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Multinational characterization 
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Tianxi Cai2, Gilbert S. Omenn11, Paul Avillach2, Isaac S. Kohane2, The Consortium 
for Clinical Characterization of COVID‑19 by EHR (4CE)*, Shyam Visweswaran7,93, 
Danielle L. Mowery1,93 & Zongqi Xia3,93*

Neurological complications worsen outcomes in COVID‑19. To define the prevalence of neurological 
conditions among hospitalized patients with a positive SARS‑CoV‑2 reverse transcription polymerase 
chain reaction test in geographically diverse multinational populations during early pandemic, 
we used electronic health records (EHR) from 338 participating hospitals across 6 countries and 3 
continents (January–September 2020) for a cross‑sectional analysis. We assessed the frequency 
of International Classification of Disease code of neurological conditions by countries, healthcare 
systems, time before and after admission for COVID‑19 and COVID‑19 severity. Among 35,177 
hospitalized patients with SARS‑CoV‑2 infection, there was an increase in the proportion with 
disorders of consciousness (5.8%, 95% confidence interval [CI] 3.7–7.8%, pFDR < 0.001) and unspecified 
disorders of the brain (8.1%, 5.7–10.5%, pFDR < 0.001) when compared to the pre‑admission proportion. 
During hospitalization, the relative risk of disorders of consciousness (22%, 19–25%), cerebrovascular 
diseases (24%, 13–35%), nontraumatic intracranial hemorrhage (34%, 20–50%), encephalitis and/or 
myelitis (37%, 17–60%) and myopathy (72%, 67–77%) were higher for patients with severe COVID‑
19 when compared to those who never experienced severe COVID‑19. Leveraging a multinational 
network to capture standardized EHR data, we highlighted the increased prevalence of central and 
peripheral neurological phenotypes in patients hospitalized with COVID‑19, particularly among those 
with severe disease.

The World Health Organization declared coronavirus disease 2019 (COVID-19) due to the severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) infection as a global pandemic on March 11,  20201. Growing 
evidence points to the multi-organ involvement of COVID-19, particularly the nervous system, which increases 
morbidity and  mortality2–4. Given the health consequences of neurological complications, recognizing the 
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neurological phenotypes associated with COVID-19 would inform prevention, diagnosis and treatment that 
could potentially mitigate disability and death.

Early reports highlighted central and peripheral neurological phenotypes in adults with COVID-19, including 
cerebrovascular  disease5, meningoencephalitis and  encephalomyelitis6,7,  encephalopathy5, cranial  neuropathies8, 
Guillain-Barré  syndrome9–11,  plexopathy12, anosmia and  ageusia13,14 and cognitive and neuropsychiatric  issues15. 
Children with COVID-19 have similar presentations, including ischemic stroke, encephalopathy, headache, and 
muscle  weakness16–18. Prior prevalence studies of neurological conditions in COVID-19 largely examined data 
from single countries (e.g.,  China19, the United  Kingdom20,21 and  Italy22) or single healthcare  systems4,12,23–25. Few 
large-scale studies have used a standardized data capture approach to examine the multinational prevalence of the 
spectrum of neurologic conditions in COVID-19 patients and with careful local data quality control, particularly 
those who experienced severe respiratory and/or critical illness  status26,27.

Electronic health records (EHRs) data can facilitate clinical discovery efforts. Our team created the Interna-
tional Consortium for Clinical Characterization of COVID-19 by EHR (4CE; http:// www. covid clini cal. net) to 
standardize and aggregate multinational EHR data (from 34 healthcare systems and 338 affiliated hospitals across 
six countries at the time of data freeze for this study) to address critical clinical and epidemiological questions 
relevant to COVID-1928–31. Central to the 4CE effort is the ability of local clinician experts and data scientists at 
each contributing healthcare system to ensure the quality of common EHR data elements. Leveraging the highly 
scalable, federated, multinational networks of the 4CE consortium, we computed the prevalence of a wide range 
of central and peripheral neurological conditions in hospitalized patients with reverse transcription polymerase 
chain reaction (PCR)-confirmed SARS-CoV-2 infection by healthcare system and by country. We also compared 
the differences in the prevalence of neurological conditions between patients with and those without severe 
COVID-19 based on the internationally validated 4CE severity  criteria30.

Results
Following a consortium-wide standardized procedure (Fig. 1), we collected the EHR data from 35,177 hospital-
ized patients with PCR-confirmed SARS-CoV-2 infection from 338 hospitals affiliated with 34 healthcare systems 
in six countries (eTable 1). Aggregate demographic data were available for 34,647 patients (98.5%). The cohort 
had a greater proportion of men (20,814, 60.1%) than women (13,546, 39.1%), while 287 (0.8%) patients had 
unknown gender (Fig. 2A). The study captured a broad range of proportions of severe COVID-19 cases (based on 
the internationally validated 4CE COVID-19 severity  criteria30) across this multinational network of healthcare 
systems. There was no clear relationship between COVID-19 severity and median age (Fig. 2B). Most healthcare 
systems in Europe did not report race. Among the US healthcare systems, there was a disproportionately high 
proportion of self-reported Black individuals (Fig. 2C). The study population included a high proportion of 
individuals above age 50 years and a low proportion of children (age < 18 years) (Fig. 2D).

We first assessed the prevalence of a wide spectrum of neurological conditions during the first hospital 
admission for COVID-19, importantly, using the estimates in the 1-year pre-admission period at each healthcare 
system as the comparator. Towards this end, we used EHR data from the early phase of the pandemic (January to 
September 2020) and queried all potential neurological conditions based on a comprehensive literature review at 
the start of the analysis. Most of the contributing healthcare systems (77%) reported an increase in the proportion 
of hospitalized COVID-19 patients with disorders of consciousness (ICD-10 R41: “Other symptoms and signs 
involving cognitive functions and awareness”) with a mean increase of 5.8% (95% CI 3.7–7.8%, pFDR < 0.001) 

Figure 1.  Schematic diagram of the cohort and data generation workflow for each healthcare system. The figure 
was created with Biorender (Biorender.com).

http://www.covidclinical.net
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after admission (Fig. 3, eFig. 1). Similarly, 84% of healthcare systems reported an increase in the proportion of 
patients with “Other disorders of the brain” (ICD-10 G93, including “encephalopathy”, “cerebral edema”, “brain 
death”) with a mean increase of 8.1% (5.7–10.5%, pFDR < 0.001) after admission (see online interactive data 
repository: https:// covid clini cal. github. io/ Phase1. 1Neur oRCode/ 01- analy sis- icd10. html# preva lence- change- 
table). The proportion of patients with “epilepsy and recurrent seizures” (ICD-10 G40), “encephalitis, myelitis, 
and encephalomyelitis” (ICD-10 G04) and “other and unspecified myopathies” (ICD-10 G72) increased after 
admission, but these findings were not significant after adjusting for multiple testing. Likewise, none of the other 
neurological conditions showed a statistically significant difference in prevalence after admission.

To assess the association with COVID-19 severity, we next used Fisher’s exact test to examine the enrichment 
or depletion of each neurological condition among patients hospitalized for COVID-19 who ever experienced 
severe disease based on the published 4CE COVID-19 severity  criteria30, using those who never experienced 
severe disease as the comparator (Fig. 4). A positive  log2 value of enrichment (LOE) value denoted a higher 
proportion of severe cases for a given neurological condition than the never-severe cases, while a negative LOE 
value indicated the opposite. For instance, a LOE value of 0.283 for ICD code R41 meant that the observed 
number of severe cases with R41 (disorder of consciousness) was  20.283 or ~ 1.22 times higher than the expected 
number of severe cases for R41, which was equivalent to a 22% increase in relative risk (i.e., relative risk difference 
RRD = 22%). Table 1 listed the neurological phenotypes that exhibited statistically significant associations with 
severe COVID-19 status (pFDR < 0.05). The interactive data table (https:// covid clini cal. github. io/ Phase1. 1Neur 
oRCode/ 01- analy sis- icd10. html# enric hment_ tab) and the results directory of the project online data repository 
(https:// github. com/ covid clini cal/ Phase1. 1Neur oRCode/ tree/ master/ resul ts) listed the LOE, 95% confidence 
intervals and p values for all neurological conditions examined.

In the period after hospital admission for COVID-19, using the patients who never experienced severe 
COVID-19 as reference, a significantly higher proportion of patients with severe disease had “other symptoms 
and signs involving cognitive functions and awareness” (ICD-10 R41:  RRDafter = 22%), “other cerebrovascular 

Figure 2.  Characteristics of the study population across healthcare systems and countries. (A) Total number of 
male (left) and female (right) patients grouped by country shown in square-root scale. (B) Proportion of ever-
severe cases by median age estimate at each healthcare system, grouped by country. Node size corresponds to the 
total number of patients per system. (C) Distribution of self-identified race among patients at healthcare systems 
in Singapore and the United States. The Other/Unknown category includes patients who did not identify with 
any of the predefined race categories and/or whose data were not reported. Most European healthcare systems 
did not report race. (D) Average proportion of patients in each age group within each country. FR, France; DE, 
Germany; ES, Spain; IT, Italy; SG, Singapore; US(A), United States of America.

https://covidclinical.github.io/Phase1.1NeuroRCode/01-analysis-icd10.html#prevalence-change-table
https://covidclinical.github.io/Phase1.1NeuroRCode/01-analysis-icd10.html#prevalence-change-table
https://covidclinical.github.io/Phase1.1NeuroRCode/01-analysis-icd10.html#enrichment_tab
https://covidclinical.github.io/Phase1.1NeuroRCode/01-analysis-icd10.html#enrichment_tab
https://github.com/covidclinical/Phase1.1NeuroRCode/tree/master/results
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disease” (ICD-10 I67:  RRDafter = 24%), “nontraumatic subarachnoid hemorrhage” (ICD-10 I60:  RRDafter = 28%), 
“other and unspecified nontraumatic intracranial hemorrhage” (ICD-10 I62:  RRDafter = 34%), “nontraumatic 
intracerebral hemorrhage” (ICD-10 I61:  RRDafter = 36%), “other disorders of the brain” (ICD-10 G93, including 
“encephalopathy”:  RRDafter = 36%), “encephalitis, myelitis and encephalomyelitis” (ICD-10 G04:  RRDafter = 37%), 
and “other and unspecified myopathies” (ICD-10 G72, including “inflammatory and immune myopathies” and 
“critical illness myopathies”:  RRDafter = 72%) (Table 1, Fig. 4). In contrast, a significantly lower proportion of 
patients with severe disease had “blindness and low vision” (ICD-10 H54:  RRDafter = − 23%), “dizziness and gid-
diness” (ICD-10 R42:  RRDafter = − 28%), “other headache syndromes” (ICD-10 G44:  RRDafter = − 47%), “transient 
cerebral ischemic attacks and related syndromes” (ICD-10 G45:  RRDafter = − 45%), and “unspecified psychosis 
not due to a substance or known physiological condition” (ICD-10 F29:  RRDafter = − 44%) during hospitaliza-
tion. Subgroup analysis comparing the US and non-US healthcare systems yielded consistent results (eFig. 2).

As 12 healthcare systems in Italy and the US contributed EHR data entirely or partially comprising ICD-9 
codes, we performed separate subgroup analyses using only the ICD-9 data (eTable 2), given that one-to-one 
mapping of some ICD-9 codes to ICD-10 codes was not feasible. To summarize, the prevalence of “disorders of 
consciousness” and “other neurological conditions” increased after COVID-19 admission date when compared 
to the 1-year pre-admission period, as in the ICD-10 data analysis (eFigs. 3, 4). There was no statistically sig-
nificant difference when examining the change in prevalence of other neurological ICD-9 codes after admission 
date. In severity analysis, there were similarities with the ICD-10 data (e.g., “disorders of consciousness”) but 
also differences involving seizure and cerebrovascular events that would require caution in interpretation due 
to differences in sample size (see Supplementary Material, eFig. 5, eTable 3).

Figure 3.  Prevalence of neurological phenotypes among all patients. (A) Difference in prevalence of each 
neurological ICD-10 code by healthcare system and country, calculated as after admission—before admission 
date (eEq. 2). Pink color on the heat map indicates increased prevalence, while green color indicates decreased 
prevalence. Please see eFig. 1 for the absolute values of prevalence. (B) Total counts of patients with a given 
neurological ICD-10 code (left) and the mean proportion of patients (right) before and after admission date 
across all healthcare systems. The mean proportion estimates are shown as circles and the 95% confidence 
intervals are shown as bars.
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Discussion
Following a standardized approach for aggregating EHR-derived clinical facts from a federated network of 
multinational healthcare systems while preserving patient privacy, we report the change in prevalence of a wide 
spectrum of central and peripheral neurological conditions among a large cohort of patients hospitalized with 
PCR-confirmed SARS-CoV-2 infection across geographically diverse healthcare systems from six countries, 
using the 1-year period before COVID-19 hospitalization as reference. We further report the difference in the 
prevalence of neurological conditions among hospitalized patients with severe COVID-19 when compared to 
the non-severe patients. Given the challenges with evaluating patients and obtaining data during the pandemic, 
EHR-based studies complement the more labor-intensive physician-reported registry studies.

Disorders of consciousness and other disorders of the brain are the most prevalent neurological phenotypes 
among all patients hospitalized with COVID-19 during the early pandemic. While the specific underlying causes 
could be broad (e.g., metabolic disturbance, hypoxia, medication effect, seizures, stroke), these findings are 

Figure 4.  Analysis of enrichment or depletion of neurological conditions after admission in patients with 
severe disease. For each neurological ICD-10 code, we show the  log2 enrichment (LOE) and its 95% confidence 
interval (left), and the absolute difference between the observed (filled triangle) and expected (⋅) number of 
patients experiencing severe COVID-19 in square-root scale (right). A purple positive LOE value for an ICD-10 
code indicates a statistically significantly higher proportion of severe cases having a given neurological ICD-10 
code when compared to the never-severe cases. Conversely, a green negative LOE value indicates a statistically 
significantly lower proportion of severe cases having a given neurological ICD-10 code when compared to 
the never-severe cases. Neurological ICD-10 codes are ordered by the expected number of severe cases after 
admission.

Table 1.  Statistically significant associations of neurological conditions and severe disease status after 
admission (pFDR < 0.05). a The interactive data table (https:// covid clini cal. github. io/ Phase1. 1Neur oRCode/ 01- 
analy sis- icd10. html# enric hment_ tab) and the results directory of the project online data repository (https:// 
github. com/ covid clini cal/ Phase1. 1Neur oRCode/ tree/ master/ resul ts) show the  log2 value of enrichment (LOE), 
95% confidence intervals, and p values for all neurological ICD-codes adjusted for multiple hypothesis testing. 
b RRD: Relative risk difference = Observed relative risk − 1.

Neurological condition (ICD-10 code) LOEa RRDb (%)
RRD
95% CI (%) pFDR

Blindness and low vision (H54) − 0.38 − 23 (− 33, − 11) 2.0 ×  10–4

Dizziness and giddiness (R42) − 0.47 − 28 (− 33, -22) 6.3 ×  10–19

Encephalitis, myelitis and encephalomyelitis (G04) 0.45 37 (17, 60) 0.0081

Nontraumatic intracerebral hemorrhage (I61) 0.45 36 (23, 51) 3.6 ×  10–5

Nontraumatic subarachnoid hemorrhage (I60) 0.35 28 (10, 48) 0.019

Other and unspecified myopathies (G72) 0.78 72 (67, 77) 8.8 ×  10–45

Other and unspecified nontraumatic intracranial hemorrhage (I62) 0.43 34 (20, 50) 3.0 ×  10–4

Other cerebrovascular diseases (I67) 0.31 24 (13, 35) 2.0 ×  10–4

Other disorders of the brain (G93) 0.44 36 (32, 40) 5.6 ×  10–73

Other headache syndromes (G44) − 0.91 − 47 (− 59, − 31) 9.4 ×  10–9

Other symptoms and signs involving cognitive functions and awareness (R41) 0.28 22 (19, 25) 2.1 ×  10–39

Transient cerebral ischemic attacks and related syndromes (G45) − 0.85 − 45 (− 56, − 31) 5.0 ×  10–10

Unspecified psychosis not due to a substance or known physiological condition (F29) − 0.84 − 44 (− 57, − 28) 7.7 ×  10–8

https://covidclinical.github.io/Phase1.1NeuroRCode/01-analysis-icd10.html#enrichment_tab
https://covidclinical.github.io/Phase1.1NeuroRCode/01-analysis-icd10.html#enrichment_tab
https://github.com/covidclinical/Phase1.1NeuroRCode/tree/master/results
https://github.com/covidclinical/Phase1.1NeuroRCode/tree/master/results
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consistent with prior reports and associated with worse health  outcomes19,20,24,25. Given that hospitalized COVID-
19 patients can manifest a wide range of symptoms and signs, certain neurological conditions do not cleanly 
fall within parent diagnostic codes with clearly specific descriptions (e.g., ICD-10 G04: encephalitis, myelitis 
and encephalomyelitis; ICD-10 G61: inflammatory polyneuropathy). In the case of “other disorders of brain” 
(including “unspecified disorders of the brain”), the parent diagnostic code of ICD-10 G93 covers a wide range of 
conditions, some of which are potentially relevant to hospitalized COVID-19 patients though they do not belong 
to a single unifying category (e.g., G93.1: anoxic brain damage; G93.2: benign intracranial hypertension; G93.3: 
post-viral fatigue syndrome; G93.4: other and unspecified encephalopathy; G93.5: compression of brain; G93.6: 
cerebral edema; G93.82: brain death). Other diagnosis codes under G93 (e.g., G93.9: unspecified disorders of the 
brain) likely capture symptoms and signs that may not be easily categorized, commonly reported (i.e., symptoms 
and signs that are not headache, visual changes, dizziness, confusion, weakness, or sensory changes), and/or 
revealing any objective pathology based on common clinical tools such as physical exam, laboratory, neuroimag-
ing or electrodiagnostic tests. Here are two potential clinical scenarios that could lead to the diagnosis code of 
“unspecified disorder of a brain”: (1) non-specific findings on the brain magnetic resonance imaging that were 
not consistent with ischemic stroke, intracranial hemorrhage, meningitis or encephalitis, neoplasm, or demyelina-
tion; (2) subjective sensory complaint without objective findings on exam or diagnostic tests that was not coded 
with specific diagnosis. In contrast, the diagnosis code ICD-10 R41 (“disorders of consciousness”) specifically 
refers to symptoms and signs involving awareness and cognitive function, which include disorientation, amne-
sia, neglect, age-related cognitive decline, altered mental status, specific cognitive deficits involving attention, 
concentration, communication, visuospatial and psychomotor domains. This code will cover common clinical 
scenarios in hospitalized patients such as delirium (fluctuating arousal state) and decreased responsiveness.

On the other hand, we find no statistically significant increase in the prevalence of other previously reported 
neurological conditions such as dizziness, headache, seizure, vascular, and vision disorders after the first admis-
sion to the hospital for COVID-19. The lower prevalence of early COVID-19 symptoms such as alterations in 
smell and  taste13 in this study is likely attributable to the incomplete documentation of these symptoms in the 
EHR for the hospitalized patient population, particularly those with severe COVID-19. Crucially, these dis-
crepancies may also be due to methodological differences, as our analysis accounted for baseline pre-admission 
prevalence by reporting the change in prevalence after admission.

Our other major finding indicates that a significantly higher proportion of hospitalized patients with severe 
COVID-19 (based on a computational phenotyping algorithm of COVID-19 severity that our group previously 
 published30) had disorders of consciousness and other disorders of the brain, encephalitis and/or myelitis, cer-
ebrovascular events and myopathy when compared to patients who never had severe disease. Beyond corrobo-
rating prior  reports19,23–25, our findings highlighted similar patterns across geographically diverse multinational 
healthcare systems using a standardized approach. First among these findings, disorders of consciousness and 
other disorders of the brain include altered mental status, disorientation cognitive deficits, and encephalopathy. 
Hypoxemia from respiratory failure, metabolic disturbance, sedation for advanced respiratory support, acute 
delirium, and other more specific neurological involvement in the setting of severe COVID-19 could all be 
 contributory32.

Second, encephalitis and myelitis have variable  manifestations12 and were likely under-reported due to 
difficulties of performing diagnostic studies (e.g., magnetic resonance imaging, lumbar puncture) especially 
during the early phase of pandemic. Neuropathological examinations have not uncovered evidence of direct 
viral infection of the central nervous system (CNS)33, though more studies are needed to confirm whether the 
mechanisms underlying encephalitis (with or without myelitis) are direct CNS invasion by SARS-CoV-2, acute 
systemic inflammation with secondary CNS involvement, and/or post-infectious immune-mediated effect on 
the  CNS2,34,35.

Third, our finding of cerebrovascular diseases associated with severe COVID-19 include both ischemic strokes 
and intracranial hemorrhages (nontraumatic intracerebral and nontraumatic subarachnoid), highlighting the 
difficult balance when managing severe COVID-19 with respect to antiplatelet and anticoagulation therapy. 
Strokes that occurred in the setting of COVID-19 were associated with high mortality and  morbidity36. COVID-
19 might increase the risk of ischemic stroke through mechanisms such as activation of innate immune system, 
cardioembolic events, hypoxia-induced ischemia secondary to severe pulmonary disease, coagulation activation, 
thrombotic angiopathy and endothelial  damage2. Proposed mechanisms underlying intracranial hemorrhage in 
COVID-19 include coagulation abnormalities, endothelial dysfunction, dysregulation of the renin-angiotensin 
system, and disruption of cerebral blood flow  autoregulation2,37. Patients with severe COVID-19 may have 
additional risk factors such as hypertension or cardiovascular disease that could further drive cerebrovascular 
 diseases38.

Finally, myopathy is common among severe COVID-19 patients. The cause is likely multifactorial: prolonged 
or severe critical illness, complications due to multi-organ involvement, or medication-induced myotoxicity (e.g., 
Hydroxychloroquine, steroids)2,39. The current data set does not permit subgroup analysis (e.g., ventilated versus 
non-ventilated patients). Further, most clinical studies to date, including our own, cannot establish whether the 
neurological phenotypes associated with severe COVID-19 are the direct consequence of SARS-CoV-9 neuro-
toxicity or due to secondary causes.

Interestingly, some neurological phenotypes are less prevalent in patients with severe COVID-19, including 
psychosis, dizziness, vision impairment, transient ischemic attack, and headache. The likely explanation is that 
critically ill patients with or without respiratory failure would either not have an objective evaluation or proper 
documentation and coding for these conditions given that patients with severe disease are likely to be sedated 
and/or having altered mental status.

Several analytical elements strengthen the study. Chief of among them, the federated approach of adopting 
common EHR data elements and standardized processes for representing clinical events with local quality control 
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differentiates this study from other EHR-based efforts, complements physician/neurologist-reported registry 
 efforts12,24,25,40 and is well suited for multinational and multi-institutional clinical discovery. Critically, the local 
clinician experts and data scientists at each 4CE contributing healthcare system ensure the control of EHR data 
quality according to the consortium standard and improve the study rigor. The overall concordance of the main 
study findings with other registry-based studies is reassuring. Second, our approach of aggregating EHR data, 
specifically the ICD codes at categorical level, reduced the potential concern for variations in coding practice 
across diverse healthcare systems that include general medical, neurology, critical care, and rehabilitation settings. 
Third, the 4CE contributing healthcare systems shared aggregate clinical data following a pre-defined analysis 
plan while adhering to multi-national patient privacy laws such as the United States Health Insurance Port-
ability and Accountability Act (HIPAA) and the European Union General Data Protection Regulation (GDPR). 
Fourth, we rapidly implemented the analysis plan at scale by leveraging existing informatics infrastructures and 
frameworks at each 4CE contributing healthcare system. This federated approach of using EHR data for clini-
cal discovery presents a complementary and alternative approach to the more labor-intensive registry-based 
approach. Finally, our prevalence study used the 1-year pre-admission period for comparison, which generated 
more realistic prevalence estimation of neurological conditions among hospitalized patients with COVID-19 
than approaches that do not account for pre-admission prevalence. Given the protracted and changing nature 
of the COVID-19 pandemic, we intentionally included only data during the first hospitalization for COVID-
19, specifically during the early phase of the pandemic, to appropriately account for pre-admission prevalence.

Our study has limitations as the result of trade-offs to standardize common data collection from multina-
tional healthcare systems while strictly preserving patient privacy and adhering to privacy laws governing all 
contributing healthcare systems. First, this study relied on ICD codes that may not capture fully or accurately 
the disease phenotypes, particularly for conditions better documented in clinical notes. To standardize the 
collection of ICD codes across diverse contributing healthcare systems and to mitigate coding discrepancies, 
we used ICD codes at the categorical level (e.g., the first 3 alphanumeric characters before the decimal point 
for ICD-10). As such, further characterization of certain conditions such as “other disorders of the brain” was 
not feasible at this stage, though we are working towards a standardized approach of capturing full ICD codes 
for the next stage of analyses. Second, because we aggregated data across healthcare systems, we were unable 
to consolidate all related ICD codes (e.g., organizing into  PheCode41) at the individual patient level. Similarly, 
the 4CE consortium is preparing a standardized approach to enable aggregate patient-level analyses from each 
contributing healthcare system. Third, we might not have captured all pre-admission EHR data if patients did not 
receive their entire care in the same hospital system as the COVID-19 admission. This is a limitation common 
to all research using EHR data from countries without universal health systems such as the USA. Reassuringly, 
subgroup analysis showed consistent results between US and non-US contributing healthcare systems. Finally, 
contributing healthcare systems with small patient counts used obfuscation to reduce the risk of re-identifying 
the health systems, but the effect of obfuscation is negligible because few healthcare systems had neurological 
conditions of interest in cases fewer than the obfuscation level. Despite the limitations of deploying this rapid, 
scalable, patient privacy-preserving research strategy, our key findings were consistent with prior reports from 
well-characterized but often smaller, single-country and/or single-center cohort studies.

In conclusion, this multinational prevalence study highlighted a range of central and peripheral neurological 
phenotypes in hospitalized patients with PCR-confirmed SARS-CoV-2 infection, particularly among patients 
with severe disease. Our multinational and multi-institutional EHR-based efforts using a standardized procedure 
and common data elements with careful local data quality control complement registry-based research design. 
In future studies, we will conduct individual-level analysis using additional EHR data such as complete ICD 
codes, identify risk factors for worse health outcomes (e.g., hospitalization duration, death, re-admission) and 
examine long-term sequelae in COVID-19 patients with neurological phenotypes.

Methods
Patients and data. 4CE contributing healthcare systems began in March 2020 to collect EHR data from 
hospitalized patients with positive SARS-CoV-2 RT-PCR tests. The analyzed data captured the early phase of 
the pandemic, spanning from January 2020 through early September 2020. We defined COVID-19-related hos-
pitalization as the first hospital admission that occurred between 7 days before and up to 14 days after the first 
positive SARS-CoV-2 PCR test. The first admission date within this − 7 to + 14 day window is the index admis-
sion date.

According to the 4CE consortium agreement, we de-identified contributing healthcare systems to protect their 
confidentiality. The institutional review board of each participating health system (eTable 1) approved the sharing 
of anonymous, aggregate data in compliance with multi-national patient privacy laws exempting the requirement 
for individual patient consent as there was no direct patient recruitment or contact. Some healthcare systems 
applied a small level of obfuscation (i.e., masking of low counts, eTable 1) to preserve system-specific privacy 
and to reduce the risk of patient re-identification, though it had no significant impact on the total patient counts.

Using the 4CE standard of common EHR data  elements28–31, we collected demographics (age, gender, self-
identified race/ethnicity) and the International Classification of Disease (ICD) codes (versions 9 or 10) pertaining 
to neurological conditions (Fig. 1) as well as COVID-19 severity, based on the internationally validated 4CE 
COVID-19 severity  criteria30. Among the contributing healthcare systems, only Italian healthcare systems pro-
vided exclusively ICD-9 codes while the rest of the healthcare systems provided predominantly ICD-10 codes. 
As such, we used ICD-10 data for the main analyses and ICD-9 data for supplementary analyses. To standardize 
EHR data elements, we used the first three alphanumeric characters of a given ICD code, which designates the 
category of the disease or injury (e.g., ICD-10 G44 denotes the category of “Other headache syndromes”).
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For all patients hospitalized with COVID-19, we collected ICD codes at two time periods, before and after 
the date of admission of the first hospitalization for COVID-19. The period before COVID-19 hospitalization 
ranged from − 365 days to − 15 days preceding the admission date. Inclusion of EHR data up to 1 year before 
admission is a pragmatic decision to balance available data from all healthcare systems and minimize past medical 
conditions that might not be relevant. The period after admission date ranged from the date of admission to the 
end of the hospitalization. According to the pre-planned consortium-wide strategy, we excluded all codes in the 
2 weeks preceding the index hospital admission date to ensure that diagnoses before admission were independent 
of COVID-19. It could take a few days from SARS-CoV-2 infection to symptom onset and additional days before 
a positive PCR test and/or hospital admission. Similarly, we analyzed ICD codes before and after the admission 
date according to whether patients ever met the 4CE criteria for severe COVID-1930 (Fig. 1).

Exposures. We first examined all hospitalized patients with PCR-confirmed positive SARS-CoV-2. We then 
examined hospitalized patients with COVID-19 who met the 4CE criteria for severe COVID-19, including 
advanced respiratory care management at any point during their hospitalization. Including diagnoses, proce-
dures, laboratory results and medications (Table 2). Because we used aggregate EHR data in this study, patient-
level indicators of severity (e.g., patient-level laboratory value or medication) were unavailable. In response, we 
applied a computational algorithm of COVID-19 severity that the 4CE consortium previously developed and 
internationally validated (through chart review by local clinician experts at participating healthcare systems) to 
be a clinically reasonable proxy for hospitalized patients who experienced severe COVID-19  status30.

Neurological outcomes. We queried 21 ICD-10 codes in 12 categories pertaining to neurological pheno-
types following a comprehensive literature search in August 2020. The neurological disease categories included 
consciousness, coordination, dizziness, headache, inflammatory, muscle, neuropathy, psychiatric, seizure, vas-
cular, vision and other unspecified neurological conditions (Table 3).

Statistical analyses. We first compared the prevalence of each neurological ICD code and disease category 
among all hospitalized patients with COVID-19. For each ICD code, we reported the total count and the propor-
tion of patients hospitalized with COVID-19 at each healthcare system (and each country), both before and after 
admission date (Supplementary Material, eEq. 1). We used the proportion data before admission as reference 
control. We calculated the difference in the proportion of cases with a given ICD code before and after admission 
date (eEq. 2) and used paired two-sided t-tests to examine whether there was a statistically significant difference 
in the proportion after admission date when compared to that before admission date.

We next compared the prevalence of each neurological ICD code and disease category after admission date 
between patients who ever met the criteria of severe COVID-19 and those who did not, by healthcare system and 
by country. For each ICD code, we computed the expected number of severe cases (eEq. 3) and compared with 
the observed number of severe cases for the given neurological code. To examine the difference in proportion 
of severe cases for the neurological ICD codes, we calculated the enrichment of each neurological ICD code by 
dividing the observed number of severe cases by the expected number of severe cases and reported a value of  log2 
enrichment (LOE) and its 95% confidence interval (CI) (eEq. 4). We estimated the LOE 95% CI using the Delta 
 method42. We chose LOE as a statistic measure for the difference between the proportion of severe cases and 
never-severe cases for a given neurological condition because it allows symmetric visualization of enrichment 
or depletion (equivalent confidence intervals for enrichment and depletion. Finally, we computed the p-values 
using Fisher’s exact  test43 and corrected for multiple hypothesis testing with Benjamini–Hochberg’s false dis-
covery rate (FDR)  procedure44. A result was statistically significant if pFDR < 0.05. All analyses were performed 
in the R environment.

Table 2.  The 4CE criteria of severe COVID-19. Comprising the occurrence of diagnoses, procedures, 
laboratory results and medications, this computational phenotyping algorithm of severity has been 
internationally validated (through manual chart review by local clinician experts at participating healthcare 
systems) to be a clinically reasonable proxy for hospitalized patients who experienced severe status of COVID-
19. This approach is applicable when the aggregate electronic health records data from each contributing 
healthcare systems are available but not the patient-level data. Please see Methods and further detail in a 
separate 4CE  publication30.

Severe illness category Clinical events

Diagnoses Acute respiratory distress syndrome, ventilator-associated pneumonia

Procedures Insertion of endotracheal tube; invasive mechanical ventilation

Laboratory results PaCO2,  PaO2

Medications
General anesthetics; benzodiazepine derivatives; muscle relaxants; other hypnotics and sedatives; adrenergic and 
dopaminergic agents; other cardiac stimulants; other respiratory system products; phosphodiesterase inhibitors; 
platelet aggregation inhibitors excluding heparin; vasopressin and analogues
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Data availability
The 4CE consortium does not have permission from each individual contributing healthcare system to release 
electronic health records data for public access. Only aggregate data were shared by healthcare systems for this 
study. All aggregate data in a de-identified fashion are available for download (http:// www. covid clini cal. net).

Code availability
Our analysis results are available in browsable R notebooks (https:// github. com/ covid clini cal/ Phase1. 1Neur 
oRCode/) under CC BY 4.0, with source code distributed under a BSD 3-Clause License. Figure 1 was created 
with Biorender (Biorender.com). Figures 2, 3, 4 as well as all supplementary figures were created using R v.4.0.3 
(http:// www.R- proje ct. org)45 and the package  ggplot246.
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