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Abstract—The combination of unmanned aerial vehicles
(UAVs) and millimeter wave (mmWave) multiple-input multiple-
out (MIMO) system is regarded as a key enabling technology
for beyond 5G networks, as it provides high data rate aeri-
al links. However, establishing UAV-enabled mmWave MIMO
communication is quite challenging due to the high hardware
cost in terms of radio frequency (RF) chains. As a cost-effective
alternative, a beamspace precoding with discrete lens arrays
(DLA) architecture has received considerable attention. However,
the underlying optimal design in beamspace precoding has not
been fully exploited in UAV-enabled communication scenario.
In this paper, the joint design of the UAV’s altitude and
hybrid beamspace precoding is proposed for the UAV-enabled
multiuser MIMO system, in which the DLA is exploited to
reduce the number of the RF chain. In the proposed scheme, the
optimization problem is formulated as a minimum weighted mean
squared error (MWMSE) method. Then an efficient algorithm
with the penalty dual decomposition (PDD) is proposed that aims
to jointly optimize the altitude of UAV, beam selection and digital
precoding matrices. Simulation results confirm the comparable
performance of the proposed scheme and perform close to full-
digital beamforming in terms of achievable spectral efficiency.
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I. INTRODUCTION

UNMANNED aerial vehicles (UAVs) have recently proven
to be of immense help in both military and civilian

fields and can be endowed with multiple-input-multiple-output
(MIMO) for wireless communication networks. Different from
terrestrial communications, UAVs can provide an ondemand
flexible platform for deploying aerial base station (BS) to
support temporary or urgent events, which enhances the wire-
less capacity for ground terminals (GTs) [1], [2]. Particularly,
UAVs are used to provide various services, such as sampling
data from dangerous areas, firefighting and disaster rescue [3].
In addition, UAVs are envisioned to be a prime candidates
of future mmWave communication systems [4]. Because of
the short wavelength at mmWave frequency, massive antenna
arrays can be deployed on a UAV to form the beam-steerable
directive beam, which is witnessed as a promising approach
to offer available data rates and extensive coverage [5], [6].
However, the desired beamforming gains in conventional UAV-
enabled system tend to rely on the fully digital precoding
structure, where one radio frequency (RF) chain is required
to serve one antenna [7]. An increase in RF chain has
resulted in high hardware cost, which obstruct the commercial
deployment of UAV-enabled mmWave MIMO systems [8]. It
has been proven that RF chains may consume up to 70%
of the total transceiver power [7], [9]–[11]. Therefore, high
hardware cost (RF chain) makes the UAV-enabled mmWave
MIMO system unrealistic to low-cost communications.

To tackle this challenge, lots of studies have been developed
to reduce the energy consumption and the number of RF
chains, such as load-controlled parasitic antenna arrays (LC-
PAAs) [12], [13], beam selection [14]–[17] and hybrid ana-
log/digital precoding design [18]–[22]. The recent concept of
“beamspace MIMO” has been exploited as a potential scheme
to substantiality reduce the hardware cost of RF chains, where
the discrete lens array (DLA) is considered for analog spatial
beamforming [23], [24]. In a beamspace MIMO systems,
the electromagnetic (EM) lens with the antenna array are
developed for analog spatial beamforming domain [23]. To
compensate the high attenuation of mmWave frequencies, the
different directions of mmWave signals can be focused on
the antenna array, which is referred to as beamspace channel
[25]. Due to the high path loss at mmWave frequencies, the
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Fig. 1. Illustration of the mmWave MIMO communication with the LAAs.

beamspace mmWave channel with lens antenna array (LAA)
is sparse, meaning that only a part of beams carry the majority
of the information [26]. Thus the beam selector is designed
to determine the energy-focusing beams, which can reduce
the required number of RF chains with only a negligible
performance degradation [27], [28]. However, the beam se-
lection is not a trivial task. The traditional beam selection
problem is maximum magnitude (the works in “MM-BS”)
so as to obtain a higher transmission rate. Subsequently, [29]
designs an interference-aware precoding strategy for multiuser
interference system, which is simpler and less expensive than
the MM-BS schemes. However, these works are restricted to
the terrestrial communications, where the beam selection tech-
niques are developed for mmWave MIMO systems primarily
considered a static or quasi-static scenario. It is commonly
believed that the mmWave MIMO systems networks with fixed
infrastructure are vulnerable to unforeseen or temporary events
(e.g., natural disasters, sports events). Therefore, it is important
to develop the UAV-enabled beamspace precoding schemes to
deal with emergencies promptly.

A. Related Works and Motivation

There are a recent surge of studies on the use of UAVs for
mmWave communications [5], [30]–[34]. To assess the appli-
cability of UAV deployment in mmWave system, it is critical
to design a comprehensive and efficient hybrid beamforming
(HBF), while also taking into account the effects of mmWave
high attenuation propagation. However, one major drawback
of the hybrid analog/digital precoding is the requirement
of a large number of RF chains and phase shifters, which
lead to extra power consumption and hardware cost [22]. It
should be noted that the hybrid precoding/combining matrices
optimization problem is more difficult and complicated than
the traditional fully digital one [33]–[35]. One effective and
commonly used approach is to exploit the energy-focusing
capability of lens, such hybrid analog/digital transceiver ar-
chitecture is designed as shown in Fig. 1. The key idea is
to exploit the DLA for mmWave MIMO communications.
In [24], a path division multiplexing (PDM) paradigm was

introduced in DLA-based mmWave MIMO system, where
parallel data streams were transmitted over different propaga-
tion paths. In [36], the full-dimensional DLA-based mmWave
system was developed in multi-user mmWave scenarios using
a path division multiple access strategy. In [37], the high-
dimensional DLA for the beamspace MIMO system was
investigated and was then extended to the high-dimensional
multiuser communication scenarios [38]. In beamspace MIMO
system, beam selection schemes often are studied to signifi-
cantly reduce the RF complexity while obtaining near-optimal
performances [7]. However, the same beam at the BS is
likely selected for different users, which may cause inter-user
interference in the beamspace MIMO system. To tackle this
problem, an interference-aware scheme for beam selection was
investigated in [29]. Subsequently, the compressed channel
estimation was studied in mmWave beamspace MIMO system
by exploiting the structure of LAAs [39]. It is worth noting
that the beamspace MIMO system is essentially similar to
the phase shifting and selection in dynamic hybrid precoding
system [40], but the beamspace MIMO uses analog to digital
converters (ADCs) to significantly lower hardware cost and
alleviate the performance bottleneck caused by the multi-
user interference. Therefore, applying DLA to UAV-enabled
wireless communication will have tremendous potential.

However, the hybrid beamspace precoding optimization
scheme for UAV-enabled mmWave MIMO communication is
still an open problem. The primary concern for UAV-enabled
mmWave MIMO system is that the altitude of UAV and the
beam selector with LAAs will make the problem highly non-
convex and difficult to solve. In addition, the joint optimizing
transmit precoder and receive combiners often are coupled
with each other. Most of the existing works focus on simple
decoupling mechanisms, in which the original optimization
problem is divided into transmit and receive precoding sub-
problems, and then focus on the constant modulus constraint
in solving the subproblems. These techniques are effective
but follow a heuristic design way. Moreover, such decoupling
mechanisms may result in a performance loss in some cases, s-
ince a fixed digital precoder is usually not optimal. In addition,
these prior works are restricted to terrestrial communications
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whose results do not consider the presence of UAVs. This
motivates our work to propose more efficient techniques for
UAV-enabled mmWave communications.

B. Main Contributions

The integration of UAV and beamspace MIMO is viewed as
a promising technique in the upcoming mmWave communica-
tion, and hence has drawn great interests recently. Most of the
prior art on UAV-enabled mmWave MIMO system [30]–[34]
does not consider the LAAs to substantially reduce the RF
chains and the power consumption. In particular, these known
approaches are restricted to phase shifters whose results cannot
be extended directly to UAV-enabled mmWave beamspace
MIMO systems. In addition, the works in [29], [36]–[38],
[40] proposed the joint optimizing transmit and receive beam-
forming scheme for mmWave beamspace MIMO system that
minimize mean squared error (MSE) or maximize the sum-
rate. However, these works do not consider the presence of
UAV. Especially, in practical UAV-enabled communication
scenarios, the random movement of the UAV will result in
the appearance and disappearance of scatterers, which lead to
a considerable performance loss. Therefore, jointly optimizing
the altitude of UAV and hybrid beamspace precoding in UAV-
enabled mmWave MIMO communication is a problem worth
investigating and exploring. Motivated by the above studies,
this work proposes the joint optimization of altitude of UAV,
the beam selection and beamspace precoding for UAV-enabled
mmWave MIMO system. The contributions in this article can
be summarized as follows.

• Firstly, an efficient joint optimization approach is pro-
posed for UAV-enabled mmWave beamspace MIMO
system. Apart from the above mentioned challenges in
the existing joint optimization problem, the altitude of
UAV, the digital precoder/combiner variables, the location
planning and altitude of UAV are also considered in the
UAV-enabled mmWave scenario.

• The proposed optimization problem is NP-hard, which
makes it difficult to achieve acceptable results. To tackle
this problem, the penalty dual decomposition (PDD)
method is considered by introducing a series of equality
constraints with auxiliary variables and penalty hyper-
parameters to cope with the coupling digital precod-
ing/combining matrices and beam selector constraints.
After that the optimization problem is reformulated as e-
quivalent augmented Lagrangian (AL) function, and seeks
its minimizer via an AL method, where each subproblem
is solved independently by using the block coordinate
descent (BCD) algorithm.

• To achieve the optimal flight altitude of UAV, a low-
complexity scheme is proposed, where the two cases are
distinguished by checking whether the given altitude is
sufficient for the UAV to serve its associated GTs. Nu-
merical results validate the effectiveness of the proposed
strategy of jointly optimizing the altitude of UAV, beam
selection and the beamspace precoding, and achieve a
satisfactory performance close to that of the fully digital
precoder.

Fig. 2. Illustration of a UAV-enabled hybrid beamspace beamforming for
multiuser mmWave communication systems.

C. Organization and Notation

The remain of this paper is organized as follows. The
Section II presents the system model of a multi-user mmWave
beamspace system along with the joint optimization problem
formulation. In Section III, we present the basic idea and the
optimization procedure. In Section IV, the simulation results
are provided to validate the theoretical findings, followed by
the conclusions in Section V.

Notations: Scalar is denoted by lower-case letters; lower-
and upper-case boldface letters are used for vectors and
matrices, respectively; tr(·) is the trace of a matrix; log(·) is
used for the logarithm; IK denotes the K×K identity matrix;
The superscripts (·)T , (·)H , denote the transpose and conjugate
transpose, respectively; Re{x} and xH are the real part and
conjugate of a complex signal x, respectively; (·)j is denoted
by the j-th column of a matrix; (·)i,j denotes i, j-th element
of a matrix; CN (m,σ2) represents the symmetric complex-
valued Gaussian distributions with mean m and covariance
σ2; ∥ · ∥2, ∥ · ∥F , diag(·) and E[·] denote the Euclidean norm,
Frobenius norm, diagonalization and expectation operators,
respectively.

II. PROBLEM FORMULATION

We describe a downlink mmWave beamspace communica-
tion, where a UAV is deployed as a flying base-station (BS)
to serve K simultaneous GTs in Fig.2. The UAV is equipped
with LAAs. We assume that the UAV with horizontal and
vertical position x = (x(1), x(2)) is hovering at altitude of
h meters above the ground level. The height of each GT is
assumed to be zero compared with the height of the UAV.
zk = (zk(1), zk(2)) is used for the location of GT k. Thus,
the ground coverage area of the UAV depend on the antenna’s
main lobe with radius ∥z − xk∥2 = htanΘ. The UAV with
Nt transmit antennas and NRF

t chains serves a total of K
GTs each of which is equipped with Nr receive antennas. It
is assumed that Ns data streams are transmitted to a receiver,
which are subject to constraints KNs ≤ NRF

t < Nt and
Ns ≤ Nr.

Due to the sparsity and high free-space path loss at mmWave
band, we consider the Rician fading channel model [41].
Different from the conventional low frequency channels, the
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mmWave channels between UAV and GTs are stochastic
fading, and thus the channel matrix from the k-th GT to the
UAV can be expressed as [42]

Ĥk =
√
β0(dk)−α

(√
δ

δ + 1
Gk +

√
1

δ + 1
Ĝk

)
, (1)

where β0 is the channel power gain, dk =
√
∥z− xk∥22 + h2

is the distance between the UAV and GT k and α ≥ 2 denotes
the path loss exponent. Gk is the LoS component of the GT k
with Gk(i, j) = 1, Ĝk denotes the the Rayleigh fading channel
(or NLoS) component of the GT k and δ ≥ 0 is the Rician
factor specifying the power ratio between the dominant LoS
and NLoS components.

A. The Lens-aided mmWave MIMO System

As shown in Fig. 1, the lens antenna arrays are designed on
the UAV-enabled mmWave MIMO system. In this structure,
the signals arriving from different unknown directions will
be focused on the array antennas. Such the lens U can be
characterized as a spatial discrete fourier transform of the
incident signals, which includes the array steering vectors of
Nt covering the entire angular domain as follows [43]

U =
[
a(ϕ1),a(ϕ2), ...,a(ϕNt

)
]H

, (2)

where a(ϕi) =
1√
Nt

[e−2jπϕin]n∈I is the Nt×1 array steering
vector for the spatial direction ϕi, and I = {n − (Nt −
1)/2|n = 0, 1, ..., Nt − 1} is an index set of array elements.
ϕi is the normalized spatial directions [21]

ϕi =
1

Nt

(
i− Nt − 1

2

)
, i = 1, 2, ..., Nt. (3)

Thus, the physical spatial MIMO channel Ĥk in (1) can be
obtained with the Fourier transformation, which is defined as
[24]

H̃k = ĤkU = (dk)
−α

2 Hk. (4)

where Hk =
√

β0δ
δ+1GkU +

√
β0

δ+1ĜkU .
For each GT, the received signal is processed with a digital

combiner Vk ∈ CNr×Ns . Then, the received signal yk at the
k-th GT is formulated as

yk = V H
k H̃kSWc+ V H

k nk = (dk)
−α

2 V H
k HkSWc+ V H

k nk,
(5)

where W = [W1,W2, ...,WK ] ∈ CNRF
t ×KNs is the digital

precoder and Wk ∈ CNRF
t ×Ns , 1 ≤ k ≤ K denotes the digital

precoder for the k-th GT, c = [cT1 , c
T
2 , ..., c

T
K ]T ∈ CKNs×1

denotes the transmitted signal vector for K GTs with nor-
malized power E(ccT ) = I . nk ∼ CN (0, σ2Ik) is additive
white Gaussian noise (AWGN) and the element si,j of beam
selection S ∈ CNt×NRF

t is set to either 0 or 1. It implies that
each column of beam selector has one and only one non-zero
element “1”.

B. Joint Optimization Problem Formulation

Before proceeding with the detailed derivation analysis, an
equivalent (dk)

−α
2 is reformulated to make a model mathe-

matically more tractable, which can be rewritten as (dk)
−α

2 =
(h2 + ∥z − xk∥22)−

α
2 = (h2 + (htanΘ)2)−

α
2 = (hsecΘ)−α.

Thus, the received signal of GT k can be simplified as

yk = (hsecΘ)−αV H
k HkSWc+ V H

k nk. (6)

Under the independence assumption of {ck,nk| k =
1, ...,K}, we can obtain the well-known MMSE combining
matrix Vk by minimizing the MMSE, which is formulated as

Vk =(hsecΘ)α
(
HkSWWHSHHH

k

+ σ2(hsecΘ)2αINr
)
−1

HkSW .
(7)

According to (6), the hybrid precoders optimization problem
is designed by assuming the combining matrix is used in (7).
Thus, the proposed joint optimization problem is to maximize
the spectral efficiency (SE) of the downlink system, which is
formulated as

max
W ,S, h

K∑
k=1

log det

(
INr

+
HkSWWHSHHH

k

σ2(hsecΘ)2α

)
(8a)

s.t. tr
(
WHSHSW

)
≤ P, (8b)

Nt∑
i=1

si,j = 1,

NRF
t∑

j=1

si,j ≤ 1, si,j ∈ {0, 1}, (8c)

hmin ≤ h ≤ hmax, (8d)
(7), (8e)

where P is the total transmit power at the BS. Due to the
effect of obstacle heights and authority regulations of UAVs,
the feasible region of height h is determined as [hmin, hmax].
The constraints

∑NRF
r

j=1 si,j ≤ 1, i = 1, 2, ..., Nt guarantee that
each beam is selected for at most one RF chain, while the
constraints

∑Nt

i=1 si,j = 1, j = 1, 2, ..., NRF
r ensure that each

beam is generated by a single RF chain.
It is worth mentioning that the optimization problem (8) in-

volves joint optimization over three variables along with non-
convex constraints, which is difficult to solve straightforward-
ly. Furthermore, the fixed combining matrix would lead to the
performance reducing. To solve above issues, the equivalent
optimization problem is proposed that transforms the problem
(8) into a more tractable form. Firstly, MSE is introduced as
the objective function for the joint altitude of UAV, the beam
selection and transmit/receive precoding design, which can be
expressed as Ek = E

{
(yk − ck)(yk − ck)

H
}

[44]. Moreover,
since yk and nk are mutually independent, Ek can be further
expressed as

Ek = (hsecΘ)−2αV H
k HkSWWHSHHH

k Vk

− 2(hsecΘ)−αRe
(
V H

k HkSW
)
+ σ2V H

k Vk + INs .
(9)
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By introducing auxiliary weighting matrices ξk, the sum-rate
maximization problem (8) is equivalently expressed as follows

min
W ,V H

k ,S,h,ξk

K∑
k=1

(log det(ξk)− tr(ξkEk) +Ns) (10a)

s.t. tr
(
WHSHSW

)
≤ P, (10b)

NRF
t∑

j=1

si,j ≤ 1,

Nt∑
i=1

si,j = 1, si,j ∈ {0, 1}, (10c)

hmin ≤ h ≤ hmax, (10d)

where ξk is obtained by E−1
k .

Proof : The proof is given in Appendix.
Instead of the original optimization problem (8), a more

tractable minimum weighted mean squared error (MWMSE)
optimization problem (10) is considered. For this kind of com-
binatorial optimization problem, the optimal digital combiner
for each GT are separable, and can be estimated independently.
Therefore, the optimization problem (10) can be decomposed
as the subproblems V H

k = argmin
V H

k

Ek for k = 1, 2, ...,K.

Considering the partial derivative of (10a) with respect to V H
k

and ignoring the constant term ξk, we have

V H
k = WH

k H
H

k

(
HkWWHH

H

k + σ2I
Nr

)−1

, (11)

where Hk = (hsecΘ)−αHkS.
For the digital precoder W at the UAV, the MSE of K

GTs is considered, i.e.,E =
K∑

k=1

Ek. Similar to (9), E can be

expressed as

E =tr
(
V HHWWHH

H
V
)
− tr

(
V HHW

)
+ σ2tr

(
V HV

)
− tr

(
WHH

H
V
)
+KNs.

(12)

where H =
[
H1,H2, ..,HK

]T
, V = diag(V1,V2, ..,VK)

represents the digital combiner for K GTs. According to the
Karush-Kuhn-Tucker (KKT) condition, the optimal solution of
W can be solved by the following closed form

W =
(
H

H
V V HH

)−1

H
H
V . (13)

From (11) and (13), it can observe that the solutions of
V H

k and W depend on each other. To solve this optimization
problem, the classical BCD algorithm is usually used to divide
the MWMSE optimization problem into a sequence of sub-
problems, and optimize each variable separately. However,
when different variables in problem (10) are coupling con-
straints for each other, the BCD algorithm cannot be directly
performed. To tackle the coupling constraint, the penalty
function method will be introduced to solve the minimization
problem (10). Next, the BCD algorithm with penalty function
is proposed to solve the each of subproblems.

III. PROPOSED HYBRID PRECODING DESIGN

The main efforts of this section is solve the optimization
problem (10) by exploiting BCD algorithm based on the aug-
mented Lagrangian method. Note that the transmit precoder

and receive combiners are coupled with each other in the
power constraint, which is difficult to achieve the optimal
solution. To this end, the original problem is divided into a
series of sub-problems: weighting matrices ξk, altitude of UAV
h, digital combiner V H

k , digital precoder W , beam selector S
and solving each independently. The specific procedures are
summarized as follows.

A. Optimization of the Weighting Matrices ξk

Under fixed variables W , V H
k , S and h, the optimization

problem (10) with respect to ξk is rewritten as

min
ξk

K∑
k=1

log det(ξk)− tr(ξkEk). (14)

By taking the derivative of the optimization problem (14)
with respect to ξk to zero. Thus, the optimal ξ∗k can be obtained
as
ξ∗k = E−1

k = [(hsecΘ)−2αV H
k HkSWWHSHHH

k Vk

− 2(hsecΘ)−αRe
(
V H

k HkSW
)
+ σ2V H

k Vk + INs ]
−1.

(15)

B. Optimization of the Altitude h
We investigate the altitude planning of UAV with fixed ξk,

W , V H
k and S. Then, the optimization problem (10) with

respect to h is formulated as

min
h

K∑
k=1

(hsecΘ)−2αAk − (hsecΘ)−αBk + Ck, (16a)

s.t. hmin ≤ h ≤ hmax, (16b)

where Ak = tr
(
ξkV

H
k HkSWWHSHHH

k Vk

)
, Bk =

2tr
(
V H

k HkSW
)
, Ck =

[
σ2tr

(
ξkV

H
k Vk

)
+ ξkINs

]
.

Based on (16), defining function f(x(h)) , Akx2(h) −
Bkx(h) + Ck and x(h) , (hsecΘ)−α, we have

f
′
(x(h)) = 2Akx(h)− Bk. (17)

It follows that the optimal altitude of UAV is obtained in
the following two cases.

1) Case 1: If x(h) > Bk
2Ak

, we have f
′
(x(h)) > 0, and

f(x(h)) is an increasing function when ĥmin ≤ h ≤ hmax.
The optimal value of h is denoted by h∗. Then, it is observed
that the x(h) is a monotonic decreasing function with respect
to h, which yields

h∗ = hmax. (18)

2) Case 2: If x(h) ≤ Bk
2Ak

and ĥmin ≤ h ≤ hmax, f(x(h))
is a monotonically decreasing function. The optimal x(h)∗ is

h∗ = hmin. (19)

After the flight altitude h∗ is obtained, a 2D exhaustive
search is used to achieve the optimal location planning x of
UAV to the optimization problem (16). Symmetries are an
abvious device to cut out portions of the configuration space,
which can reduce the size of the search space by a factor
of about 1/8 [45]. In the revised manuscript, 2D exhaustive
search with symmetries scheme is considered to reduce the
complexity from O(2K) to O(1.85K).
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C. Optimization of the Beam Selection and Beamspace Pre-
coding Matrix

To tackle the coupling constraint, the framework of the
classic penalty dual decomposition (PDD) [46] is adopted to
uncouple the problem (10). Before proceeding to the derivation
of the PDD method, the auxiliary variables {ŝi,j} and Qk are
introduced, which are subject to the constraints of si,j = ŝi,j ,
si,j(1 − ŝi,j) = 0, 0 ≤ ŝi,j ≤ 1 and Qk = SWk.
Let sTi ∈ C1×NRF

t be the i-th row of S, the constraint∑NRF
r

j=1 si,j ≤ 1 is redefined as sTi 1 ≤ 1 and the elements
of vector 1 ∈ CNRF

t ×1 are 1. Furthermore, si,j is represented
as sTi f j , where f j ∈ CNRF

r ×1 is the j-th column of INRF
r

.
According to above notations, the optimization problem (10)
is reformulated as follows

min
Wk,V H

k ,Qk,{ŝi,j}

K∑
k=1

tr (ξkEk) (20a)

s.t.
K∑

k=1

∥Qk∥2F ≤ P, (20b)

Qk = SWk, (20c)

sTi f j(1− ŝi,j) = 0, sTi f j − ŝi,j = 0, (20d)
Nt∑
i=1

sTi f j = 1, (20e)

sTi 1 ≤ 1, 0 ≤ ŝi,j ≤ 1, (20f)

where Ek is given by

Ek = (I − V H
k HkQk)(I − V H

k HkQk)
H + σ2V H

k Vk.

It turns out that the minimization problem (20) is still not
easy to solve. To tackle these difficulties, the BCD algorithm is
proposed to obtain the suboptimal solution. For this purpose,
the above constraint minimization problem is transformed into
an unconstrained one by adopting the penalty function. The
multiplier variables {Lk} is introduced for the constraints
{Qk = SWk} and the problem (20) is given by

min
Wk,V H

k ,Qk,{ŝi,j},sj

K∑
k=1

tr (ξkEk)

+
1

2ρ

K∑
k=1

∥Qk − SWk + ρLk∥2F

+
1

2ρ

NRF
t∑

j=1

(
Nt∑
i=1

sTi f j − 1 + ρµj

)2

+
1

2ρ

Nt∑
i=1

NRF
t∑

j=1

(
sTi f j(1− ŝi,j) + (sTi f j − ŝi,j) + ρλi,j

)2
,

s.t.
K∑

k=1

∥Qk∥2F ≤ P,

sTi 1 ≤ 1, 0 ≤ ŝi,j ≤ 1,
(21)

where ρ is the scalar penalty parameter, λi,j and µj are
Lagrangian multipliers corresponding to the minimum rate
constraints.

In the following, we focus on solving the corresponding
optimization problem (21) by exploiting BCD type algorithms.
The optimization variables are divided into a number of
blocks variables Wk,V

H
k ,Qk and S, such that for each block

the corresponding subproblem can be solved independently.
Specifically, the details about the process of each subproblems
are given as follows.

1) The Subproblem
{
V H

k

}
: We optimize the variables V H

k
with fixing the other variables. The V H

k is optimized through
the following problem

min
V H

k

K∑
k=1

tr (ξkEk) . (22)

And then, using the KKT condition of (22) with respect to
V H

k , the optimal Vk can be derived as a function of Qk as
follows

V H
k =(hsecΘ)αQH

k HH
k

(
HkQkQ

H
k HH

k + σ2(hsecΘ)2αI
)−1

.

(23)

2) The Subproblem w.r.t. Wk: The optimized Wk is achieved
by solving the following minimization problem

min
Wk

∥Qk − SWk + ρLk∥2F . (24)

Similarly, the optimal Wk can be obtained by exploiting the
optimality conditions of first order in (24), which yields

Wk =
(
SHS

)−1
SH (Qk − ρLk) . (25)

3) The Subproblem w.r.t. {Qk}: The subproblems of opti-
mizing {Qk} are updated by solving the following minimiza-
tion problem

min
Qk

K∑
k=1

{
tr (ξkEk) +

1

ρ
∥Qk − SWk + ρLk∥2F

}
s.t.

K∑
k=1

∥Qk∥2F ≤ P.

(26)

By expanding ∥Qk − SWk + ρLk∥2F and some appropriate
rearrangement, the minimization problem (26) can be equiva-
lently rewritten as

min
Qk

K∑
k=1

{
tr (ξkEk) +

1

ρ
tr
(
QH

k Qk
)
− 2

ρ
Re
{
tr
(
QH

k Bk
)}}

s.t.

K∑
k=1

∥Qk∥2F ≤ P,

(27)

where Bk is introduced for simplicity and given by Bk =
(SWk − ρLk).

The above problem (27) is a convex quadratic optimization
problem, which can be solved successively according to the
Lagrangian function. By attaching a Lagrange multiplier η ≥
0, the closed-form solution of the optimal Qk is given by

Qk =
(
I + ρηI + ρHH

k VkξkV
H

k Hk
)−1 (

Bk + 2ρHH
k Vkξk

)
.

(28)
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where η is chosen by using bisection method.
4) The Subproblem w.r.t. {ŝi,j}: The variable {ŝi,j} is

updated by fixing the remaining variables. The minimization
subproblem with respect to {ŝi,j} can be rewritten as

min
ŝi,j

1

2ρ

(
sTi f j(1− ŝi,j) + (sTi f j − ŝi,j) + ρλi,j

)2
(29a)

s.t. 0 ≤ ŝi,j ≤ 1. (29b)

It is not difficult to find that the problem (29a) is a scalar
continuously differentiable function. By enforcing the KKT
condition, the optimization problem (29a) can be solved by

ŝi,j =
2s2i,j + (2 + ρλi,j)si,j + ρλi,j

(1 + si,j)2
. (30)

Recalling that ŝi,j satisfies 0 ≤ ŝi,j ≤ 1, the solution of the
constrained problem (29) is easily given by

s∗i,j =


1, 1 ≤ ŝi,j ,

ŝi,j , 0 < ŝi,j < 1,

0, ŝi,j ≤ 0.

(31)

5) The Subproblem w.r.t. {si}: The subproblem of opti-
mizing {si} can be updated by introducing the Lagrange
multiplier, which yields

min
si

1

2ρ

NRF
t∑

j=1

(
Nt∑
i=1

sTi f j − 1 + ρµj

)2

+
1

2ρ

Nt∑
i=1

NRF
t∑

j=1

(
sTi f j(1− ŝi,j) + (sTi f j − ŝi,j) + ρλi,j

)2
s.t. sTi 1 ≤ 1, i = 1, 2, ..., Nt.

(32)

It is clear that the optimization problem (32) associated
with each si are convex. By examining the KKT optimality
condition, the closed-form solution of optimization problem
(32) with respect to si yields:

si =
(
3I +

NRF
t∑

j=1

(ŝ2i,j − 2ŝi,j)f jfTj
)−1

×

NRF
t∑

j=1

(
ρλi,j(1− ŝi,j) + (

Nt∑
k=i

sTk f j + ρµj − 1)
)

f j

 .

(33)

Finally, the beam selector S can be solved by using the one-
iteration BCD method, which is summarized in Algorithm 1.
The remaining task is to update {Lk}, {λi,j}, {µj} and ρ.
The multiplier variables {Lk}, {λi,j} and {µj} are updated
as follows

L
(n+1)
k = L

(n)
k +

1

ρ(n)
(Qk − SWk) , (34a)

λ
(n+1)
i,j = λ

(n)
i,j +

1

ρ(n)
(
sTi f j(2− ŝi,j)− ŝi,j

)
, (34b)

µ
(n+1)
j = µ

(n)
j +

1

ρ(n)

(
Nt∑
i=1

(sTi 1− 1)

)
(34c)

and the penalty parameter ρ is updated as follows

ρ(n+1) =


κρ(n),

∥∥∥E(n)
k −E

(n−1)
k

∥∥∥2
F∥∥∥E(n−1)

k −E
(n−2)
k

∥∥∥2
F

> ε,

ρ(n) , otherwise,

(35)

where κ > 0, ε < 1 are used to control the penalty param-
eter ρ. The detailed description for solving the optimization
problem (10) is provided in Algorithm 2.

Algorithm 1 Solving (32) by BCD algorithm
1: For: i = 1, ..., Nt.
2: Update the si according to (33);
3: Assign si to the i-th row of S;
4: End For

Algorithm 2 The proposed joint optimization algorithm
1: Input: the maximum transmit power P , and channel Hk

for 1 ≤ k ≤ K.
2: Initialization: n = 1, K = {1, 2, ...,K}, primal variables{

Vk,W ,Hk,Qk, ŝi,j , sj
}

, initial h = hmin, dual vari-
ables

{
L

(n)
k , λ

(n)
i,j , µ

(n)
j , ρ(n)

}
;

3: while termination condition is not reached do
4: Update {ξk} according to (15);
5: Update the altitude h according to (16);
6: Update {Vk} according to (23);
7: Update W according to (25);
8: Update {Qk} according to (28);
9: Update {ŝi,j} according to (31);

10: Update {sj} according to (33);
11: Update {L(n)

k , λ
(n)
i,j , µ

(n)
j , ρ(n)} according to (34) (35);

12: end while
13: Output analog part S and digital part W , Vk, h.

We estimate the computational complexity of the pro-
posed Algorithm 2 by computing the number of required
multiplications. The main computational complexity of Al-
gorithm 2 is caused by solving the augmented Lagrange
problem (10) which consists of four sub-problems, i.e., (14),
(16), (22), (24), (27), (29) and (32). The complexities of
solving (14) is O(N3

s + NrN
2
s ). The complexities of solv-

ing (16) is O(N3
s + 1.85K). The complexities of solv-

ing (22), (24), (27) and (29) are O(KNrNsN
RF
t + N3

r ),
O((NRF

t )2Nt + (NRF
t )3 + KNtNsN

RF
t ), O((NRF

t )3 +
(NRF

t )2Nt +NRF
t NsNt) and O(NtN

RF
t ). The complexities

of solving (32) is O
(
Nt((N

RF
t )2+(NRF

t )3)
)
. Therefore, the

overall complexity of Algorithm 2 is O
(
I(N3

s + NrN
2
s +

1.85K + N2
r + (NRF

t )2Nt + Nt(N
RF
t )3 + KNtNsN

RF
t +

KNtN
RF
t )

)
, where I is the numbers of iterations.

Finally, the issue of the convergence of Algorithm 2 is con-
sidered. The main convergence result is provided in Theorem
1.

Theorem 1. Let
{
h,Vk,W ,Hk, ŝi,j ,Qk, sj ,

}
be the se-

quence generated by Algorithm 2. If the Robinson′s condition
holds for the optimization problem (10). Then, there exists one
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Fig. 3. Achievable SE comparison versus the the number of iterations.
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Fig. 4. The constraint violation comparison versus the the number of
iterations.

limit point of sequence of iterations generated by the BCD
algorithm, which is a stationary point for the optimization
problem (10).

Proof: The detailed proof process of convergence for a
general algorithmic framework was provided in [47], [48].

IV. SIMULATION RESULTS

In this section, simulation results are provided to analyse the
effectiveness of the proposed UAV-enabled mmWave MIMO
system with the lens antenna arrays. We investigate the SE
performance of the proposed UAV-enabled beamspace MIMO
scheme and make comparisons with several recent works. Un-
less specified otherwise, we assume that the UAV is equipped
with a DLA to serve K = 4 GTs. The antenna number of
UAV is Nt = 64 and the number of RF chains is NRF

t = 12.
The channel power gain with the reference distance d0 = 1m
is β0 = −40 dB. The GTs are randomly generated and located
in the cell of radius of 150 meters. The distance of antenna
elements are separated by half of a wavelength. Because of
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Fig. 5. Achievable SE comparison versus the SNR.
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Fig. 6. Achievable SE comparison versus the number of antennas.

the constraint from the common law, usual practices and
conventions, we set the minimum altitude of UAV hmin = 20m
and the maximum altitude of UAV hmax = 120m respectively.
All simulation results are done in a Monte Carlo fashion with
1000 realizations.

A. Convergence Analysis

The convergence of the proposed algorithm is investigated,
as shown in Fig. 3 and 4. From the Fig. 3, it can be observed
that after 80 iterations, the value of SE tends to be stable.
From these results, we conclude that the proposed algorithm
has a rapid convergence. In Fig. 4, we show the value of the

constraint violation
K∑

k=1

∥∥Qk −HkW
∥∥2
F

versus the number of

iterations for the proposed algorithm. It can be observed that
the constraint violation reduces to a threshold ϵ = 10−4, which
indicates that the optimal solution has essentially satisfied with
the equality constraints (20c) of the optimization problem (20).
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B. Spectral Efficiency Evaluation

Next, the SE achieved by all competing algorithms are
investigated, where the number of RF chains and the data
streams are set to the same. This is the worst case, since the
number of RF chains cannot be smaller than data streams
Ns, which also satisfies the constraints in Section II. For
comparison, the performance of the full-digital ZF precoding
scheme acts as a comparison benchmark precoding scheme
(labeled by “FD-ZF”), and we compare the proposed scheme
with the PDM [24] and OMP algorithm [49]. As shown in
Fig. 5, the existing OMP algorithm achieves a very low SE
in all competing methods. On the contrary, the SE of the
proposed scheme is quite close to that of the fully digital
ZF precoding scheme. This implies that an effective result
can be obtained by the proposed scheme to approximate the
fully digital ZF precoding, even though the RF chains are
limited. Furthermore, the performance of the analog precoding
structures reveals that only using phase shifters will inevitably
lead to some non-negligible performance loss.

In Fig. 6, we further analyze the achievable SE comparison
for different numbers of antennas. It is shown that when the
number of BS antennas Nt grows large, the SE increases
without limit, if perfect hardware is assumed while it appears
ceilings in practice. It is worth mentioning that when the
number of BS antennas is small, the advantage of the proposed
scheme is not obvious. In particular, we can observe the OMP,
PDM algorithm and the proposed method converge the same
SE value with the number of BS antennas Nt = 4.

To verify the low hardware cost of the proposed method, the
achievable SE of system versus the number of RF chains NRF

t

has been shown in Fig. 7, where the number of RF chains NRF
t

increases from 5 to 11. It is observed that the performance
of all the schemes in general improves with the increase of
available RF chains. Interestingly, when the number of NRF

t

exceeds 8, the improvement of the proposed scheme is trivial.
It is interesting that for all the schemes under consideration,
the proposed scheme is equiped with only 6 RF chains to
achieve over 95 percent of SE in the full digital ZF precoding
structure, but others competing methods need more ones.
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FD-ZF Precoding (Above: K = 10, Below: K = 6).

C. The Performance Evaluation of Different GTs

Finally, we analyze the the achievable SE for the afore-
mentioned schemes versus different numbers of GTs, where
the number of GT increases from 2 to 16. In Fig. 8, it can
be observed that except the analog precoding scheme, all the
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Fig. 10. Achievable SE comparison versus the altitude of UAV h.

other algorithms perform very close to each other under the
small number of GTs. The performance of all these schemes
increases monotonically with the number of GTs. Besides,
the performance gap between the proposed scheme and PDM
algorithm would escalate with the increasing number of GTs,
which indicates that the proposed scheme has strong potential
for large number of GTs scenario.

Fig. 9 illustrates the achievable spectrum efficiency of
two existing precoding schemes and the proposed precoding
scheme, respectively. It shows that our proposed scheme
with LAAs achieves a significant improvement than the con-
ventional analog precoding scheme. Compared to the full
digital ZF precoding approach, the proposed precoders have
tolerable system performance loss. However, the full digital
ZF precoding scheme need more RF chains cost, which is not
suitable for compact and lightweight design in UAV-enabled
beamspace mmWave MIMO system.

D. The Altitude Optimization of UAV

To verify the necessity of altitude optimization of UAV, we
refer the 3GPP specification [50], and the path loss is randomly
determined by LoS and NLoS links according to probabilities.
Specifically, the probability of the LOS is assumed as (36) and
the the probability of the NLOS link is given by PNLOS = 1−
PLOS. The achievable SE of the proposed scheme versus UAV
altitude h is illustrated in Fig. 10, where the h value varies
from 40 to 130 m and other parameters are kept unchanged.
It can be seen that the achievable SE increases first and then
decreases as h increases. This is because that the probability
of LoS link between the UAV and GT increases as the UAV
height increasing. Therefore, the performance can be improved
by increasing the UAV flight altitude within a certain range.
However, when the altitude h is sufficiently large, the distance
between the UAV and the GT is increasing significantly, which
results in high propagation path loss. Therefore, the altitude
of UAV needs to be determined reasonably and carefully. To
verify this issue, the altitude of UAV versus the number of RF
chains/SNR/Users are provided in Fig. 11. The results show
that the altitude of UAV h reduces when the number of RF
chains/users or SNR value are higher than a threshold value.
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V. CONCLUSION

In this paper, the UAV with LAAs is considered to support
multi-user transmission in UAV-enabled mmWave beamspace
MIMO system. In particular, we focus on jointly optimizing
altitude of UAV, transmit precoder, receive combiners as well
as beam selector for the sum-rate maximization problem.
The original problem is a non-convex, and transmit and
receive variables are coupled with each other, which results
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PLOS =


1 , hsecΘ ≤ d0,

d0
hsecΘ

+ exp

{(−hsecΘ

υ

)(
1− d0

hsecΘ

)}
, hsecΘ > d0.

(36)

in extremely strenuous to solve the proposed optimization
problem. To solve this limitation, the equivalent optimization
problem with the weighted MSE criterion is developed to
solve the original non-convex problem. To tackle the coupling
constraints problem, an efficient algorithm is proposed based
on the principle of alternating optimization, which transforms
the original coupling constraints problem into a series of
subproblems with separable constraints. Simulation results
demonstrate that the proposed algorithm can achieve satisfac-
tory performance and could converge in a few iterations.

APPENDIX A
THE PROOF OF THE PROBLEM (10)

Proof: Let Hk = (hsecΘ)−αHkS for simplicity. The
optimization problem (10) can be rewritten as

min
W ,Vk,S,ξk,h

K∑
k=1

(log det(ξk)− tr(ξkEk) +Ns) (37a)

s.t.

Nt∑
i=1

si,j = 1,

NRF
r∑

j=1

si,j ≤ 1, si,j ∈ {0, 1}, (37b)

hmin ≤ h ≤ hmax, (37c)
(7), (37d)

where

Ek =
(
INr

− V H
k HW

) (
INr

− V H
k HW

)H
+ σ2V H

k Vk.

Let f(ξk) = log det(ξk)− tr(ξkEk)+Ns for simplicity. The
optimal ξk is updated by taking the derivative of f(ξk), we
have

∂ (log det(ξk)− tr(ξkEk))

∂ξk
= 0. (38)

After that, we can obtain the optimal ξk as

ξ∗k = E−1
k . (39)

Similarly, considering Hk = (hsecΘ)−αHkS in (37d), the
combining matrix Vk can be rewritten as

Vk = (HkWWHH
H

k + σ2INr
)−1HkW . (40)

Plugging Vk into (39) yields

ξ∗k =
(
INr

−WHH
H

k J−1
k HkW

)−1

, (41)

where Jk = σ2INr
+HkWWHH

H

k .
Applying the Woodbury matrix identity to (41), f(ξk) is

recast as

f(ξk) = log det
(
E−1

k

)
− tr(ξ∗k Ek) +Ns

= log det
(
I

Nr
−WHH

H

k J−1
k HkW

)−1

.
(42)

Thus, we have the following equivalent optimization prob-
lem

log det(ξk) = log det
((

I
Nr

−WHH
H

k J−1HkW
)−1
)

(a)
= log det

(
INr

+ σ−2HkWWHH
H

k

)
(b)
= log det

(
I

Nr
+

HkSWWHSHHH
k

σ2(hsecΘ)2α

)
,

(43)

where (a) is due to the identity det(I + XY ) = det(I +
Y X) and Woodbury matrix identity; (b) is from that Hk =
(hsecΘ)−αHkS. Therefore, the optimization problem (10) is
equivalent to the optimization problem (8) and the proof is
completed.
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