the scenarios that
contribute to a computation using the portfolio regression. We sub-
sequently calculate using only those scenarios. Within the selected
scenarios, computations are additive because conditional expectation
is a linear operator (Shreve 2004).

We use the same portfolio and scenarios as before. Looking at the
portfolio values in table A, we see that only scenarios B and C con-
tribute to CVA because that is where the portfolio has positive value.

C. CVA example with exact allocation via global conditioning

Scenario
A B C

Portfolio �0.764 3.401 9.521
PD 0.2 0.2 0.2
LGD 0.6 0.6 0.6 CVA total
CVA by scenario 0 0.40812 1.14252 0.51688

Scenario CVA by
A B C trade

Trade #1 CVA 0 �0.01188 0.12252 0.036880
Trade #2 CVA 0 0.14424 0.41304 0.185760
Trade #3 CVA 0 0.27576 0.60696 CVA total 0.294240
CVA by scenario 0 0.40812 1.14252 0.51688 0.516880

PD is probability of default; LGD is loss given default. Global conditioning means we
only use scenarios identified as contributing to CVA in the trade-level calculations (ie,
B and C) and set the contributions from scenario A to zero. So the calculation of CVA
by trade using global conditioning provides exact, and additive, allocation

Table C shows the CVA calculation. Trade-level contributions to CVA
sum exactly. Global conditioning therefore provides exact trade-level
CVA allocation.

Reallocation of trade-level CVA to different desks, or for different
reports, is trivial because trade-level contributions add up exactly.

� Incremental CVA and exact allocation. Suppose we have an
incremental trade (trade #4). Now, for CVA, we know that provided
its value in scenario A is less than 0:764, then scenario A will not
become relevant for CVA. We also know that if the value of the new
trade is greater than �3:401 in scenario B and greater than �9:521
in scenario C, then these two scenarios will remain relevant for CVA.
Thus, within these (one-sided) bounds the trade-level allocation of
CVA will be unchanged by the new trade. Its own contribution can be
computed independently (conditioned on scenarios B and C).

If the incremental trade value is outside the bounds of the portfolio
value in each scenario, then we need to calculate trade values in the
newly relevant scenario. The previous trade-level values in each pre-
viously relevant scenario will either remain valid or be set to zero.
Thus recalculation is essentially trivial, and exact, both for CVA itself
and trade-level allocation. The same result holds for trade-level con-
tributions to first- and second-order sensitivities. We say contributions
because sensitivities combine trade parts and parts from default prob-
abilities and recovery rates, as we now show.

� CVA first-order sensitivities and exact allocation. This example
shows how global conditioning, regression and A/AD combine in the
computation of first-order sensitivities for CVA. It also demonstrates
exact trade-level allocation of first-order CVA sensitivities. We will
see that the computational and implementation advantages previously
observed also apply here.

In this example we take LGD as a function of two underlyings,x and
y, and PD to be a function of a single underlying, y. Both Lgd.x; y/
and PD.x/ are given by regression equations that are linear in the
coefficients of their basis functions.

Since sensitivities are infinitesimal calculations, the scenarios that
contribute to CVA sensitivities are exactly those that contribute to
CVA value. Thus the scenarios identified by conditioning on positive
portfolio value are still the ones we use for the computation of CVA
sensitivity. Within each selected scenario we calculate first-order CVA
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Cutting edge: Valuation adjustment

sensitivity with respect to a calibration instrument s as:

@ff .x/Lgd.x; y/PD.y/g

@s

D
@f .x/

@x

@x

@s
Lgd.x; y/PD.y/

C f .x/

�
@Lgd.x; y/

@x

@x

@s
C
@Lgd.x; y/

@y

@y

@s

�
PD.y/

C f .x/Lgd.x; y/
@ PD.y/

@y

@y

@s
(2)

Although f .x/Lgd.x; y/PD.y/ is non-linear in x and y, it is linear
in the coefficients of x and y. Essentially, it is a new function:

g�.x; y/ D f�.x/Lgd.x; y/PD.y/

where � can be ‘trade’ or ‘portfolio’. This new function is linear in the
coefficients of its basis functions provided that its components f .x/,
Lgd.x; y/ and PD.y/ were. This is valid for each trade individually
and for the portfolio. Thus, within the scenarios chosen, this example
is identical to the example in the section on first-order sensitivities
with trade-level regression.

Putting this together, the first-order sensitivity of CVA to the cali-
bration instrument s is, in our example:

@CVA

@s
D
1

3

X
fportfolio.x/>0

@gportfolio.x; y/

@s
(3)

D
1

3

X
scenario A or B

�
@gportfolio.x; y/

@x

@x

@s
C
@gportfolio.x; y/

@y

@y

@s

�

where we compute over only the two scenarios where the portfolio,
f .x/portfolio, is positive. The factor of one-third comes from averaging
over all scenarios, although only two scenarios provide any contribu-
tion. Note that we retain the separation of trivial differentiation for
g.x; y/ and the complex derivatives @y=@s and @x=@s. As before,
the more complex derivatives will require A/AD, but they are only
needed for the underlyings (x; y). The derivatives of the underlyings
are common for all trades and we therefore retain the implementation
simplification.

We can expand (3) to see the trade contributions:

@CVA

@s
D
1

3

X
fportfolio.x/>0

X
trades

@gtrade.x; y/

@s

D
X
trades

1

3

X
fportfolio.x/>0

@gtrade.x; y/

@s
(4)

D
X
trades

1

3

X
scenario A or B

�
@gtrade.x; y/

@x

@x

@s
C
@gtrade.x; y/

@y

@y

@s

�

Note that global conditioning is used on the portfolio value fportfolio.x/

and that we can invert the order of summations. The trade sensitivity
contributions are exactly their CVA sensitivity allocations.

Second-order sensitivities for CVA, and their exact allocation, work
just like first-order sensitivities for CVA.

Methodology
Having given a set of motivating examples, we now develop the gen-
eral theory. We start by formally introducing the three key technical

elements: trade-level regression, analytic sensitivity computation and
global conditioning. We then combine all three for XVA management.
� Trade-level regression. We express every trade across the whole
portfolio in terms of a set of basis functions. That is, we regress the
value of each trade across an expanded state space against the basis
trade set, at every time point of interest (including t D 0), which we
term stopping dates. For trades that are Bermudan callable, this is done
using early-start Longstaff-Schwartz (Wang & Caflish 2009); for those
that are not Bermudan callable, we can apply the simpler, augmented
state-space approach (Green & Kenyon 2015a). We are interested in
many time points for XVA calculations because these involve integrals
over time (Burgard & Kjaer 2013; Green, Kenyon & Dennis 2014).

For each trade Ui , i D 1; : : : ; j˘ j, in the overall portfolio ˘ , we
have:

Ui .tk I �/ D

jf�;k jX
lD1

ai;j;kfl;k.B Nj;k.tk I �//C �i;k.tk I �/

8k D 1; : : : ; jKj; � 2 �.tk/ (5)

where fl;k.B Nj;k/ are jf�;k j functions of the jB�;k j basis instruments
at stopping date k, and there are jKj stopping dates from t D 0 to the
last date of interest: say, the last cashflow date of the portfolio, tk .
�� expresses the regression error at a point � within the augmented
state space �.tk/ at time tk . Nj indicates that each f .�/ may depend
on an arbitrary subset of the basis instruments. Apart from standard
regularity conditions, the f .�/ have no restrictions. The augmented
state space is created either by early-start for a simulation (Wang &
Caflish 2009) or by direct augmentation (Green & Kenyon 2015a).
The a� are constants.

In (5) it is critical that only the ai;j;k depend on the trade. The
fl;k functions and the B Nj;k basis instruments do not depend on the
trade. This means that while the basis instruments and function may
be arbitrarily complex, they are common for all trades. This is not a
significant restriction because of the finite precision of computation.

With a sufficient number of basis functions, �j;k.tk I �/ can be made
arbitrarily small and we do not include it further. A portfolio of swaps
of 30 years maturity (Green & Kenyon 2015a) showed convergence
for a few tens of basis functions for lifetime MVA calculation and
general theoretical results are available.
� Computation of analytic sensitivities. We use analytic deriva-
tives from regressions, together with analytic or algorithmic deriva-
tives of underlyings, to obtain sensitivities. Thus, as in Wang & Caflish
(2009), we depend on the regression being a good representation of
the value function. Convergence of the regression to the value func-
tion itself has been extensively studied for diffusions (Glasserman &
Yu 2004). Convergence of the derivatives is covered in theorem 1 of
Wang & Caflish (2009). BothAD andAAD may be used for derivatives
of underlyings with respect to calibration instruments.
� Global conditioning. We compute using global conditioning,
meaning that we use global criteria to select scenarios and then com-
pute only on those scenarios. One example of a global criterion is the
sign of the value of the portfolio (eg, for CVA). A second example
would be whether the value of the portfolio is among the n with the
most losses (a typical MVA criterion). We might then use the scenarios
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Cutting edge: Valuation adjustment

this selects to compute trade-level sensitivities. In computing the sen-
sitivities of MVA, this is clearly a huge advantage as we only compute
on a tiny fraction of the total scenarios.

Technically, we are using the linearity property of conditional expec-
tation over filtered probability spaces. A filtered probability space is a
probability space with a filtration; ie, an increasing information struc-
ture (see Shreve (2004) for details). Valuation adjustment are typically
additive both within conditional expectations and across times. This
depends only on the properties of conditional expectation: it is inde-
pendent of the particular scenario or scenarios that may be selected.

Consider a probability space .˝;F ;P/, where˝ is the universe of
events, F is a filtration on ˝ and P is a probability measure on F .
Let X.t; !.t//; Y.t; !.t// be random variables defined on .˝;F ;P/,
let G be a sub-filtration of F where !.t/ 2 G.t/, and let ˛.t/ be a
deterministic scalar. An elementary result from definition 2.3.1 and
theorem 2.3.2 in Shreve (2004) is then:

EŒX.t; !.t//C ˛.t/Y.t; !.t// j G.t/�

D EŒX.t; !.t// j G.t/�C ˛.t/EŒY.t; !.t// j G.t/� 8t (6)

So, given a discount bond priceD.t; !.t//, also defined on .˝;F ;P/,
it is obvious (with appropriate regularity conditions) that:
Z T
tD0

EŒ.X.t; !.t//C ˛.t/Y.t; !.t///D.t; !.t// j G.t/� dt

D

Z T
tD0

EŒX.t; !.t//D.t; !.t// j G.t/� dt

C

Z T
tD0

˛.t/EŒY.t; !.t//D.t; !.t// j G.t/� dt

G may in turn have sub-filtrations within it; that is, .˝;F ;P/ may
contain nested probability spaces. We have therefore actually demon-
strated linearity of computation of the lifetime costs of conditional
quantities; eg, exposures (including survival-weighted), value-at-risk
(VAR), expected shortfall, etc. Again, Shreve (2004) is a convenient
reference for the basic probability framework in the finance context.
This is key for allocation and reallocation without resimulation using
trade-level regression. It also means that allocation methods can be
exact, given G.

We now apply the technical points to XVA management and show
how they simplify, and accelerate, computation.
� CVA, DVA and FVA: pricing, sensitivities and allocation. We
start from a generic valuation adjustment of an uncollateralised netting
set between a bank B and its counterparty C . For simplicity of expo-
sition we have not made the hazard rate or the discount factor depend
on common factors with the exposure (unlike our earlier example with
(2)). When this is the case this methodology naturally handles wrong-
way risk.

The valuation adjustment of interest can be for CVA, DVA or FVA,
so we label it xVA. Its equation from ‘Strategy I: semi-replication with
no shortfall at own default’ in Burgard & Kjaer (2013) is:

xVA5� D �Lgd�

Z T
t

��.u/Dq.t; u/Et ŒV .u/
5� du (7)

where 5� determines which xVA this computes (see table D). � is
either B for the bank or C for the counterparty. 5 can select the

D. Alternatives for � and5 that select different xVA possibilities in (7) in
the text (equation adapted from Burgard & Kjaer (2013))

xVA5
�

� 5

CVA C C

DVA B �

FCA B C

FVA D DVAC FCA B (blank)

positive exposure, the negative exposure or do nothing, depending on
the particular valuation adjustment. Dq.t; u/ is the discount factor
between u and t for the rate q, q D r C �B C �C : r is the riskless
rate and �� is the hazard rate of the bank or counterparty. V is the
unadjusted value of the netting set.

Let the netting setV be made up of a set of trades�i , so (7) becomes:

xVA5� D �Lgd�

Z T
t

��.u/Dq.t; u/Et

��X
i

�i .u/

�5�
du (8)

Now suppose the expectation and time integral are both computed
using sets of observations (eg, generated by simulation). We then have
(using the simplest possible time-integration scheme):

xVA5� D �Lgd�

nkX
kD1

.tk � tk�1/��.uk/Dq.t; uk/

�
1

nj

njX
jD1

�X
i

�i .uk I!j;k/

�5

where nk is the number of time steps and nj is the number of scenarios
at each time step. !j;k represents the realisation of the random factors
at time tk in scenario j . !j;k 2 G.tk/, where G is the filtration.

Applying (5), ie, using regressions for the trade values, we obtain:

xVA5� D �Lgd�

nkX
kD1

.tk � tk�1/��.uk/Dq.t; uk/

�
1

nj

njX
jD1

�X
i

jf�;k jX
lD1

ai;l;kfl;k.B Nj;k.tk I!j;k//

�5

D �Lgd�

nkX
kD1

.tk � tk�1/��.uk/Dq.t; uk/

�
1

nj

njX
jD1

� jf�;k jX
lD1

al;kfl;k.B Nj;k.tk I!j;k//

�5

al;k D
X
i

ai;l;k

Since the basis instruments are common for all trades we now have an
equation involving only these instruments. We can expand the equation
for xVA5� above to remove the non-linearity of the .�/5 bracket as:

xVA5� D �Lgd�

nkX
kD1

.tk � tk�1/��.uk/Dq.t; uk/

�
1

nj

njX
jD1

I
V
5

j;k

jf�;k jX
lD1

al;kfl;k.B Nj;k.tk I!j;k// (9)
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D �Lgd�

nkX
kD1

.tk � tk�1/��.uk/Dq.t; uk/

�
1

nj

X
j jV

5

j;k

jf�;k jX
lD1

al;kfl;k.B Nj;k.tk I!j;k// (10)

The boxes indicate the key point: we compute with respect to global
scenarios selected by our conditioning criteria. This is an example of
global conditioning. We use I

V
5

j;k
as the indicator function on the sign

of the unadjusted future netting set value (see table D for choices). In
(10) we have selected, at each time point, those scenarios such that
the netting set value satisfies the criteria (ie, the same selection as the
indicator function). These scenarios will be different for each time
point.

It may appear that we have done more work, not less, but xVA pric-
ing is a first step: our target is XVA management. We now demonstrate
what we have achieved for sensitivities, allocation of XVA and alloca-
tion of XVA sensitivities. In general, all of these calculations are more
costly than the initial xVA computation. Below we will use exactly the
same regressions for MVA computation, sensitivities, allocation and
allocation of MVA sensitivities. Thus, even for xVA pricing, we will
demonstrate significant advantages.
� Sensitivities. By sensitivity we mean sensitivity with respect to
hedging; ie, calibration, instruments. We assume sensitivities are being
computed analytically.

Obviously, we have immediately reduced the implementation cost
of analytic derivatives from all the trade types found in the entire
portfolio to the set of basis instruments of the regression. This will
usually represent a major saving in implementation time.

The next key observation is that since analytic sensitivities are based
on infinitesimal changes and we compute at finite precision, the set of
scenarios we calculate over, j j V5

j;k
, is unchanged. Hence, for a

calibration instrument s that we want a sensitivity for:

@xVA5�
@s

D � � �
@fl;k.B Nj;k.tk I!j;k//

@B Nj;k.tk I!j;k/

@B Nj;k.tk I!j;k/

@s

Alternatively:

JxVA5� ;s
D � � �Jfl;k.�/;B Nj;k.�/JB Nj;k.�/;s

where J�;� are the Jacobians.
We have pre-selected the scenarios j j V5

j;k
to calculate over so

everything is linear, and since differentiation is a linear operator, this
remains the case. Generally, Jfl;k.�/;B Nj;k.�/ will be analytic because
the fl;k.�/ will have been selected for that property.
� Trade-level allocation of xVA. Allocation of valuation adjust-
ment prices to desks is a core activity of XVA desks. Trade-level allo-
cation of xVA is given directly from (10) by considering the contribu-
tion of each trade in terms of its regression coefficients. For example,
for trade i :

xVA5� D �Lgd�

nkX
kD1

.tk � tk�1/��.uk/Dq.t; uk/

�
1

nj

X
j jV

5

j;k

jf�;k jX
lD1

ai;l;kfl;k.B Nj;k.tk I!j;k//

where the difference from (10) is that we now use trade i ’s regression
coefficients ai;l;k rather than the netting-set regression coefficients
al;k . Allocation is both exact and additive using trade-level regression
with global conditioning; ie, computing within the selected scenarios
j j V

5

j;k
. Thus, reallocation – the reallocation of different trades’ xVA

to different groupings (eg, for reporting) – is trivial.

� Trade-level allocation of sensitivities. Hedging costs are often
derived from sensitivities and thus trade-level allocation of these sensi-
tivities is a core activity of XVA desks. Since differentiation is a linear
operator, we can combine the arguments of the previous two sections
to observe that using our regression and conditioning approach with
respect to a calibration instrument s:

@CVA.˘C ; t /

@s
D
X
i

@CVA.�C
i
; t /

@s

where we only compute ‘trade’ sensitivities within selected scenarios.
We put trade in quotes because we can arbitrarily create new trade
groupings using the additivity of their regression coefficients. We can
thus allocate, and reallocate, hedging costs freely. That is, the costs
are linear and we only reallocate sums of scalar numbers to differ-
ent pots (desks, groups, etc.). In addition, we only compute sensi-
tivities at the coarsest level required using the appropriate regression
coefficients.

� Incremental xVA. During a trading day there will be continual
changes to portfolios, and the XVA desk must provide prices for these
changes to other desks. Portfolio changes can be expected to change
the conditioning set j j V5

j;k
. For xVA, the conditioning set is specific

to each counterparty. First note that we have already calculated the
unconditioned portfolio values in each scenario:

V Unconditioned
j;k .˘/ D Vj;k

We follow the same procedure for the new trades as for the exist-
ing portfolio by calculating their trade-level regressions. Now we
calculate their values for the same set of overall scenarios as the
existing portfolio, as well as calculating the updated conditioning
scenarios:

j j V
5

j;k
.˘.original/C˘.changes//

D j j fj j Vj;k.˘.original//C j j Vj;k.˘.changes//g5

D j j V
5

j;k
.˘.updated//

To compute the first line above we need only the scenario values of
the original portfolio and the changes to the portfolio. No recomputa-
tion of the original portfolio is required. Thus we can recompute the
CVA without recomputing the original portfolio; we just include the
previous values for the additional scenarios.

Again, it appears we have computed the regression of the changes
to the portfolio as extra work. However, this extra work makes the
other XVA elements and their management (sensitivities and alloca-
tion) orders of magnitude faster.
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Cutting edge: Valuation adjustment

For incremental sensitivities the arguments of the previous sections
apply directly. This is also true for both incremental trade-level allo-
cation and incremental trade-level allocation of sensitivities.

� MVA pricing, sensitivities and allocation. Central counterpar-
ties often require posting of initial margin (IM). The lifetime cost of
funding this IM is termed margin valuation adjustment (MVA).

As indicated in the examples section, our technique also applies to
the lifetime cost of funding IM (ie, MVA). IM for trades with central
counterparties is often based on VAR and/or ES, so we consider these
next. As shown in the examples, the use of global scenario selection
makes VAR and ES computation additive.

ES is a conditional expectation by definition. Thus the derivation
from CVA above applies exactly. Furthermore, since we have already
calculated the trade-level regression functions and analytic derivatives
for CVA, there is no need to recompute them for ES. The only change
between CVA and ES is a different condition:

j j PES.Vj;k/ 6 ˛

instead of:

j j V
5

j;k

Once the scenarios are identified, the same computations apply. We
have used PES for the distribution of portfolio values as used for ES.
This distribution will usually be on a sub-filtration of ˝ equivalent to
that used for the risk-neutral measure (but obviously with a different
measure). We use ˛ for the percentile of interest: typically around
97.5%.
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We approach VAR as a limit of ES definitions, ie:

j j PES.Vj;k/ D ˛ D lim
ˇ!˛
fj j ˇ 6 PES.Vj;k/ 6 ˛g

Thus the development above also applies to VAR. Only conditioning
has changed, so the previous arguments apply exactly to all manage-
ment cases.

Conclusions
We have shown how XVA (CVA, FVA, DVA and MVA) management
is radically more efficient using a combination of three technical ele-
ments: trade-level regression, analytic derivatives and global condi-
tioning. Regression for KVA is covered in Green & Kenyon (2014).
This methodology naturally handles wrong-way risk. Furthermore, as
trade prices are computed separately from the underlyings, the under-
lying dynamics can be almost arbitrarily complex to match time-zero
pricing. Thus, only a single system may be required for both real-time
trade pricing and XVA.

The main limitation of the technique in this paper is that it is
essentially a first-order approach, excluding option exercise bound-
ary changes from XVA interactions. This is a topic of further research
(Green & Kenyon 2015b). Second-order sensitivities present more
numerical challenges than first-order ones, and many implementation-
and portfolio-specific details will matter. R
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