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A B S T R A C T   

Humans continuously categorise inputs, but only rarely receive explicit feedback as to whether or not they are 
correct. This implies that they may be integrating unsupervised information together with their sparse supervised 
data – a form of semi-supervised learning. However, experiments testing semi-supervised learning are rare, and 
are bedevilled with conflicting results about whether the unsupervised information affords any benefit. Here, we 
suggest that one important factor that has been paid insufficient attention is the alignment between subjects’ 
internal representations of the stimulus material and the experimenter-defined representations that determine 
success in the tasks. Subjects’ representations are shaped by prior biases and experience, and unsupervised 
learning can only be successful if the alignment suffices. Otherwise, unsupervised learning might harmfully 
strengthen incorrect assumptions. To test this hypothesis, we conducted an experiment in which subjects initially 
categorise items along a salient, but task-irrelevant, dimension, and only recover the correct categories when 
sufficient feedback draws their attention to the subtle, task-relevant, stimulus dimensions. By withdrawing 
feedback at different stages along this learning curve, we tested whether unsupervised learning improves or 
worsens performance when internal stimulus representations and task are sufficiently or insufficiently aligned, 
respectively. Our results demonstrate that unsupervised learning can indeed have opposing effects on subjects’ 
learning. We also discuss factors limiting the degree to which such effects can be predicted from momentary 
performance. Our work implies that predicting and understanding human category learning in particular tasks 
requires assessment and consideration of the representational spaces that subjects entertain for the materials 
involved in those tasks. These considerations not only apply to studies in the lab, but could also help improve the 
design of tutoring systems and instruction.   

1. Introduction 

Humans learn to categorise both with and without explicit feedback 
or supervision. For example, children learn to tell things apart, like a 
sheep from a goat, with the help of at least some explicit labels provided 
by adults. However, the adults rather rarely receive this kind of explicit 
feedback on many of their continuing categorisations. Even though a 
hybrid of supervision and mere exposure appears to characterise human 
learning well, studies in the laboratory have largely, and rather artifi
cially, separated the forms of learning. To understand how human 
learning works under more natural conditions, we need to understand 
the joint contributions and interactions of both supervision and 
exposure. 

Recently, various experiments have examined semi-supervised 
learning in adults. However, results conflict. One line of research on 
semi-supervised categorisation shows that humans adjust the positions 
of one-dimensional category boundaries acquired with supervision 
when presented with a swathe of unsupervised samples whose distri
bution suggests a slightly shifted boundary (Gibson et al., 2015; Kalish 
et al., 2012, 2015; Lake & McClelland, 2011; Zhu et al., 2007). These 
results provide evidence that humans indeed integrate supervised and 
unsupervised information. 

By contrast, work that investigated whether subjects’ categorisation 
performance improved when intermixing supervised with unsupervised 
training trials in two-dimensional tasks did not find conclusive evidence: 
Unsupervised trials have been reported to have no effect on 
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categorisation accuracy in tasks that require subjects to integrate in
formation from only one (rule-based; McDonnell et al., 2012) or multi
ple stimulus dimensions (information integration; Vandist et al., 2009), 
or only to affect response speed (Vandist et al., 2019), or only to benefit 
learning under time pressure (Rogers et al., 2010), or only to boost 
generalisation performance in relational category learning if unsuper
vised and supervised stimuli are similar (Patterson & Kurtz, 2018). 

These results show that while the idea that humans should be able to 
boost supervised information by integrating it with unsupervised in
formation appears convincing, the literature only provides sparse and 
conflicting evidence. In addition, there are substantial differences in 
experimental designs (e.g., tasks, presentation times, response re
quirements) making it difficult to determine the source of the observed 
variability. In fact, the mixed results have been taken as evidence that 
semi-supervised learning may only be beneficial under limited condi
tions (e.g., under time pressure or late in learning; Vandist et al., 2019) 
and that perhaps supervised items enjoy a special status, which is why 
they appear to be weighed more strongly in learning (Lake & McClel
land, 2011; McDonnell et al., 2012; Vandist et al., 2009; Zhu et al., 
2010). 

One way to understand these conflicting results is to consider cate
gory learning experiments from a more abstract viewpoint. An experi
menter defines a task by specifying a mapping from a set of stimuli to a 
set of labels. The set of stimuli is typically constructed by specifying 
dimensions of variations in a collection of features. Some, or all, of the 
feature values of a stimulus, i.e., its coordinates along these feature di
mensions, then systematically map onto a category label. The subject 
needs to learn this mapping, and thus also at least something about the 
feature dimensions that differentiate the categories. However, the sub
ject can only operate on an internal representation of stimuli, that is on 
their coordinates along internal feature dimensions. These dimensions 
will have been shaped by the subject’s prior experience. Thus, successful 
learning involves three components: (i) adjustment or augmentation of 
internal representations so they align sufficiently with the dimensions 
critical for the experimenter’s categorisation (e.g. by attending to task- 
relevant dimensions while suppressing others, or by learning 

appropriate feature representations for a given task); (ii) separation of 
stimuli into categories given these representations (i.e., the explicit or 
implicit learning of category boundaries); and (iii) assignment of the 
correct labels to these categories. 

Although supervised learning supports all three aspects of the 
acquisition of categories, unsupervised learning does not. Learning the 
correct label for a class, by definition, requires supervision. However, 
and more importantly, unsupervised learning is limited to tailoring 
representations and learning category boundaries from distributional 
information available in the representation evoked by the presented 
stimuli. Thus, we hypothesise that unsupervised learning can only find 
and refine categories that are somewhat obvious given existing repre
sentations (e.g. obvious groups or spectral structure). By contrast, su
pervision will be necessary to induce gross changes to representations if 
they are misaligned with the task. This could involve shifting attention 
to subtle feature dimensions, or acquiring new such dimensions. 

In sum, learning will be constrained by existing representations, 
especially in the absence of feedback (Fig. 1). For instance, subjects may 
simply not attend to a task-relevant stimulus dimension, in which case 
distributional information available in that dimension will be inacces
sible for learning (Gibson et al., 2013; Rogers et al., 2010). This is 
equivalent to subjects’ more obvious inability to learn seemingly 
random stimulus-category assignments without supervision. More sub
tly, even the ability to integrate information from new and old stimuli to 
refine categorisations will be governed by the representations prevailing 
at the time the old stimuli were presented. This is because these repre
sentations constrain what aspects of those stimuli will have been 
retained. 

To illustrate these points, consider a young child learning that some 
animals are called fish while others are called mammals. By exploiting 
an internal representation which reports that fish possess the feature of 
living in water, the child may quickly learn to distinguish mammals from 
fish. This allows them to categorise new types of fish without feedback, 
whilst at the same time learning about the various appearances of fish 
and their distribution. However, this simple clustering is misaligned 
with the true category of fish, because exceptions, such as whales, live in 

Fig. 1. Schematic illustration of a task structure and examples of task-aligned representations and task-misaligned representations for which unsupervised learning 
would help and hurt learning in the task respectively. (a) An experimental task in which stimuli are drawn from two categories (shown by dark and light grey circles) 
that extend along two pre-defined dimensions (e.g. the length and orientation of lines). (b) Task-aligned representations entertained by learners neither need to retain 
all information about the original input, nor do they need to be perfectly parallel to the experimenter-defined dimensions. It suffices for stimuli of the same category 
to be represented similarly, thus supporting correct responses in this particular task even in the absence of feedback. We hypothesise that, in this case, learners’ 
performance can improve without supervision by continued representational learning (e.g. further within-category compression). (c) A representation is task- 
misaligned if stimuli from the same category are not well separated. We hypothesise that unsupervised learning cannot improve performance if representations 
are misaligned because unsupervised information can only strengthen wrong assumptions about the underlying category structure. It is only with sufficient su
pervision that misaligned representations can be corrected, enabling future unsupervised learning to be useful. 
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water but are mammals. The child will be unable to perfect their fish 
categorisation unless they receive sufficient explicit feedback that al
lows them to learn to represent aquatic mammals differently from fish. 
By contrast, consider another child who has more experience with these 
two categories or learned to represent them separately more quickly 
because of frequent visits to aquaria. This child might, in the same sit
uation, be able to learn from additional observations alone by fine- 
tuning existing clusters of these aquatic animals. 

Accordingly, unsupervised trials can only improve performance in an 
experiment if subjects’ representational space suggests a similarity 
structure between stimuli that is sufficiently aligned with the 
experimenter-defined category structure so that simple refinements 
suffice. We call this the semi-supervised representation-to-task-alignment 
hypothesis. This hypothesis is consistent with Hammer’s (2015) sugges
tion that feature saliency of stimuli should influence the degree to which 
visual category learning is dependent on feedback as well as Rogers 
et al.’s (2010) suggestion that attentional mechanisms influence the 
availability to the learner of relevant distributional information. 

Returning to the observation of conflicting results in semi-supervised 
learning experiments, it is important to consider that internal repre
sentations are shaped by prior experience, which differs substantially 
between individuals. Thus, unsupervised learning may have very 
different, and even opposite, effects on individuals even within exactly 
the same task. In addition, the modest amounts of supervision provided 
in these experiments may have a greater effect on the representations of 
some subjects than others, either because of intrinsic differences or 
because of prior learning or meta-learning. This may also lead to dif
ferential effects of subsequent unsupervised exposure in the same task. 

In the context of learning in the real-world, this would suggest that 
people with different experience and different rates of learning can 
either be helped or hurt by unsupervised learning in a specific task 
because their representations differ. For the example of learning to 
distinguish sheep from goats, we can assume that the vast majority of 
readers are non-experts in this domain, yet have encountered many 
exemplars (mostly unsupervised) over the course of their life and 
probably have learned about some of the characteristics that are typical 
for these animals which determine their internal representations. One of 
these salient features is that sheep are typically woolly whereas goats are 
not. But few non-experts may be aware that breeds of sheep and goats 
exist that are indistinguishable based on woolliness, or other apparently 
salient characteristics. Instead, experts (but surprisingly few non- 
experts) rely on a much simpler, discrete and diagnostic feature to 
categorise sheep and goats: whether their tail points up (goats) or down 
(sheep). That is, despite this simple-to-learn feature and repeated su
pervised and unsupervised exposure over a lifetime, many non-experts 
confidently categorise with respect to an irrelevant, but highly salient 
and often sufficient feature (e.g. woolliness), apparently failing to 
include the true discriminating feature in their representations. As a 
result, non-experts correctly categorise only those animals who conform 
to their incorrect perception (woolly sheep) but continue to make mis
takes on rare instances (woolly goats). This example illustrates that 
exposure alone does not automatically lead to the accurate discovery of 
categories, but that non-experts may instead practice the wrong cate
gorisation in the absence of feedback because their representations 
impose a view on the inputs that is misaligned with the task and not 
trivially revised. 

In this paper, we emulate this real-world learning problem to test our 
semi-supervised representation-to-task alignment hypothesis. This hy
pothesis entails that unsupervised learning can have opposite effects on 
individuals’ performance within the exact same category learning task 
depending on the representations they entertain. We test this by creating 
a learning task in which unsupervised trials can help or hurt the per
formance of individual subjects depending on the degree to which their 
internal representation and experimenter-defined task are aligned at the 
outset of unsupervised training. Since we cannot assess the representa
tions different subjects entertain directly, we infer them from subjects’ 

momentary categorisation responses. 
We first describe this experimental design in detail. We then present 

our results which provide evidence that unsupervised learning can 
indeed have seemingly opposing effects on subjects’ behaviour even 
within a single behavioural task consistent with the semi-supervised 
representation-to-task alignment hypothesis. We conclude by discus
sing the limitations and difficulties of assessing and predicting such ef
fects in categorisation experiments in general and elaborate on possible 
mechanisms underlying semi-supervised learning. 

2. Experiments 

In order to test the semi-supervised representation-to-task alignment 
hypothesis, we designed a simple categorisation task in which we could 
measure and manipulate the degree of alignment between a subject’s 
internal representational space and our experimenter-defined task 
space. We measured alignment by evaluating subjects’ responses against 
two category boundaries (one correct, one incorrect) as they learned; 
and we manipulated the degree of alignment by withdrawing supervi
sion at different stages of subjects’ learning. 

We adapted the task of Ramscar et al. (2010) to mimic the problem of 
learning to distinguish sheep from goats described above. That is, our 
stimulus material was designed such that, in the absence of corrective 
feedback, most subjects spontaneously categorised stimuli along a 
salient continuous dimension that was task-irrelevant but often suffi
cient (the equivalent of woolliness) and whose uniform distribution did 
not favour a class distinction. However, we also provided simple, 
discrete, features (the equivalents of the tail orientation) that were 
rarely noticed spontaneously, but actually defined a group structure. 
Given sufficient feedback, subjects could learn to assign stimulus groups 
to categories correctly by relying on these subtle features. We expected 
that further unsupervised learning would only be beneficial when sub
jects were attending appropriately to these features (Fig. 2). 

In order to test our hypothesis, we assessed the effect of feedback 
withdrawal after an initial supervised phase. We predicted that subjects’ 
internal representation at this point of withdrawal would affect whether 
further unsupervised exposure would help or hurt performance. If 
feedback is withdrawn when a subject still entertains a task- 
inappropriate representation, either because they adapted slowly in 
response to the feedback or because their prior representations were 
particularly inappropriate, then unsupervised learning would hurt per
formance. On the other hand, if feedback is withdrawn when a subject 
already entertains a task-appropriate representation (because their 
representation was more aligned from the start or they adapted quickly 
in response to the feedback), they would be able to improve by learning 
from exposure alone. 

Several methodological considerations shaped the details of the 
experimental design: firstly, the question of how to assess representa
tions; secondly, how to evoke representational change; and lastly how to 
chose the time point of feedback withdrawal. We will now explain how 
we addressed these three questions and how our solutions result in the 
qualitative predictions of learning curves displayed in Fig. 3. 

The most important methodological prerequisite for this study is the 
ability to draw conclusions about subjects’ internal representations. We 
achieved this indirectly by evaluating performance on two classes of 
stimuli: frequently occurring unindicative stimuli that subjects would 
assign to the correct category irrespective of whether they attended to 
the task-relevant or task-irrelevant dimension of the stimuli (the 
equivalent of woolly sheep; thus performance on these stimuli has no 
implications for subjects’ internal representation), and less frequent, 
indicative stimuli that would either be categorised correctly or incorrectly 
(the equivalent of woolly goats; performance on these indicates whether 
subjects attended to the correct dimension). This design allows us to 
make qualitative predictions about subjects’ performance depending on 
which representation they entertain, and thus make inferences about 
subjects’ representations from their performance. 
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Another methodological prerequisite was to ensure subjects under
went representational change in learning to solve the task. That is, 
before being able to test our semi-supervised representation-to-task- 
alignment hypothesis by withdrawing feedback at different stages of 
learning, we first needed to ensure that subjects’ learning under fully 
unsupervised and fully supervised baseline conditions followed the 
precepts laid out above. That is, we first needed to establish that subjects 
would initially categorise according to the task-irrelevant feature (i.e., 

woolliness, by analogy) but could learn to categorise by the task- 
relevant feature (i.e., the tail, by analogy) when receiving feedback. 
As we will see below, we were particularly interested in the possibility of 
substantial individual differences in learning trajectories so that with
drawing feedback at a single, pre-determined point during acquisition 
would amount, across the whole group of participants, to withdrawing it 
at quite different states of representational alignment. 

For this purpose, we conducted two calibration studies to ensure that 

Fig. 2. Schematic illustration of the stimulus and 
task structure. Stimuli vary according to different 
features. One stimulus feature is continuous and 
salient (but task-irrelevant) such that subjects natu
rally perceive similarity and categorise stimuli along 
this dimension in the absence of feedback. The other 
stimulus features are more subtle and indicate 
membership to four underlying groups which them
selves are assigned to two categories that define the 
task subjects are asked to learn. In such a task, we 
expect that subjects will need feedback in order to 
learn to categorise items in accordance with the task. 
The task includes two types of stimuli: those that 
should be categorised correctly independent of the 
correct or incorrect representational structure (unin
dicative stimuli) and those that reflect the underlying 
representation (indicative stimuli). Crucially, stimuli 
are sampled such that the distribution over the salient 
dimension is uniform, while the subtle dimensions 
defines discrete groups.   

Fig. 3. Predicted learning curves under different feedback conditions. Subjects are expected to reach high performance on unindicative items irrespective of feedback 
condition since performance is independent of whether subjects attend to the task-relevant or task-irrelevant feature. (a) Unsupervised condition: In the absence of 
feedback, subjects are expected to categorise by the task-irrelevant dimension and thus perform poorly on indicative items (including the appropriate remapping of 
responses to account for the fact that it is impossible for subjects to know which label is attached to which category in the absence of feedback). (b and c) Supervised 
condition: In the presence of feedback, subjects are expected to improve on indicative items as they learn to categorise by the task-relevant stimulus features. Fast 
learners are expected to approach perfection quickly. By contrast, slow learners are expected to recover from their initial reliance on the task-irrelevant dimension 
more slowly, hence displaying a U-shaped learning curve. (d and e) Semi-supervised condition: Subjects are expected to perform well on unindicative items at the 
time of feedback withdrawal and to further improve even in the absence of feedback. However, the benefit of unsupervised trials for indicative items is expected to 
depend on proficiency at the point that feedback is withdrawn: fast, proficient learners are expected to improve, while slow, inaccurate learners are expected 
to worsen. 
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the experimental parameters produced the desired learning curves 
under baseline conditions. First, we tested whether subjects would 
indeed perceive similarity between stimuli along the wrong, continuous 
dimension initially. This would be reflected in an improvement on the 
unindicative items, but diminishing performance on indicative items in 
the absence of corrective feedback (unsupervised learning) as subjects 
strengthen their incorrect beliefs about category structure (Fig. 3 a). 

Having confirmed that subjects were not sensitive to the 
experimenter-defined group structure, but rather categorised items 
along the salient continuous dimension, the second calibration study 
tested subjects while providing feedback throughout (supervised 
learning) so that subjects were all expected to learn the experimenter- 
defined category structure. In this case, an improvement on both unin
dicative and indicative items would be expected. However, performance 
on indicative items would be predicted to increase more slowly because 
task-relevant and task-irrelevant features suggest different responses, 
and thus subjects might only gradually recover from an initially incon
gruous representation. In particular, since subjects learn at different 
rates, we predicted that the performance of some learners would 
approach perfection monotonically and quickly (fast learners), but, 
crucially, that others would exhibit a U-shaped learning curve in which 
they initially endorse the wrong category representation before they 
accumulate sufficient error and eventually recover the task-relevant 
representation (slow learners). These predictions are based on some of 
the principles suggested to underlie the famous U-shaped learning 
curves in language acquisition. Indeed, our experiment may serve as a 
categorisation analogue of these (Fig. 3 b and c). 

Having established subjects’ learning curves under fully unsuper
vised and supervised training in the calibration studies, we needed to 
decide on the time point of feedback withdrawal in order to test our 
hypothesis that representational alignment mattered. Since we do not 
assess representations and their alignments to the task directly, but 
rather infer them from noisy performance measures on the different item 
types, we exploited the fact established in our calibration studies that 
subjects learn at different rates. Thus, we could remove feedback after a 
subject-independent number of trials, and still access a suitable distri
bution of implied representational alignment. Concretely, we predicted 
that fast learners, who had grasped the task at the time of feedback 
withdrawal, would successfully self-improve on both indicative and 
unindicative items reaching similar performance to that under full su
pervision (Fig. 3 d). By contrast, we predicted that slow learners, who 
still attended to the wrong stimulus dimension at the time of feedback 
withdrawal, would improve only on the unindicative items but would 
worsen on indicative items, with performance approaching that of fully 
unsupervised learning (Fig. 3 e). Of course, the fact that we cannot assess 
representations directly will still limit our capacity to predict unsuper
vised effects on an individual subject basis. However, the predicted ef
fects should be expressed on a group-level: Unsupervised trials are 
expected to be beneficial to subjects that have higher average perfor
mance before the withdrawal of feedback; by contrast, unsupervised 
trials are expected to harm the subsequent choices of subjects who had 
lower average performance before the withdrawal of feedback. 

Our predictions are based on the hypothesis that performance can 
only improve if representations are aligned, because only then can un
supervised learning help adjust representations in the right way. While 
we designed the experiment to test this general principle without pre
supposing specific representational or algorithmic details that would 
underlie the hypothesised effect, it appears that the class of self-training 
models naturally fit with our predictions. Self-training algorithms are 
one type of semi-supervised learning algorithms which learn from their 
own predictions (or responses) in lieu of external labels if these are 
unavailable (Zhu & Goldberg, 2009). This mechanism also underlies 
several models that were previously employed to account for the cate
gory boundary shifts observed in some of the semi-supervised catego
risation experiments (Gibson et al., 2013). By design, the 
self-reinforcement of predictions inherent in the method can only work 

if the algorithm’s guesses are mostly correct, as it would otherwise 
self-reinforce its false beliefs. Since predictions can only be generally 
correct when internal representations align sufficiently with the task 
structure, and would otherwise be systematically incorrect, self-training 
is one learning mechanism that could be expected to provide a theo
retical account for our hypothesised relationship between alignment and 
the effect of unsupervised learning. 

To evaluate whether our qualitative predictions would be supported 
by the self-training mechanism, we trained two models (versions of a 
delta-rule and a prototype model) and simulated their performance on 
our task. Both models relied on self-training; however, they were chosen 
to represent category information in conceptually different ways so as to 
assess the generality of the self-training aspect of learning. 

For example, the delta-rule model represented category information 
indirectly through connections between stimulus inputs and category 
outputs. Connections were adapted through learning from prediction 
errors on a trial-by-trial basis. These errors arose between the model’s 
prediction and either the true category label if feedback was available, 
or the pseudo-label if feedback was unavailable. Pseudo-labels were set 
to the model’s current best guess (i.e. the category with highest proba
bility to be correct) and then treated like an observed label. This 
implemented the self-training mechanism by which correct or false be
liefs would be self-reinforced in the model. We also incorporated an 
attention switching mechanism that allowed us to simulate the fast and 
slow learners’ ability to change their attention from the task-irrelevant 
dimension to the task-relevant dimension of the stimuli at different 
rates. The prototype model operated on the same principles, but built on 
its different representation of categories in the form of attention- 
weighted stimulus averages (see supplementary materials for more de
tails on both models). 

As expected, delta-rule and a prototype models produced the same 
qualitative learning patterns that we predicted, despite their conceptual 
differences. This provides evidence that the predictions we present in 
this paper can arise from simple learning principles when incorporated 
in existing category models. 

2.1. Materials and methods 

2.1.1. Participants 
A total of 464 participants completed the calibration studies and the 

semi-supervised experiment via Amazon Mechanical Turk. 19 subjects 
completed the unsupervised calibration study for which they were paid 
$1.20 irrespective of their performance and 14 of them entered analyses 
after exclusion (see below). Subjects who completed the supervised 
calibration study and semi-supervised experiment (232 and 213 subjects 
respectively) received $1.50 irrespective of their performance. After 
exclusion 157 subjects entered the analysis of supervised training and 
156 subjects that of semi-supervised training.2 

2.1.2. Stimuli 
We sought to design visual stimuli that would initially attract sub

jects attention to a salient but task-irrelevant feature that varied 
continuously between two visually distinct shapes suggesting two 
plausible (but incorrect) categories to the observers. In addition, stimuli 
needed to have more subtle, discrete features that would be diagnostic of 
category membership, but that required supervision to learn that they 

2 We hypothesise that two factors contributed to this exclusion rate: First, by 
nature of our fast-paced and somewhat repetitive task, subjects were required 
to pay full attention. This means that inattention was more easily revealed 
compared to other tasks (e.g. by missed or overly fast responses). Second, it 
appears that the MTurk population has changed over the past years, and 
especially since the start of the pandemic [Gureckis, 2021, and personal com
munications; see also the supplementary materials on our data sample com
parison for the supervised calibration study for evidence from this study]. 
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were indeed task-relevant. 
To achieve this, the composition of these features into artificial ob

jects was inspired by the fribbles created by Michael Tarr and colleagues 
(Williams, 1998). All four stimulus groups shared the same salient body 
dimension which morphed continuously between two distinctive 
shapes. Groups differed in four subtle appendages attached to the body 
which were all equally (and deterministically) diagnostic of the four 
groups that underlay the two categories. In addition, each appendage 
had three possible realisations varying slightly in colour, texture and 
shape (Fig. 4 a). Exemplars of four artificial object families were created 
using Blender 2.8 and images displayed to participants at a fixed size of 
500 × 889 px. Unsupervised and supervised pilot studies were con
ducted to optimise visual properties and number of the clusters in order 
to obtain the distinctive learning curves under both baseline conditions. 

2.1.3. Task design 
All participants underwent 10 blocks comprising 16 trials each in 

which they had to categorise items into two categories (for some par
ticipants in the semi-supervised experiment three additional supervised 
blocks were appended at the end of the experiment for an exploratory 
analysis, but these data are not reported here). The experiment lasted 
between 8–10 minutes depending on feedback condition and, once 
started, subjects were not able to pause. Each block constituted of a 
pseudo-random arrangement of exemplars covering 16 equally spaced 
points on the body morph continuum and a random selection of 
appendage variations. Stimuli were sampled from two triangular pro
posal distributions such that more extreme body shapes were more likely 
to occur for unindicative stimuli while the overall probability of body 
shapes remained uniform across all stimulus groups. This introduced a 
small correlation between the body shape feature and category mem
bership. We expected this correlation to produce more prolonged U- 
shaped supervised learning curves because even responses driven by 
attention to the wrong dimension are correct on the majority of trials. 

The sampling process was constrained to yield 4 members of each 
stimulus group as well as 6 indicative and 10 unindicative stimuli in 
every block. To achieve a balanced number of indicative and unin
dicative stimuli for each stimulus group across blocks, every other block 
contained 2 (un-)indicative stimuli from group 1 and 3, but 1 indicative 
and 3 unindicative stimuli from group 2 and 4 (and vice versa on the 
interleaving blocks). Two pseudo-random stimulus lists were sampled in 
this way and two additional lists constructed by reversing them. Subjects 
were randomly assigned to one of those four lists. 

Subjects in the unsupervised calibration study were allowed to 
choose the response key mapping themselves and were simply instruc
ted to categorise objects into two classes depending on their perceived 
similarity. In the supervised calibration study subjects were instructed to 
learn the categories with the help of corrective feedback. While in the 

semi-supervised experiment, they were told in addition that after an 
unknown time, feedback would no longer be provided and that they 
should try to continue to categorise as best as they can. 

On each trial, participants pressed one of two keys to indicate the 
category of the presented item (Fig. 4 c). Subjects in the supervised 
calibration study, but not the unsupervised calibration study, received 
corrective feedback. Based on the results from these studies, subjects in 
the semi-supervised experiment received feedback only for the first 
three blocks after which feedback was omitted for the rest of the 
experiment (Fig. 4 b). 

We presented stimuli only briefly on each trial (200 ms) in order to 
make it more challenging to learn the task and to respond in an error- 
free manner. We expected that this would cause performance to rise 
more gradually to perfection and to hinder deliberate and exhaustive 
hypothesis testing. These factors were desirable in our study since 
relatively gradual learning was necessary to make inferences about 
representations and representational change from performance 
measures. 

All functionality of the experiment was implemented in custom- 
written JavaScript. 

2.1.3.1. Exclusion criteria. Participation in the studies was restricted to 
devices with a minimal screen size of 15.9 × 31.8 cm to ensure images 
displayed in the desired size and to prevent the use of mobile devices. In 
addition, we excluded participants who either reported technical issues 
during the experiment, had incomplete data due to recording issues, or 
displayed behaviour suggesting they were not focussing on the task. 
Throughout the task, performance was tracked to ensure that partici
pants were attentive. Performance warnings were presented on the 
screen for 10 seconds if a subject either responded too fast (less than 
300 ms), too slowly (more than 1500 ms) or with an invalid key more 
than 6 times within the last 12 trials. Subjects that received more than 
two such performance warnings were excluded from the analysis, as well 
as subjects that uninterruptedly pressed the same or alternated keys for 
12 trials (supervised training) or, in the case where responses were less 
regulated by feedback, 18 trials (unsupervised, semi-supervised 
training). 

2.2. Results and discussion 

Throughout our analyses, reported response accuracies treat all 
missing or invalid responses as incorrect trials. As explained above, we 
had designed the experiment such that we could infer which represen
tation subjects were likely to entertain at different times in the experi
ment (and hence infer their alignment with the task) from subjects’ 
momentary performance on indicative and unindicative items. We used 
this to define which subjects had likely learned the appropriate 

Fig. 4. Experimental design. (a) Examples of stimuli from each of the four groups varying in a salient continuous feature and subtle discrete features. The distribution 
of the continuous feature was uniform when averaged across groups. (b) Number of feedback and no feedback blocks for the three experimental conditions. (c) In 
each trial, participants first saw the stimulus for 200 ms, after which a mask appeared. Subjects indicated their response by pressing one of two pre-allocated keys on 
their keyboard. If they failed to respond within 1500 ms, a response timeout message was provided as an instruction to respond faster next time. Upon their response 
in supervised, but not unsupervised trials, subjects received corrective feedback for 1000 ms. The next trial started after a 1000 ms ITI. To maintain the same rhythm 
of responding in the unsupervised phase of the semi-supervised condition, the ITI was adjusted to 2000 ms after feedback withdrawal. 

F. Bröker et al.                                                                                                                                                                                                                                  



Cognition 221 (2022) 104984

7

representation aligned with the task. For that, we applied a fixed per
formance criterion of above 60% accuracy on each items type (indica
tive as well as unindicative) averaged over the last four blocks of the 
experiment to conclude that subjects had learned the underlying task. 
We call this performance criterion the conformant-categorisation criterion 
and subjects that reached it conformant learners for their behaviour 
conforms to what is expected from noisy learners that entertain the task- 
appropriate representation. We applied a fixed performance criterion of 
above 60% accuracy on unindicative and below 40% on indicative items 
to conclude that subjects were categorising by the task-irrelevant 
dimension that was misaligned with the task. We call this performance 
criterion the non-conformant-categorisation criterion and subjects that 
reached it non-conformant learners for their behaviour does not conforms 
to what is expected from noisy learners that entertain the task- 
appropriate, but instead the task-inappropriate, representation. We 
applied a significance level of 0.05 to all statistical tests. 

2.2.1. Calibration studies 

2.2.1.1. Unsupervised calibration study. The aim of the unsupervised 
calibration study was simply to confirm that subjects would attend to the 
salient, task-irrelevant dimension in the absence of feedback and that 
they would not recover the discrete group structure. 

Subjects in the unsupervised condition were free to choose the key 
assignment for the two categories themselves. Thus, in order to combine 
the results across subjects for statistical analysis, we had to re-map these 
assignments into a common reference. Since, by definition, performance 
on unindicative items did not distinguish attention to task-relevant or 

task-irrelevant features, these provide the obvious reference. Therefore, 
response keys were re-mapped for each subject such that the mapping 
would maximise accuracy on these unindicative items. 

Comparing subjects’ accuracies against the performance criteria 
with this reference mapping, we found that 71% of subjects categorised 
according to the task-irrelevant dimension (by the 60/40% criterion 
described above). In fact, these subjects’ approached the non- 
conformant-categorisation criterion quickly within the first two blocks 
(see Fig. 5). One-sided, one-sample permutation tests revealed that these 
subjects already performed above chance on indicative items (p = 0.01) 
and below chance on unindicative items (p = 0.001) on the very first 
block. 

Only one subject passed the conformant-categorisation criterion (see 
supplementary material for their learning curve). The remaining 21% of 
subjects did not meet either of the performance criteria and thus did not 
show behaviour consistent with a categorisation according to either 
salient or subtle stimulus features. 

In summary, the results from this calibration study confirmed that 
the majority of subjects attended to the salient, task-irrelevant dimen
sion and did not recover the discrete group structure if feedback was 
absent. 

2.2.1.2. Supervised calibration study. Having confirmed that subjects 
attended to the stimulus irrelevant dimension in the absence of feed
back, the aim of the supervised calibration study was to assess whether 
feedback would help subjects to perform the task correctly and to assess 
the inter-individual variability in the speed of learning with feedback. In 
particular we sought to determine the time point in the experiment at 

Fig. 5. Average learning curves for subjects that passed the conformant or non-conformant performance criterion. The unsupervised and supervised calibration 
studies revealed a close qualitative match to predicted learning curves. (a) Unsupervised condition: Subjects tended to categorise by the task-irrelevant dimension. (b 
and c) Supervised condition: Half of the learners reached high performance on unindicative and indicative items by block 3 (fast learners) while the other half 
displayed a U-shaped learning curve on indicative items with below chance performance on block 3 (but above chance for unindicative items). (d and e) Semi- 
supervised condition: The benefit of unsupervised trials differed between groups of subjects. Subjects that met the conformant-categorisation criterion improved 
while non-conformant learners improved on unindicative but worsened on indicative items. The learning curves provide a close qualitative match to the predictions 
we made for fast and slow learners, but note that subjects here are split not by learning speed, but instead by the performance criterion applied to the last four blocks. 
The dashed lines indicate which data is shown: conformant learners are defined as having above 60% performance on indicative (red) and unindicative (blue) items 
averaged over the last four blocks; non-conformant learners are defined as having below 40% performance on indicative (red) and above 60% performance on 
unindicative (blue) items averaged over the last four blocks. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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which the subjects varied greatly in their performance on indicative 
items so that we could set the time of feedback withdrawal for the semi- 
supervised experiment accordingly. 

We found that feedback indeed increased the proportion of subjects 
that would pass the conformant-categorisation criterion and that the 
variability between subjects was indeed large in the beginning of the 
experiment with some subjects even showing below chance performance 
as we expected for slow learning subjects. We established this with a 
small sample of subjects (see supplementary material), but report a 
replication with a larger sample (conducted after the semi-supervised 
experiment) here for the purpose of better illustration. With respect to 
the aim of this calibration study, the two samples have the same 
characteristics. 

When trained with feedback throughout the experiment, 34% of 
subjects passed the conformant-categorisation criterion; 6% of the 
remaining subjects passed the non-conformant-categorisation criterion 
while the rest displayed behaviour inconsistent with either catego
risation. It should be noted that this is a significantly lower percentage 
than the 74% of conformant learners observed in the smaller sample that 
we had collected at the earlier time point. The differences between 
samples likely reflect changes in the MTurk population following the 
effects of the corona pandemic (we will return to this in the discussion). 
However, the behaviour of those subjects who did learn to perform the 
task and passed our conformant-categorisation criterion was the same 
across both samples in all important respects, and we will thus here only 
consider the data from the 53 subjects that learnt to perform the task in 
the larger sample. 

We found that the first block on which subjects who learned to 
perform the task reached 60% accuracy on both indicative and unin
dicative items was, on average, between blocks 3 and 4 (with the median 
being block 3). In fact, 53% of these subjects reached this performance 
level within the first three blocks (fast learners), while the other 47% 
(slow learners) required more training blocks. Performing one-sided, 
one-sample permutation tests on subjects’ accuracies on block 3 
revealed that, in line with the desired learning curves, fast learners were 
already above chance level performance on indicative and unindicative 
items (both p < 0.001). It can also be seen qualitatively that perfor
mance was lower on indicative compared to unindicative items as ex
pected, although this effect was not statistically significant (p = 0.057). 

For the slow learners, we also observed a close qualitative fit with 
their predicted (see Fig. 3) learning curve: subjects’ performance on 
unindicative items monotonically increased while performance on 
indicative items was U-shaped. Importantly, one-sided, one-sample 
permutations tests confirmed that performance on unindicative items 
was above chance level on block 3 (p = 0.008), while it was below 
chance level for indicative items (p = 0.02). 

In summary, the results from this calibration study confirmed that 
although most subjects initially attended to the task-irrelevant dimen
sion, it was possible to learn the true category structure with feedback 
(noting that the percentage of people who could successfully solve the 
task differed between our two testing points as noted above). In addi
tion, slowly learning subjects displayed a U-shaped learning curve 
(which, to our knowledge, is the first demonstration of such learning in a 
categorisation tasks with adults). In particular, subjects’ learning curves 
revealed that performance varied greatly between subjects on the third 
training block making it a good candidate after which to withdraw 
feedback: learners who already attend to the task-relevant dimension, 
would be expected to improve even without feedback while slower 
learners would be expected to get worse as they still attend to the task- 
irrelevant dimension at this time. 

2.2.2. Semi-supervised experiment 
The aim of the semi-supervised experiment was to test our semi- 

supervised representation-to-task alignment hypothesis by assessing 
the impact that the representations subjects entertained (assessed by 
their momentary performance on (un-)indicative items) at the point of 

feedback withdrawal would have on subsequent unsupervised learning 
in this task. For the test to work, individual subjects would need to be 
differentially affected by the feedback withdrawal. 

To assess any such differential effect on performance, we first 
grouped subjects as we did in the calibration studies. We divided sub
jects depending on whether they passed the conformant-categorisation 
criterion (27%, conformant learners), the non-conformant- 
categorisation criterion (27%, non-conformant learners), or did not 
show behaviour consistent with either categorisation (46%, other sub
jects) at the end of the semi-supervised experiment. 

We will report how conformant, non-conformant and other subjects 
were differentially impacted by unsupervised exposure and will refer to 
supplementary analyses that assess the degree to which performance 
change after feedback withdrawal could even be predicted from initial 
performance on supervised trials. 

For the subjects who reached conformant or non-conformant end 
states of learning, we first observed a close qualitative fit between the 
average learning curves in both groups and our predictions for fast and 
slow learners. The group of conformant subjects defined by their good 
performance on indicative and unindicative items at the end of the 
experiment, already showed above chance performance on both item 
types before feedback withdrawal. Furthermore, performance seems to 
increase between the last supervised block and the end of the unsuper
vised training. In contrast, the group of non-conformant subjects who 
performed well on unindicative but poorly on indicative items at the end 
of the experiment, showed this trend already before feedback with
drawal. After that point, the performance difference on these items 
further increased. That is, conformant subjects displayed the perfor
mance characteristics we predicted for fast learners, while non- 
conformant subjects displayed the performance characteristics we pre
dicted for slow learners (see bottom panels of Figs. 3 and 5 for com
parison). The other subjects that did not reach either performance 
criterion displayed a flat curve with minimal deviations from chance 
across all blocks (see supplementary material). 

This qualitative observation was confirmed by statistical tests which 
revealed that, indeed, performance on the last supervised block (block 
3) was above chance for unindicative items in both conformant and non- 
conformant groups, and that performance on indicative items was above 
chance for the conformant, but below chance for in the non-conformant, 
group (p < 0.001 in all cases). The performance of the remaining sub
jects on block 3 was not significantly different from chance as confirmed 
by a two-sided, one sample permutation test (p = 0.5 for unindicative 
items, p = 0.79 for indicative items). 

We then tested specifically whether subjects’ performance improved 
or degraded during the unsupervised phase. To evaluate this, we 
measured the direction of performance change (improvement, wors
ening or no change) from the last supervised block (block 3) to the last 
unsupervised block that, due to the alternating nature of consecutive 
blocks, contained the exact same item structure (block 9). We found that 
performance of the conformant and non-conformant learners diverged 
on the indicative items over the course of the experiment while per
formance on the unindicative items increased in both subject groups 
(Fig. 6). That is, a one-sample permutation test confirmed that the ma
jority of conformant learners improved on unindicative items (50%, 
p = 0.02) as well as indicative items (60%, p = 0.002). While the ma
jority of non-conformant learners also improved on unindicative items 
(62%, p = 0.006), the majority of them worsened on indicative items 
(55%, p = 0.01). It is also worth noting that performance did not change 
between these two blocks in about a quarter of subjects (conformant 
learners: 29% for unindicative and 21% for indicative items; non- 
conformant learners: 14% for unindicative and 24% for indicative 
items). Of the remaining subjects that did not pass either performance 
criterion 51% worsened, 40% improved and 8% did not change per
formance on unindicative items. Similarly, 38% worsened, 38% 
improved and 24% did not change performance on indicative items. As 
can be expected from the similar proportions of subjects that improved 
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and worsened, two-sided one-sample permutation tests revealed that 
this subject group did not significantly change in performance over the 
unsupervised phase (p ≥ 0.4 for both item types). 

To summarise, these results demonstrate opposite effects of unsu
pervised learning expressed in the diverging performance levels on 
indiciative items that are indeed consistent with our predictions. 
Because results rely on a post-hoc split of subjects that depends on our 
arbitrarily set performance criterion (60/60 and 60/40 for conformant 
and non-conformant categorisation respectively) that defines the subject 
groups we compare here, we validated the robustness of these effects 
under two stricter performance criteria (see supplementary material for 
details). 

These analyses confirmed that the significant effect of improvement 
and worsening on indicative items is robust to different learning criteria 
which supports the key experimental result demonstrating that perfor
mance of conformant and non-conformant learners diverges over the 
unsupervised phase. This is true despite ceiling effects that can be 
observed in the data (i.e. subjects who performed near perfectly already 
at the end of the supervised phase were more likely to decrease in per
formance; see supplementary material). Improvement on unindicative 
items in both groups (which we expected to find but was not key to 
revealing opposing effect of unsupervised exposure) is significant under 
two out of three learning criteria for both groups and thus slightly less 
robust. Inspecting the data, the smaller effect in the unindicative items is 
likely due to stronger ceiling effects. That is, subjects had high average 
performance on unindicative items on block 3, leaving little room for 
improvement during the unsupervised phase and thus confirming the 
point that they are less useful than the indicative items to evaluate 
differential effects in our experimental design. 

In addition, we performed supplementary analyses to assess whether 
performance in the initial supervised phase was even predictive of later 
performance as should be the case if performance is not too noisy (see 
supplementary material). In summary, the results are consistent with 
our original predictions. Subjects with high initial accuracy were more 
likely to improve while those with low initial accuracy were more likely 
to worsen. However, predictive accuracy of performance change was 
limited due to noisy performance and different behavioural patterns 
across subjects. 

To summarise, we found robust evidence that subjects who reached 
different end states of learning (aligned or not aligned with the task) 
were differentially impacted by unsupervised exposure. The degree to 
which performance change was predictable from initial performance 
was limited due to behavioural noise. 

3. General discussion 

We sought to test our hypothesis that unsupervised training can 
either help or hurt learning in a particular task depending on the degree 
to which internal representations of the inputs are aligned with this task. 
We evaluated this by investigating the effect of feedback withdrawal on 
subjects that solved the same categorisation problem but differed in 
their internal representations at the time of withdrawal due to difference 
in learning speed. We presented data consistent with the prediction that 
unsupervised learning can have opposite effects on human performance 
even within the same task. 

In line with our hypothesis – that the direction of this effect would 
depend on the performance of individual subjects, and hence their in
ternal representations, at the point of feedback withdrawal – we found a 
close qualitative match between our predictions and group-level per
formance. On average, the subjects who benefited from unsupervised 
trials were those who performed well at the time of feedback with
drawal, putatively refining and strengthening their broadly correct 
categorisations. Conversely, subjects whose performance degraded 
following unsupervised trials were those who performed poorly at the 
time of feedback withdrawal, putatively by self-reinforcing their incor
rect categorisation. That we could evaluate this by assessing subjects’ 
performance on those items that were indicative of the representation 
they entertained was a key feature of our study design. Crucially, while 
performance on these items increased for the first group, performance 
on them of the second group deteriorated. While we were also able to 
predict individual subjects’ future performance from their initial per
formance during the supervised training in some respects, this was only 
possible to a moderate degree. 

While on the whole, research on semi-supervised categorisation has 
reported mixed effects across experiments, it had not previously been 
shown that unsupervised learning can have opposite effects even within 
the exact same category learning task. However, experiments in related 
areas of human research have also observed that unsupervised trials can 
have seemingly opposing effects within almost identical tasks. In 
perceptual learning, subjects seem to improve on easy discriminations 
without feedback, but not if tasks are difficult (Dosher & Lu, 2017; Liu 
et al., 2010). Moreover, in studies investigating U-shaped language 
learning of irregular English plurals, it has been shown that younger, 
error-prone, children will perform worse after unsupervised exposure to 
plurals while older, more proficient, children will improve given the 
same unsupervised training (Ramscar & Yarlett, 2007; Ramscar et al., 
2013). In addition, pre-exposure experiments in animals and humans 
have shown that initial, unsupervised exposure can either facilitate or 

Fig. 6. Percentiles of learners in the semi- 
supervised experiment that either improved 
(positive change), worsened (negative 
change) or maintained (no change) perfor
mance over the unsupervised phase (from 
block 3 to block 9). The majority of con
formant and non-conformant learners 
improved on unindicative items. By contrast, 
the majority of conformant learners also 
improved on indicative items whereas the 
majority of non-conformant learners wors
ened demonstrating that unsupervised trials 
can have opposing effects on task 
performance.   

F. Bröker et al.                                                                                                                                                                                                                                  



Cognition 221 (2022) 104984

10

retard later supervised learning depending on the exact stimulus mate
rial used (Saksida, 1999; Wills et al., 2004). While these tasks were not 
designed to address the question of whether subjects can utilise unsu
pervised distributional information, and hence answer different ques
tions to the one central to many semi-supervised categorisation 
experiments, the general learning problem however appears similar. 
Thus, to summarise, while opposite effects of unsupervised learning on 
category learning may seem surprising at first, our results resonate with 
a larger body of work that has reported similar phenomena in different 
learning contexts. 

3.1. Internal representations 

Apart from the empirical results in other literatures, opposite effects 
of unsupervised learning may also be expected from the same theoretical 
perspective that gave rise to the predictions that motivated the first 
semi-supervised categorisation experiments (Zhu et al., 2007). It is 
well-known that unsupervised data can only boost performance of 
semi-supervised algorithms beyond supervised data under certain as
sumptions (Chapelle et al., 2006). One popular instance in machine 
learning is the cluster assumption: that the data form discrete groups (i. 
e. clusters), that data in the same group belong to the same category and 
equivalently that category boundaries lie in low density regions. While 
rarely discussed explicitly, the majority of behavioural semi-supervised 
categorisation tasks were designed in accordance with this intuitive 
prerequisite for semi-supervised learning to be successful. In these 
studies, unsupervised and supervised stimuli are typically drawn from 
such well-behaved category distributions to test the prediction that 
subjects’ would benefit from the unsupervised trials in much the same 
way that a semi-supervised algorithm would be expected to improve 
given that the theoretical assumptions appeared to have been met. 
However, as pointed out, the mixed results in these studies are at odds 
with this simple prediction. 

Although it appears that the cluster assumption in these studies was 
met, and hence that subjects’ should be able to benefit from semi- 
supervised learning in theory, our work shows that a subtle, but 
important, difference exists when studying human learning. For semi- 
supervised learning to benefit human performance in an experimental 
task, even theoretically, it is not sufficient for stimuli to separate into 
groups in the experimenter-defined space. Instead, crucially, subjects’ 
internal representation of the stimuli, which will typically be com
pressed, needs to be sufficiently aligned with the geometry of the 
experimenter-defined task space in order for subjects to harness statis
tical information in a task-appropriate manner at all. While predictions 
and interpretations of the vast majority of previous studies on semi- 
supervised categorisation have implicitly assumed a one-to-one map
ping between the experimenter-defined stimulus space and subjects’ 
internal representational space, our results contribute evidence that this 
is not only generally untrue but that experimenter-defined dimensions 
may indeed be insufficient to predict performance. 

Concretely, that a one-to-one mapping cannot be taken for granted 
was demonstrated by our subjects’ inability to recover the group 
structure in the absence of feedback. Instead, they readily divided 
stimuli into categories along a continuously varying dimension such that 
their category boundary passed through a high-density region in 
experimenter-defined space. Furthermore, subjects whose supervised 
learning was slow exhibited U-shaped learning curves, highlighting the 
fact that representations of the stimulus material can change within 
tasks and at different rates across subjects. We hypothesised that, 
because of these different rates of representational change, only subjects 
who had learned to attend to the subtle, task-relevant dimension would 
be able to improve when feedback was withdrawn because the distri
butional information about this discrete group structure was available 
only to them. By contrast, it would be unavailable to subjects attending 
to the salient but task-irrelevant dimension. This is consistent with the 
prediction made by Rogers et al. (2010) and Gibson et al. (2013) that 

selective attention will change which distributional information is 
available to the learner as well as the prediction made by Hammer 
(2015) that more feedback is needed if stimulus clusters differ along 
subtle rather than salient dimensions. Similarly, Feldman (2021) pro
posed that subjects’ internal estimates of the task guide future learning 
in the absence of feedback. 

If predictions about subjects’ learning indeed hinge on their internal 
representations – shaped by prior experience and learning in the task 
itself – in relation to the experimenter-defined space that defines success 
in the task, then one reason why predictions do not generalise across 
semi-supervised categorisation experiments may simply be that this 
aspect was not assessed and controlled for in the different tasks 
employed (see also Rogers et al., 2010). 

One way to understand the existing literature from this perspective is 
that positive effects of unsupervised learning in form of category 
boundary shifts were observed because stimulus representations were 
well aligned with the task in these experiments (Gibson et al., 2015; 
Kalish et al., 2012, 2015; Lake & McClelland, 2011; Zhu et al., 2007). 
This would be the case for experiments investigating learning in 
one-dimensional tasks in which the dimension of variation was unam
biguous to subjects. That is, if subjects relied on the correct dimension 
throughout the experiment, then the unsupervised statistical informa
tion on this dimension was available to them and it alone could support 
the simple refinement of the category boundary. By contrast, more 
mixed results were reported in tasks that investigated semi-supervised 
learning with two-dimensional stimuli (McDonnell et al., 2012; Rogers 
et al., 2010; Vandist et al., 2009, 2019). This would be the case if sub
jects were unable to pay attention to both dimensions equally, as is 
needed in order to use the statistical information appropriately (espe
cially in information-integration tasks). In the most extreme case, if 
subjects always only pay attention to one dimension at the time, then 
statistical structure available in a two-dimensional space cannot be 
appropriately used for learning. Our results also fit with the work by 
Patterson and Kurtz (2018) who observed that generalisation perfor
mance in relational category learning was only boosted by unsupervised 
learning if stimuli on supervised and unsupervised stimuli were similar. 
Or, from our perspective, category learning was only boosted if unsu
pervised stimuli elicited a representation that was similar to that of 
supervised items and thus sufficiently aligned with the underlying task 
to be helpful. 

It is also worth noting that the problem of mismatch between 
experimenter-defined and internal representations is not unique to semi- 
supervised learning, but our concern joins recent work from research on 
category learning, perceptual learning and visual memory arguing that 
the assumption of a one-to-one mapping between external and internal 
representations of the stimulus material severely limits the predictions 
made by, and conclusion drawn from, well-established theories (Roark 
et al., 2020; Schurgin et al., 2020; Zaman et al., 2020). As for these 
studies, we also suggest that assessing and quantifying representations 
may help better understand and predict behaviour in semi-supervised 
tasks. Given the increasing interest in providing methods for assessing 
internal representations, future work will be able to draw on recently 
developed methods such as techniques for constructing representational 
spaces from subjects’ behavioural judgements (e.g. Hebart et al., 2020; 
Houlsby et al., 2013; Nosofsky et al., 2018; Roads & Mozer, 2019) or 
using deep neural networks to approximate human representations 
directly (Battleday et al., 2019; Ma & Peters, 2020). 

3.2. Mechanism 

We predicted that learning curves would differ qualitatively depen
dent on feedback condition and speed of learning, and showed results 
consistent with these predictions. Predictions were based on the prin
ciple that well-performing subjects should be able to improve with or 
without feedback because representations align. By contrast, poorly 
performing subjects cannot improve by themselves unless feedback is 
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available. 
We formalised the learning process computationally by adapting a 

delta-rule and a prototype model to our task. Both models relied on self- 
training, which naturally leads to improvement if the elements of the 
task are already appropriately represented (because in that case, sub
jects learn from their mostly correct predictions), and to detrimental 
changes otherwise (because internal predictions are mainly incorrect) 
(see also Oymak & Gulcu, 2020, for theoretical insights). 

While self-training algorithms appear to be promising model candi
dates because they can capture the general phenomena described here, it 
would also be possible that subjects make more elaborate estimates of 
the density of their inputs (see e.g. the Dirichlet Process Mixture Model 
by Zhu et al., 2010), albeit with respect to the representation they 
currently entertain. 

Independent of the underlying mechanism, modelling of individual 
subjects’ trial-by-trial representational change and learning of the 
category labels will not be without challenges especially when behav
iour is noisy and stimuli are complex. 

3.3. Limitations and future directions 

While developing and testing hypotheses that account for internal 
representations appears to be an important direction, assessing these 
representations is tricky, and so this will likely be challenging. This 
challenge applies to modelling representational learning itself, and also 
other potential directions for extending the present work. 

In the remaining discussion we will focus on how predictability and 
generalisability can be complicated by the need to assess representa
tions, how this expressed in our study and how this can be addressed in 
the future. 

3.3.1. Predictability 
That testing predictions when representations need to be assessed is 

challenging, was also reflected in the work presented here. For example, 
we assumed that subjects’ access to appropriate representations would 
be expressed as above-chance performance which would, in turn, pro
vide the basis for performance improvements also in the absence of 
feedback. If performance had been a noise-free indicator of internal 
representations, it should have been possible to predict subjects’ future 
performance from their momentary performance above and beyond the 
group-level differences we found. While we were able to predict whether 
subjects would perform well or poorly on the task after feedback with
drawal, more specific predictions about improvement or worsening 
during the unsupervised phase based on momentary performance were 
complicated by ceiling effects as well as regression to the mean 
performance. 

Anticipating some of these challenges, we sought to design the 
experiment to ensure that individual subjects would undergo slow and 
gradual learning, with accuracies being reflective of underlying repre
sentations. In order to obtain the opposite directions of performance 
change between the different subject groups as we did, learning had to 
be sufficiently slow before reaching an asymptote because rapid, step- 
like learning curves reported in other experiments (e.g. Gallistel et al., 
2004; Smith & Ell, 2015) would not have allowed us to make inferences 
about continued learning. This created a trade-off between the shape of 
learning curves and learnability, which likely resulted in the many 
subjects not learning the intended categorisations despite the stimulus 
material and task being rather simplistic. At the same time, other sub
jects approached perfection quickly leading to ceiling effects. These 
observations demonstrate that, even in such simple experimental tasks 
like the one employed here, inter-individual variability is large and 
subjects’ momentary accuracy is only a noisy correlate of their under
lying internal representations with both sources of noise magnified 
when testing online. 

While methods exist that are explicitly designed to measure repre
sentations (e.g. MCMC with people; Sanborn et al., 2010) and hence 

could be considered as a tool for assessing representations more directly, 
our study poses two particular challenges: First, since we sought to 
assess the effect of unsupervised learning, any unsupervised exposure 
(like similarity judgements) intended to measure representations could 
also impact learning and hence would confound results. Second, 
learning and representational change in our experiment were fairly 
rapid (within a few training blocks). Methods like MCMC with people 
that rely on repeated similarity judgements themselves require many 
trials to assess representations and so are not well suited to measure fast 
changing representations. 

In summary, while our study was built on the fact that every subject 
is unique (representing inputs differently and changing representations 
at different rates), this fact also complicated the study. One future 
avenue to test hypotheses more flexibly and directly, would be to 
conduct experiments that rely more heavily on computational models (e. 
g. in a closed-loop learning task) in which hypotheses about represen
tations can be formalised. Another avenue to increase predictability of 
results and generalisability to a larger population of subjects, would be 
to design experiments that tailor task difficulty to individual subjects (e. 
g. by using staircase procedures). This could help increase the number of 
subjects that are engaged in the task, can pass the learning criterion and 
achieve a gradual learning curve while reducing the speed of learning 
therefore also preventing ceiling effects. That individually adapted task 
difficulty may be necessary especially when testing online appears 
particularly likely given that we observed fluctuations in the percentage 
of subjects that were able to reach our learning criterion in supervised 
calibration study at different times during the corona pandemic. This 
informally suggests that optimal experimental parameters for this task 
may be population dependent. 

3.3.2. Generalisability 
We started out by proposing that the alignment between internal 

representations and tasks is important for predicting the effect of un
supervised information. Because our task required subjects mainly to 
suppress the salient, task-irrelevant dimension – a simple form of 
representational change – and to learn the systematic mapping from the 
appendages to the category labels, the idea of alignment between rep
resentation and task is simple in this case. While learning to distinguish 
sheep from goats may be equally simple once the correct feature is 
known, many natural learning tasks that humans face require more 
extensive representational learning in more sophisticated task struc
tures. To make any precise and general statements about what it means 
for internal representations to be sufficiently aligned to the task, it will not 
only be necessary to capture internal representations accurately, but 
also the learning mechanisms which define the way in which repre
sentations change over the course of learning (including unsupervised 
representational learning; Hinton and Sejnowski, 1999). That is, to test 
the general predictions our hypothesis makes in more complicated task, 
statements about alignment and their formalisation will need to take 
into account this additional complexity. 

Furthermore, it is worth keeping in mind that there may well be 
additional factors impacting semi-supervised learning in humans that go 
beyond computational factors like representation and distributional 
information, such as for example the learner’s motivation. This is 
particularly true when considering learning tasks outside the lab in 
which behaviour is far less constrained. For instance, a successful 
tutoring application not only needs to optimise presentation of content 
to maximise performance but also needs to maintain the learner’s 
motivation so they continue to practice in the future. Since much of 
human learning, even in an educational context, often takes place 
without external supervision, it is important to better understand the 
complex interplay of all the relevant factors and how they contribute to 
semi-supervised learning for insights into this have the potential to help 
design and improve tutoring systems and instruction. 

F. Bröker et al.                                                                                                                                                                                                                                  



Cognition 221 (2022) 104984

12

4. Conclusions 

Humans learn both with and without explicit feedback, akin to the 
semi-supervised learning of machines. However, experimental results 
investigating the benefit of unsupervised learning for human perfor
mance have been mixed. Here, we tested the hypothesis that one critical 
factor determining the effect of unsupervised information on learning is 
the alignment between internal representations and task-relevant 
feature dimensions. In line with this, we showed that unsupervised 
training can lead to mixed effects across subjects even within the exact 
same task due to individual differences in representations and learning. 
Our results imply that understanding how humans learn under different 
feedback conditions requires assessment of the representations that 
subjects entertain for the materials involved in these tasks. These con
siderations apply to both studies in the lab and the design of tutoring 
systems and instruction. 
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