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The international community has made significant efforts to flatten the COVID-19 curve, including 
predicting transmission [1, 2], executing unprecedented global lockdowns and social distancing [3, 4], 
promoting the wearing of facemasks and social distancing measures [5], and isolating confirmed cases 
and contacts [6]. Because of the adverse consequences of these lockdown measures [7], many cities 
have reopened so they can rebuild their economies. However, as mobility has gradually towards 
normal, imported cases from unknown sources have disrupted the recovery situation, and cities are 
continually at high risk of new waves of infection [8, 9] since airborne transmission is the dominant 
transmission route [10]. Unlike study focusing on the effect of COVID-19 on changes in mobility [11], 
our study aims to determine the causative relationship and quantify the effects between travel modes 
and travel destinations and transmission of the pandemic, which is helpful to control the pandemic, 
especially during the reopening period as mobility progressively returns to normal.

By specifically focusing on urban mobility, one epidemiological study suggested that the transmission 
risk associated with public transportation, such as in trains with confined spaces, can lead to changes 
based on travel time and seat location, with the highest risk being found among passengers adjacent to 
an infected patient [12]. However, it remains unclear how different travel modes and activities at 
travel destinations affect the transmission of COVID-19, and understanding this relationship is crucial 
for people with frequent commutes as part of their daily lives. It is because airborne transmission is 
the dominant transmission method for COVID-19 that they can be infected with a much higher 
probability [10]. Without rigorous study, the population at large may consider that travel modes and 
activities at travel destinations they newly adopted have a relatively lower risk. This perception may 
create a relatively safe situation during a certain period while it may also lead to new waves of the 
pandemic when there is a structural change of travel modes (e.g., major commuting shifting from 
subways to walking) or there are new infection groups associated with specific activities. In addition, 
riskier travel modes may be different between cities, and people having no such awareness may end 



up using the riskier modes [13], which is also influenced by public health interventions (i.e., 
increasing awareness, disinfection, and stay-at-home policy) that can help control the spread of 
disease [14]. Thus, it is crucial to quantify these effects on daily confirmed cases at a global scale to 
inform policy making and to provide useful guidance regarding safe forms of transit for the general 
public.

The correlations of population density (Fig. S1 online) and facemask wearing (Fig. S2 online) to daily 
infections are discussed in the Supplementary materials (SM). To determine the causative relationship 
and quantify the travel mode effect, this study developed a vector autoregression model (VAR) by 
incorporating a time series of daily confirmed cases (c) using the daily proportions of those 
individuals driving (d), using public transit (t), and walking (w) and applying the model to each of the 
58 cities in 31 countries (Fig. 1a) from February 15, 2020 to December 31, 2020. Similarly, to 
quantify the travel destination effect, we developed the same model to incorporate c with six types of 
travel destinations, i.e., retail and recreation (rr), groceries and pharmacies (gp), parks (pk), transit 
stations (st), workplaces (wk), and residences (re), applied to the same 58 cities and the same period. 
The travel mode data are the daily proportions of each travel mode relative to the number of the 
corresponding users on a referenced day in each city, the same for the travel destination data. The 
persistence calculated by the auto-correlation function is significantly greater than 0.2 for each of the 
four variables c, d, t, and w (Fig. S3 online). This means that they exhibit stable persistence in most 
cities and the daily confirmed cases, and the three travel modes create trend patterns in the series that 
can help establish a robust model to identify the causal relationship (see SM). Meanwhile, rr, pk, st, 
and re also obtain stable persistence in most cities, but gp and wk have relatively low persistence (Fig. 
S4 online), suggesting that the global pandemic and lockdown have disrupted the mobility trend for 
groceries and pharmacies and that for workplaces. In addition, none of the three travel modes or six 
travel destinations in any of the 58 cities show any structural break in the residuals, as none of the 
stability curves exceed the upper and lower confidence intervals, which demonstrates that the 
established models for each city are stable.



Fig. 1. The Granger-causality matrix between the four variables in worldwide cities. (a) The study investigates 
58 cities in 31 countries across the continents of America, Asia, Europe, and Oceania. (b) One variable is the 
Granger-causality of the other three variables with the 95% CI. The grey tiles in public transit (t) are null due to 
missing information in the original data set.

The vast majority of the 58 cities revealed an optimal lag at seven days (note that for Riyadh, it was 
six days) based on four indicators—the Akaike information criterion, Hannan-Quinn criterion, 
Schwarz criterion, and the final prediction error; this is the same as the longest incubation period, i.e., 
5.2 days, with a 95% confidence interval (CI) between 4.1 and 7.0 days [15]. As some people are 
asymptomatic carriers, this also indicates that they may continue the same travel behaviour during the 
incubation period until they test positive. Since urban mobility can spread the infection, and 
simultaneously, the pandemic can influence the rates of travel modes and travel destinations, a 
Granger-causality analysis is performed to determine the causality of one variable on the other 
variables (SM). It is found that d, t, and w cause the changes of the other three variables (P<0.05) in 
89.7%, 91.5%, and 87.9% of the cities, respectively, and c Granger-causes the changes of travel 
modes in 51.7% of the cities (Fig. 1b). In comparison, pk (75.9%), st (86.2%), wk (91.4%), rr (96.6%), 
gp (96.6%), and re (100%) Granger-cause the other six variables, and daily confirmed cases cause a 
change in travel destinations in 83.1% of the cities (Fig. S5 online). The results suggest that travel 
modes and travel destinations can influence the cases in the vast majority of the cities. Since the effect 
of daily confirmed cases on travel modes and destinations is only in 51.7% and 83.1% of the cities 
respectively, it indicates that travel modes are more stable than travel destinations in face of the 
pandemic shock as they are less affected by daily confirmed cases.

Next, we calculate the changes in daily confirmed cases (∆c) caused by a positive shock (i.e., random 
variation within a standard deviation) to each of the three travel modes (Figs. S6-S8 online) and each 
of the six travel destinations (Figs. S9-S14 online) using the impulse response function (IRF) with 100 
iterations and a 95% CI, which allows us to test the impacts of the travel modes and destinations on 
daily confirmed cases based on the mean and standard errors. Here, we only consider the variables in 
each city that have been determined to Granger-cause the other variables. Overall, driving, walking, 
and public transit can accelerate infection in 22 cities (42.3%), 30 cities (58.8%), and 38 cities (88.4%) 
(Fig. S15 online), respectively. The standard errors are significantly small in most cities, which 
suggests that the results exhibit high reliability. Notably, the IRF also obtains negative values for the 
three travel modes; however, this does not mean that travel modes in these cities can decelerate the 
infection. A reasonable explanation is that increasing the share for one mode (e.g., driving) may lead 
to a decrease in the number of cases, that is not because of some healthy impact of the act of driving 
but rather that an increase in the relative mode share for driving can represent a substitute for the 
share of another mode (e.g., public transit), which consequently mitigates pandemic transmission. In 
addition, travel destinations for those trips associated with specific activities also play an important 
role in changing the infection numbers. Travel destinations associated with parks (10 cities, 22.7%), 
groceries and pharmacies (17 cities, 30.4%), retail and recreation (26 cities, 26.4%), residences (29 
cities, 50.9%), workplaces (33 cities, 62.3%), and transit stations (37 cities, 74.0%) have an increasing 
effect on the pandemic transmission at a global scale (Fig. S16 online).

Figs. S15 and S16 (online) reveal four critical findings. First, public transit causes more disease 
spread than driving or walking. It is assumed that passengers in public transit (e.g., buses and metros) 
are confined to small, enclosed spaces, which makes it challenging to maintain the one-meter-plus 
social distancing rule. Second, a positive shock to driving or walking may represent a substitute for 
another mode share and thus have a relatively “mitigation” effect on COVID-19 transmission in some 
cities, such as London, Chicago, Paris, and New York City. The other possible reasons are that people 
in these cities have a strong awareness of self-protection, policies in these cities restrict the number of 
people moving in public spaces, and disinfection activity is increased in these cities [14]. Third, all 
travel modes promote COVID-19 transmission in some cities (e.g., Budapest, Madison, Manchester, 
Miami, Osaka, Ottawa, and Pittsburgh) which suggests that urban mobility can represent a major 
transmission route in these cities. Fourth, the travel destinations of transit stations, workplaces, and 



residences are the three most influential factors in the spread of COVID-19, which indicates that 
lockdown measures with a work-from-home policy can be an effective way to control the pandemic 
transmission [14].

In the IRF, ∆c which denotes the changes of daily confirmed cases has a different order of magnitudes 
in different cities. To make the changes comparable across all cities on the same scale between [0, 1], 
the variance decompositions (VDs) of daily confirmed cases, driving, public transit, and walking 
denoted by {vc, vd, vt, vw} are computed for 100 iterations (runs) of the method (Figs. S17-S20 online) 
and the same computation is made for daily confirmed cases associated with the travel destinations 
and recorded by {vc, vrr, vgp, vpk, vst, vwk, vre} (Figs. S21-S27 online). Since {vc} decreases with an 
increase in runs (Figs. S17 and S21 online), the 25th percentile of vc is summarized to investigate their 
stable impacts on c. The result shows that 69.0% versus 31.0% of the cities have vc larger and smaller 
than 0.5, respectively when associating with the effects of travel modes (Fig. 2a), which means that 
the infectious source is more effective than travel modes in influencing coronavirus transmission and 
suggests that strictly controlling infectious sources should be considered an urgent measure. In 
addition, 44.8% versus 55.2% of the cities meet the same criteria when associating with the effects of 
travel destinations (Fig. S28 online), meaning that at a global scale, travel destinations tend to be the 
most important factor that contributes to the daily confirmed cases when compared with infectious 
sources. This indicates that strict social distancing should be implemented for activities at travel 
destinations. Moreover, the main contribution to infections in several cities is from both travel modes 
and travel destinations as vc<0.5 in both cases, including Helsinki, Mexico City, Miami, Osaka, 
Phoenix, Prague, Utrecht, and Vancouver.

Fig. 2. Contribution of infectious sources and travel modes (variance decompositions, VDs) to daily confirmed 
cases. In the x-axis, the full city names can be referred to Fig. 1. (a) The blue dashed line divides the box plots 
when the 25th percentile of VDs is in [0, 0.25), [0.25, 0.5), and [0.5, 1]. There are 2 (3.4%), 16 (27.6%), and 40 
(69.0%) cities in the three corresponding categories, respectively. (b−d) The blue dashed lines divide the box 
plots when the 75th percentile of VDs is in [0.2, 1], [0.1, 0.2), and [0, 0.1). (b) For public transit, 25 (43.1%), 10 
(17.2%), and 23 (39.7%) cities. Notably, eleven cities are unavailable in the original data set. (c) For walking, 9 
(15.5%), 12 (20.7%), and 37 (63.8%) cities. (d) For driving, 6 (10.3%), 13 (22.4%), and 39 (67.3%) cities.



The analysis of VD values of the travel modes and travel destinations also allows us to make a direct 
comparison of the impacts of urban mobility, which are organized by the 75th percentile of the three 
travel modes and six travel destinations. Overall, public transit exhibits the largest contribution to 
daily confirmed cases in 43.1% of the cities (Fig. 2b), followed by walking (15.5%, Fig. 2c) and 
driving (10.3%, Fig. 2d) when their v≥0.2. Fig. 2 displays four phenomena. First, driving is the safest 
travel mode given that, in general, vd is smaller for driving than for the other two modes. A reasonable 
explanation is that drivers effectively separate themselves from strangers, thus minimizing their 
chance of being infected. Second, walking is a risky travel mode in many cities, which is likely 
beyond people’s expectations. Third, unlike the previous notion that public transit, such as metros and 
buses, tend to spread the pandemic to a wider and deeper degree because of the ease of spread in 
small, enclosed spaces, the transmission via public transit is insignificant in a few cities, with vw<0.1. 
Fourth, different cities behave differently with respect to the functionality of the different travel 
modes. For example, the six largest cities where walking has a major contribution to infections (i.e., 
Miami, Seoul, Tokyo, Kuala Lumpur, Mexico City, and Mumbai) are all worldwide megacities. 
Furthermore, the three Nordic cities (i.e., Stockholm, Oslo, and Helsinki) are significantly impacted 
by public transit.

In comparison, different travel destinations obtain a similar VD distribution wherein only a few cities 
(less than 17.2%) get v ∈ [0.2, 0.6), while the majority of cities (56.9% to 77.6%) have v ∈ [0, 0.1] 
(Fig. S29 online). Travelling for transit stations is the major transmission route in the three Nordic 
cities, which is consistent with the result obtained for travel modes. Even though Hong Kong and 
Singapore in Asia share many similarities, the pandemic in Hong Kong was mainly transmitted via 
travel for retail and recreational activities while in Singapore, it was mainly affected by the travel 
destination of parks and transit stations.

Our study is important in light of the widespread misconceptions about the effects of travel modes and 
travel destinations on COVID-19 transmission. First, travel destinations associated with various 
activities (i.e., transit stations, workplaces, and residence) contribute to pandemic transmission most, 
as they are places where individual contacts occur frequently; they are followed by infectious sources 
and travel mode. Second, commuting via public transit is a potential risk in most cities. This finding is 
vital for reminding citizens to strictly adhere to preventative measures when commuting via public 
transit, such as the wearing facemasks and maintaining social distancing. Third, walking is not as safe 
as the general public perceives even with an increased rate of facemask wearing. Even in urban areas 
with low population density, pedestrians were exposed to a higher infection risk when they ignored 
the suggested preventative measures. Fourth, driving is the safest way to commute among the three 
travel modes, as drivers have little risk of being in close contact with strangers.
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