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OBJECTIVE Surgical workflow analysis involves systematically breaking down operations into key phases and steps. 
Automatic analysis of this workflow has potential uses for surgical training, preoperative planning, and outcome predic-
tion. Recent advances in machine learning (ML) and computer vision have allowed accurate automated workflow analy-
sis of operative videos. In this Idea, Development, Exploration, Assessment, Long-term study (IDEAL) stage 0 study, the 
authors sought to use Touch Surgery for the development and validation of an ML-powered analysis of phases and steps 
in the endoscopic transsphenoidal approach (eTSA) for pituitary adenoma resection, a first for neurosurgery.
METHODS The surgical phases and steps of 50 anonymized eTSA operative videos were labeled by expert surgeons. 
Forty videos were used to train a combined convolutional and recurrent neural network model by Touch Surgery. Ten 
videos were used for model evaluation (accuracy, F1 score), comparing the phase and step recognition of surgeons to 
the automatic detection of the ML model.
RESULTS The longest phase was the sellar phase (median 28 minutes), followed by the nasal phase (median 22 
minutes) and the closure phase (median 14 minutes). The longest steps were step 5 (tumor identification and excision, 
median 17 minutes); step 3 (posterior septectomy and removal of sphenoid septations, median 14 minutes); and step 
4 (anterior sellar wall removal, median 10 minutes). There were substantial variations within the recorded procedures 
in terms of video appearances, step duration, and step order, with only 50% of videos containing all 7 steps performed 
sequentially in numerical order. Despite this, the model was able to output accurate recognition of surgical phases (91% 
accuracy, 90% F1 score) and steps (76% accuracy, 75% F1 score).
CONCLUSIONS In this IDEAL stage 0 study, ML techniques have been developed to automatically analyze operative 
videos of eTSA pituitary surgery. This technology has previously been shown to be acceptable to neurosurgical teams 
and patients. ML-based surgical workflow analysis has numerous potential uses—such as education (e.g., automatic 
indexing of contemporary operative videos for teaching), improved operative efficiency (e.g., orchestrating the entire 
surgical team to a common workflow), and improved patient outcomes (e.g., comparison of surgical techniques or early 
detection of adverse events). Future directions include the real-time integration of Touch Surgery into the live operative 
environment as an IDEAL stage 1 (first-in-human) study, and further development of underpinning ML models using 
larger data sets.
https://thejns.org/doi/abs/10.3171/2021.6.JNS21923
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Machine learning (ML), a subdomain of artificial 
intelligence (AI), has already revolutionized 
many industries and has the potential to disrupt 

medicine and surgery.1 There has been rapid growth in the 
efforts of ML models to interpret the medical data, includ-
ing natural language documentation and diagnostics.2,3 Of 
significance to surgeons is the potential of ML to interpret 
videos of events that occur in operations. With advance-
ments in computational power, we will be able to apply 
ML to surgery in real time.3 An initial step in this process 
is training ML systems to recognize and analyze the criti-
cal components of surgery by using ML techniques.

An established method for this is “operative work-
flow analysis”—systematically deconstructing operations 
into steps and phases.4 A step refers to the completion of 
a named surgical objective (e.g., hemostasis), whereas a 
phase represents a major surgical event that is composed 
of a series of steps (e.g., closure).4 During each step, cer-
tain surgical instruments (e.g., forceps) are used to achieve 
a specific objective, and there is the potential for technical 
error (lapses in operative technique), which may result in 
adverse events.4 ML-based recognition of these elements 
will thus allow surgical workflow analysis to be generated 
automatically and accurately. Such technology has the po-
tential to provide standardized operative skill assessment, 
automate the generation of operative notes, allow off-line 
video indexing for education, facilitate the creation of 
simulations, and augment surgical training programs.5–9 
By integration with the wider surgical team (such as nurs-
ing staff and anesthesiologists), these ML systems may aid 
orchestration of the team to a common workflow, improv-
ing efficiency and resource management.6 Additionally, 
this complements the potential for real-time intraopera-
tive ML guidance for surgeons and facilitates progression 
through the surgical steps, potentially reducing operative 
times and errors.10,11

Artificial deep neural networks (DNNs), a type of ML 
model, have previously achieved automatic accurate phase 
and instrument recognition in cataract surgery and laparo-
scopic cholecystectomy.12–15 Low-volume surgeries or those 
with steeper learning curves may especially benefit from 
augmented training, assessment, simulation, and intraoper-
ative guidance.14 The endoscopic transsphenoidal approach 
(eTSA) to resection of pituitary adenomas is an exemplar—
being performed at tertiary level care, at a comparatively 
low volume with a steep learning curve. It is therefore an 
ideal application of ML-based operative workflow analysis 
and would represent, to the best of our knowledge, the first 
neurosurgical operation analyzed in this way. Crucial to 
the safe integration of such technology is structured and 
iterative development, best captured by the Idea, Develop-
ment, Exploration, Assessment, Long-term study (IDEAL) 
stages—beginning at the preclinical stage 0.16,17 In this 
IDEAL stage 0 study, we sought to use Touch Surgery for 
the development and evaluation of ML-powered analysis 
of the phases and steps in eTSA pituitary surgery.

Methods
This paper was generated using multiple reporting 

guidelines, given that no single guideline comprehensive-

ly captures this preclinical stage of ML technology de-
velopment yet. We were therefore guided by the relevant 
sections of the IDEAL framework, and by TRIPOD and 
CONSORT-AI reporting guidelines.16–19

Study Design
A preclinical development and evaluation (IDEAL 

stage 0) design was adopted.16,17 The study was based 
at a tertiary neurosurgical center (National Hospital for 
Neurology and Neurosurgery, London), which acts as a 
regional referral center for pituitary tumors and performs 
approximately 150–200 pituitary operations each year.

Data Collection
A library of anonymized operative videos of the eTSA 

for pituitary adenoma was used for ML model develop-
ment. Videos were collected from surgical cases treated 
between August 8, 2018, and October 11, 2020. Cases 
were included if an operative video was available that was 
complete or near complete (missing steps but not miss-
ing an entire phase). Cases using microscopic surgery, and 
revision surgery in which the primary surgery was per-
formed within 6 months, were excluded. For each case, 
patient (age, biological sex, tumor type) and operative 
(operative time) characteristics were recorded. Informed 
written patient consent was obtained and the project was 
registered with the local governance committee.

All eTSAs for pituitary adenoma operations performed 
at our center are single specialty (neurosurgery), per-
formed by an attending surgeon and a subspecialty fellow. 
The majority of cases are performed using a mononos-
tril technique with an endoscope holder during the sellar 
phase of the operation. Operative videos were recorded 
using a high-definition endoscope (Hopkins Telescope 
with AIDA storage system; Karl Storz Endoscopy). Vid-
eos were exported (MPV format) onto an encrypted hard 
drive and uploaded to Touch Surgery (Medtronic, Inc.; 
https://www.touchsurgery.com/professional), web-based 
software for surgical video storage and ML-derived surgi-
cal analytics.

In total, 50 videos were collected, which allowed for 
an 80/20 split with 40 videos used for training and 10 vid-
eos used for testing and evaluation (selected via a random 
number table). This 80/20 split between training and test-
ing sets has generally been adopted within the ML litera-
ture for this sample size, and considers a minimum of 25 
videos as sufficient for model training and 6 videos for 
testing.12,20

Data Labeling
A workflow of 3 surgical phases and 7 constituent steps 

(Table 1) was generated through literature review and lo-
cal expert surgeon consensus (N.L.D., H.J.M.). Operative 
video labeling of steps and phases was performed using 
Touch Surgery by at least 2 authors in duplicate (D.Z.K., 
H.J.M.), with differences settled through discussion and 
mutual agreement. “Steps” were defined as a sequence of 
activities used to achieve a surgical objective, and “phas-
es” as a major event occurring during a surgical proce-
dure, composed of several steps.4 Through labeling of step 
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and phase time stamps, manual video segmentation was 
achieved. Of note, videos were not submitted to formal 
analysis if a large portion (an entire phase or more) of the 
recording was missing.

Model Development and Evaluation
The training video set (n = 40) was analyzed by Touch 

Surgery to develop an ML model capable of recognizing 
the phases and the steps of the procedure. To develop an 
ML model to perform surgical workflow analysis, frames 
were extracted from each of the 40 videos at a constant 
frame rate (1 frame per second) and associated with a la-
bel indicating the phase and step to which they belonged 
according to the expert annotations. Using these frames 
as visual input and the associated label as the ground 
truth target, a 2-stage training pipeline was introduced in 
which convolutional neural network (CNN) models were 
first pretrained to recognize steps and phases from a short 
temporal window (1–5 frames). From a computer vision 
perspective, due to the ambiguity of the different anatomi-
cal and instrument landmarks visible in the dynamic field 
of view during different steps, a single frame or short se-
quence may not carry sufficient information to aid correct 
classification.12,21 To compensate for this, once networks 
were pretrained, a recurrent neural network (RNN) was 
trained in order to improve temporal resolution and the 
consistency of the predictions (Fig. 1).12,20

The accuracy of the final model was then evaluated us-
ing the testing video set (n = 10), comparing the step and 
phase recognition of the model to the phase or step label 
assigned by expert surgeons. The evaluation metrics used 
were accuracy, precision, recall, and F1 score. Accuracy 
was calculated as the average per-class correct classifica-
tion ratio of all the frames for each class. F1 score, the 
harmonic mean between precision (or positive predictive 
value) and recall (or sensitivity), was calculated per class 
(as defined in eq. 1) and then averaged across classes. We 
considered an accuracy of ≥ 90% for phase recognition 
and 70% for step recognition as sufficient prior to pro-
gression to prospective, real-time, first-in-human studies 
(IDEAL stage 1).12,21

Equations
We used the following equations for our calculations. 

Accuracy = True positive + True negative/
True positive + True negative + False positive  
+ False negative  [eq. 1]

Precision = True positive/True positive +  
False positive  [eq. 2]

Recall = True positive/True positive +  
False negative  [eq. 3]

F1 score = 2 × (precision × recall)/ 
(precision + recall)  [eq. 4]

Results
General Characteristics

A total of 50 cases (49 patients) of eTSA for pituitary 
surgery were included in the final analysis. The median 
age of included patients was 52 years (IQR 41–68 years), 
with a 25:24 male/female ratio. All cases were considered 
pituitary adenomas at the time of resection, with most of 
these considered macroadenomas on radiological assess-
ment (46/50, 92%). Histological analysis confirmed pitu-
itary adenomas in the majority of included cases (48/50, 
96%); other pathologies included lymphocytic hypophy-
sitis (1/50, 2%) and chronic lymphocytic leukemia (1/50, 
2%). Forty-seven cases were primary surgeries and 3 were 
revision surgeries.

Video Characteristics
The median length of operation was 67 minutes (range 

31–146 minutes), with a video resolution of 1280 × 720 
pixels. Forty-five extracted operative videos were com-
plete (45/50, 90%), with a minority missing a small num-
ber of steps (5/50, 10%). Figure 2 details the average du-
ration of each operative step. The longest phase was the 
sellar phase (median 28 minutes, IQR 21–33 minutes), fol-
lowed by the nasal (median 22 minutes, IQR 14–29 min-
utes) and closure (median 14 minutes, IQR 6–20 minutes) 
phases. The average duration of steps in descending order 
was as follows: step 5 (tumor identification and excision; 
median 17 minutes, IQR 14–21 minutes); step 3 (posterior 
septectomy and removal of sphenoid septations; median 
14 minutes, IQR 8–23 minutes); step 4 (anterior sellar wall 
removal; median 10 minutes, IQR 6–13 minutes); step 7 
(skull base reconstruction; median 10 minutes, IQR 9–12 
minutes); step 6 (hemostasis; median 6 minutes, IQR 5–6 
minutes); step 2 (anterior sphenoidotomy; median 4 min-
utes, IQR 3–6 minutes); and step 1 (nasal corridor cre-
ation; median 3 minutes, IQR 2–5 minutes).

Figure 3 highlights variations in the temporal relation-
ship of steps, with 50% of videos containing all 7 steps 
performed sequentially in numerical order, and the other 
50% of operations either 1) not containing all 7 steps or 
2) containing all steps but in nonnumerical order. For ex-
ample, 20% of videos did not include a formal step 7 (clo-
sure)—either reflecting heterogeneity in practice among 
local surgeons in certain clinical contexts or being due to 
incomplete video data. The steps repeated most frequently 
were steps 3 (posterior septectomy and removal of sphe-

TABLE 1. Phases and steps used for labeling of operative videos 
in patients undergoing eTSA

Phase Step

Nasal

Nasal corridor creation (displace turbinates & identify 
sphenoid ostium)

Anterior sphenoidotomy
Posterior septectomy & removal of sphenoid septations

Sellar
Anterior sellar wall removal
Tumor identification & excision

Closure
Hemostasis
Skull base reconstruction (including repair of CSF leak)
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noid septations, 7 times); 4 (anterior sellar wall removal, 7 
times); and 5 (tumor identification and excision, 2 times). 
However, steps 1 (nasal corridor creation) and 7 (skull 
base reconstruction) were never repeated.

Model Performance
During development of the ML model, different ap-

proaches were tested iteratively until the final version for 
this study was achieved. The stand-alone CNN network 
achieved accuracies of 80% for phase recognition and 
65% for step recognition. The addition of the RNN im-
proved accuracies to 86% and 73% for phase and step rec-
ognition, respectively. Final postprocessing improvements 
further boosted the final performance to 91% and 76% for 
phase and step recognition, respectively. Final model eval-
uation metrics are displayed in Table 2. F1 scores were of 
a similar degree—with phase recognition of 90% and step 

recognition of 75%. Video 1 displays the model’s predic-
tions in action during an illustrative operation.

VIDEO 1. Operative video displaying Touch Surgery step and 
phase predictions. Steps are included in the upper left corner and 
phases are included in the upper right. “GT” in yellow represents 
the “ground truth” steps or phases labeled by experts. “Pred” repre-
sents the algorithm’s prediction of steps and phases. The prediction 
text is green when correct (aligning with the ground truth) and red 
when incorrect. For each time point, a prediction certainty percent-
age is presented. Copyright 2021 Medtronic. All rights reserved. 
Used with the permission of Medtronic. Click here to view.

Discussion
Principal Findings

We have demonstrated that Touch Surgery developed 
and evaluated an accurate and automated ML model for 
surgical workflow recognition that is capable of detecting 

FIG. 1. Overview of operative video processing and analysis. Figure is available in color online only.
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the steps and phases of an operation. In this IDEAL stage 
0 study, our ML model achieves 91% accuracy (F1 score 
90%) for phase recognition and 76% accuracy (F1 score 
75%) for step recognition in eTSA for pituitary surgery.

The analysis of the eTSA for resection of pituitary 
adenomas makes this the first study of its kind in neu-

rosurgery.22 The eTSA has emerged as the first-line ap-
proach for resecting the majority of symptomatic pituitary 
adenomas.23–25 However, there is variation in the ways in 
which these operations are performed, as evidenced by 
our analysis of surgical steps, which vary in duration and 
order.26–29 Variations in practice are largely guided by lo-

FIG. 3. Step variations in operative video workflow. Copyright 2021 Medtronic. All rights reserved. Used with the permission of 
Medtronic. Figure is available in color online only.

FIG. 2. Average and range of time per step. Copyright 2021 Medtronic. All rights reserved. Used with the permission of Medtronic. 
Figure is available in color online only.
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cal preference and may affect surgical outcomes.26–29 We 
found that despite variations within our own practice, 
Touch Surgery generated an ML model capable of accu-
rate phase and step recognition.

There is a steep learning curve for the attainment of the 
necessary endoscopic skills, and this is compounded by 
the relatively low-volume nature of pituitary surgery.30–32 
This is particularly evident during training programs, with 
the majority of US residents having performed fewer than 
10 pituitary surgeries during training, thus requiring dedi-
cated fellowships to gain the necessary skills and compe-
tency for these operations.33 As residency programs move 
to competency-based frameworks and pituitary services 
are consolidated into centers of excellence, structured 
training and objective assessment of pituitary surgery are 
increasingly relevant.32,34

Automated operative workflow analysis may meet 
these educational and training demands.9,14,21 For example, 
automatic indexing of contemporary operative videos may 
supplement teaching of residents and fellows, and may fa-
cilitate personal reflection on particular aspects of surgical 
performance (e.g., a technically challenging step).21 Simi-
larly, deconstructing videos into critical operative steps 
may facilitate comparative analysis of the surgical perfor-
mance of individual surgeons of various grades—examin-
ing step order and durations.14 Building on this, ML mod-
els have been used to analyze operative step performance, 
allowing assessment of operation-specific competency in a 
structured, objective, and personalized way.14,35,36 The au-
tomatic collation of surgical workflow and performance 
metrics can also provide the foundations of simulation 
(physical or virtual) development and validation.5–9

Moreover, the integration of ML-based operative step 
analysis into the live operating room environment may 
improve surgical team efficiency and resource manage-
ment. For example, through orientation onto the current 
proceedings (e.g., phase and step) and anticipation of the 
next necessary instruments, the entire surgical team is or-
chestrated to a common workflow and is prepared for the 
immediate next steps.37 This would require the integra-
tion of ML systems into the workflows of the wider surgi-
cal team (e.g., scrub technicians and anesthesiologists), a 
concept that has been found to be generally acceptable to 
team members.38 For more junior members of the surgical 
team, live display of workflow metrics (current step, time 
spent per step, required instruments) may supplement the 
guidance of senior surgeons, facilitate progress through 
operative steps, and consolidate in-practice learning.5–9 
Operations performed in this “smart” operating room may 
therefore be shorter and more economical (e.g., unneces-
sary instruments not opened or used).6

Furthermore, in this era of personalized medicine, we 
are moving toward the data-driven analysis of the entire in-

dividual patient pathway. Combining intraoperative phase 
and step recognition with other ML-based technologies 
has numerous potential uses—including administrative, 
patient selection, and outcome prediction. For example, af-
ter automated deconstruction of an operation into constitu-
ent components, natural language processing techniques 
may be used for automatic generation of operative notes—
which are generally otherwise template-based and may 
omit up to 50% of essential steps and events.2,39 Similarly, 
incorporating preoperative variables (e.g., automated im-
aging analysis) into ML models with intraoperative events 
may highlight characteristics (e.g., age or tumor morphol-
ogy) that are predictive of successful outcomes or com-
plications. Such information could be used to aid patient 
selection, preoperative planning, and tailored informed 
consent—adapted to individual patient factors.22 Finally, 
the correlation of intraoperative video data to postopera-
tive outcomes may allow prediction of outcomes postop-
eratively and exploration of the maneuvers, instruments, 
or materials linked to superior or inferior outcomes. Not 
only would this allow for targeted refinement of operative 
techniques, but it may also support early identification of 
errors and form part of early-warning systems for poten-
tial adverse events.40,41 Ultimately, this ML-based surgical 
workflow analysis—through its uses in education, training, 
intraoperative guidance, and patient pathway integration—
aims to make surgery safer, more effective, and even more 
individualized.21,37

Findings in the Context of the Literature
Surgical phase recognition through ML approaches is 

a growing field, most prevalent in general surgery (e.g., 
laparoscopic cholecystectomy) and ophthalmological sur-
gery (e.g., cataract surgery).21 There have been no reports 
of the use of this technology in neurosurgery,21,22 although 
surveys of neurosurgeons and neurosurgical patients in-
dicate receptiveness to AI being integrated into operating 
rooms.38,42

Multiple ML and statistical models have been explored, 
including dynamic time warping, hidden Markov models, 
support vector machines, and DNNs. The DNNs (particu-
larly CNNs and RNNs) are used most commonly and, al-
though they require more data and higher computational 
power, they have displayed increased phase recognition 
accuracy in multiple studies across surgical specialties. 
Indeed, a recent study comparing the use of multiple ML 
models in cataract surgery phase recognition found a com-
bined CNN-RNN configuration with temporal modeling 
with accuracies > 90%.14 Touch Surgery’s ML model is a 
similar configuration and has displayed accuracies of 93% 
and 73% for phase and step recognition, respectively, in 
cataract surgery workflow analysis prior to its application 
in pituitary surgery.12 Similar heights of accuracy have 
been observed in laparoscopic sleeve gastrectomy, with 
an accuracy of up to 86% for operative step detection us-
ing a CNN-RNN temporal model.11 Additionally, accurate 
phase recognition has been achieved for peroral endoscop-
ic myotomy (87.6% accuracy)43 but has proven to be more 
difficult in laparoscopic proctocolectomies (67% accura-
cy), where the operative steps used are less standardized 
and more complex.44

TABLE 2. Summary of overall recall, precision, F1 score, and 
accuracy for steps and phases in patients undergoing eTSA

Evaluation Metric Recall Precision F1 Score Accuracy

Phases 89.23% 91.49% 90.24% 91.25%
Steps 71.98% 82.09% 75.42% 75.69%
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Limitations and Strengths
This study has validated the first ML model that is capa-

ble of analyzing neurosurgery videos. However, it has sev-
eral limitations, as follows: 1) the included sample is small 
and highly selected (single-center, nonconsecutive, endo-
scopic endonasal technique); 2) the model may be overfit-
ted to local surgical practice; and 3) prospective validation 
has yet to be performed and external validity has yet to be 
determined. The labeled steps and phases were based on 
local consensus, and therefore further work is needed to 
create a standardized and generalizable workflow frame-
work for this procedure. Steps at present may contain mul-
tiple substeps, which are likely to require a larger sample 
size before the model can accurately delineate them. Look-
ing ahead, progression through IDEAL stages will facili-
tate further development of this technology. In particular, 
analysis of multicenter and prospective data will increase 
the predictive potential and generalizability of the ML 
software, facilitating its integration into “smart” operating 
theaters with real-time operation analysis.41 Refinement of 
an ML model on this scale may facilitate transfer learning, 
such that the trained algorithm is adapted to other surger-
ies after a period of adjustment—without requiring total de 
novo model creation and potentially requiring less data to 
achieve accurate phase and step recognition.

Conclusions
In this IDEAL stage 0 study, ML techniques have been 

used to automatically analyze operative videos of eTSA 
for pituitary surgery. Using a combined CNN and RNN 
model, Touch Surgery achieved phase and step recognition 
accuracies of 91% and 76%, respectively. ML-based surgi-
cal workflow analysis has numerous potential uses—such 
as education (e.g., automatic indexing of contemporary op-
erative videos for teaching); improved operative efficiency 
(e.g., orchestrating the entire surgical team to a common 
workflow); and improved patient outcomes (e.g., compari-
son of surgical techniques or early detection of adverse 
events). This technology has previously been shown to be 
acceptable to neurosurgical teams and patients. Future di-
rections include the real-time integration of Touch Surgery 
into the live operative environment as an IDEAL stage 1 
(first-in-human) study, and further development of under-
pinning ML models using larger data sets.
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