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Highlights 

 A review of kinetic models for describing hydroxymethylfurfural (HMF) hydrogenation is 

proposed 

 A crucial aspect is the model practical identifiability, i.e. the estimability of kinetic 

parameters from experimental data 

 A three-step approach based on optimal experimental design is proposed to assess the 

identifiability of candidate models 

 The new approach is tested on proposed HMF hydrogenation models including temperature 

dependency   

 The most informative conditions for temperature, experiment duration and initial HMF and 

DMF concentrations are identified 

 

 

Abstract 

Hydroxymethylfurfural (HMF) is an organic compound that occurs naturally in many foods and is 

used as feedstock in numerous chemical processes. HMF can be hydrogenated to form DMF, which is 

an important component in biofuel production. To date, several kinetic models have been proposed 

and studied in literature for this hydrogenation reaction, including power law models based on 

reaction species and Langmuir-Hinshelwood-Hougen-Watson (LHHW) models. For these models a 

critical aspect that has not been addressed in literature is related to their practical identifiability, i.e. 

the estimability of kinetic parameters from experimental data. Also, none of the existing models 

propose a temperature dependence of the kinetic parameters. 

A three-step approach is presented in this paper where model-based design of experiments (MBDoE) 

techniques  are exploited to assess the identifiability of candidate kinetic models of HMF 

hydrogenation in a batch reaction system. The objective is twofold: 1) to propose new kinetic models 

of HMF hydrogenation where the temperature is explicitly introduced as experimental design variable 
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and test the practical estimability of kinetic parameters from concentration data only; 2) to identify the 

most informative regions of the experimental design space, defined by temperature, experiment 

duration and initial HMF and DMF concentrations, for achieving a precise estimation of model 

parameters. Together with a-posteriori statistics obtained from parameter estimation from in-silico 

data, a MBDoE analysis gives a clear representation of the most informative experimental conditions 

to be explored in the future experimentation underlining distinct areas of practical parametric 

identifiability. 

 

Keywords: identifiability analysis, model-based design of experiments, kinetics of HMF 

hydrogenation 

 

1. Introduction 

Hydroxymethylfurfural (HMF) is an organic compound that can be found naturally in many foods and 

has various uses in industry as a platform chemical. For example, it can be used as a feedstock in the 

production of 2,5-Furandicarboxylic Acid (FDCA), which in turn can be used in the production of 

PET plastic. Furthermore, it finds various applications in the fine chemicals sector, such as 

pharmaceuticals, flavouring agents or agrochemicals. Most interestingly, it can be used as a feedstock 

to produce 2,5-Dimethyllfuran (DMF), which has potential use as a viable biofuel alternative or 

addition to diesel or jet fuel. In both cases, tests have shown that the emissions are significantly less 

polluting and harmful than from their fossil equivalents (van Putten et al., 2013). The hydrogenation 

reaction that converts HMF to DMF has been studied in literature at variable operating conditions 

using different catalysts (Grilic et al., 2014, Jain & Vaidya, 2016, Gawade et al., 2016, Gyngazova et 

al., 2017). Figure 1a shows the main proposed mechanisms for HMF hydrogenation (Bortoli, 2018). 

As illustrated in the figure, the mechanism that governs the reaction changes when a different catalyst 

is used. In most cases, the reaction shows a two-step mechanism in which HMF is converted first to 

bishydroxymethyl furan (BHMF) and then it is further hydrogenated to the highly reactive 5-methyl 

furfuryl alcohol (MFA). This intermediate rapidly undergoes hydrogenolysis to finally give DMF and 

small amounts of 2,5-dimethyltetrahydro furan (DMTHF) as main by-product. Most of the studies 
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present the formation of DMF as the rate determining step. Several kinetic models have been 

proposed in literature to conduct this reaction effectively and safely in scale and to characterise the 

hydrogenation reaction in a quantitative way at different experimental conditions. The proposed 

kinetic models are based on power-law and Langmuir-Hinshelwood-Hougen-Watson (LHHW) 

mechanisms, as reported in Figure 1b. None of the proposed models includes an explicit temperature 

dependency, even though the reaction kinetics practically depend on it. Instead, kinetic parameter 

values have been calculated at discrete temperature points. Furthermore, it is unclear from literature 

how precisely the kinetic parameters have actually been estimated from data. The impact of parameter 

uncertainty on the predicted model outputs is a crucial aspect that must be determined to assess how 

much predictive power these proposed models actually have. 

 

(a) 

 

 

 

 

 

 

 

 

Authors (Year) Proposed Mechanism 

Grilic, Likozar & Levec (2014) Power law (1st order) 

Luo, Arroyo-Ramirez, Wei  & Yun (2015) Power law (1st order) 

Jain & Vaidya (2016) Single-site LHHW 

Gawade, Tiwari & Yadav (2016) Dual-site LHHW 

Gyngazova, Negahdar, Blumenthal & 

Palkovits (2017) 

Power law (1st order) 
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(b) 

Figure 1 – (a) Summary of the main proposed reaction mechanisms for HMF hydrogenation on selected 

catalysts (Bortoli, 2018); (b) summary of mechanisms of kinetic models for HMF hydrogenation proposed by 

various authors to date.

Once a kinetic model structure is established, a key aspect that must be considered independently of 

the mechanistic derivations or experimental data that have been used to derive these kinetic models is 

parameter identifiability (Walter and Pronzato, 1996). A model is considered structurally identifiable 

if its set of characteristic kinetic parameters can be uniquely determined from data, and if it produces 

unique and distinct input-output behaviours when different parameter values are used. Many 

techniques have been proposed to test the structural identifiability of both linear and nonlinear 

systems. Among them, Laplace transform and Lie derivatives (Walter and Pronzato, 1996), power 

series extension (Pohjanpalo, 1978) and differential algebra (Margaria et al., 2001) are suitable 

methods to test identifiability under measurement error-free conditions. A comprehensive review of 

methods to test model identifiability is reported in Miao et al. (2011). 

The aim of kinetic modelling is, of course, not to reproduce experimental data but rather to predict 

patterns in a larger space of operating conditions based on models calibrated on a limited set of 

experimental observations. Therefore, the design space must be screened to select the most 

informative set of experimental conditions in which the input-output structure of models is such that 

parameters may be practically identified from limited kinetic data (Chis et al, 2016). Model-based 

Design of Experiments (MBDoE) (Franceschini and Macchietto, 2008) techniques can be used to 

quantify and optimise the expected information to be acquired from a set of experiments given one or 

more candidate kinetic models (Galvanin et al., 2016). Information metrics based on Fisher 

Information matrix (FIM) depends on model structure (i.e. set of rate equations), standard deviation of 

measurement errors and actual value of estimated kinetic parameters. These metrics are optimised to 

determine the experimental conditions that are mostly informative with respect to the estimation of 

model parameters, i.e. to minimise parametric uncertainty, and are a valid tool to bracket the most 

promising regions of experimental conditions to be explored when developing a kinetic model even 

under model uncertainty. 
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The objective of this study is twofold: 1) to propose a set of new kinetic models for HMF 

hydrogenation that includes temperature as an explicit experimental design variable; 2) to determine if 

and at which experimental conditions the relevant model parameters can be determined in a precise 

and accurate way. A three-step identifiability approach is proposed at the purpose where MBDoE 

techniques are exploited to assess the identifiability of candidate kinetic models of HMF 

hydrogenation in a batch reaction system. In the first step, candidate kinetic models are 

reparametrised and temperature dependency is introduced. The design space, defined by temperature, 

experiment duration and initial HMF and DMF concentrations as experimental decision variables, is 

screened using Latin Hypercube Sampling (LHS). In the second step, models are assessed in terms of 

model adequacy and parameter estimability. In the third, final step, a FIM-based MBDoE approach is 

used to identify the most informative regions for kinetic parameter estimation in the design space 

underlining the regions of parametric identifiability to be used in the experimentation to guarantee a 

precise estimation of model parameters. 

This paper is structured as follow: in Section 2, an overview of the experimental studies performed to 

obtain the kinetic data and an overview of the kinetic models proposed in literature is given. In 

Section 3, the suggested MBDoE procedure is outlined and the key concepts for the identification of 

the kinetic models explained. In Section 4 results from the application of the proposed procedure are 

presented in terms of model fidelity and the experimental conditions at which the kinetic parameters 

for the new models can be precisely estimated. Lastly, conclusions about the study are summarised in 

Section 5. 

 

2. Materials and Methods 

 

2.1 Review of kinetic models of HMF hydrogenation 

Grilic et al. (2014). This model was investigated by the original authors using a 300mL stainless steel 

cylindrical autoclave with an impeller. Fourier-Transform Infrared Spectroscopy (FTIR) was used to 

take online measurements. High-pressure, continuous supply of Hydrogen (8 MPa) as well as a high 

impeller speed (1000 rpm) was used to exclude mass transfer limitations affecting the measurement. 
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The kinetic constants include the internal mass transfer limitations. The experiments were conducted 

at 300 °C. The catalysts used were based on palladium, nickel, nickel-molybdenum and molybdenum-

disulphide. The catalysts were added to a support that had previously been dried using wet 

impregnation. The solvents used were 2-propanol, phenol, m-cresol, anthracene, cyclohexanol, 

xylene, tetralin and pyridine. This power law model (1-11) lumps measured species together by 

oxygenated groups (carbonyl and hydroxyl) and their products (CO, CO2, H2O): 

𝑟𝑛 = 𝑘𝑛𝑦𝑖               (1) 

𝑦𝑖 =
𝐶𝑖

𝐶𝑂𝐻 
(𝑡 = 0)              (2) 

𝑑𝑦𝑂𝐻

𝑑𝑡
= −𝑘1𝑦𝑂𝐻 − 𝑘2𝑦𝑂𝐻 − 𝑘4𝑦𝐶𝐻𝑂          (3) 

𝑑𝑦𝐶=𝑂,𝑡𝑜𝑡

𝑑𝑡
= 𝑘2𝑦𝑂𝐻 − 𝑘3𝑦𝐶𝐻𝑂 − 𝑘4𝑦𝐶𝐻𝑂         (4) 

𝑑𝑦𝐶𝐻𝑂

𝑑𝑡
= 𝑘2𝑦𝑂𝐻 − 𝑘3𝑦𝐶𝐻𝑂 − 𝑘4𝑦𝐶𝐻𝑂         (5) 

𝑑𝑦𝐶𝑂

𝑑𝑡
= 𝑘3𝑦𝐶𝐻𝑂            (6) 

𝑑𝑦𝐶𝑂2

𝑑𝑡
= 𝑘4𝑦𝐶𝐻𝑂              (7) 

𝑑𝑦𝐻2𝑂

𝑑𝑡
= 𝑘1𝑦𝑂𝐻            (8) 

𝑑𝑦𝐶𝐻4

𝑑𝑡
= 𝑘5               (9) 

𝑑𝑦𝐶3𝐻8

𝑑𝑡
= 𝑘6                        (10) 

𝑦𝐶=0,𝑡𝑜𝑡 = 𝑦𝐶𝐻𝑂 + 𝑦𝐶=𝑂,𝑒𝑠𝑡𝑒𝑟 .                   (11) 

In this model the relative concentrations (2) of species i is yj [unitless], the apparent reaction rate of 

reaction n is rn [min-1], the corresponding kinetic constant is kn [min-1].  The concentrations ci are the 

measured responses and kinetic constants ki are the parameters to be estimated. Initial parameter 

values were estimated numerically from literature values at intervals using the Arrhenius equation, 

despite the possible effect of mass transfer limitations in the system. 

Luo et al. (2015). This model was investigated by the original authors using a stainless steel tubular 

reactor, 20cm in length and 4.6mm in internal diameter. Measurements were taken using gas 

chromatography-mass spectrometry offline. The experiment was conducted under 33 bar and at 180 
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°C. Catalysts tested were platinum palladium, iridium, ruthenium, nickel and cobalt, which were 

added to a dried support using wet impregnation. Catalyst deactivation rates were experimentally 

observed and factored into the parameter calculation. Despite high pressure, the original authors 

acknowledge that mass transfer resistances may be present and should be factored into the kinetic 

constants. This model is a power low model (12-15) arising from an attempt to quantify the 

differences between the use of different metal catalysts. The HMF reaction was modeled as a series of 

first-order, sequential reactions and the rate determining step is the conversion of HMF to BHMF: 

𝑑𝐶𝐻𝑀𝐹

𝑑𝑡
= 𝑘1𝐶𝐻𝑀𝐹          (12) 

𝑑𝐶𝐵𝑀𝐻𝐹

𝑑𝑡
= 𝑘1𝐶𝐻𝑀𝐹 − 𝑘2𝐶𝐵𝐻𝑀𝐹        (13) 

𝑑𝐶𝐷𝑀𝐹

𝑑𝑡
= 𝑘2𝐶𝐵𝐻𝑀𝐹 − 𝑘3𝐶𝐷𝑀𝐹                    (14) 

𝑑𝐶𝐷𝑀𝑇𝐻𝐹

𝑑𝑡
= 𝑘3𝐶𝐷𝑀𝐹                      (15) 

In the model Ci [g L-1] is the concentrations of species i (measured outputs), and kn [min-1], the kinetic 

constants of reaction n (to be estimated from data). The species i are: HMF, BHMF, DMF, DMTHF. 

Bortoli (2018) points out the structural similarity of this model to the model proposed by Gyngazova 

et al. (2017). 

Jain and Vaidya (2016). This model was investigated using a 100mL reactor with a four-pitched blade 

at 45°. Measurements were taken offline using high-performance liquid chromatography, mass 

spectroscopy and a refractive index detector. The experiment was conducted in a temperature range of 

40-70 °C and pressures of 0.69-2.07 MPa. Various initial concentrations were investigated on 

different loadings of ruthenium catalyst on a carbon support. Impeller speeds of 1200 rpm were used 

to prevent external mass transfer limitations and internal mass transfer limitations were prevented by 

sizing catalyst pellets according to the Weisz-Prater Criterion (Bindwal and Vaidya, 2014) as cited in 

Jain and Vaidya (2016). The following rate expression (16) is proposed among a number of potential 

expressions by the authors to derive the differential balances of each species: 

𝑟𝑛 =
𝑘3𝐾𝐻2𝐾𝐵𝐶𝐻2𝐶𝐵

(1+𝐾𝐻2𝐶𝐻2+𝐾𝐵𝐶𝐵)2
                  .   (16) 
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Here, rn [kmol kgcat
-1 min-1] is the reaction rate and kn [kmol kgcat

-1 min-1] is a kinetic constant for the 

n-th surface reaction. Ci [kmol m-3] is the concentration and Ki [m3 kmol-1] is the adsorption rate 

constant for species i. Species H2 is hydrogen while species B is the substrate in reaction n. Ki and kn 

are parameters to be estimated from concentration data. An initial kinetic estimability analysis carried 

out by Bortoli (2018) reveals that the model is structurally unidentifiable from concentration data 

only. 

Gawade et al. (2016). It was proposed based on an experiment conducted in a 100mL autoclave with 

pitched turbine impeller. Concentration measurements were taken using mass spectrometry and gas 

chromatography. The experiment was carried out at an impeller speed of 1000 rpm. The absence of 

external mass transfer limitations was demonstrated by lowering the impeller speed to 800rpm under 

constant conditions with no observable effect of the reaction. The solvent used was tetrahydrofuran. 

The catalyst used was a bifunctional metal-acid palladium-caesium dodeca-tungsto-phosphoric acid 

catalyst supported on K-10 acidic clay (2Pd-20CsDTP/K-10). The support was dried before catalyst 

was added to it using wet impregnation. This model (17-20) is based on the observable species 

participating in the reaction (subscripts: HMF, DMF, BHMF, DMTHF and w for water) and includes 

catalyst loading, w [g L-1], and hydrogen partial pressure, PH2 [atm] explicitly. Ci [mol L-1] and Ki [L 

mol-1] represent the concentrations and adsorption coefficients of species i respectively, while kn 

represents the kinetic constant in reaction n: 

−
𝑑𝐶𝐻𝑀𝐹

𝑑𝑡
=

𝑘1𝐾𝐻𝑀𝐹𝐶𝐻𝑀𝐹√𝐾𝐻2𝑃𝐻2𝑤

[1+√𝐾𝐻2
𝑃𝐻2

+𝐾𝑤𝐶𝑤][1+𝐾𝐻𝑀𝐹𝐶𝐻𝑀𝐹+𝐾𝐵𝐻𝑀𝐹𝐶𝐵𝐻𝑀𝐹+𝐾𝐷𝑀𝐹𝐶𝐷𝑀𝐹+𝐾𝐷𝑀𝑇𝐻𝐹𝐶𝐷𝑀𝑇𝐻𝐹]
  (17) 

𝑑𝐶𝐵𝐻𝑀𝐹

𝑑𝑡
=

[𝑘1𝐾𝐻𝑀𝐹𝐶𝐻𝑀𝐹−𝑘2𝐾𝐵𝐻𝑀𝐹𝐶𝐵𝐻𝑀𝐹]√𝐾𝐻2𝑃𝐻2𝑤

[1+√𝐾𝐻2𝑃𝐻2+𝐾𝑤𝐶𝑤][1+𝐾𝐻𝑀𝐹𝐶𝐻𝑀𝐹+𝐾𝐵𝐻𝑀𝐹𝐶𝐵𝐻𝑀𝐹+𝐾𝐷𝑀𝐹𝐶𝐷𝑀𝐹+𝐾𝐷𝑀𝑇𝐻𝐹𝐶𝐷𝑀𝑇𝐻𝐹]
  (18) 

𝑑𝐶𝐷𝑀𝐹

𝑑𝑡
=

[𝑘2𝐾𝐵𝐻𝑀𝐹𝐶𝐵𝐻𝑀𝐹−𝑘3𝐾𝐷𝑀𝐹𝐶𝐷𝑀𝐹]√𝐾𝐻2𝑃𝐻2𝑤

[1+√𝐾𝐻2𝑃𝐻2+𝐾𝑤𝐶𝑤][1+𝐾𝐻𝑀𝐹𝐶𝐻𝑀𝐹+𝐾𝐵𝐻𝑀𝐹𝐶𝐵𝐻𝑀𝐹+𝐾𝐷𝑀𝐹𝐶𝐷𝑀𝐹+𝐾𝐷𝑀𝑇𝐻𝐹𝐶𝐷𝑀𝑇𝐻𝐹]
  (19) 

𝑑𝐶𝐷𝑀𝑇𝐻𝐹

𝑑𝑡
=

𝑘3𝐾𝐷𝑀𝐹𝐶𝐷𝑀𝐹√𝐾𝐻2𝑃𝐻2𝑤

[1+√𝐾𝐻2
𝑃𝐻2

+𝐾𝑤𝐶𝑤][1+𝐾𝐻𝑀𝐹𝐶𝐻𝑀𝐹+𝐾𝐵𝐻𝑀𝐹𝐶𝐵𝐻𝑀𝐹+𝐾𝐷𝑀𝐹𝐶𝐷𝑀𝐹+𝐾𝐷𝑀𝑇𝐻𝐹𝐶𝐷𝑀𝑇𝐻𝐹]
  (20) 

Kinetic constants and adsorption coefficients are parameters to be estimated from concentration 

measurements, while hydrogen partial pressure and catalyst loading are explicit inputs. Bortoli (2018) 

Jo
ur

na
l P

re
-p

ro
of



9 
 

has found unit inconsistencies in the definition of kn for this model and Deussen (2019) could not 

reproduce the cited concentration profiles using this model. 

Gyngazova et al. (2017). The experimental setup upon which the model (21-26) was developed used a 

50mL stainless steel autoclave with magnetic stirrer. Samples were analysed offline using a gas 

chromatograph. The experiment was carried out in THF solvent on a nickel catalyst that was added in 

to a previously dried carbon support using wet impregnation. Temperature and pressure ranged from 

150-190°C and 100-140 bar, respectively. External mass transfer limitations were avoided using 

stirrer speeds of 900 rpm, while internal mass transfer limitations were avoided by using small (< 

50µm) catalyst pellets such that the sizing satisfied the Weisz-Prater Criterion. Furthermore, the 

absence of heat transfer limitations was ensured by taking samples from inside the solid catalyst and 

the liquid phase of the reaction to ensure that the temperature was controlled in both phases. Finally, 

the authors repeated the experiment with fresh and recycled catalyst and due to the low difference in 

these measurements concluded that the deactivation was negligible. This is, therefore, a model 

developed at conditions ensuring a kinetically-controlled regime. The authors derived a simple system 

of ordinary differential equations where the non-measurable parameters are the apparent kinetic 

constants of each reaction: 

−
𝑑𝐶𝐻𝑀𝐹

𝑑𝑡
= 𝑘1𝐶𝐻𝑀𝐹          (21) 

𝑑𝐶𝐵𝐻𝑀𝐹

𝑑𝑡
= 𝑘1𝐶𝐻𝑀𝐹 − 𝑘2𝐶𝐵𝐻𝑀𝐹 − 𝑘5𝐶𝐵𝐻𝑀𝐹       (22) 

𝑑𝐶𝑀𝐹𝐴

𝑑𝑡
= 𝑘2𝐶𝐵𝐻𝑀𝐹 − 𝑘3𝐶𝑀𝐹𝐴        (23) 

𝑑𝐶𝐷𝑀𝐹

𝑑𝑡
= 𝑘3𝐶𝑀𝐹𝐴 − 𝑘4𝐶𝐷𝑀𝐹         (24) 

𝑑𝐶𝐷𝑀𝑇𝐻𝐹

𝑑𝑡
= 𝑘4𝐶𝐷𝑀𝐹          (25) 

𝑑𝐶𝐷𝐻𝑀𝑇𝐻𝐹

𝑑𝑡
= 𝑘5𝐶𝐵𝐻𝑀𝐹         (26) 

This model describe the concentration in time of HMF, MFA, BHMF, DMF, DMTHF. Ci [mol m-3] is 

the concentration of species i (to be measured) while kn [s-1] is the kinetic constant of reaction n (to be 

estimated from data). The model by Luo et al. (2015) is structurally similar to this model but neglects 
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MFA (i.e. equation (24)). Bortoli (2018) analysed this model, finding no structural identifiability 

issues. Deussen (2019) designed optimal experiments at the temperatures that had been 

experimentally investigated. Optimal designs tended towards higher initial reagent concentrations and 

temperatures. Due to these successful preliminary studies and the large scope of species the model 

encompasses, this model was chosen as a valid benchmark model upon which to build new models. 

2.2 Main factors investigated in kinetic studies 

The following factors affect the results obtained in the aforementioned kinetic studies: i) catalyst type 

and loading (resulting in potential mass transfer or kinetic limitations); ii) choice of solvent; iii) 

temperature; iv) pressure; v) initial reagent concentrations. 

 Solvent: The choice of solvent will affect the conversion and selectivity of this three-phase 

reaction system. Both polar and non-polar, alcoholic and non-alcoholic, solvents may be used. 

Side reactions may occur with certain catalysts. Three main metrics to assess solvent impacts are 

suggested: the Hildebrand solubility parameter (δ), polarity and dielectric constant. Table S4.1 in 

Appendix 4 provides a visual summary of the catalysts and solvents which have been studied 

(Deussen, 2019). Any values of kinetic parameters will be specific to the solvents the respective 

experiments were conducted with, making the model comparison more challenging. 

 Catalyst type and loading: Different catalysts will result in different reaction pathways. Since the 

studies were carried out on different catalysts, direct comparisons between kinetic parameter 

values are not possible. However, in all setups, a higher catalyst loading implies higher reaction 

speeds until a point, where higher loading results in unwanted polymerisation reactions. The 

maximum catalyst loading is limited by the experimental setup. 

 Mass transfer limitations: This three-phase reaction can be externally mass transfer limited at the 

phase interface or internally in the catalyst. The external limitation can be overcome by sufficient 

mixing. Internal mass transfer resistances can be overcome by catalyst pellet sizing, using the 

Weisz-Prater Criterion (Gyngazova et al., 2017). 
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 Temperature: A higher temperature speeds up the main and the side reactions. For the model to 

account for this effect accurately, all relevant reactions must explicitly be included and the setup 

must indeed be kinetically controlled. 

 Hydrogen pressure: The hydrogen supply pressure impacts conversion and selectivity. A pressure 

so high that constant hydrogen concentrations can be assumed is good for model simplification 

and pressure control (Bortoli, 2018). However, pressures above 30 bar may crack open Furan 

rings of HMF and lead to undesirable side-reactions (Hu et al., 2014). 

 Initial HMF and DMF concentrations: The initial concentrations of HMF and DMF can be varied 

as long as certain ratios of substrate to product are maintained (Bortoli, 2018). 

 

3. Proposed Model Identification Procedure 

A sketch of the proposed model identification procedure is shown in Figure 2. The three distinct steps 

of the procedure are: 

1) Initial proposition and screening of models in a preliminary design space; 

2) Checking models for parameter estimability and adequacy; 

3) Model-based experimental design for precise parameter estimation. 

In step 1) potential kinetic models are proposed and a preliminary experimental design space is 

defined (i.e. space of potential variability of experimental decision variables). The design space is 

explored using Latin Hypercube Sampling (LHS) and in-silico experiments are carried out to assess a 

preliminary identifiability of model parameters based on sensitivity and correlation analysis. 

Experiments are then ranked based on local Fisher information analysis (Galvanin et al., 2016). In 

step 2) a nonlinear parameter estimation is carried out and a-posteriori statistics, including lack-of-fit 

tests and assessment of kinetic parameter precision, are used to reject inadequate models. 
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Figure 2 – Structure of the proposed model identification procedure. 

In the final step 3) model-based design of experiments (MBDoE) is carried out and applied to in-silico 

experiments. Statistics obtained from parameter estimation are analysed to verify the impact of design 

on parameter estimation. The conditions that appear optimal from the information map / experiment 

ranking in step 1) are used as initial guess conditions to facilitate the MBDoE optimisation. 

3.1 Initial proposition and screening of models in a preliminary design space 

In the first phase of the proposed model identification procedure, kinetic models are proposed. These 

models are based on the kinetic models from literature (see Section 2.1 for further details). Chosen 

models will be modified to include temperature dependency using Arrhenius expression (27): 

𝑘𝑖 = 𝐴𝑖𝑒
−

𝐸𝐴𝑖
𝑅𝑇            (27) 

As in multiple kinetic studies reaction rate constant values are given, these will be expressed in the 

form 

ln(𝑘𝑖) = −
𝐸𝐴𝑖

𝑅
(

1

𝑇
) + ln(𝐴𝑖) .         (28) 

in order to obtain initial parameter guesses for pre-exponential factors (Ai) and activation energies 

(EAi) to initialise parameter estimation algorithms. The reparametrisation proposed by Buzzi-Ferraris 
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and Manenti (2009) was adopted to decrease the structural correlation associated with Arrhenius 

expressions by re-balancing the parameters to be estimated: 

𝑘𝑖 = 𝐵𝑖  𝑒
𝐶𝑖(

1

𝑇
−

1

𝑇𝑚
)
  .        (29) 

In (29) Bi [min-1] and Ci [K] are new parameters to be estimated replacing EAi [J mol-1] and Ai [min-1] 

and Tm [K] is an average reference temperature. Initial guesses for these new parameters may be 

determined from the values of the initial guesses for parameters Ai and EAi by re-arranging (29) as 

follows: 

𝐵𝑖 = exp (ln(𝐴𝑖) +
𝐶𝑖

𝑇𝑚
⁄ )         (30) 

𝐶𝑖 = −
𝐸𝐴𝑖

R⁄            (31) 

The proposed kinetic models are represented by a system of differential and algebraic expressions that 

takes a general form (32) of state variables x(t), control variables (inputs) w, and parameters to be 

estimated ϑ. Measured responses, ŷ(t), and x(t) are related by function h(x(t)) (30). The design vector 

φ (34) is located in the design space ϕ and comprises initial conditions y0, duration τ and a set of 

sampling times tsp. 

𝐟(𝐱(𝑡),𝐰, 𝛝, 𝜏) = 0                      (32) 

𝐲
^
(𝑡) = 𝐡(𝐱(𝑡))           (33) 

𝛗 = (𝐲𝟎, 𝜏, 𝐰, 𝐭𝐬𝐩)          (34) 

The design space, ϕ should be defined at this stage based on the features of the experimental setup 

and the practical limitations offered by the equipment. It is desirable, for ease of comparison, that all 

models will be  within the same design space, that should be contained in the range of model validity. 

Furthermore, ϕ should be as large as possible so that any experimental region in which the models are 

more informative can be captured by the model. A set of experiments must be designed to screen the 

entire design space (Franceschini and Macchietto, 2008). Latin Hypercube Sampling (LHS) is an 

exploratory design used to screen the design space by considering previously generated design points 

in the generation of the subsequent points. This significantly reduced the number of points needed, 

especially in multi-dimensional problems, to cover the entire design space. In this way the risk of 
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incurring in data clusters and local information optima is reduced (Montgomery, 2012). In this study 

the LHS points were generated using a freely available MATLAB function (Khaled, 2020). The 

conditions generated using the LHS function are used to run in-silico experiments. These experiments 

will be analysed using information metrics (32-34), which include local sensitivity (35), variance-

covariance (36) and correlation (37) metrics. 

The local dynamic sensitivities of the measurable outputs ŷi (1, …, nm) (i.e. set of concentrations in 

the specific case study) to changes in the parameters ϑ (1, …, nϑ) can be expressed by the sensitivity 

matrix Q for all the experiments generated by LHS (1, …, nexp): 

𝐐 =

[
 
 
 
 

𝜕�̂�1

𝜕𝜗1
⋯

𝜕�̂�1

𝜕𝜗𝑛𝜗

⋮ ⋱ ⋮
𝜕�̂�𝑛�̂�

𝜕𝜗1
⋯

𝜕�̂�𝑛�̂�

𝜕𝜗𝑛𝜗]
 
 
 
 

     .     (35) 

In dynamic models Q theoretically exists at every point in time and can be computed to gain 

information at every sampling point (Franceschini and Macchietto, 2008). The nϑ × nϑ -dimensional 

variance-covariance matrix Vϑ (36) is computed from Q and the standard deviation of measurement 

errors (σ): 

𝐕𝛝 = [𝐐𝐓𝜎−2𝐐 ]−1 .         (36) 

The correlation matrix C is obtained by computing each kl-th element from the elements of Vϑ: 

𝐶𝑘𝑙 =
𝑉𝑘𝑙

𝜗

√𝑉𝑘𝑘
𝜗 𝑉𝑙𝑙

𝜗
           (37) 

Correlation coefficients Ckl may range from -1 to 1 (total anticorrelation to total correlation), with 

critical values > 0.95. Correlations close to 1/-1 indicate models where the practical estimability of 

model parameters is difficult. 

The Fisher Information Matrix (FIM) (38), which is an approximate estimate of the Hessian of the 

log-likelihood function of parameters ϑ, is obtained from the elements of Q and σ: 

𝐇 = ∑ ∑ [
1

𝜎𝑖𝑗
2 𝑄𝑖𝑗

T𝑄𝑖𝑗]
𝑛𝑚
𝑗=1

𝑛𝑒𝑥𝑝

𝑖=1
   .      (38) 

The FIM (38) can be used as a scalar measure of information, e.g. by taking suitable metrics ψ (trace, 

determinant, maximum eigenvalues). This FIM metric, ψ(HT), may then be plotted on a 
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multidimensional graph visualising the information of design vectors sampled from ϕ using LHS. If 

more than two design variables have been considered, multiple graphs will be drawn to visualise the 

distribution of information in the full design space. The individual points may either represent 

experimental conditions, in which case the graph will show an experiment ranking, or represent a 

continuous information surface, as in Deussen and Galvanin (2021). 

When there are high correlations between model parameters (Ckl terms in (37)) and low sensitivities 

(low values of sensitivity elements in (35)) the FIM approaches singularity and the model becomes 

non-identifiable. However, it may be the case that a model contains “sloppy” parameters rather than 

that it is globally structurally unidentifiable (Chis, 2016). Models are affected by sloppiness if 

parameters can change by order of magnitude without significantly altering the predictive behaviour 

of the model. From a quantitative point of view, a model is said to contain sloppy parameters when 

there are differences between the eigenvalues of a FIM that exceed three orders of magnitude. 

However, the model may still be practically identifiable if there are experimental conditions under 

which the sloppy parameters can be identified. Sloppiness is a measure of the ratio of the axes of the 

confidence area, while the identifiability is better described as the area (i.e. the determinant of 

variance-covariance). Sloppy models are common in biological systems or systems involving organic 

compounds and is hence very relevant to this investigation (Chis et al., 2016). Should the model be 

structurally unidentifiable in the space investigated, for example due to high parameter correlations, it 

must be reparametrised, reformulated or rejected at this point in the procedure. 

 

3.2 Checking models for parameter estimability and adequacy 

The parameters are determined using the parameter estimation function in gPROMS, which conducts 

nonlinear parameter estimation using maximum likelihood methods. Parameter estimation results are 

given in terms of statistical model adequacy and parameter precision. Relevant a-posteriori statistics 

are i) the Chi-Square (χ2) test for model adequacy; ii) Student’s t-test for parameter precision. The χ2 

test is passed when the sum of weighted residuals (39) is smaller than a reference χ2 value taken from 

a tabulated χ2 distribution with (nm . nsp - 𝑛𝜗) degrees of freedom: 
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𝜒2 = ∑ ∑
(𝑦𝑖𝑗−𝑦

^
𝑖𝑗)

2

𝜎𝑖
2

𝑛𝑠𝑝

𝑗=1
𝑛𝑚
𝑖=1       .   (39) 

The Student’s t-test is passed when the t-values (40) obtained from parameters are larger than a 

tabulated reference t-value, i.e. 

𝑡𝑖 =
𝜗
^

𝑖

√ 𝑉𝑖𝑖
𝜗

> 𝑡(1 − 𝛼/2)                     𝑖 = 1, . . . , 𝑛𝜗  .                                              (40) 

In (40) t(·) is the t-value obtained from a Student’s distribution with degree of freedom equal to 

𝑛𝑒𝑥𝑝 𝑛𝑚 − 𝑛𝜗 and level of confidence given by the argument in brackets (Asprey and Naka, 1999). 

The chosen confidence interval in this study is 95% (α = 0.05). If conditions (40) are satisfied for all 

parameters this can be interpreted as an index of satisfactory parameter precision. Statistical tests 

(39,40) are applied to all experiments designed using the LHS-generated conditions. Conclusions 

about the model can then be drawn based on if and where the model fulfils both these criteria, i.e. if 

the tests fail considering all experiments throughout the design space, the model must be rejected. 

3.3 Experimental design for precise parameter estimation 

If the model is not rejected (i.e. is identifiable), optimal experiments may be designed. In designs 

aiming at precise parameter estimation, the objective function should be a suitable measure of the 

information contained in each experiment. The FIM (38) is used as a basis for developing the 

objective function. The design vector ϕ contains the variables that can be adjusted freely. However, 

the matrix H must be converted to a scalar before optimisation. Many optimisation criteria have been 

proposed to this end, including criteria for parallel and sequential designs (Galvanin et al., 2006). 

Popular criteria are: 

 A-optimality maximises the trace of the FIM: 

Obj = max (tr (H (ϕ, ϑ)))        (41) 

 E-optimality maximises the smallest Eigenvalue of the FIM: 

Obj = max (min (λ (H (ϕ, ϑ)))        (42) 

 D-optimality maximises the determinant of the FIM: 

Obj = max │H (ϕ, ϑ)│         (43) 

 SV-optimality maximises a selected eigenvalue of the FIM: 
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Obj = max (λi (H (ϕ, ϑ))      .     (44) 

The computer tools used to carry out MBDoE was gPROMS Process Builder (Process Systems 

Enterprise, 2019) version 1.4.0 for model validation, parameter estimation and optimal experimental 

design. Matlab version R2018b was used to perturb the parameters used for in-silico experiments, to 

introduce error to measurements taken from in-silico and to generate LHS points. The optimisation 

criteria that are supported in gPROMS Process Builder and which will be used in this investigation 

are A-, E-, and D-optimal designs (Franceschini and Macchietto, 2008). Once the experiments have 

been designed, in-silico experiments are run at the determined conditions to generate new data points. 

In these in-silico experiments, unlike in the screening experiments from step 1, the parameter values 

are perturbed from literature values to check whether the model can produce statistically meaningful 

results when checked against a real system, i.e. to evaluate the impact of parametric mismatch on the 

acquired information. This perturbation is a uniform error distribution added using the ‘rand’ function 

in MATLAB. The model generates in-silico concentration profiles that are further perturbed with 

gaussian noise to reflect the measurement error. 

As an additional part of the third step of the procedure, it is beneficial to rank the experiments that 

were designed from the LHS using one of the optimality metrics. One can compute the trace of the 

FIM from each experiment in the screening phase and build “information maps”, i.e. visualisation of 

the information in the space of experimental decision variables. Conditions corresponding to the 

highest amount of information will then be used to initialise MBDoE algorithms that will operate on 

the variance-covariance matrix of model parameters. If the function is convex, a FIM-based 

experiment ranking can easily indicate where global and local information maxima are located and 

guide the optimal experimental design (Galvanin et al., 2016). Furthermore, this approach provides a 

simple graphical representation to guide future experiments by visualising where high information 

experiments and potential discontinuities are expected. 

 

4. Results 

As a result of the previous studies in literature (Bortoli, 2018; Deussen, 2019), the model (45-50) by 

Gyngazova et al. (2017) is chosen as a basis to propose new model configurations where temperature 
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dependency is made explicit. The model identification procedure will then be applied to each distinct 

model configuration: M1, M2 and M3.  Common to all configurations: 

−
𝑑𝐶𝐻𝑀𝐹

𝑑𝑡
= 𝑘1𝐶𝐻𝑀𝐹          (45) 

𝑑𝐶𝐵𝐻𝑀𝐹

𝑑𝑡
= 𝑘1𝐶𝐻𝑀𝐹 − 𝑘2𝐶𝐵𝐻𝑀𝐹 − 𝑘5𝐶𝐵𝐻𝑀𝐹       (46) 

𝑑𝐶𝑀𝐹𝐴

𝑑𝑡
= 𝑘2𝐶𝐵𝐻𝑀𝐹 − 𝑘3𝐶𝑀𝐹𝐴         (47) 

𝑑𝐶𝐷𝑀𝐹

𝑑𝑡
= 𝑘3𝐶𝑀𝐹𝐴 − 𝑘4𝐶𝐷𝑀𝐹         (48) 

𝑑𝐶𝐷𝑀𝑇𝐻𝐹

𝑑𝑡
= 𝑘4𝐶𝐷𝑀𝐹          (49) 

𝑑𝐶𝐷𝐻𝑀𝑇𝐻𝐹

𝑑𝑡
= 𝑘5𝐶𝐵𝐻𝑀𝐹          (50) 

The resulting model configurations differ from the original Gyngazova et al. (2017) model by the 

following: 

 M1: inclusion of temperature dependency through the Arrhenius equation 

𝑘𝑖 = 𝐴𝑖𝑒
−

𝐸𝐴𝑖
𝑅𝑇           (51) 

Set of parameters to be estimated: Ai , EAi 

 M2: inclusion of temperature dependency through reparametrised Arrhenius equation 

𝑘𝑖 = 𝐵𝑖  𝑒
𝐶𝑖(

1

𝑇
−

1

𝑇𝑚
)
          (52) 

Set of parameters to be estimated: Bi , Ci 

 M3: M1 model reduction considering the estimation of activation energies only 

𝑘𝑖 = 𝐴𝑖𝑒
−

𝐸𝐴𝑖
𝑅𝑇           (53) 

Set of parameters to be estimated: EAi 

Since the new model configurations will only affect the parameters to be estimated and not the 

measured ouputs, a common design space ϕ can be defined for all of them. The design vector φ 

consisted of initial HMF and DMF concentrations, temperature and experiment duration, i.e. 

φ = [CHMF(0)   CDMF(0)   T    τ ]T            (54) 

The design space is defined by the following lower/upper bonds on design variables 

 Initial concentration of HMF (CHMF(0)): 0.01 – 0.2 g L-1; 
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 Initial concentration of DMF (CDMF(0)): 0.01 – 0.2 g L-1; 

 Reaction temperature (T): 300 – 600 K; 

 Experiment duration (τ): 60 – 360 min. 

Ranges for temperature (T) and experiment duration (τ) are defined by upper and lower bounds 

considering conditions that are achievable in the actual experimental setup, as well as to limit the 

formation of undesired by-products towards both ends of the range and to avoid slow reactions paces 

that are impractical for experimentation at the lower bound. The same range of initial concentrations 

previously proposed in literature (Gawade et al., 2016 & Gyngazova et al., 2017) was adopted in this 

study. Under these conditions the catalyst to substrate ratio remains similar (as there is no loading 

term in the model) and the hydrogen concentration can safely be assumed to be well in excess. It is 

assumed that 30 sampling points can be taken and that they are evenly spaced in time. 

 

4.1 Model configuration 1 (M1) 

4.1.1 Step 1: Initial proposition and screening of models in a preliminary design space 

The original parameters ki are now replaced by Arrhenius parameters Ai and EAi (278). This doubles 

the number of kinetic parameters to be estimated. For the initial guesses, the Arrhenius equations were 

re-written (289) and a straight line fitted to the experimental data points from Gyngazova et al. 

(2017). Fitting results and initial guess values for kinetic parameters are reported, respectively, in 

Figure S1 and Table S1.1 of Appendix 1. M1 adequately represents the physical system as its 

behaviour reflected the experimental results at the temperatures that were investigated originally in 

Gyngazova et al. (2017). In-silico data were generated using LHS conditions from Table S1.2 and the 

initial guesses from Table S1.1 to determine whether the models are practically identifiable. The 

standard deviation used to generate the concentration data was σ = 0.003 [g L-1] based on 

experimental evidence from other hydrogenation reactions in similar setups (Bindwal and Vaidya, 

2013 & 2014). 

Table 1 – Correlation matrix for M1: results show the correlations between the pre-exponential factors and 

their respective activation energies; critical correlations are indicated in red. 

 

ϑ # 1 2 3 4 5 6 7 8 9 10 

A1 1 1          
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A2 2 -0.18 1         

A3 3 -0.23 -0.35 1        

A4 4 -0.03 0 -0.06 1       

A5 5 -0.17 0.95* -0.34 0.04 1      

EA1 6 1* -0.18 -0.22 -0.03 -0.17 1     

EA2 7 -0.19 1* -0.35 0 0.95* -0.19 1    

EA3 8 -0.22 -0.35 1* -0.06 -0.34 -0.22 -0.35 1   

EA4 9 -0.03 0 -0.05 1* 0.04 -0.03 0 -0.05 1  

EA5 10 -0.17 0.94 -0.33 0.04 1* -0.18 0.94 -0.33 0.04 1 

The correlation analysis carried out on M1 (Table 1) shows several critical correlations (in red) as 

effect of the standard Arrhenius formulation. This model should, therefore, be rejected or 

reformulated. In addition, the information content obtained from pre-exponential factors is very low 

compared to the activation energies, see Figure S1.1 in Appendix 2. This has a critical impact on the 

information content of experiments. The most informative experiments have both a narrow 

information gap between pre-exponential constants and activation energies and generate a significant 

amount of information related to activation energies. This is realised, for example, in experiments 1 

and 9-12. From the ranking of experiments (Figure 3) the shape of the objective function can be 

deduced in the space of operating conditions. There is an evident information peak at the conditions of 

experiment 1, the conditions of which are: CHMF(0) = 0.105 g L-1, CDMF(0) = 0.193 g L-1, T = 511 K 

and τ = 229 min.  The parameter estimation tests (see Section 4.1.2) will be carried out despite model 

rejection to investigate the estimability behaviour of M1 and the effect of parameter correlations. 

 

(a) (b) 
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Figure 3 – Experiments ranked by trace of FIM for M1 as a function of (a) initial reagents concentration; (b) 

experiment duration and temperature. Blue indicates high information level; red indicates low information 

level. 

 

 

4.1.2 Checking models for parameter estimability 

M1 showed high parameter correlation as part of step 1 tests. However, parameter estimation results 

(Table 2) show that this model passed both the χ2 test (χ2 = 4944.70; χ2
critical = 5561.91) and Student’s 

t-test. These can be considered surprising results and worth closer scrutiny, since a problem of high 

correlation should usually result in poor parameter estimation. As shown in Table 1, there are critical 

correlations between the pre-exponential factors and the activation energies as well as A2 and A5 and 

A5 and EA2. EA2 and EA5 have an almost critical correlation of 0.94. Since a wide design space has been 

investigated with many experiments and a high number of sampling points, information from 

additional experiments would most not help on reducing parameter correlation. A structural 

identifiability issue is present for this model where the correlations persist for any potential 

combination of design variables in the design space (Chis et al., 2016). An additional issue is the low 

sensitivity of the measured concentrations to the pre-exponential factors (several orders of magnitude 

lower contribution of all Ai to Fisher information, as illustrated in Figure S1.1 in Appendix2). This is 

an often-encountered problem in Arrhenius expressions (Schwaab et al., 2008). 

Table 2 – Parameter estimation results including estimated values, initial guesses and 95% confidence t-

values for M1. 

ϑ Final 

Value 

Initial 

Guess 

95% t-

value 

 ϑ Final 

Value 

Initial 

Guess 

95% t-

value 

A1 2.75 x 106 1.62 x 106 14.69 EA1 68.87 58.79 321.01 

A2 2.34 x 107 5.34 x 106 4.36 EA2 71.23 64.48 100.51 

A3 1.36 x 105 5.16 x 105 2.08 EA3 48.91 42.00 33.01 

A4 8.00 x 105 6.35 x 105 14.17 EA4 77.34 83.61 250.58 

A5 5.06 x 106 3.13 x 105 4.15 EA5 74.28 62.17 99.02 

Reference value for 95%: 1.65 Reference value for 95%: 1.65 

 

Due to the low sensitivities and extremely high parameter correlations, the estimated values for Ai can 

become unrealistically large (Table 2) without particularly affecting model predictions, and thus the 

standard deviations of kinetic model parameters appearing at the denominator of Student’s t-values 
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(401) become very small by comparison. Thus, the t-test is not reliable in this case and the model 

must be rejected for further scrutiny due to structurally high correlations.

 

4.2 Model configuration 2 (M2) 

4.2.1 Step 1: Initial proposition and screening of models in a preliminary design space 

It is apparent that the introduction of Tm in (30) introduces a new degree of freedom for M2. Initially, 

Tm was fixed in the middle of the design range at 450K. However, when applied to represent the 

system behaviour in the preliminary design space, the resulting discrepancy between the concentration 

profile predicted by M2 and the original Gyngazova et al. (2017) model used to generate in-silico 

experimental measurements was so large that the effect of Tm was further investigated. It was found 

that fixing Tm at the experimental temperature provided the best fit to predictions from the original 

Gyngazova et al. model across the remaining temperature range (except near the discontinuity where 

T = Tm). Even still, there was a discrepancy of about an order of magnitude between these optimal 

initial guesses and the experimentally determined kinetic constants for all reactions in the investigated 

set of experimental temperatures. From this we can conclude that M2 is an inaccurate description of 

the physical system in the preliminary design space thus needs to be rejected at the model proposition 

step. However, since M2 adequately represents the behaviour of the system around a reference 

temperature point, M2 might represent the system better in a reduced temperature range. This is 

supported by the fact that M2 kinetic parameter estimates approach the experimentally determined 

values as Tm approaches the temperature at which the experimental points were taken. As a result, step 

1 and 2 of the proposed procedure will be carried out to verify whether M2 succeeds at reducing the 

correlation between parameters, even though in the preliminary design space M2 does not represent 

the system well. Results may be useful for future work to verify the model adequacy in a smaller 

temperature range around optimal design points. As in M1, to carry out the preliminary analysis, a 

design space has been defined and LHS points generated. The design space and therefore the points 

generated using the LHS technique for the initial screening are the same as for M1 and can be found 

in Appendix 1 (Table S1.2). As was done in M1, noise was added to the experimental points before 
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the parameter estimation. A Tm value of 450K was chosen as the average reference temperature, a 

value located in the middle of the investigated temperature range. The simulations for experiments 11, 

14, 25, 27 & 28 failed to converge numerically during simulation, due to the particularly high 

residuals obtained at the upper bound of the temperature range, with all the failed calculations 

clustering around 550-600 K. 

Table 3 - Correlation matrix for M2: results show the correlations between the pre-exponential factors and their 

respective activation energies; critical correlations are indicated in red.

ϑ # 1 2 3 4 5 6 7 8 9 10 

B1 1 1          

B2 2 -0.23 1         

B3 3 -0.24 -0.38 1        

B4 4 0 0.01 0.02 1       

B5 5 -0.12 0.84 -0.29 -0.11 1      

C1 6 -0.39 0.14 0.13 0.01 0.12 1     

C2 7 0.15 -0.39 0.16 -0.03 -0.33 -0.32 1    

C3 8 0.1 0.11 -0.22 -0.01 0.11 -0.35 -0.4 1   

C4 9 0.03 0.03 0.04 0.54 -0.06 -0.07 -0.05 -0.15 1  

C5 10 0.15 -0.39 0.16 -0.03 -0.33 -0.32 1 -0.4 -0.05 1 

 

The preliminary analysis shows that M2 succeeds at greatly reducing the correlation between 

parameters (Table 3) despite there is one critical correlation remaining between C2 and C5. In addition, 

the contributions to the overall information of the parameter groups Bi and Ci are more regularly 

distributed as illustrated in Figure S2.2 of Appendix 2. The FIM traces for these groups of parameters 

are about 10 orders of magnitude apart in Figure S2.2 (M2) as opposed to ca. 20 orders of magnitude 

in Figure S2.1 (M1). However, the distinctive information behaviour of the two groups of parameters 

can still be seen clearly (Figure S2.2). 
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(a) (b) 

Figure 4 – Experiments ranked by trace of FIM for M2 as a function of (a) initial reagents concentration; (b) 

duration and temperature. Blue indicates high information levels; red indicates low levels of information. 

 

The most informative region of the design space (Figure 4) is towards higher initial reagent 

concentrations (CHMF(0) ≈ 0.10-0.16 g L-1, CDMF(0) ≈ 0.10-0.20 g L-1) (Figure 4a), average 

temperature and short experimental duration (Figure 4b). The most informative experiment 

(experiment 6) is characterised by the following conditions: CHMF(0) = 0.152 g L-1, CDMF(0) = 0.140 g 

L-1, T = 486.15 K and τ = 67 min. 

 

4.2.2 Step 2: Checking models for parameter estimability 

M2 is adequate to represent the system only in a design space where high temperature experimental 

points (i.e. points in the temperature range 550-600 K) are removed (χ2 = 3910.13; χ2
critical = 4647.00). 

In this range of experimental conditions a precise estimation of kinetic parameters can be achieved 

(Table 4). However, the stationarity criterion for the log-likelihood in parameter estimation is not 

fulfilled in these parameter estimates, indicating very steep slopes of the objective function, i.e. due to 

high sensitivities, small changes in conditions can result quickly in the non-stationarity of relevant 

covariance values. 

Table 4 – Parameter estimation results including estimated values, initial guesses for M2 and 95% 

confidence intervals excluding outliers in temperature range 550-600 K. 
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ϑ Final Value Initial Guess 95% t-value  ϑ Final Value Initial Guess 95% t-value 

B1 0.03 0.028 111.05 C1 -8147.46 -8078.42 37.13 

B2 0.11 0.12 30.80 C2 -7399.94 -7996.39 10.24 

B3 0.28 0.32 13.37 C3 -5289.37 -5443.95 6.06 

B4 0.90 x 10-3 0.90 x 10-3 138.29 C4 -9222.75 -9225.76 481.57 

B5 0.01 0.01 25.95 C5 -6973.79 -7634.95 8.48 

Reference value for 95%: 1.65 Reference value for 95%: 1.65 

 

 

The experimental ranking (Figure 4) confirms a very steep variation of tr(H) between different 

experimental conditions. The very high values of Fisher information obtained are cause of concern for 

a reliable quantification of information. A potential explanation is the extremely high sensitivities 

observed for parameters Ci (Figure S2.2 in Appendix 2), which lead to high values of information 

metrics, but also to a more erratic behaviour in the overall information. This is clear by comparing the 

distribution of information of tr(H) in Figure S2.2 (M2) and the one realised in Figure S2.1 (M1). In 

the latter case there is a limited number of experiments characterised by a very low information level. 

The model does succeed at balancing the information that can be obtained on model parameters and 

on reducing parameter correlation and can be promising for further validation studies in a tighter 

temperature range. 

4.3 Model configuration 3 (M3) 

4.3.1 Step 1: Initial proposition and screening of models in a preliminary design space 

Thus far, M1 and M2 have been rejected for further analysis. M1, however, is a better representation 

of the physical system in a larger experimental design space. The main problem is the high 

correlations of pre-exponential factors and activation energies. A sensitivity analysis of the two 

groups of parameters (Ai and Eai) has been carried out to see if either of them or at least some 

individual parameters can be excluded from parameter estimation. Results are illustrated in Appendix 

3. The analysis was carried out at fixed operating conditions (T = 423 K, CHMF(0) = 0.0667 g L-1, 

CDMF(0) = 0.0222 g L-1) where the pre-exponential factors were subjected to changes of +20% while 

keeping the activation energies constant (Table S3.1). As shown in Figure S3.1 the pre-exponential 

factor has a limited effect on the concentration profile of the reaction as compared to the activation 

energy for the same relative change in the model parameters. As a consequence, a new model (M3) is 

proposed where the pre-exponential factors are fixed at the values estimated in M1 and the activation 
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energies are estimated, so that the temperature dependency is still maintained. A preliminary analysis 

of M3 was carried out using the same 30 experiments generated using LHS. Results show that, in this 

case, there are no significant correlations between model parameters (Table 5). 

Table 5 – M3: correlation matrix obtained after parameter estimation. 

ϑ # 1 2 3 4 5 

EA1 1 1.00     

EA2 2 -0.17 1.00    

EA3 3 -0.17 -0.22 1.00   

EA4 4 0.05 0.05 -0.29 1.00  

EA5 5 -0.05 0.75 -0.14 0.06 1.00 

 

 

(a) (b) 

Figure 5 – Experiments ranked by trace of FIM for M3 as a function of (a) initial reagents concentration;       

(b) experiment duration and temperature. Blue indicates high information; red indicates low information. 

 

4.1.2 Step 2: Checking models for parameter estimability 

As can be seen from Table 6, results are satisfactory for the estimation of all the parameters except 

Ea3, a parameter affected by a large uncertainty. The model passed the χ2 test overall (χ2 = 5220.13; 

χ2
critical = 5566.99) but has some limitations on representing experiments with particularly low MFA 

concentrations. This model is practically identifiable despite the results for EA3, as experiments with 

particular low MFA concentrations produced a very low amount of information to estimate this 

specific parameter. The Fisher Information analysis (Figure S2.3 in Appendix 2) as well as the 

ranking of experiments (Figure 5) allow an overview of this initial assessment. It is important to note 
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that there is very little variation in the overall information between these information metrics (M3) 

and the metrics that included the pre-exponential factors (M1). By comparing Figure 5 (M3) and 

Figure 3 (M1) the information levels and distribution obtained from experiment rankings clearly show 

that only negligible information was lost by omitting the pre-exponential factors (value of tr (H) is 

around 9 for experiment 1 in both cases). This confirms that the sensitivities of the pre-exponential 

factors and the corresponding low information were causal to the problems in M1. Thus, M3 presents 

a solution to the problem of parametric identifiability and will be considered in further analysis, where 

optimal experiments can be designed by MBDoE to improve the confidence on the relevant kinetic 

parameters. 

 

4.3.3 Step 3: Model-based experimental design for precise parameter estimation 

A model-based optimal experimental design has been carried out to identify the most informative 

experimental conditions for the estimation of critical parameters. As initial guesses for the parameter 

values, the values determined by linear regression from the original experimental points published by 

Gyngazova et al. (2017) are used as “true” underlying parameters for the experiment against which 

the model will be checked, a random error of within 15% of the original parameter guess has been 

added to verify the robustness of the proposed optimal experimental design. The five most 

informative experiments as obtained from the ranking of LHS experiments are summarised in Table 

S3.2 in Appendix 3. The ranking showed that experimental design conditions from experiments 1 and 

11 are the most informative (as illustrated in Figures 5a and 5b) with experiment 11 providing an 

improved balance between the information content related to multiple parameters (see Figure S2.3 in 

Appendix 2). Since these two experiments are similarly informative and close in the experimental 

design space, they yield very similar results when used to initialise the MBDoE optimisation. 

Experiments 23 and 30 are characterised by a lower level of information, and lie on a different region 

of the information space as deduced from the rankings (Figures 5a and 5b, yellow points) and might 

thus lead to local optimum when used to initialise the MBDoE optimisation. An experiment design 

was carried out using a D-optimal design criterion as the objective function. The initial guess 
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conditions were those suggested by experiment 1 from the LHS screening (Table S3.2) and the 

resulting optimally designed conditions were the following: 

 CHMF(0): 0.200 g L-1; 

 CDMF(0): 0.198891 g L-1; 

 T = 455.42 K; 

 τ = 594 min (~ 10 h). 

Interestingly, MBDoE tends to drive the conditions towards high initial concentrations for HMF and 

DMF and temperatures positioned in the middle of the experimental design space (300 – 600 K). Even 

if not shown for the sake of conciseness, it has been verified that different MBDoE experimental 

design criteria (E-, A- optimal) yielded very similar results in terms of optimal experimental design 

conditions. 

Using these D-optimally designed conditions, a further in-silico experiment and a subsequent 

parameter estimation were carried out using only the data generated from this experiment. Parameter 

estimation results are shown in Table 6. The full set of model parameters could be estimated with 

satisfactory statistics in terms of parameter precision. After the D-optimal designed experiment, 

moderate parameter correlations have been observed (Table S3.2 in Appendix 3), and the model is 

adequate to represent the concentrations for all the chemical species as illustrated by the χ² test results. 

An information map showing the regions of maximum information is shown in Figure 6. Results are 

in line with the prediction of information from the LHS as they are in the area of the design space 

where a high information cluster is observed (dark red area in the figure). A second, local, maximum 

for information is present at temperatures around 330 K and initial concentrations in the middle of the 

design space (CDMF(0) around 0.10), but a significantly lower amount of information is generated at 

these conditions. 

It is important to stress that one, single, optimally designed experiment provided better statistics that 

all of the experiments combined that were used in the LHS-based parameter estimation. This is likely 

due to the fact that very low MFA concentrations, which make EA3 particularly difficult to estimate, 

are realised in several regions of the design space sampled by LHS and tend to provide a significantly 
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low level of information for the estimation of this critical parameter. This is clearly indicating that, in 

the specific case study, the explorability of the design space might simply lead to a waste of time and 

analytical resources, while an MBDoE approach can be more effective for kinetic model 

identification. 

Table 6 – Parameter estimation results for M3 from LHS experiments and after the D-optimally designed in 

experiment including estimated values, initial guesses, 95% confidence t-values and χ² test statistics (reference 

χ² values are indicated in brackets, ** indicates parameters failing t-test, * indicates responses failing χ² test). 

ϑ LHS Experiments D-optimal design 

Final 

Value 

Initial 

Guess 

95% t-

value 

Final Value Initial 

Guess 

95% t-

value 

EA1 66.99 58.79 1939.57 59.31 58.79 99.33 

EA2 66.49 64.48 676.13 65.16 64.48 174.59 

EA3 6.57** 42.00** 0.001** 42.35 42.00 39.19 

EA4 76.36 83.61 3772.45 83.75 83.61 636.16 

EA5 63.86 62.17 492.01 62.64 62.17 149.84 

Reference t-value (95%): 1.65 Reference t-value (95%): 1.654 

χ² test statistics 

 LHS Experiments D-optimal design 

χ² - Total 5220.13 

(5566.99) 

 χ² - Total 135.14 

(206.87) 

χ² - CBHMF 783.94 

(1113.39) 

 χ² - CBHMF 11.45 

(37.65) 

χ² - CMFA 1260.58* 

(1113.39) 

 χ² - CMFA 19.9 

(37.65) 

χ² - CDHMTHF 914.26 

(1113.39) 

 χ² - CDHMTHF 34.64 

(37.65) 

χ² - CDMF 825.82 

(1113.39) 

 χ² - CDMF 33.66 

(37.65) 

χ² - CDMTHF 874.21 

(1113.39) 

 χ² - CDMTHF 21.88 

(37.65) 

χ² - CHMF 861.32 

(1113.39) 

 χ² - CHMF 13.61 

(37.65) 
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Figure 6 – Information map showing the regions of maximum information. 

 

5. Conclusions and Outlook 

A new model-based experimental design approach has been proposed in this paper to assess the 

parametric identifiability of kinetic models of HMF hydrogenation in batch reaction systems. The 

approach combines: i) a preliminary model-based analysis of information carried out by screening the 

experimental design space for the proposed kinetic models; ii) a model assessment using a-posteriori 

statistics obtained after parameter estimation from in-silico generated data; iii) a model-based 

experimental design, to identify the most promising regions of experimental conditions to explore in 

future experiments. Three model configurations (M1, M2, M3) based on the model proposed by 

Gyngazova et al. (2017) were investigated to determine the parameters for the HMF hydrogenation 

reaction where an explicit temperature dependency was introduced for the kinetic parameters. In M1, 

this dependency is represented by an Arrhenius expression and the full set of model parameters (Ai 

and EAi) is estimated. In M2, a re-parametrisation in the form suggested by Buzzi-Ferraris and 

Manenti (2009) replaced the Arrhenius expression, with two new parameters (Bi and Ci) being used to 
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represent the kinetic rate constants. M3 configuration was based on a reduced model approach where 

only the activation energies (EAi) were estimated. These additional relationships made the model 

identification task more challenging.  In particular, M1 was rejected for further analysis following 

preliminary assessments due to the high correlations between kinetic model parameters. M2 was 

rejected as this configuration does not accurately represent the system in a large design space, but 

only in a limited range of temperatures. However, the use of a model re-parametrisation succeeds on 

reducing the existing correlation between kinetic model parameters. M3 was chosen for further 

analysis as it was discovered that a limited correlation between parameters could be realised whilst 

maintaining a temperature dependency and a statistically reliable description of the underlying system 

in the investigated design space. A D-optimal experimental design was then carried out using M3, and 

the design showed that one, single experiment carried out at maximum initial reagent concentrations 

(CHMF(0) = 0.200 g L-1, CDMF(0) = 0.198 g L-1), a temperature of 455K and a duration of 594 minutes 

(approximately 10 hours), with an evenly allocation of 30 sampling points, is sufficiently informative 

to produce an accurate and precise estimation of the full set of kinetic parameters. Further research 

will target the application of the proposed optimal design in a laboratory reactor in order to precisely 

determine the full set of model parameters from experimental data and confirm the results of this 

analysis. Also it might be interesting for future studies to investigate the validity of M2 in a narrow 

design space. i.e. at temperatures that can be practically achievable in the lab. The experimental 

ranking and optimal designs carried out in this investigation suggest that this should be possible 

without severely reducing the amount of information obtained. 
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