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Abstract 

Innovations and advances in technologies over the last few years have yielded faster and wider 

diagnostic applications to patients with neurological diseases. This article focuses on the 

foreseeable developments of the diagnostic tools available to the neurologist in the next 15 

years. We are convinced that clinical judgment is and will remain the cornerstone of the 

diagnostic process, even if assisted by novel technologies, such as artificial intelligence (AI) and 

machine learning. The future generations of neurologists must be educated to develop, 

cultivate and rely on their clinical skills, while becoming familiar with novel, often complex, 

assistive technologies.  

  



Current State of Diagnostic Technologies 

Assistive diagnostic technologies in medicine, and neurology in particular, are evolving at a fast 

pace. This review comprises a selection of those that are most influencing current clinical 

practice, and our forecasts for the future of neurologic diagnostics in 2035.  

Genomics, epigenetics, transcriptomics and proteomics 

Genomics 

Next generation sequencing (NGS) technologies allow to rapidly sequence millions of base pairs 

of DNA1. NGS can be used to sequence the whole genome of an individual (whole genome 

sequencing, WGS) or specific portions of it, such as the exons of all protein-coding  genes 

(whole exome sequencing, WES), of all genes known to be mutated in monogenic diseases 

(clinical exome), or just in a group of diseases (gene panels). NGS can also estimate the 

abundance of specific sequences by counting the number of reads they generate. This way, it 

can be used to detect amplified or deleted regions in the genome and to generate gene 

expression profiles by quantifying the number of copies of each RNA present in cells or tissues 

(RNAseq)2. Another use of NGS is the identification of the organisms present in a biosample by 

sequencing their genomes (metagenomics)3. 

Until a few years ago the diagnostic use of NGS was controversial because of technical and cost 

issues. NGS has since become more powerful, more reliable and cheaper, so it is now generally 

used for genetic diagnosis in advanced health care systems, mostly as gene panels, clinical 

exomes and WES. However, these approaches have limitations. First, the explored portion of 

the human genome is only about 0.25% for a clinical exome and 1% for WES. Then, some 



mutation types, as disease-causing repeat expansions, are not efficiently sequenced and need 

to be separately tested when indicated. And even with optimal coverage, data interpretation 

may be challenging. When no previously reported mutation(s) are found, demonstrating 

pathogenicity of suspicious genetic variants is subject to strict criteria4 that are often not 

attainable in a diagnostic context, so their status remains uncertain (Variants of Unknown 

Significance, VUS). For all these reasons, currently less than half of the cases of suspected 

monogenic diseases are solved by WES, even after re-analysis of data in the light of more 

recent advances5.  

In addition to neurogenetics, NGS has an expanding role in neuro-oncology, where classification 

of many brain tumors currently relies on genetic profiling6. In neuro-infectivology the 

identification of pathogens by metagenomics3 is an emerging approach, though still limited to 

specialized centers.  

Epigenetics 

Epigenetics explores the processes determining whether a gene is active, at what level, in what 

cells, at what time, in response to what stimuli. In addition to DNA methylation and of post-

translational modifications of histones that determine binding of transcription-activating and 

repressive factors, the roles of non-coding RNAs, chromosomal architectures and gene position 

in the nucleus are emerging as major epigenetic mechanisms7. Though the study of disease-

associated epigenetic changes is still mostly a research subject, tests for specific changes in DNA 

methylation are already being used in neuro-oncology8 and for the diagnosis of some rare 

genetic diseases9.  



Transcriptomics and proteomics 

Transcriptomics and proteomics are large-scale analyses of the RNAs and proteins contained in 

biological samples. Technologies have evolved in transcriptomics from hybridization 

microarrays to RNAseq, and in proteomics from 2-D gels to sophisticated mass spectrometry 

approaches10. These studies, by identifying disease-linked profiles of proteins and RNA 

expression, provide potential diagnostic, prognostic, and treatment response biomarkers. Some 

have already entered clinical practice, as levels of beta amyloid, tau and phosphorylated tau 

protein in biofluids to support the diagnosis of Alzheimer disease (AD) and other dementias11. 

Others, as levels of neurofilament proteins, in particular neurofilament light chain (NfL), in CSF 

and blood, are moving into the clinical space as neurodegeneration markers, though further 

research is needed to establish their power and reliability12. The need for ultra-sensitive assays 

for some of these markers, still very expensive and demanding specialized expertise, is a 

limitation.  

Imaging  

Radiology has quickly moved from X-ray films to digital image acquisition, which is currently the 

standard for all types of diagnostic imaging, including angiography, computed tomography and 

magnetic resonance imaging (MRI). This innovation has led to faster acquisitions, thereby 

reducing motion artifacts and improving image quality. Further advancements in computing 

technology have led to more accurate diagnoses and better patient care. 

 



Magnetic Resonance Imaging and initial applications of Artificial Intelligence (AI) 

One of the most important MRI advances has been the ability to go beyond the assessment of 

structure in order to map the function of brain regions, which has led to important applications, 

such as preoperative localization of motor and language cortices for neurosurgery. Advanced 

imaging techniques, including diffusion-weighted imaging, when interpreted with perfusion 

imaging, allow the detection of mismatch between infarction and hypoperfusion, thereby 

estimating the presence of salvageable ischemic tissue and guiding the selection of patients 

who may benefit from endovascular reperfusion13. Alongside these advancements, we have 

witnessed a widespread use of PET/MRI from presurgical assessment to diagnosis of 

neurological disorders (e.g., AD, PD and epilepsy). 

At the same time as increased digitization of the information contained in the medical images, 

AI methods have become available outside computer science centers. These have led to the 

growing field of radiomics, which is an approach aiming to use AI to extract textural features 

from images, through analysis of spatial distribution of signal intensities and relationships 

between pixels, mostly applied to neuro-oncology14. The application of radiomics to clinical MRI 

scans have allowed the identification of thresholds for quantitative values, which lead to 

diagnosis of neurological diseases, especially in uncertain cases; for example, thresholds for 

hippocampal volume help the diagnosis of dementia15, and those for hippocampal volume and 

T2 signal the diagnosis of hippocampal sclerosis16.   

 



The analysis of radiomic features using AI can be used to support clinical decision-making. An AI 

system, which was constructed to support the differential diagnosis of common and rare 

disorders (e.g., toxic leukoencephalopathy), approached neuroradiologists’ diagnostic 

performance. Additionally, AI has been used to identify new disease subtypes, based on the 

evolution of abnormalities on MRI scans, which can be used to stratify patients for 

interventional trials and to monitor treatment response.  

Research into AI-based computer-aided systems for the diagnosis of neurological disorders, 

using not only brain MRI, but also physiological images and EEG, has grown over the last few 

years17, and has the potential of assisting clinicians in making the correct diagnosis. However, 

the sample size of AI studies is often small, and the reproducibility of radiomics studies is often 

poor, indicating the need for larger databases and externally validated algorithms.  

There have been many applications of machine learning (ML), which is a subset of AI, to MRI for 

imaging analysis tasks, such as lesion segmentation in traumatic brain injuries, brain tumors, 

ischemic stroke and MS18. The main advantage of these applications is that the data are 

analyzed automatically, thus saving investigators’ time and improving interpretive accuracy. 

However, only a small proportion of imaging studies using ML have evaluated their algorithm 

on external datasets. ML applied to large amount of data captured from soft wearable sensors 

can automatically detect neurological symptoms and then inform clinicians about the 

progression of diseases, such as PD19 and MS20. Therefore, the use of ML to extract information 

on neurological functions among independent-living neurology patients has the potential to 

complement clinical assessment to monitor disability progression. 

 



Deep learning (DL) is a subset of ML and is able to handle large data sets using its multilayer 

architecture, which is inspired by the human brain. The advantage of deep learning is that it 

allows avoiding subjective decisions about which features are important; however, it requires 

more training data, which is a limitation, for example in medical imaging. The application of DL 

to MRI scans has led to the prediction of chronological age23, which is the first step towards 

distinguishing healthy ageing from the early stages of neurological diseases. Interestingly, a 

convolutional neural network, which is a deep learning algorithm, applied to a large database of 

conventional MRI scans of healthy persons, has detected different aspects of the ageing brain, 

and identified healthy and unhealthy ageing21. This approach can lead to recognition of early 

manifestations of neurological diseases, which may guide early treatment initiation. Data-

driven deep learning models have been used with MRI scans to re-define disease subgroups on 

the basis of the development of MRI abnormalities over time in patients with MS22 or describe 

the propagation of pathology in MS, AD and normal ageing23. 

The rise of data-driven biomedicine 

Medicine is being transformed by the exponential growth in radiological, genetic, molecular, 

biometric, and chemical data being collected via a burgeoning array of technologies, mobile 

sensors and medical devices. This has paralleled the development of deep learning, where its 

application to biomedical data has led to improved understanding of how genetic variation 

affects cellular processes and prediction of pathology on the basis of imaging data24. 

 



A combination of images, demographic and clinical data, and “omics” data have been used in 

applications of AI to neurological diseases, more often to help diagnosis or prognosis, rather 

than to optimize treatment. Recent efforts have been aimed at predicting individual patient 

response to therapy; for example, high-dimensional models based on routine MRI scans can 

enhance the detection of MRI response to therapies in MS25 and in stroke26.  

However, the application of AI to health care data has gone beyond the area of diagnosis, 

prognosis, monitoring and treatment optimization, and it has started to involve many 

operational aspects of hospital care, such as prediction of attendance for scheduled 

appointments, which may lead to selective and cost-effective interventions aimed to improve 

hospital attendance27.   

Forecasted Developments: the most likely innovations  

Genomics, epigenomics, transcriptomics, proteomics 

By 2035 WGS should be widely available, possibly via emerging technologies such as nanopore 

sequencing28, already successfully used in neurogenetics to detect mutations that escape WES, 

such as intronic expansions in adult familial myoclonic epilepsy29. These powerful technologies 

will allow to detect pathogenic variants in non-coding elements, in non-coding RNAs and their 

targets, and RNA modifications. Advanced bioinformatic tools will support data analysis, using 

ML and AI30. Much deeper knowledge of human genetic variability, essential for interpreting 

genomics data, is expected as large numbers of WGS from individuals of different ethnicities 

will be stored in public databases.   



 

Epigenomics, in addition to genome-wide and locus-specific data on DNA and histone 

modifications, will be coupled with transcriptomics and proteomics to obtain an integrated 

picture of the genetic, gene regulation and gene expression profile of an individual, with 

diagnostic and prognostic implications in domains as neuro-oncology31, neurodegenerative 

diseases32, and stroke33. Importantly, and following already existing trends, findings in non- or 

minimally invasively accessible biosamples, “liquid biopsies”34 will be used to infer pathological 

processes occurring in the brain, whose characterization will then be completed with advanced 

structural, functional and metabolic imaging. 

Imaging and artificial intelligence applications 

Forecast developments include the wider use of novel, low-field scanners that are portable and 

compatible with ferromagnetic materials. This will increase use of brain MRI examinations at 

the bedside, even in complex clinical care settings, thereby overcoming the issue of limited 

access to timely MRI in intensive care units35. This achievement will increase the number of 

point-of-care examinations and holds promise as a more inclusive and efficient technology. 

However, it is expected that these highly portable, cloud-enabled MRI scanners will lead to new 

ethical, legal and social issues, such as privacy concerns and reliance on cloud-based AI for data 

analysis36.  

Reduced scan times, reduced scanning noise, and improved image quality will improve patients’ 

experience and accessibility, while increasing the accuracy of the diagnosis. Shorter time in the 



scanner will improve the financial and operational aspects of the MRI centers. New technology 

will allow running several protocols simultaneously, thereby leading to time savings. 

Operational whole-body human 7T ultra-high MR units, currently available in less than 100 

centers worldwide, will increase in number and geographical distribution. They will be used in 

routine clinical settings and will be associated with improved confidence of neurological 

diagnoses, mainly because of their high spatial resolution and contrast. The applications of 7T 

MR imaging to the work-up of neurovascular diseases in the neurosurgical setting will also 

increase.  

We expect further developments in big data and data mining, leading to algorithms that will 

automatically analyze images, supply radiologists with clinically relevant measures 

contextualized with normative data and generate more consistent reporting across levels of 

radiologist experience15. This new framework will result in more accurate diagnoses and 

reduced inequalities in MRI reports between centers; this, in turn, could lead to a more 

‘scattered’ expertise, since even the most challenging diagnosis and prognosis could be made in 

small and non-academic centres. However, the use of imaging assessment tools to assist MRI 

reporting will be widely used in the clinical setting only if they are integrated into the clinical 

reporting workflow, and this is more likely to be achieved in academic, large centres, thereby 

leading to a more centralized knowledge (and medicine). 

Data-driven biomedicine 

AI, and in particular DL, will be integrated seamlessly into a health management system. DL is 

the most promising technology for intelligently incorporating huge amounts of data, and 



modelling complex systems with clinically relevant measures, contextualized with normative 

data.  

What will be the use of these approaches in neurological diagnosis?  

The power to diagnose monogenic disorders will be increased by access to WGS and -omics 

data to support the potential pathogenicity of identified variants. Platforms for efficient 

functional testing of VUS in model systems may be available in reference centers. The delay 

between symptoms onset and diagnosis, which in 2021 may still be substantial, will be greatly 

reduced. In addition, the use of high-throughput genomics for neonatal screening of genetic 

diseases will allow pre-symptomatic diagnosis of later-onset disorders, a necessary step for the 

implementation of preventive therapies currently under (mostly) pre-clinical or clinical 

development. 

Genomics, epigenomics and biomarker profiling will provide early specific diagnoses of 

common multifactorial diseases. The identification and functional characterization of a large 

number of predisposing variants, common and rare, will improve understanding of biology 

underlying risk of diseases, improving therapeutic development as well as personalized 

screening strategies on large scales37. As an example, polygenic risk scores (PRS) that estimate 

the overall effect of many genetic variants on an individual's phenotype38,39 will likely become a 

standard assessment. 

Extensive availability of -omics data from large clinical cohorts will identify sex differences that 

modulate the effect of genetic variants and responses to treatment, bringing to maturity an 

area that is currently at a relatively early stage of development.   



In imaging, radiomics will be accessible and integrated in the routine clinical practice to 

improve diagnosis, prognosis, and treatment prediction. For example, radiomics will be used 

routinely in patients with brain tumors to extract information from routine imaging data, and, 

in combination with molecular markers and genomics, will predict response to surgery or 

prognosis. The correlation of imaging features with genetic, mutational and expression patterns 

(radiogenomics) will be used to monitor tumor evolution over the course of treatment, thereby 

leading to improved patient management and treatment optimization. 

The use of genomic data in combination with imaging data, and any other biomarker 

contributing to define the profile of the disease at the individual level, will help to predict 

treatment response and susceptibility to side and toxic effects, leading to the choice of the 

most effective and safest therapy for each patient, achieving true precision medicine. 

We expect that the framework able to facilitate diagnosis of neurological disorders may not be 

widely available in non-specialized health care centers. Therefore, it is possible that patient 

data, such as MRI scans, are going to be transmitted to a cloud-based computer-assisted 

system that will run the AI models. The results of the models may be sent to the mobile device 

of the clinician for a preliminary diagnosis, together with the probability of error associated 

with such diagnosis and advice on the next step. 

Implications: developments which affect the practice of neurology 

Practice changes  



These diagnostic developments will affect the nosology of neurological diseases, leading to 

redefinition or refinement of diagnostic entities and the introduction of new ones. While this 

has been happening since the start of modern medicine, new challenges relate to the faster 

pace of change, combined with the need for understanding and interpreting data obtained with 

complex technologies and modeling algorithms.  

All subspecialties will be affected. For example, in epilepsy, decision algorithms will be fed by 

multiple data sources for improved diagnosis as well as for treatment selection and outcome 

assessment. These will include devices and wearables for automated seizure detection, clinical 

and electrical, using automated reporting and alarms, as well as automated detection of non-

convulsive seizures in ICU based on EEG and other physiological parameters. Diagnosing specific 

syndromes and identifying underlying etiologies will be assisted by developments in imaging, 

with improved lesion detection, e.g. subtle cortical dysplasias, and the use of automated 

classifiers, as well as by advanced neurophysiology and -omics data. This will require an 

increasing involvement of multidisciplinary teams in the diagnostic process, including imaging, 

genomics, engineering and IT specialists, but the overall coordination will remain the 

responsibility of the neurologist, who must have the necessary competencies to fruitfully 

interact with the whole team.   

Advanced practice providers (APPs) in their position at the interface between the specialized 

medical team and the patient will become more and more relevant in this landscape, so it will 

be essential for them to acquire knowledge about diagnostic advances and data interpretation 

as well as the necessary communication skills to communicate with patients about these issues.  



Furthermore, it is likely that the direct availability to the public of diagnostic services such as 

medical images, genome data, diagnostic tests, risks of side effects and treatment response, 

will continue to expand. Neurologists have to prepare to confront with this issue, assuring that 

findings are properly interpreted and contextualized and providing advice in the best interest of 

patients.    

Education 

Training and continuing medical education (CME) programs will need to include new knowledge 

required by these practice changes. Neurologists will need to gain sufficient familiarity with 

diagnostic, data analysis and interpretation technologies to act as informed advanced users.  

Learning and retaining basic clinical skills will remain essential. Neurologists will be able to use 

these advances properly only if they retain their traditional skills in obtaining an accurate 

history and detecting abnormalities on face-to-face, hands-on neurological examinations. This 

will also be necessary for the appropriate interpretation of complex diagnostic datasets, which 

although supported by machine learning and AI approaches, will eventually still rely on clinical 

judgment.  As mentioned above, changes in the definition, description and diagnostic criteria of 

disease entities will continue to change, imposing regular updates.  

The diagnostic process is not limited to giving a name to a disease and obtaining patient-

specific information to select a personalized treatment. Equally important is the assessment of 

the effect of the disease state on a patient’s well-being and functionality, and what is most 

important for both patient and provider to address. This aspect will remain entrusted to the 



neurologists’ competence, experience and empathy, which cannot be replaced by any type of 

AI or machine learning algorithm. 

Economic consequences 

Any advanced diagnostic requires general, affordable access to influence practice beyond highly 

specialized centers. Experience tells us that the cost of new technologies may be prohibitively 

high initially, but as the technology matures and diffuses its cost goes down. NGS and advanced 

imaging techniques are recent examples. However, the delay between initial development and 

generalized application takes years, during which access is limited and unequal. Furthermore, 

direct costs are just part of the overall cost of these technologies, as they often require specific 

infrastructure and, even more important, the diffusion of specific competences via training and 

continuing education programs, again creating a gap between the most advanced and the bulk 

of health care providers. This will likely be a continuing issue both within health care systems 

and on a global scale. Different systems also have different reactivities, and different ways to 

assess, accept and accommodate these changes. Eventually, a balance needs to be struck 

between the cost of new technologies and their benefits in terms of increased patient well-

being and of savings in other areas, such as ending unnecessary, expensive investigations.       

Planning for the Future 

There are long-term uncertainties that need to be addressed. It is important to start planning 

for the acquisition of competencies and partnerships needed for the practice changes that have 

been discussed above. Training programs must adapt to the evolving scenarios and do it in a 

coordinated manner. Providing tools and resources to promote exchanges and collaboration 



among training programs directors. Professional societies like the AAN and the European 

Academy of Neurology (EAN) play a key role in this regard, so they must continue and expand 

these activities. Professional societies also have a fundamental role in reducing inequalities by 

their continuing engagement to affect public policy and health care reform. Individual 

engagement of every practitioner is equally necessary for translating stellar advances in science 

into better practice and better health for all, avoiding dystopic scenarios of exploding 

inequalities.    
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