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ABSTRACT

The calibration and validation of scientific analysis in simulations is a fundamental tool to ensure unbiased and robust results in observational
cosmology. In particular, mock galaxy catalogs are a crucial resource to achieve these goals in the measurement of baryon acoustic oscillation
(BAO) in the clustering of galaxies. Here we present a set of 1952 galaxy mock catalogs designed to mimic the Dark Energy Survey Year 3 BAO
sample over its full photometric redshift range 0.6 < zphoto < 1.1. The mocks are based upon 488 ICE-COLA fast N-body simulations of full-sky
light cones and were created by populating halos with galaxies, using a hybrid halo occupation distribution – halo abundance matching model. This
model has ten free parameters, which were determined, for the first time, using an automatic likelihood minimization procedure. We also introduced
a novel technique to assign photometric redshift for simulated galaxies, following a two-dimensional probability distribution with VIMOS Public
Extragalactic Redshift Survey data. The calibration was designed to match the observed abundance of galaxies as a function of photometric
redshift, the distribution of photometric redshift errors, and the clustering amplitude on scales smaller than those used for BAO measurements.
An exhaustive analysis was done to ensure that the mocks reproduce the input properties. Finally, mocks were tested by comparing the angular
correlation function w(θ), angular power spectrum C`, and projected clustering ξp(r⊥) to theoretical predictions and data. The impact of volume
replication in the estimate of the covariance is also investigated. The success in accurately reproducing the photometric redshift uncertainties
and the galaxy clustering as a function of redshift render this mock creation pipeline as a benchmark for future analyses of photometric galaxy
surveys.
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1. Introduction

Over recent years, a large international effort has been focused
on constraining the dark energy properties, measuring the
cosmological parameters with high accuracy, and testing the
Lambda cold dark matter (ΛCDM) paradigm. This led to the
development of new techniques and data combinations that allow
tighter constraints: cosmic microwave background (CMB); Type
Ia supernovae (SNe Ia); galaxy clustering (GC); weak lens-
ing (WL); baryon acoustic oscillation (BAO); etc. Especially in
recent years, BAO (Peebles & Yu 1970; Sunyaev & Zeldovich
1970) has become a powerful alternative to building the
Hubble diagram, which now allows one estimate cosmologi-
cal parameters by itself (Percival et al. 2007; Beutler et al. 2011;
Alam et al. 2021).

Most of the probes mentioned before require the measure-
ment of redshifts with high fidelity, giving more significance to

spectroscopic surveys (e.g., the WFC3 Infrared Spectroscopic
Parallel Survey – WISP1, Baryon Oscillation Spectroscopic Sur-
vey – BOSS2, Euclid3, Wide-Field Infrared Survey Telescope
– WFIRST4, Dark Energy Spectroscopic Instrument – DESI5).
However, photometric surveys have some advantages over the
spectroscopic ones. In particular, every observed galaxy can
be used in the cosmological analysis although in practice is
necessary to select a galaxy population that presents a promi-
nent spectral feature that can be captured with broadband fil-
ters. Besides, many successful techniques are used to estimate
true redshifts given observed photometric redshifts (photo-z)

1 http://wisps.ipac.caltech.edu
2 http://www.sdss3.org/surveys/boss.php
3 https://www.euclid-ec.org/
4 https://wfirst.gsfc.nasa.gov/
5 https://www.desi.lbl.gov/
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within a given uncertainty. Then, the statistical power makes
imaging surveys almost as competitive as spectroscopic sur-
veys in the measurement of galaxy clustering. One example of
these techniques is the Directional Neighbourhood Fitting (DNF,
De Vicente et al. 2016), which stands out as one of the most
robust and accurate determinations of photo-z, and is thus used
in several photometric surveys (see e.g., Drlica-Wagner et al.
2018; Sevilla-Noarbe et al. 2021; Euclid Collaboration 2020).
The Dark Energy Survey (DES)6 is a badge example. DES
has mapped the southern sky for six years covering an area of
∼5000 deg2 and has recorded data from a few hundred million
distant galaxies. These numbers will be pushed even beyond by
future projects (e.g., the Legacy Survey of Space and Time –
Rubin LSST7, Spectro-Photometer for the History of the Uni-
verse, Epoch of Reionization, and Ices Explorer – SPHEREx8).

For the large data sets that these projects produce, the calibra-
tion and replication of scientific analysis in simulations previous
to unblinding (procedure explained below), is a fundamental tool
to ensure unbiased and robust results. This task requires the fulfill-
ment of two requirements: (i) a realistic simulation of the observed
cosmological volume with a final galaxy catalog that mimics the
data and (ii) a large number of realizations varying the initial con-
ditions that allows a full control of statistical uncertainties. The
negative effects of introducing simulated volume replications to
achieve the first requisite should not be underestimated. For exam-
ple, the consequence of over-estimation of the covariances was
found in the mocks used for this work. Accomplishing the second
requirement by using pure N-body simulations is computation-
ally impossible when the number of needed realizations is hun-
dreds or thousands. Using approximate methods allows to have
the desired number of runs with less computational resources (see
e.g., Coles & Jones 1991; Scoccimarro & Sheth 2002; Koda et al.
2016; Avila et al. 2015; Chuang et al. 2015a; Izard et al. 2018).
All these methods reduce the resolution of the simulation on
small scales in exchange for computing speed. But when we focus
our study on BAO scales, as the purpose of this work, it has
been shown that the accuracy of these approximate methods is
more than sufficient for a precise analysis (Chuang et al. 2015b;
Lippich et al. 2019; Blot et al. 2021). For example, Izard et al.
(2016) demonstrates that the ICE-COLA method yields a mat-
ter power spectrum within 1% for k . 1 h Mpc−1 and a halo mass
function within 5% of those in the N-body. Nowadays, all cosmo-
logical surveys need to develop their own galaxy mock catalogs in
order to properly simulate the characteristics of the data. BOSS,
eBOSS and the first year of DES data (DES Y1) for example
have designed their own mocks (Manera et al. 2013; Chuang et al.
2015a,b; Kitaura et al. 2016; Avila et al. 2018; Zhao et al. 2021).
The BAO analysis using the first three years of DES data (DES Y3)
is structured in three papers: Carnero Rosell et al. (2022) presents
a systematics analysis of the galaxy sample for DES Y3 BAO mea-
surement, this work describes the simulations used in the anal-
ysis and the main DES Y3 BAO paper presents the angular dis-
tance constrains and cosmology in DES Collaboration (2021). An
analogous work was made for DES Y1: the DES Y1 sample was
presented in Crocce et al. (2019), a description of the mocks was
shown in Avila et al. (2018) and DES Collaboration (2019) as the
main DES Y1 BAO paper including a∼4% precision DA measure-
ment. In this case, the work was accompanied by several method
papers (Chan et al. 2018; Ross et al. 2017; Camacho et al. 2019).

6 https://www.darkenergysurvey.org
7 https://www.lsst.org
8 http://spherex.caltech.edu/

A common process in the analysis of new Surveys data
release is to blind the data in certain ways. The implementa-
tion of a rigorous process of unblinding can reduce or eliminate
confirmation bias. A strict blinding strategy has been applied to
this work. The final set of mocks, presented here, were com-
pleted before computing α (BAO shift parameter) on the final
data vector, and before plotting the angular two-point corre-
lation function or clustering C` of the DES Y3 sample. Only
three pre-unblinding values of the angular clustering on scales
lower than one degree (unused for the BAO analysis) were pro-
vided to calibrate the clustering amplitude of the mocks. Once
the mocks were done and the data passed through the rigorous
process of unblinding we could compare the clustering both in
configuration and harmonic space of the mocks with the final
post-unblinding measurements of the data. We refer the inter-
ested reader to DES Collaboration (2021) for more details about
the unblinding process of the data.

This paper is arranged as follows. In Sect. 2 we briefly
describe the reference sample. Then, Sect. 3 describes the main
features of the used dark matter halo catalogs. On the one hand,
we present the fast simulation used to perform the mocks for the
analysis, and on the other hand, our benchmark pure N-body
simulation. In Sect. 4 we detail step by step the process we
followed to create our galaxy catalogs, which match the main
properties of the data. One of the most important aspects of
our pipeline is the automatic calibration, which is exhaustively
detailed in Sect. 5. After describing how the mocks are created,
in Sect. 6 we compare them with the real data and theoretical
models in terms of covariance matrices and clustering measure-
ments, both in angular configuration space and angular harmonic
space. Additionally, in Sect. 7 we investigate the effect of repli-
cated structures in the mocks. Finally, we conclude in Sect. 8
with our summary and conclusions.

2. Reference data

The BAO analysis for the DES Y3 data set is based on the
Y3 GOLD catalog (Sevilla-Noarbe et al. 2021), which contains
nearly 390 million objects, with a depth reaching S/N ∼ 10 for
extended objects up to i < 22.3 (AB), and top-of-the-atmosphere
photometric accuracy under 3 mmag. This data set has been com-
piled from the coaddition of nearly 40 000 exposures in the grizY
optical and near-infrared bands taken during the first three years
of observations. It used the DECam instrument (Flaugher et al.
2015) from the Blanco Telescope in Cerro Tololo (Chile) and
covers 5000 deg2 of the southern hemisphere.

The catalog includes positional, photometric, and morpho-
logical information, using a multi-epoch, multi-band fitting pro-
cedure of the object’s shape in every exposure where the object
is present (the Single Object Fitting, or SOF, method). This is the
basis of all the measurements of the object mentioned before.
In addition, the Y3 GOLD catalog contains flagging information
to assess the quality of the measured object, and ancillary sur-
vey information about low-quality regions in the sky, and survey
properties in general (seeing, airmass, etc).

From the Y3 GOLD, we select a sample of red galaxies used
to measure the BAO scale, with a color selection similar to the
DES Y1 analysis presented in Crocce et al. (2019). The DES Y3
selection shows an increase in the number density of galaxies
(due to improvements on the DESDM9 reduction), which allows
us to extend the redshift range of the analysis to photometric

9 DES Data Management in National Center for Supercomputing
Applications (NCSA, Morganson et al. 2018).
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Table 1. Selection process to create the BAO sample in DES Y3.

Keyword Cut

Gold Observations present in the Y3 GOLD catalog
Quality FLAGS_GOLD=0
Footprint 4108.47 deg2

Color selection (i − z) + 2.0(r − i) > 1.7
Completeness cut i < 22.3
Flux selection 17.5 < i < 19 + 3 Z_MEAN
Star-galaxy separation EXTENDED_CLASS_MASH_SOF=3
DNF photo-z range [0.6−1.1]

Notes. We refer to Sevilla-Noarbe et al. (2021) and
Carnero Rosell et al. (2022) and online documentation for details
about the meaning of the cuts.

Fig. 1. DES Y3 sample footprint, covering 4108.47 deg2 of the southern
sky.

redshift zphoto < 1.1 with i < 22.3 (AB). The selection applied to
create the sample is summarized in Table 1 (details can be found
in Carnero Rosell et al. 2022).

Furthermore, the footprint mask is selected accordingly
removing regions with depth less than 22.3, plus additional qual-
ity cuts explained in the aforementioned references. We use all
HEALPix maps with NSIDE=4096 found in the online release10.
In Fig. 1, we show the angular distribution of the BAO footprint,
covering 4108.47 deg2.

One of the most critical aspects of any photometric anal-
ysis is the measurement of the redshift. For the sample, we
characterize the N(z) (the true redshift distribution) in each
tomographic bin using the “VIMOS Public Extragalactic Red-
shift Survey” (Guzzo et al. 2014, VIPERS) catalog as a refer-
ence, since it is a complete sample from redshift above z = 0.5 up
to i = 22.5 (AB). VIPERS observed in two fields, named W1 and
W4, both overlapping DES. The total overlap area is 16.324 deg2

This provides, after several selection processes described in
Carnero Rosell et al. (2022), a final sample of 8362 galaxies with
spectroscopic redshift, zVIPERS, available for redshift calibration.
Carnero Rosell et al. (2022) use VIPERS to validate the perfor-
mance of the photometric redshift (called Z_MEAN in the DES
catalogs) and to estimate the true redshift (Z_MC) distribution
of the DES Y3 sample. DNF predicts Z_MEAN as the best-value
in the fitted hyper-plane and also defines Z_MC as the closest
friend. In this work, we use these overlapping galaxies for the

10 https://www.darkenergysurvey.org/the-des-project/
data-access/

opposite purpose, assigning zphoto to the simulated galaxies. In
other words, we re-sample the zspec vs zphoto diagram found from
VIPERS to assign zphoto to mock galaxies.

3. Halo light cone catalogs

In this section, we describe the halo catalogs from dark matter sim-
ulations used in this paper. We start by describing the ICE-COLA
fast simulations and then our benchmark pure N-body simulation,
MICE Grand Challenge. It is important to make clear that both
sets of simulations share the same cosmology, mass resolution,
and halos found with a Friends of Friends algorithm.

3.1. ICE-COLA fast simulations

To build a large number of mocks we use a set of 488
fast N-body simulations generated with the ICE-COLA code
(Izard et al. 2016). The COmoving Lagrangian Acceleration
(COLA) method solves for the evolution of the matter den-
sity field using second-order Lagrangian Perturbation Theory
(2LPT) combined with a Particle-Mesh (PM) solver to integrate
the particle orbits at small scales, where 2LPT start to deviate
from the full N-body solution (Tassev et al. 2013; Koda et al.
2016). The ICE-COLA code extends on this method to pro-
duce on-the-fly light cone halo catalogs and weak lensing maps
(Izard et al. 2018).

The simulations use 20483 particles in a box of size of
1536 Mpc h−1 to match the mass resolution of the MICE Grand
Challenge simulation (see Sect. 3.2). Here we use the optimal
code parameters found in Izard et al. (2016), namely 40 time-
steps, a starting redshift of zini = 19 and a PM grid of 27 times the
number of particles. Halos are found with a Friends of Friends
(FOF) algorithm with linking length b = 0.2. We refer the inter-
ested readers to Koda et al. (2016) and Izard et al. (2016) for
more complex analysis and thorough validation of the method.

It is important to know the limitations of fast simulations
to be able to use them in the range of scales where they agree
with N-body, but also (moderately) beyond those scales with a
systematic error that can be quantified (i.e, under control).

3.2. MICE Grand Challenge simulation

As was mentioned before, it is really important to validate the
range of scales where we can trust fast simulations. In our case,
we use the MICE Grand Challenge11 (Fosalba et al. 2015b,a;
Crocce et al. 2015, MICE hereafter), simulation as the bench-
mark N-body run. MICE is an all-sky light cone N-body sim-
ulation evolving 40963 dark-matter particles in a ∼29 Gpc3 h−3

comoving volume. The assumed cosmology corresponds to the
best-fit of WMAP five-year data (Komatsu et al. 2009). This is
consistent with a flat ΛCDM model with Ωm = 0.25, ΩΛ = 0.75,
Ωb = 0.044, ns = 0.95, σ8 = 0.8 and h = 0.7.

As our reference simulation, its cosmological parameters
are also used for our ICE-COLA runs, where only the initial
condition changes among the 488 fast simulations. An exhaus-
tive validation of the simulations used here has been done in
Izard et al. (2016), finding a matter power spectrum within 1%
for k . 1 h Mpc−1 and demonstrating that ICE-COLA fast sim-
ulation can perfectly be used for BAO purposes. In Fig. 2, we
compare the halo masses and the clustering for redshift z = 0.5
(blue) and z = 1 (red). The top panel shows the ratio between the
MICE and the ICE-COLA halo mass function, the lowest halo
11 More information is available at http://maia.ice.cat/mice/
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Fig. 2. Top panel: ratio of the Halo Mass Function between MICE and
ICE-COLA. Blue for redshift z = 0.5 and red for z = 1. Shaded areas
correspond to the standar deviation of the 488 ICE-COLA runs. Bottom
panel: ratio between the MICE and the ICE-COLA ACF for a sample
of halos with Mhalo > 1.46 × 1012 M�.

mass plotted here correspond to the mass limit of the ICE-COLA
mock used in this paper, 1.46×1012 M� (50 particles). Both sim-
ulations are consistent, as was found in Izard et al. (2016), within
an accuracy of ∼5%. The bottom panel of Fig. 2 shows the ratio
between the MICE and the ICE-COLA angular two-point cor-
relation function (ACF). In this case, the clustering is calculated
using halos with more than 50 particles in a full-octant comoving
output shell of width 125 Mpc and 166 Mpc for redshift z = 0.5
and z = 1, respectively. This threshold of 50 particles is not set
deliberately but is a resulting minimum number of particles of
the halos of the mocks presented in this work. For clustering, the
accuracy is within ∼5% up to scales of one degree. For higher
angular distances the error increase, especially for redshift z = 1
where these scales correspond to larger 3D distances.

4. Galaxy light cone catalogs

With the simulations and the corresponding ICE-COLA halo
catalogs presented in the previous section, we can start now
by describing, step by step, the mechanism used to construct
a galaxy mock beginning with a halo catalog. Some of our
recipes described below closely follows Carretero et al. (2015)
and we use a similar hybrid Halo Occupation Distribution –
Halo Abundance Matching model modeling strategy presented
by Avila et al. (2018) in the analysis of the DES Y1 data release.
Before going into the details, it is important to remark that sim-
ulated box replications are needed to have light cones reach-
ing higher redshifts than 0.6 (corresponding limiting redshift
if we set the light cone origin at the center of a box-size of
1 536 Mpc h−1) and covering the DES Y3 footprint. Four boxes
on each Cartesian direction are needed (a total of 64 simulated
boxes) to create a full-sky light cone up to redshift ∼1.4. The
implications that these replications have on the analysis are dis-
cussed in more detail in Sect. 7.

Here, we create a mock of galaxies for BAO analysis from a
halo catalog of a fast simulation. However, the described proce-
dure can be applied to any sort of halo catalog to mimic any kind
of galaxies samples. A key aspect that makes this pipeline suc-
cessful is the inclusion of an automatic calibration, as discussed
in Sect. 5.

4.1. Halo occupation distribution

The relation between galaxies and halos is not univocal, as one
halo can harbor more than one galaxy. Furthermore, the more
massive the halo the higher the number of galaxies it has, reach-
ing quantities of hundreds of galaxies in a single halo. The halo
occupation distribution (HOD; Jing et al. 1998; Benson et al.
2000; Seljak 2000), describes the relation between halos and
galaxies, in terms of several parameters. In other words, the
HOD tells us how many galaxies a halo of a given mass has on
average, 〈N |Mhalo〉.

Two different functions are needed to describe the HOD of a
sample of galaxies. One for the central galaxies and another for
satellites as they model clustering on different scales in the halo
model. Centrals shape large scales (halo-halo correlations) and
satellite small scales (intra-halo correlations). The complexity
of the function can be as high as desired, in order to match the
behavior of the sample with higher accuracy. We focus here on
the large-scale structure, leaving aside a complex function that
would allow us to model the small scales. Therefore, we assign
to each halo, one central galaxy

Ncent = 1, (1)

and a number of satellite galaxies following a Poisson distribu-
tion with mean

Nsat =
Mhalo

M1
, (2)

where Mhalo is the mass of the halo, and M1 is a free HOD param-
eter. This simple HOD is used to populate all halos with galax-
ies in the light cone. However, the particular sample selection
is a sub sample of this generic HOD assignment. Therefore, the
final values of Ncent(Mhalo) and Nsat(Mhalo) that compose the sam-
ple of the mocks differs from the expression defined on Eqs. (1)
and (2).

Once Ncent and Nsat values are determined, the next step is
to populate the halos with galaxies following these HOD quan-
tities. One central galaxy is placed in the center of each halo
and the velocity is assumed to be equal to its host halo. On the
other hand, satellites galaxies are distributed inside the halo fol-
lowing a spherical NFW (Navarro et al. 1996) profile. Concen-
trations, needed to model the NFW density profile, are taken
from Cooray & Sheth (2002) where the inputs are the mass
and redshift of halos. We also model the velocity of galaxies
with simplistic assumptions, using a simple Gaussian distribu-
tion centered at the velocity of the host halo and assuming a
standard deviation proportional to the velocity dispersion of it
(Sheth & Diaferio 2001; Carretero et al. 2015).

This first free parameter, M1, allows to control the clustering:
by increasing the parameter, we undersample the most massive
halos decreasing the linear bias. It also introduces a 1-halo term
that fades away as we increase M1. More details can be found
in Avila et al. (2018). Figure 3 shows the evolution of M1 over
the five tomographic bins where we assume a linear interpolation
among these values. In Sect. 5 is explained in detail how these
values are obtained.

At this point, we already have a general galaxy catalog with
positions and velocities, made by populating all halos on the
light cone. The next step is to introduce a second free parame-
ter by setting pseudo luminosities. This second HOD parameter
allows setting a sample by selecting only high luminosity galax-
ies from the general catalog.
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Fig. 3. Evolution of the first HOD free parameter M1. One value for each
tomographic bin. Dashed line correspond to the interpolation assumed
for all the redshift range.

4.2. Pseudo-luminosity assignment

The best tracers for BAO signal are brightest galaxies (see e.g.,
Comparat et al. 2013) and they represent a few percent of the
total number of galaxies. Not all galaxies resulting from the pre-
vious step 4.1 will enter into our selection to perform the BAO
analysis. Therefore, this step is needed to select that few percent
of galaxies.

An efficient way to select the tracers of our mocks is by
assigning a pseudo luminosity lp to all galaxies and then select-
ing the most luminous ones. To set the luminosities we rely on
the halo abundance matching (HAM) techniques (Kravtsov et al.
2004; Conroy et al. 2006; Guo et al. 2010), where it is assumed
that the most massive (luminous) galaxy lives in the most mas-
sive halo, the second most massive galaxy lives in the second
most massive halo, and so on. On top of the mean (determinis-
tic) relation between mass and luminosity assumed in the AM
technique, we add some scattering to make this matching closer
to observations. We model lp with a Gaussian scatter around the
halo mass Mhalo in logarithmic scales:

log(lp) = log(Mhalo) + ∆LM.R
gauss
µ=0,σ=1, (3)

where ∆LM is our second free parameter which controls the
amount of scatter. We note that lp is modeled in arbitrary scales.
The purposes of defining a luminosity for galaxies are two:
1. It allows one to match the abundance and redshift distribu-

tion of data by selecting the most luminous galaxies. More
details on Sect. 4.3.

2. Its definition, and therefore the introduction of the second
free parameter ∆LM, also influences the clustering. As we
decrease this value, lower mass halos go out of our selection
and higher mass halos enter it, effectively increasing the bias.

Figure 4 shows the evolution of this scatter parameter ∆LM as a
function of redshift. In the same way as M1, we assume for ∆LM
one value for each tomographic bin and applying linear interpo-
lation among these values as a function of redshift. The model-
ing explained in this subsection follows the same procedure used
in Avila et al. (2018). As was mentioned earlier, in Sect. 5 it is
explained how these values are obtained.

4.3. Photometric redshifts

This is perhaps one of the most dedicated and challenging steps
of the mock creation pipeline. For the ICE-COLA mocks we
know the true redshift and we need to model the observed
one for each simulated galaxy, contrary to what happens for
observations. DES is a photometric survey, therefore the mea-
surement of the redshift has a precision much lower than spectro-
scopic surveys. For example, Carnero Rosell et al. (2022) show
that the dispersion on the photo-z for the DES Y3 sample is
σ68 = 0.054 on average for the five tomographic bins. σ68 is

0.6 0.7 0.8 0.9 1.0 1.1
z

2.25

3.00

3.75

∆
L

M

Fig. 4. Evolution of the second HOD parameter ∆LM. One value for each
tomographic bin. Dashed line corresponds to the interpolation assumed
for all redshift range.

defined as the value such as 68 per cent of the galaxies have
|zphoto − zspec|/(1 + zspec) < σ68. These uncertainties must be
modeled in the simulation to have consistent clustering measure-
ments.

Each galaxy in DES has an observed photometric redshift
Z_MEAN, derived from the magnitude measured in each filter. In
addition, as was explained in Sect.2, there is a small sample of
8362 galaxies for which we also have the true spectroscopic red-
shifts from VIPERS (zVIPERS). The combination of using DES
and VIPERS result in our mocks matching the abundance of
DES Y3 BAO galaxies n(Z_MEAN) and the redshift distribution
N(zVIPERS) on each tomographic bin of these galaxies present in
both surveys.

We start by dividing the interval Z_MEAN = [0.6, 1.1] into
L thin bins of with ∆Z_MEAN = 0.01. Then, according to the
data, we can express the number of galaxies each l bin has as
n(Z_MEANl). This is the first condition we want to accomplish
with the mocks: match the abundance of each l thin photometric
bin.

Secondly, we select M spectroscopic bins of width
∆zVIPERS = 0.025, here bins are thicker because of the smaller
number of VIPERS galaxies. Then, we can determine the
probability of having a galaxy in a given pair of bins (l,m)
as P(Z_MEANl, zm

VIPERS). It is important to remark that this
matrix is built only using those DES galaxies which have a
zVIPERS. Mocks need to satisfy this 2D probability distribution
P(Z_MEAN, zVIPERS) and, at the same time, match the abundance
of galaxies n(Z_MEAN). By combining both, the number of galax-
ies an ICE-COLA mock should have at a given pair of bins(l,m)
can be calculated as

Al,m = n(Z_MEANl) × P(Z_MEANl, zm
VIPERS). (4)

The assignment of photometric redshifts zphoto to galaxies in
mocks is then performed in two steps. Firstly, we separate the
simulated galaxies into L and M bins and assigning zphoto by
following the distribution P(Z_MEAN, zVIPERS). And finally, we
choosing from each (l,m) pair of bins the Al,m most luminous
galaxies, given the luminosities defined on Eq. (3). The Fig. 5
shows the resulting n(zphoto) for the mocks compared with data.
Gray histograms correspond to DES Y3 sample and red points
with error bars represent the mocks. The agreement is almost
perfect, as expected given that it is done by construction. On
the other hand, to achieve a good match on redshift distribu-
tion N(zspec) for each tomographic bin is normally not so easy,
but with this technique, it is also achieved by construction. This
is shown in Fig. 6 where filled green histograms correspond to
VIPERS data while the black line denotes distribution for DES
Y3. As in Fig. 5 red points represent the average of the mocks
and error bars correspond to the maximum and minimum. The
goal here was to assign zphoto in such a way that it gives a redshift
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Fig. 5. Photometric redshift distribution of data and mocks. Gray his-
togram corresponds to DES Y3 sample. Red points represent the aver-
age over the 1952 ICE-COLA mocks and error bars denote the maxi-
mum and minimum.

distribution N(zspec) on each tomographic bin matching those of
the DES Y3 BAO galaxies present in VIPERS.
Some important quantities must be compared for a correct photo-
z validation, and are evaluated on each tomographic bin. These
are the mean redshift (z̄), the width of the N(z) (W68, opposed to
the dispersion), and the dispersion on the photo-z (σ68). The per-
formance of these quantities in the mocks are analyzed against
VIPERS galaxies (for those we have both Z_MEAN and zVIPERS)
in Fig. 7. The top panel shows the difference in z̄ between the
estimated true redshift for DES Y3 sample (Z_MC, dotted black)
and ICE-COLA mocks (red) against VIPERS (zVIPERS). In the
medium and bottom panel, we present the evolution of σ68 and
W68 as a function of z̄ for each sample, respectively. In all three
quantities studied here, the agreement between VIPERS and the
mocks is very satisfactory, showing a difference within 1%. Of
course, our method to assign zphoto by construction should show
a perfect match, with zero uncertainties. However, the small dif-
ferences we see in Fig. 7 come from the fact that the sample
of VIPERS galaxies (8362) is not fully representative of the 2D
space zphoto-zspec. We want to stress that the difference between
zVIPERS and Z_MC represents an estimation of the uncertainty we
have on the redshifts, and hence the precision of the mocks is
well below those uncertainties. We refer the interested reader
to Carnero Rosell et al. (2022) for details on the performance of
using VIPERS as a training sample for photo-z validation and
true redshift assignment of the sample.

This step is different from what was done for DES Y1 by
Avila et al. (2018). Here we use an “exact” method which may
propagate noise while Avila et al. (2018) used an “analytical”
procedure (fitting a double skewed Gaussian) which may miss
some photo-z features.

4.4. Masking

Finally, our last step is to create galaxy mocks with the same
footprint as the data. The angular mask of the DES Y3 sample,
described in Sect 2, has an area of 4108.47 deg2 and final ICE-
COLA mocks must have the same characteristics with the same
HEALPix resolution NSIDE=4096 as the data mask. To satisfy
this and at the same time be efficient in creating as many cat-
alogs as possible, four masks are placed on each full-sky light
cone. This allows us to go from having 488 ICE-COLA runs
to having 1952 BAO galaxy mocks at the end, quadrupling the
number of simulations. This is illustrated in Fig. 8 where four
DES Y3 BAO footprints are placed, without overlapping, in a
full-sky light cone. Although this configuration of masks max-
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Fig. 6. True redshift zspec distribution in each tomographic bin. Green
filled histograms correspond to VIPERS, black lines represent the dis-
tribution for Y3 data and red point are the average over the 1952 ICE-
COLA mocks, while error bars correspond to the maximum and mini-
mum. Histograms are normalized to have an integral of unity.

imizes the number of mocks, on Sect. 7 we return to this and
analyze the negative implications it has on the covariance matrix.

5. Calibration

The pipeline used to generate the BAO mocks contains two free
parameters per tomographic bin, M1 and ∆LM, as detailed in the
previous section. This amounts to a total of ten free parame-
ters that should be varied altogether to minimize the difference
between the measurements and the mocks. In more detail, we
want to minimize the discrepancy between the measured w(θ)
and the one obtained from the mocks. Let us emphasize that
“w(θ)” in this section refers to the measurement of the angular
correlation function calculated only for the three pre-unblinding
angular apertures θ = [0.58, 0.75, 0.92]. The main problem that
we have to address is that we cannot obtain w(θ) from the mocks
without first specifying the values of these parameters, gen-
erating the mocks, and measuring the observable quantity. If
the parameter space were small we could attempt to vary the
parameters one at a time, run a few cases, and try to determine
approximately the best values for the parameters. However, a
10-dimensional parameter space and ∼500 CPU hours to gener-
ate the mocks make it effectively impossible to follow this brute
force approach.

In this work, we make use of the novel technique presented in
Tutusaus (in prep.), where an automatic calibration procedure is
implemented into the pipeline to enable us to sample the param-
eter space and provide the values giving the best agreement with
the data in a fully automatized way. We present the basic idea of
this method, while we refer the reader to Tutusaus (in prep.) for
all the details.

A106, page 6 of 14



I. Ferrero et al.: DES Y3 BAO mock catalogs

0.6 0.7 0.8 0.9 1.0 1.1
Tomographic redshift

−0.005

0.000

0.005

0.010

z̄
-
z̄ V

IP
E

R
S

0.6 0.7 0.8 0.9 1.0 1.1
z̄

0.04

0.06

0.08

σ
68

DES Y3

ICE-COLA, 1952 mocks

VIPERS

0.6 0.7 0.8 0.9 1.0 1.1
z̄

0.05

0.06

0.07

0.08

0.09

w
68
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Fig. 8. Configuration of four DES Y3 BAO footprints on a full-
sky. Mask are constructed with HEALPix assuming a resolution
NSIDE=4096.

The first step of the calibration is the determination of the
minimal number of mocks that need to be used to get a statisti-
cally representative measurement of w(θ). This will allow us to
calibrate with a subset of the mocks and use the best-fit param-
eters for all of them. In addition to the number of mocks, we
also need to find the optimal area for calibration. If the area con-
sidered is too small, the determination of w(θ) will be affected
by cosmic variance and it might not be statistically representa-
tive. To find the minimum number of mocks with the smallest
area that we need to use for the calibration (based on a maxi-
mum feasible computation time), we have compared w(θ) from
the selected mocks to the mean w(θ) of the full set of mocks
as a function of the number of mocks for different areas. The
results are shown in Fig. 9. As can be seen in the figure, we
need a large number of mocks of 300 deg2 (dotted red line)
to obtain a w(θ) representative of the full sample. However, if
we consider mocks with the same angular coverage as DES
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Fig. 9. Agreement between w(θ) of a subset of mocks and the mean of
w(θ) for all mocks as a function of the number of mocks used for the
selection. The dotted red line stands for mocks of 300 deg2, while the
dot-dashed blue line represents mocks of 900 deg2 and the dashed green
one corresponds to mocks of 1500 deg2 The solid black line stands for
mocks of 4108.47 deg2 with the mask of DES Y3 BAO data. The black
open circle denotes the selection of the number of mocks and area used
for the calibration in this analysis. The number 15 on the y-axis corre-
sponds to the number of clustering measurements averaged (three angu-
lar apertures times five redshift bins).

Y3 BAO data we can obtain a good representative of the full
w(θ) by just using five mocks. This is the area and number of
mocks used for the calibration and it is represented with a black
empty circle in Fig. 9. We choose the combination number of
mock-area requiring less computational time to get uncertain-
ties within 2%. Note that this optimization of the area and num-
ber of mocks have been performed using a fixed value for the
calibration parameters, M1 = [13.5, 13.9, 14.5, 13.8, 13.2] and
∆LM = [1.06, 1.23, 1.97, 3.14, 2.21], but our goal here was to
determine the size of the representative subset of mocks, not the
agreement with the data yet. Therefore, these fixed values do not
have a significant impact on the subset of mocks that will be
used for the calibration. Moreover, we note that the chosen 2%
accuracy is somewhat arbitrary. As it can be seen in Fig. 9, con-
sidering more mocks provides a better agreement. However, we
have verified that 2% is enough for our purposes, guaranteeing
uncertainties within 1σ, and it still allows us to use a reduced
number of mocks per point in the calibration.

Once we have determined how many mocks and which area
we will use for the calibration, we need to start sampling the
parameter space to determine the best-fit parameters. The main
idea is to sample a given hypercube in the parameter space. In
each point we generate five mocks using the DES Y3 BAO mask,
measure w(θ), and compute the value of the χ2 of the measured
w(θ) in the mocks to the real measurements:

χ2 = (w(θ)data − w(θ)mocks)TC−1(w(θ)data − w(θ)mocks). (5)

We note that C, which enters into the χ2, is the standard covari-
ance matrix of the 1952 mocks and takes into account the corre-
lations between the different tomographic bins. To obtain C we
calculated w(θ) for the 1952 mocks previously created using the
fixed value for the calibration parameters mentioned above.

This approach is not different from a standard Monte Carlo
Markov chain. However, it is important to note that each eval-
uation in a point of the parameter space is extremely expen-
sive in computational time since it implies generating five DES
Y3-like mocks and measuring w(θ) on them. Moreover, we
are not interested in the posterior of the calibration parameters
M1 and ∆LM, but rather on their best-fit values, since this is
the only quantity needed to generate mocks close to the real
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mock measurements have been obtained as the square root of the diag-
onal of the covariance matrix using the 1952 mocks created with the
fixed values.

measurements. A straightforward approach would be to use a
simple χ2 minimization algorithm to go directly to the mini-
mum of the χ2 function, but the generation of the mocks contains
an intrinsic random component when assigning the position and
properties of galaxies. This introduces an important stochastic
behavior in our problem and makes unusable the standard mini-
mization algorithms.

In this work, following Tutusaus (in prep.), we have decided
to use the differential evolution stochastic minimization algo-
rithm first proposed by Storn & Price (1997). The essential idea
of the algorithm is to use a population of candidate solutions.
We first initialize the population using a Latin Hypercube sam-
pling; then, iteratively, these candidate solutions are combined to
generate a new population and the χ2 is evaluated at each posi-
tion. In more detail, the distance between two random candidate
solutions is used to displace the best candidate solution so far
(minimum χ2). If the new candidates are better than the previous
ones they are accepted and belong to the new population; oth-
erwise they are discarded and the new population is completed
with candidates from the old population. Note that, because of
this, the size of the population remains constant. The process
ends when the standard deviation of the χ2 values of the pop-
ulation is smaller than a given tolerance times the mean of the
χ2 values. The best candidate of the population at the end of the
process is the best-fit used to generate the final mocks.

Once the calibration parameters have been determined and
the five mocks generated, we can check the agreement between
the w(θ) from the mocks and the real measurements to verify
how accurate the calibration is. The results are shown in Fig. 10.
For each one of the tomographic bins, we represent the data with
open black circles and the measurements from the five mocks
with red lines. The errors have been obtained as the square
root of the diagonal of the covariance matrix. The agreement is
well within 1σ for all the bins, giving a goodness of the model
χ2

mod/d.o.f. = 7.58/5. Degrees of freedom (d.o.f.) equal five cor-
responds to the number of θ-bins= 15, three apertures times five
tomographic bins, minus the ten free parameters, two (M1 and
∆LM) per bin.

6. Analysis

In previous sections, we explained the methodology and the pro-
cedure used to create 1952 mocks reproducing all the relevant
properties of the DES Y3 sample. In this section, we analyze the
clustering of these mock catalogs in different spaces. We also
include in the analysis a theoretical model prediction for those
statistics.

6.1. Theoretical model

The theoretical template is computed using the redshift-space
power spectrum

P(k, µ) = (1 + βµ2)2b2{[Plin(k) − Psm(k)]DBAO + Psm(k)
}
, (6)

where µ is the dot product between k̂ and the line-of-sight direc-
tion, b is the linear bias, and β = f /b with f being the linear
growth rate. The power spectrum is built using the linear power
spectrum Plin(k) and the linear no-wiggle power spectrum Psm

12.
The nonlinear damping of the BAO feature is modeled by

DBAO(k, µ) = exp{−k2[µ2Σ2
q + (1−µ2)Σ2

⊥ + fµ2(µ2 − 1)δΣ2]}, (7)

with Σq = (1 + f )Σ⊥. The damping scales Σ⊥ and δΣ are
computed following Baldauf et al. (2015). In MICE cosmology,
Σ⊥ = 5.80 Mpc h−1 and δΣ = 3.18 Mpc h−1 at redshift 0 and
they are scaled to higher redshift by the growth factor. See
DES Collaboration (2021) for more details about the procedure
to obtain these quantities. Once provided with P(k, µ), we com-
puted the anisotropic redshift-space correlation function ξ(s, µ)
through a Fourier transform (see Chan, in prep.). The angular
correlation function is obtained after projecting ξ weighted by
the redshift distribution n(z) (normalized to 1),

w(θ) =

∫
dz1

∫
dz2n(z1)n(z2)ξ

(
s(z1, z2, θ), µ(z1, z2, θ)

)
. (8)

The harmonic power spectrum template C` is derived from
w by a Legendre transform

C` = 2π
∫ 1

−1
dµ w(arccos(µ))L`(µ), (9)

where L` is the Legendre polynomial. For more details on the
modeling, see the main DES Y3 BAO paper (DES Collaboration
2021).

6.2. Angular correlation function: w(θ)

Around ten thousand ACF must be calculated for the mocks
(1952 mocks times five bins). For this reason, we resort to a code
that allows the calculation using pixels, reducing the computa-
tional time. It is important to point out that since we only use
angular apertures greater than one degree for fitting, any effect
from the pixelization should be negligible. We use the public
code CUTE (Alonso 2012). CUTE supports the Landy & Szalay
estimator (Landy & Szalay 1993):

w(θ) =
DD(θ) − 2DR(θ) + RR(θ)

RR(θ)
, (10)

where DD, DR and RR represent the total number of Data-Data,
Data-Random and Random-Random pairs separated by an angu-
lar θ projected distance, respectively. In this case, Data corre-
spond to galaxies in the mocks while Randoms are created by
sampling the same volume with random points. The total num-
ber of randoms is 20 times the average number of galaxies in
the mocks. The same random catalog is used to calculate the
clustering for all 1952 mocks. The chosen pixel resolution is
npix-shp = 4096 which yields pixels with an angular θ resolution
of 2.1 arcmin.
12 Defined by following the 1D Gaussian smoothing in log-space
described in Appendix A of Vlah et al. (2016).
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Fig. 11. Angular two-point correlation function for each tomographic bin. Red lines correspond to the average over all the mocks and shaded
light-red bands correspond to the standard deviation. Dashed blue lines indicate the theoretical prediction described on Sect. 6.1 and black points
correspond to the pre-unblinding data values used in the calibration showed on Sect. 5. Finally, solid black lines with error bars represent the final
post-unblinding measurement of the data.

Figure 11 shows the result of the angular two-point corre-
lation function of 1952 mocks for the 5 tomographic bins. It
can be noticed that the difference between the pre-unblinding
values used for calibration (open black circles) and the aver-
aged ACF for the mocks (solid red lines) differs from what
was obtained on Sect. 5 during the calibration procedure (see
Fig. 10). However, these small differences are expected given
the degree of representativeness when using only five mocks
for the calibration (0.25% of the total number of mocks). It is
important to keep in mind that the number of five mocks has
been determined with a fixed calibration. Therefore, combining
the error introduced by these fixed parameters and the allowed
2% accuracy, we can expect the final accuracy with the best-
fit calibration and all mocks to be slightly above 2%. To be
more precise, this number has increased from 2 to 3.1%. How-
ever, within the corresponding uncertainties, the agreement is
still within 1σ for the five tomographic bins, giving a global
χ2

mod/d.o.f. = 16.72/5. The increase in the χ2
mod may be due

either to the low representativeness of the five mocks used
for the calibration or the presence of a strong anti-correlation
among the data points. Nevertheless, when we quantify the
goodness of the fit between the mocks to the data, using all θ
bins in Fig. 11, we find remarkable good values χ2

m−d/d.o.f. =
[51.2, 22.5, 24.1, 31.6, 24.62]/22. Only the first tomographic bin
is away from having a χ2

m−d/d.o.f. ' 1 and a bit less is the fourth
bin. In conclusion, such accuracy is enough for our purposes and
we do not consider rerunning the pipeline with more mocks in
each point of the calibration. In more detail, only the first bin
shows one pre-unblinding data point out of 1σ from the mocks.
In this case, the mean w(θ) of the mock has changed ∼4% from
the value found during the calibration. Although this value is
double of 2% what was foreseen in the calibration (see Fig. 9),
the global change is within the expectation. Blue curves in

Fig. 11 denotes the theoretical prediction described in Sect. 6.1,
and it is clear from the figure that modeled w(θ) agree almost per-
fectly with the measurements on the mocks. Finally, solid black
lines with error bars correspond to the final post-unblinding
measurements of the data (using a brute force configuration of
CUTE).

6.3. Projected Clustering: ξw(s⊥)

In photometric surveys, most of the radial BAO information
is lost due to redshift uncertainties. Additionally, the photo-z
uncertainty causes the BAO scale in the 3D correlation func-
tion, ξ(s), to deviate from its true position. However, Ross et al.
(2017) demonstrated that when the correlation function is plot-
ted against the transverse scale s⊥ = s

√
1 − µ2, the BAO peak

appears where s⊥ equals to the true sound horizon scale. Thus,
(angular) BAO information can still be retrieved via the 3D cor-
relation analysis.

Following the methodology from Ross et al. (2017) and also
described in DES Collaboration (2021), we show in Fig. 12
the 3D wedge correlation function ξw(s⊥) measured from the
mocks (due to computational expenses, only 120 mocks are
used) and data. The results are also obtained from CUTE using
Eq. (10), by replacing w(θ) with ξ(s⊥, s‖), and then integrat-
ing over s‖ for the scales with µ < 0.8. As a comparison, we
have also plotted the corresponding theory prediction. While
Ross et al. (2017) assumes Gaussian photo-z distribution, the
prediction makes use of the photo-z distribution from the mocks,
resulting in better agreement with the numerical measurements.
Further details of the comparison between the mock results
and the theory will be presented in Chan (in prep.). We find
a good agreement for the 3D clustering of data, mocks and
theory.
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6.4. Angular power spectrum: C`

We also measured the clustering signal in the Fourier conjugate
space of angular distances on the sphere, the so-called harmonic
space, by estimating the angular power spectra of galaxy number
counts, C`. Although constructed from the same underlying
field, the angular power spectrum and the correlation function
present different advantages and downsides. Most notably, the
correlation function is relatively straightforward to estimate in
the presence of an angular survey mask. Still, its estimates
are largely correlated. On the other hand, the power spectrum
requires a deconvolution of the angular mask, but the correlation
between scales reduces. Taking these pros and cons into account,
it is clearly desirable to have complementary information from
both statistics. See Giannantonio et al. (2016) for the first imple-
mentation of these complementary estimators in the context of
DES Y1 data analyses.

We begin by estimating pixelized galaxy overdensity maps,
δg(n̂) = Ng(n̂)/N̄g − 1, for the ICE-COLA mocks, where n̂ is the
pixel position in the sphere, Ng(n̂) the pixelized galaxy number
counts and N̄g the mean number of galaxies per pixel. We then
used the “Pseudo-C`” method (Hivon et al. 2002) to estimate the
angular power spectra. The Pseudo-C` method deconvolves the
incomplete sky coverage mode mixing effect on a set of band
power bins using analytical methods and has the advantage of
being less computationally expensive, reaching equivalent error
estimates than optimal quadratic estimators. Also, Pseudo-C`

estimators are effectively “unbiased” concerning maximum like-
lihood estimators. In particular, we use the implementation of
the NaMASTER code13 (Alonso et al. 2019).

The discrete nature of galaxy number counts introduces a
shot-noise contribution to the estimated galaxy overdensity maps
and, consequently, a bias to the estimated C`. We account for
this “noise bias” analytically, following Alonso et al. (2019) and
Nicola et al. (2020) by subtracting this Poissonian noise from
our power spectrum. For each ICE-COLA mock, we consider the
partial sky coverage introduced by its associated mask, as shown
in Fig. 8. To optimize the BAO feature detection, we bin the
power spectra in bands of ∆` = 20 from a minimum multipole
`min = 10 up to a maximum multipole of 1 000.

Figure 13 shows the mean and standard deviation of the esti-
mated angular power spectra of the 1952 ICE-COLA mocks for

13 https://github.com/LSSTDESC/NaMaster

the five tomographic bins (solid red lines) together with the the-
ory prediction (dashed blue lines). Black points correspond to
the post-unblinding measurements of the data.

7. Effect of replications

Without taking into account the tails on redshift distribution for
the tomographic bins on the edges ([0.6−0.7] and [1.0−1.1]),
the maximum comoving line-of-sight distance that can be found
among galaxies on the mocks is ∼1000 Mpc h−1. Even if we con-
sider the tails, the distance is lower than the box of the simula-
tion, 1536 Mpc h−1. In other words, no halo of ICE-COLA sim-
ulations is used more than one time along any give line-of-sight.
But this problem does occur for different lines-of-sight. The area
of the survey is very wide implying that for higher redshift sev-
eral numbers of simulated boxes are used to equal the volume of
the BAO Y3 sample. Inevitably this implies the use of the same
halo structures on each mock. These repeated halos leave at dif-
ferent times but originate from the same initial structure they
will obviously correlate, to leading order overdensities just grow
linearly.

Table 2 shows the upper limit for the percentage of replicated
“halos” that can be found among bins. To obtain these values, we
randomly sampled a box with particles and then created the light
cone by replicating this box. These numbers are representative
of all the repeated “halos” in a light cone and not only those
used to make up the DES Y3 sample, which are a few percent of
the total. This fact, together with the selection efficiency, makes
that the values are shown on Table 2 stand for a very conser-
vative bound. However, these numbers refer to the replications
present in a single mock but each light cone is used to create
four mocks (see Fig. 8). This inevitably will introduce replica-
tions among different mocks created with the same light cone in
addition to those among the bins of a single mock. Numbers in
parentheses in Table 2 correspond to the percentage of repeated
random particles among the four mocks made from one light
cone. For example, the pair of bins (1,3) has on average (mean
among the four mocks) 11.9% repeated random particles. This
number increase to 30.2% when considering the four mocks. The
difference between the 11.9 and the 30.2% come from the parti-
cles which are not repeated in one mock but do in others.

The main impact of this replication problem becomes notice-
able when the cross-covariance matrix is analyzed. The repeated
structures in different bins introduce a spurious correlation
among measured w(θ) of tomographic bins. This effect is shown
in Fig. 14 wherein the top panel we compare the covariance
matrix of the ICE-COLA mocks (lower diagonal) with the
covariance matrix computed using CosmoLike halo model
(Krause & Eifler 2017; Fang et al. 2020, upper diagonal). From
the former, the high degree of correlation between bins that are
not adjacent is visible. This strong correlation can be seen clearly
in the bottom panel of Fig. 14 where we show one column of the
covariance matrix corresponding to an aperture of θ = 2.7 deg
for CosmoLike (solid black line) and ICE-COLA (dashed blue
line). For simplicity, we are using in this plot a ∆θ = 0.2.

8. Conclusions

The performance of well-validated mocks for DES Y3 BAO
analysis is crucial for obtaining robust scientific results. The
analysis of the data collected by the Dark Energy Survey during
the first 3 years of the project poses a great scientific challenge in
the development of the required mocks. We have created a sig-
nificant number of mocks, 1952, adequate for statistical analysis
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Fig. 13. Measured angular power spectra for the tomographic redshift bins considered. Red lines correspond to the average over all the mocks and
black points represent the post-unblinding measurements of the data. The theoretical prediction is shown with dashed blue lines.

Table 2. Percentage of replications among tomographic bins.

BIN 1 2 3 4 5

1 3.9 (22.6) 9.7 (30.6) 11.9 (30.2) 15.9 (30.3) 17.8 (30.8)
2 – 5.9 (27.9) 13.9 (28.7) 15.7 (29.1) 17.7 (28.9)
3 – – 8.1 (28.7) 16.5 (29.2) 18.5 (28.1)
4 – – – 8.9 (30.7) 18.2 (27.4)
5 – – – – 10.1 (29.9)

Notes. Each value must be interpreted as the percentage of random points found duplicated in the corresponding pair of bins only in one mock.
Numbers in parentheses represent the same but considering the four mocks done with one light cone.

of galaxy clustering. The mocks have been built by populating
the halo catalogs of 488 ICE-COLA fast simulations. This task
is made up of many steps that make up our pipeline, those are:
1. HALO CATALOGS – Run 488 ICE-COLA simulations with

different initial conditions. Create light cones halo catalogs
on-the-fly by replicating simulated boxes.

2. GALAXY CATALOGS
(a) HOD: Populate halos with one central galaxy and Nsat

satellite galaxies following a Poisson distribution, setting
the first free parameter per tomographic bin, M1.

(b) HAM: Assign a pseudo-luminosity lp to galaxies, setting
the second free parameter per tomographic bin, ∆LM.

(c) Model photometric redshifts using a highly accurate
method which follows a 2D probability distribution relat-
ing photometric and spectroscopic redshifts of VIPERS
data.

(d) Apply four DES Y3 BAO mask over each full-sky light
cone and quadrupling the total number of galaxy mocks
compared to halo catalogs.

3. CALIBRATION – Set an automatic calibration procedure
using a differential evolution stochastic minimization algo-
rithm to find the best values for the ten free parameters. This
step is a loop of step (ii).

4. FINAL GALAXY CATALOGS – Repeat step (ii) with the
final set of parameters.

The automatic calibration and the photometric redshift assign-
ment procedure are key to obtaining final mocks that repro-
duce with high accuracy the principal properties of the data: (1)
observed volume, (2) abundance of galaxies, redshift distribu-
tion, redshift uncertainty, and (3) clustering as a function of red-
shift. Firstly (1), the replications of the simulated box allowed
us to achieve the observational volume of the DES Y3 sample.
However, the use of even bigger simulations would be beneficial,
to avoid the repetition of structures and therefore the introduc-
tion of spurious cross-correlations and cross-covariance among
not adjacent bins. This should be considered when designing
mocks for the calculation of the covariance matrix in future sur-
veys. Secondly (2), the use of overlapping galaxies between DES
Y3 and VIPERS gave rise to a very realistic photo-z assign-
ment. In these mocks, the abundance of galaxies, n(zphoto), the
redshift distribution N(zspec) and their uncertainties z̄, W68 and
σ68 are in excellent agreement with VIPERS data, showing dis-
crepancies lower than one per cent. Finally (3), the clustering
measured in this set of mocks shows an excellent agreement
with the pre-unblinding data used for calibration. The uncer-
tainty on the calibration procedure resulted in a goodness of the
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i , θ
M
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θ1
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model χ2
mod/d.o.f. = 7.58/5 while for the final mocks this value

increased a bit up to 16.72/5.
DES Collaboration (2021) presents the best fit and uncer-

tainty for the angular scale of the BAO angular distance mea-
surement DA using the Y3 Dark Energy Survey data release.
The mocks presented in this work have been a crucial tool in
the procedure of obtaining these results. ICE-COLA mocks have
been used to run robustness tests and optimize the methodology.
Finally, it is important to remark that the pipeline that created
this set of mocks should work perfectly for any future surveys
which need realistic mocks for galaxy clustering analysis.
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