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2Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
3Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, Stockholm SE-106 91, Sweden
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ABSTRACT
In many cosmological inference problems, the likelihood (the probability of the observed data as a function of the unknown
parameters) is unknown or intractable. This necessitates approximations and assumptions, which can lead to incorrect inference of
cosmological parameters, including the nature of dark matter and dark energy, or create artificial model tensions. Likelihood-free
inference covers a novel family of methods to rigorously estimate posterior distributions of parameters using forward modelling of
mock data. We present likelihood-free cosmological parameter inference using weak lensing maps from the Dark Energy Survey
(DES) Science Verification data, using neural data compression of weak lensing map summary statistics. We explore combinations
of the power spectra, peak counts, and neural compressed summaries of the lensing mass map using deep convolution neural
networks. We demonstrate methods to validate the inference process, for both the data modelling and the probability density
estimation steps. Likelihood-free inference provides a robust and scalable alternative for rigorous large-scale cosmological
inference with galaxy survey data (for DES, Euclid, and LSST). We have made our simulated lensing maps publicly available.

Key words: gravitational lensing: weak – methods: statistical – large-scale structure of Universe.

1 IN T RO D U C T I O N

Likelihood-free inference allows us to infer unknown cosmological
parameters by directly comparing observed data with forward-
simulated mock data. In this powerful and flexible framework,
the posterior probability of unknown parameters can be estimated
without resorting to simplifying, and often unjustified, likelihood
assumptions (such as Gaussianity), even when data models consist
of complex combinations of signal, noise, and systematic error. In-
correct assumptions can lead to incorrect and misleading conclusions
for the given cosmological question, can hide new physics, or can
create artificial model tensions.

The aim of observational cosmology is often to infer the cosmo-
logical parameters or models from the structure of the density field
of the Universe as it evolves with time. For the late Universe, non-
linear evolution has led to a highly non-Gaussian density field, which
cannot be statistically characterized solely by two-point statistics
(e.g. power spectra). The gravitational lensing effect on images of
distant galaxies by the intervening large-scale structure provides a
powerful probe of cosmology in this regime, through both structure
formation and the geometry of the Universe.

In this work, we use measured statistics of the reconstructed pro-
jected density field (known as mass maps) from Dark Energy Survey
(DES, Flaugher et al. 2015; Dark Energy Survey Collaboration 2016)
weak gravitational lensing data to infer cosmological parameters of
the �-cold dark matter (�CDM) model in a likelihood-free analysis.

� E-mail: niall.jeffrey@phys.ens.fr

We use deep learning methods with the aim of extracting the optimal
compressed statistic from our chosen data/statistic; this method is
known as neural compression.

The physics of non-linear cosmological structure formation is
included in our forward-modelled mock data using simulated (ap-
proximate N-body) density fields, with the lensing map observables
calculated through ray tracing, and subsequent inclusion of (compli-
cated) masks and non-Gaussian noise contributions corresponding to
the DES data. The posterior probability densities for unknown param-
eters θ are then estimated for different lensing map statistics from
observed (unsimulated) data do, without the need for an assumed
analytic expression for the likelihood function L(θ ) = p(do|θ ).

The map-based statistics used in this likelihood-free analysis are:
(1) the angular power spectrum of the map; (2) the peak statistics,
also known as peak counts (Dietrich & Hartlap 2010; Kacprzak
et al. 2016); (3) the joint statistic of peaks and power spectrum; and
(4) convolutional neural network (CNN) compressed map statistics,
aiming to compress the reconstructed mass map to optimal summary
statistics using deep learning (Fluri et al. 2018, 2019; Ribli et al.
2019).

We note that the choice of mapping method, in our case Kaiser–
Squires (Kaiser & Squires 1993), effectively corresponds to an initial
data compression step, compressing a catalogue of images into a pix-
elized estimated mass map. Note that peak counts estimated from a
different map reconstruction method may lead to somewhat different
constraints on the cosmological parameters, owing to different infor-
mation retainment associated with different reconstructions methods.

Likelihood-free inference provides an alternative inference frame-
work for current and upcoming galaxy surveys [e.g. Euclid: Amen-
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Likelihood-free DES SV map statistics 955

Figure 1. Convergence κ map from the DES SV weak lensing data
reconstructed using Kaiser–Squires with σ = 10 arcmin Gaussian smoothing
to reduce the impact of galaxy shape noise.

dola et al. 2016, or the Vera C. Rubin Observatory’s Legacy Survey of
Space and Time (LSST): LSST Science Collaboration 2009], relying
only on our ability to forward-simulate mock data and unfettered by
the need for a closed-form likelihood function. Given their appeal,
it is important to understand the challenges presented by such
methods, and to establish procedures to carefully validate the results.

Given current reported tensions in cosmological parameters be-
tween different data sets, such as the Hubble parameter H0 between
early- and late-Universe probes (Feeney, Mortlock & Dalmasso
2018) or the amplitude of fluctuations between galaxy surveys (Ab-
bott et al. 2018; Joudaki et al. 2018) and the cosmic microwave back-
ground (Planck Collaboration VI 2020), likelihood-free inference
offers a novel inference framework without restrictive assumptions
about the likelihood or data model. Likelihood-free inference also
provides a simple and robust framework for combining observed
summary statistics from different data sets with forward modelling,
and avoids many of the potentially difficult technical aspects of
current standard analysis (such as covariance matrix estimation or
sampling from high-dimensional Bayesian hierarchical models).

The mass maps in this work (Fig. 1) are generated from public
DES Science Verification (SV) data (Chang et al. 2015) using the
linear Kaiser–Squires method. Though the SV data cover an area
of only approximately 5 per cent of the final DES sky footprint, the
observations are to the approximate final depth of the full survey, so
the SV data match what will be the final galaxy density and lensing
signal-to-noise per pixel.

In Section 2, we introduce the formalism of likelihood-free
inference and data compression methods. In Section 3, we include an
overview of the relevant aspects of weak gravitational lensing with
galaxies. In Section 4, we detail our map reconstruction method and
the three summary statistics used: power spectrum, peak statistics,

and CNN compressed map summaries. In Section 5, we discuss the
DES SV data and the forward modelling of mock simulated data.
In Section 6, we discuss the results and validation of the likelihood-
free parameter inference using power spectra and peak statistics. In
Section 7, we discuss results using likelihood-free inference with
compressed summaries directly from the mass map using CNNs.

2 IN F E R E N C E

2.1 Motivation

In Bayesian parameter inference, we aim to evaluate the posterior
probability distribution

p(θ |do,M) = p(do|θ ,M) p(θ |M)

p(do|M)
(1)

for some statistical model M with associated unknown model
parameters θ , given some observed data (or summary statistics of
the observed data) do (see Jaynes 2003 for details).

To evaluate the relative probabilities of different models given the
observed data summaries, one may also wish to evaluate the Bayesian
evidence, also known as the marginal likelihood, given by

p(do|M) =
∫

p(do|θ ,M) p(θ |M) dnθ (2)

for probability densities of continuous variables θ .
For both of these tasks, knowledge of the likelihood function

L(θ ) = p(do|θ,M) – the sampling distribution for the observations
as a function of the model parameters – is required. In this paper,
we will focus on parameter inference. Despite the central role of the
likelihood function, in general the sampling distribution p(d|θ ) for
data (or summary statistics) d is not necessarily readily available (or
tractable).

For parameter inference from large cosmological surveys, espe-
cially weak lensing surveys (Kilbinger et al. 2013; Abbott et al.
2018; Joudaki et al. 2018), the conditional distribution p(d|θ ,M)
is not generally known exactly, owing to non-linear evolution
of the underlying density field, and any number of complicated
observational effects (survey masks, various systematic biases, non-
Gaussian noise contributions, etc.). For two-point statistics of the
weak lensing field (see Section 3), a Gaussian sampling distribution is
typically assumed,1 though the second-order moments (i.e. two-point
statistics) have a skewed distribution even for an underlying Gaussian
lensing field (Sellentin & Heavens 2018; Sellentin, Heymans &
Harnois-Déraps 2018; Taylor et al. 2019).

For higher order statistics of the lensing field, which are necessary
to extract information beyond the Gaussian component of the field,
there is typically no closed-form expression for their sampling
distribution (and hence likelihood function), inhibiting their use for
cosmological parameter inference. Even theoretical predictions for
the expectation values of higher order statistics (e.g. for peak counts
or deep CNN map summary statistics) must be estimated by forward-
simulated mock realizations of the data. Sampling distributions for
higher order statistics are not expected to be Gaussian, with non-
Gaussianity arising from non-linear combinations (e.g. counting
peaks or deep CNN statistics) of an already non-Gaussian cosmo-
logical lensing field, compounded by non-Gaussian shape noise and
Poissonian shot noise in the data.

1Exceptions are Bayesian hierarchical analyses, which account for the non-
Gaussian data model (Alsing et al. 2016; Alsing, Heavens & Jaffe 2017).

MNRAS 501, 954–969 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/501/1/954/6006276 by U
niversity C

ollege London user on 05 January 2022



956 N. Jeffrey, J. Alsing and F. Lanusse

Arguments that rely on the central-limit theorem or the principle
of maximum entropy, both of which give the Gaussian distribution
special status,2 cannot avoid the fact that if one assumes an incorrect
distribution p(d|θ ,M), the resulting statistical inference may be
misleading or biased.

2.2 Likelihood-free inference with forward modelling

Contrary to what the name might suggest, likelihood-free inference
(also known as simulation-based inference) does not exclude a
likelihood. The distribution p(d|θ)3 is not used in closed-form, but
is reconstructed from simulated mock data as part of the inference
pipeline.

doIn density estimation likelihood-free inference (Papamakar-
ios & Murray 2016; Alsing, Wandelt & Feeney 2018), the inference
task is posed as a density estimation problem. One can picture the
simulated mock data d realizations and their associated parameters θ

as forming a cloud of points in {d, θ} space. In this space, we could
estimate the following distributions: (A) the joint p(d, θ ); (B) the
conditional p(θ |d), which would give the posterior if evaluated for
observed data do; and (C) the conditional p(d|θ ), which would give
the likelihood if evaluated for observed data . All of the above can be
straightforwardly used to reconstruct the desired posterior density.

dEstimating either (A) p(d, θ ) or (B) p(θ |d), which are both
densities with respect to θ , requires that the distribution of θ in
the set of simulated mocks must come from the prior distribution
p(θ) (see Alsing et al. 2019). To avoid this constraint, one can
take the strategy (C) of estimating the sampling distribution p(d|θ )
as a function of the model parameters, which is a probability
density in rather than θ . This has the advantage that the simulated
parameter values do not need to be drawn from the prior, enabling
the use of various strategies for optimizing (and reducing) the set
of simulations to be run for the problem at hand. It also allows for
seamless subsequent analyses of alternative prior assumptions once
the sampling distribution (and hence likelihood) has been learned.

Once the density p(d|θ ) is learned from our simulated mocks, it
can be evaluated at the observed data do and treated as a likelihood
L(θ ) in the usual way for parameter inference (equation 1). To the
extent that the physics and the effects of the realistic data model
are correctly included in the forward simulations, the estimated
p(d|θ ) will be the correct distribution to be used for parameter
inference (provided sufficiently many simulations to accurately learn
the sampling distribution).

The density estimation approach to likelihood-free inference is an
alternative to the more traditional Approximate Bayesian Computa-
tion (ABC, Rubin 1984; Marin et al. 2011), which uses (adaptive)
rejection-based sampling (for recent applications in astronomy,
see Cameron & Pettitt 2012; Schafer & Freeman 2012; Weyant,
Schafer & Wood-Vasey 2013; Robin et al. 2014; Akeret et al. 2015;
Ishida et al. 2015; Lin & Kilbinger 2015; Davies & Furlanetto 2016;
Jennings, Wolf & Sako 2016; Carassou et al. 2017; Hahn et al. 2017;
Kacprzak et al. 2018; Fagioli et al. 2020; Tortorelli et al. 2020).

In ABC, one draws parameters from some (typically adaptive)
proposal density, and forward simulates data. Those simulated data
are then compared to the observed data under some distance metric,
and the proposed parameters accepted if the distance is below some
threshold ε. The resulting accepted samples then constitute samples
from an approximate posterior, approaching the exact posterior only
in the (unattainable limit) ε → 0. In practice, even with sophisticated

2See Jaynes (2003) for details.
3From here on, we will drop the explicit model M dependence for brevity.

adaptive methods the use of rejection sampling means that the vast
majority of samples get rejected, making for a simple but simulation
inefficient approach.

Density-estimation likelihood-free methods overcomes this limita-
tion by using all simulated data for improving the inference, and does
not require a (subjective) distance metric and threshold, allowing
for high-fidelity posterior inference with far fewer simulations
(Papamakarios & Murray 2016; Alsing et al. 2018).

2.3 Neural density estimation

Here, we introduce the main mathematical aspects of the neural den-
sity estimators (NDEs) used in this work. For a more comprehensive
discussion, see Alsing et al. (2019). Alternatively, the reader can
proceed to Section 2.4 to skip the technical details of neural density
estimation.

To estimate the conditional distribution p(d|θ ), we use the
PYDELFI (Alsing et al. 2019) package (see Appendix B) with an
ensemble of NDEs: neural network parametrizations of conditional
probability densities. Specifically we use a combination of Gaussian
Mixture Density Networks (MDN; Bishop 1994) and Masked Au-
toregressive Flows (MAF; Papamakarios, Pavlakou & Murray 2017).

These are, of course, not the only choice of NDE. For example,
Diaz Rivero & Dvorkin (2020) recently demonstrated the charac-
terization of distributions of weak lensing power spectra using the
alternative FFJORD4 NDE (Grathwohl et al. 2019, among other appli-
cations). The vibrant field of neural density estimation, Normalizing
Flows in particular, will likely lead to further breakthroughs for
probability density estimation and likelihood-free inference in the
near future (Papamakarios et al. 2019a).

For both of our neural density estimation methods, MDN and
MAF, the networks are trained to give an estimate q(d|θ ; ϕ) of the
target distribution p(d|θ ), interpretable as

p(d|θ ) ≈ q(d|θ ; ϕ), (3)

by varying the ϕ parameters (e.g. weights and biases) of the network.5

This is achieved by minimizing the loss function

U (ϕ) = −
N∑

n=1

log q(dn|θn; ϕ) (4)

over the N forward-modelled mock data dn. This loss corresponds
to minimizing the Kullback–Leibler divergence (Kullback & Leibler
1951), a measure of difference or change going from the estimate q
to the target p(d|θ ).

Gaussian MDNs represent the conditional density as a sum of K
Gaussian components with mean μ(θ ; ϕ)k , covariance C(θ ; ϕ)k , and
component weights r(θ ; ϕ)k all taken as unknown functions of the
parameters θ , parametrized by a neural network:

q(d|θ ; ϕ) =
K∑

k=1

r(θ ; ϕ)kN
[
d | μ(θ ; ϕ)k, C(θ ; ϕ)k

]
. (5)

The second density estimation method uses Normalizing Flows.
These use a series of bijective (and therefore invertible) functions
to transform from simple known densities (e.g. the unit normal) to
the target density (Jimenez Rezende & Mohamed 2015; Kingma
et al. 2016). MAFs represent q as a transformation of a unit normal

4Free-form Continuous Dynamics for Scalable Reversible Generative Mod-
els.
5See Goodfellow, Bengio & Courville 2016 for an introduction to neural
networks.
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Likelihood-free DES SV map statistics 957

through a series of autoregressive functions (Papamakarios et al.
2017; Papamakarios, Sterratt & Murray 2019b).

Masked Autoencoders for Distribution Estimation (MADEs, Ger-
main et al. 2015) are autoregressive density estimators as they
parametrize the estimate in terms of 1D conditionals. The density
is factorized as

p(d|θ ) =
dim(d)∏

i

p(di |d1:i−1, θ ) (6)

by masking the weights in the neural network. In this way the
factorized probability for d1 may depend only on θ , d2 may depend
on d1 and θ , d3 may depend on d1, d2 and θ , and so on. In an MADE,
each estimated conditional is modelled as a Gaussian whose mean
and variance are functions of (d1:i−1, θ ) and are given by the neural
network. The resulting function is a transformation to the target
distribution from a space of random samples distributed according
to a unit normal, where the associated Jacobian is triangular (due to
the autoregressive structure) so can be easily calculated.

MAFs are composed of a series of MADEs, where the output of the
last MADE is the input for the next. This allows for the estimation
of more complicated densities that are not able to be factorized
into a simple product of Gaussians (which the MADE requires).
The repeated MADE layers in the MAF also allow the order of
factorization to be shuffled, to better estimate general densities.

As shown in Section 6, we use an ensemble of different network
architectures for both MDNs and MAFs to validate the density
estimation. The final density estimation is a stack of the ensemble
estimates, weighted by the loss evaluated during training (see Alsing
et al. 2019 for more details).

2.4 Summary statistic compression

For a given number of simulated mock data sets, density estimation
likelihood-free inference is exponentially more efficient the lower
the dimensionality of the data vector (i.e. summary statistics) d.
For likelihood-free inference to be scalable when forward simu-
lations are expensive, it is typically necessary to compress high-
dimensional data vectors down to some informative low-dimensional
summaries t .

To this end, we want some compression function t = F (d),
that is as informative as possible with respect to the unknown
parameters whilst being as low-dimensional as possible. Under
certain conditions, we can find a compression of a given data vector d
down to t with dimension matching the number unknown parameters,
dim(t) = dim(θ), that is lossless at the level of the Fisher information
(Alsing & Wandelt 2018).

Different approaches exist to try and achieve this compression,
which are discussed in Section 6.2. Crucially though, a poor choice
of compression scheme (which we of course try to avoid) would lead
to less informative summaries, but not to biased results. Provided the
same compression scheme is applied to both the observed data and
simulated mocks in a self-consistent way, subsequent likelihood-free
inference of the parameters will be unbiased. A poor compression
will however lead to added scatter in the forward-modelled samples
t for a given set of parameters θ , leading to inflated parameter
constraints.

In this work, our results use neural compression; using a neural
network to learn the compression function. In particular, for the
power spectrum and peak count summary statistics we use a
regression network and for the deep CNN map compression we
use both regression- and information-based training strategies for
the network (see Sections 6.2 and 7 for details). We note that

alternatively, neural compression can be achieved by information
maximizing neural networks (IMNN), which aim to maximize the
Fisher information (Charnock, Lavaux & Wandelt 2018). We do not
adopt the IMNN framework for this work however, as it requires
specific simulations allowing for finite differences estimates of the
gradients of summaries with respect to unknown parameters.

In this work, we take two approaches to neural compression. In the
first approach, we initially compress the mass maps down to some
‘first level summaries’ (in this case, power spectra and peak counts),
which we then feed into a simple dense neural network for subsequent
(massive) compression. In the second approach, we compress the
map directly down to some informative low-dimensional summaries
using deep CNNs. In Section 4.4, we introduce the details of our
deep CNN map compression and show the likelihood-free results
with the DES SV data in Section 7.

3 W EAK G RAVI TATI ONA L LENSI NG

Weak gravitational lensing is one of the foremost probes of cosmo-
logical large-scale structure. By using measurements of the galaxy
shapes distorted by foreground matter due to gravitational lensing, we
can directly infer density fluctuations in the total foreground matter
(including non-visible dark matter). For convenience, here we have
summarized some of relevant literature for weak gravitational lensing
(see Bartelmann & Schneider 2001 and Kilbinger 2015).

The weak lensing convergence κ is given by a weighted projection
of the density along the line of sight from the observer to a point with

radial comoving distance χ and angular position
→
φ on the sky

κ(
→
φ, χ ) = 3H 2

0 	m

2

∫ χ

0

χ ′(χ − χ ′)
χ

δ(
→
φ, χ ′)
a(χ ′)

dχ ′. (7)

where H0 is the present value of the Hubble parameter, a is the
cosmological scale factor, 	m is the matter density parameter, δ is
the overdensity, and the speed of light c = 1. We have assumed
flatness, such that the cosmological global curvature is zero, K = 0.

For a radial (redshift) distribution n(χ ) of lensed source galaxies,
the convergence is given by

κ(
→
φ ) =

∫ ∞

0
n(χ )κ(

→
φ, χ )dχ

= 3H 2
0 	m

2

∫ ∞

0
dχ ′f (χ ′)χ ′ δ(

→
φ, χ ′)
a(χ ′)

,

(8)

where

f (χ ′) =
∫ ∞

χ ′

(
χ − χ ′

χ

)
n(χ )dχ. (9)

The convergence for the distribution of source galaxies at angular

position
→
φ on the sky is therefore given by

κ(
→
φ ) = 3H 2

0 	m

2

∫ ∞

0

[ ∫ χ

0

χ ′(χ − χ ′)
χ

δ(
→
φ, χ ′)
a(χ ′)

dχ ′
]
n(χ )dχ. (10)

The shear field γ is a spin-2 (Newman & Penrose 1966; Wallis et al.
2017) field on the celestial sphere and is related to the convergence
field through the lensing potential6 ψ :

κ = 1

4
(ðð̄ + ð̄ð)ψ (11)

γ = 1

2
ððψ, (12)

6See Bartelmann & Schneider (2001) and Kilbinger (2015) for full details.
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where the differential operators ð and ð̄ are spin-weight linear
operators (Castro, Heavens & Kitching 2005) defined on the sphere.
It is therefore possible to determine the full-sky shear field γ from the
scalar convergence κ (up to a constant of integration), for example
by use of spin-weight spherical harmonic transforms. In this work,
such transformations were used during the creation of the ideal shear
γ fields from convergence κ fields (defined on the sphere) derived
from simulations (see Section 5).

In the weak lensing limit, the observed ellipticity of a galaxy εobs is
composed of both the intrinsic ellipiticity of the source galaxy εs plus
the gravitational lensing shear γ . We therefore treat the measured
ellipticity of a galaxy as an estimator for the ‘shear’, where the
measurement is degraded by ‘shape noise’ caused by the intrinsic
ellipticity. In matrix notation, we can express a linear model with a
data vector of observed shear measurements

γ = Aκ + n, (13)

nwhere A is the linear transformation between shear γ and con-
vergence κ and is a vector of noise per pixel. In our formulation,
the elements of the data vector are the galaxy shear measurements
binned into pixels depending on their sky position.

4 SUMMARY STATISTICS

4.1 Kaiser–Squires map reconstruction

For smaller patches of sky, in the flat-sky approximation the ð
operators on the sphere may be reduced to ∂ derivatives with respect
to the two sky angles φ1 and φ2, so that shear γ may be related to
convergence κ as

γ̃ (k) = k2
1 − k2

2 + 2ik1k2

k2
1 + k2

2

κ̃(k), (14)

where k1 and k2 are elements of the 2D Fourier vector k, so that

γ (
→
φ ) = 1

π

∫
R2

d2φ′�(
→
φ −

→
φ

′
)κ(

→
φ

′
)

where �(
→
φ ) = −(φ1 − iφ2)−2.

(15)

The Kaiser & Squires (1993) reconstruction method uses the pix-
elized observed γ map to reconstruct the unknown κ by inverting
equation (14). This procedure to infer κ takes no account of varying
shape noise in the shear map or masks, which introduce artefacts into
the recovered convergence mass map. Fig. 1 shows the reconstruction
for the DES SV data (as described in Section 5).

The Kaiser–Squires reconstruction, in addition to not accounting
for spatially-varying noise, includes no explicit prior information
about the signal.7 This will not lead to incorrect inferences in the
likelihood-free inference framework, as the anisotropic noise and
mask will be forward modelled in the mock simulated data. Different
reconstruction methods that use prior information about the signal
have been shown to more accurately reconstruct the convergence
field κ , either in closed-form (Marshall et al. 2002; Alsing et al. 2016,
2017; Lanusse et al. 2016; Jeffrey et al. 2018; Price et al. 2019) or
implicitly learned using samples from the prior (Shirasaki, Yoshida &
Ikeda 2019; Jeffrey et al. 2020). More accurate mapping methods
would likely increase the signal-to-noise ratio of summary statistics,
and therefore improve constraining power, and a study of this in the
context of likelihood-free inference would merit future work.

7Implicitly, the reconstruction is the maximum a posteriori estimate under
the assumption of Gaussian noise and a uniform prior p(κ).

4.2 Power spectrum

The angular power spectrum for the convergence field κ on the
celestial sphere is given by

〈a�ma∗
�′m′ 〉 = Cκ (�)δmm′δ��′ , (16)

with spherical harmonic coefficients a�m of the convergence κ field,
where we have used Kronecker delta δmm′ . The expectation, 〈〉, is
with respect to random realizations.

For a given field on the sphere, an unbiased estimate of the power
spectrum is given by

Ĉκ (�) = 1

2� + 1

m=+�∑
m=−�

|a�ma∗
�m|. (17)

For a simple contiguous masked region (e.g. an octant of the sky),
the measured power spectrum can be rescaled by the fraction of
sky observed fsky to give an approximate unbiased estimate; in this
approximation C� ≈ 〈f −1

sky Ĉ�〉 (Dodelson 2003). The variance due to
cosmic variance (i.e. finite m modes per �) and additional sample
variance due to finite sky coverage is then given by

σ 2
C�

= 1

fsky

2

2� + 1
C2

� . (18)

Fig. 2 shows the theoretical convergence power spectrum and the
power spectrum measured from the L-PICOLA simulations (Howlett,
Manera & Percival 2015). The source of the discrepancy between
the two power spectra is discussed further in Section 5.2.1. However,
the 1σ and 2σ confidence intervals in Fig. 2 correspond to a full sky
cosmic variance uncertainty. For the 139 deg2 area of the DES SV
data, the actual 1σ region would be a factor of more than 10 greater.

As the data cover a small sky area we do not use spherical
harmonics (similarly to the map making). Instead we measure the
power spectrum of our complex Kaiser–Squires maps (i.e. combining
the E- and B-modes) using fast Fourier transforms (Cooley & Tukey
1965). We bin the power spectrum into 18 Fourier band powers, with
centres of kcentre/(10−3 arcmin−1):

0.434 1.183 2.044 2.997 3.939 5.177
6.805 8.943 11.75 15.44 20.30 26.68
35.07 46.10 60.59 79.63 104.6 137.5

Since we are in the likelihood-free framework, we do not need
to correct for this flat-sky approximation, as we perform the same
operations self-consistently to the simulated mock data and the actual
observed data.

Equivalently with the mask and noise in the power spectrum,
we measure the ‘raw’ power spectrum from the maps in the same
manner for both the simulated mock data and the actual observed
data. Subtracting and rescaling the measured spectra to account for
the mask and noise effects, essentially the same as a scalar pseudo-C�

estimate (Hivon et al. 2002), is implicitly taken care of during the
likelihood-free inference.

In this work, we have measured the unsmoothed Kaiser–Squires
map κKS = κKS, E + iκKS, B. This was found to perform marginally
better with simulations than the κKS, E map alone. One could measure
the power spectrum of both separately and combine them, thus
keeping the maximum amount of information; this would increase the
size of the summary statistic data vector, making the compression
step more difficult, yet with little added constraining power. It is
therefore possible that a spin pseudo-C� estimate of the E-mode
power using both contributions would provide a more constraining

MNRAS 501, 954–969 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/501/1/954/6006276 by U
niversity C

ollege London user on 05 January 2022



Likelihood-free DES SV map statistics 959

Figure 2. Example of a full-sky power spectrum of convergence Cκ (�) from theory (NICAEA) and a single L-PICOLA simulation realization. The shaded 1σ and
2σ regions correspond to full-sky measurement uncertainty due to cosmic variance. For our case, the sky fraction of the observed data is less than 5 × 10−3; the
resulting sample variance will in fact give a confidence region that is a factor of more than 10 greater than the confidence region from full-sky cosmic variance
alone. Nevertheless, we still correct the power spectra of the simulated convergence fields by rescaling the spherical harmonic coefficients a�m as described in
Section 5.

summary statistic (Taylor et al. 2019), while keeping the size of the
to-be-compressed data vector low. Similarly, a minimum-variance
power spectrum estimate (e.g. Tegmark 1997) would provide the
optimally-constraining power spectrum without increasing the size
of the data vector in likelihood-free inference.

4.3 Peak statistics

For an isotropic Gaussian random field, the mean (zero by definition
for our κ field) and the power spectrum are sufficient to entirely char-
acterize the field. Of course, in the late-Universe, non-Gaussianity
arises due to non-linear structure formation, for which summary
statistics beyond the power spectrum are suited to provide additional
information to constrain cosmological parameters.

Counts of the number of peaks in a mass map are particularly
promising, as peaks in the density field probe the non-Gaussian
structure directly in a manner that is sensitive to the changes in the
cosmological parameters (Dietrich & Hartlap 2010; Peel et al. 2017;
Martinet et al. 2018; Shan et al. 2018). In previous work, Lin &
Kilbinger (2015) used a likelihood-free inference method, the ABC
rejection sampling technique (rather than density estimation as in
this work) applied to simulated data, in which the forward model
was a fast halo approximation and, therefore, cannot easily be used
for joint power spectrum and peak constraints without considerable
adaptation.

We define our peak summary statistic as the number of pixels
in the smoothed Kaiser–Squires map reconstruction that are of a
value greater than all of their neighbours, which we bin according
the convergence κ value of the peak, n(κ). The smoothing scale
of 10 arcmin was shown in Jeffrey et al. (2018) to give a map
reconstruction closest to the underlying convergence κ field.

As discussed in Section 4.1, there are reconstruction methods be-
yond Kaiser–Squires that can be more accurate and would therefore

likely give more informative peak statistic summaries, and these
deserve future investigation. The choice of a given reconstruction
method with a certain smoothing scale and definition of peak
corresponds to a specific choice of summary statistic. The peak
statistic analysis in this work is, therefore, not equivalent to Kacprzak
et al. (2016), where different choices and definitions were used.

Fig. 3 shows the peak statistics measured from simulated mock
data, showing our 11 bins between κ = 0 and 0.028. It was noted
by Martinet et al. (2018) that adding peaks with negative κ did not
lead to more informative summaries, ostensibly because they are
strongly correlated with high-valued peaks. The validation of our
simulated peak statistic summaries, as shown in Fig. 3, is discussed
in Section 5.

4.4 Deep convolutional features

As another way to access the non-Gaussian information (beyond two-
point) of the weak lensing field, deep convolutional networks have
recently attracted significant attention. Instead of relying on crafted
non-Gaussian statistics, like peak counts, which are based on a priori
understanding of the physics, CNNs can be seen as flexible non-
linear feature extractors; they can be optimized as to find maximally
relevant summary statistics from the mass map. CNN outputs have
been first applied as a cosmological summary statistic by Fluri et al.
(2018, 2019) and Ribli et al. (2019).

CNNs are particularly suited for 2D image or 1D time-series
data with translation invariant features in the underlying signal.
Mathematically, they are a sequence of iteratively computed layers.
At a given layer j, the signal xj is computed from the previous layer

xj = ρMj xj−1 (19)

with linear operators (i.e. convolutions) Mj and non-linear activation
function ρ (LeCun et al. 1990; Mallat 2016). Deep architectures,
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960 N. Jeffrey, J. Alsing and F. Lanusse

Figure 3. Validation of peak count summary statistic prediction from L-PICOLA simulations with respect to the prediction from MICE simulations. This shows
the mean predicted L-PICOLA peak statistic from four points in parameter space closest to the MICE cosmological parameters. The left-hand panel shows
the absolute peak count summary statistic and the right-hand panel shows the difference between L-PICOLA and MICE. Given the noise level of this data
(corresponding to the larger blue confidence interval), the discrepancies will not lead to a significant parameter shift, though the discrepancy could have some
impact for a key result from a cosmological survey.

with a series of additional layers, are often able to learn features with
greater complexity than shallow architectures. For a general overview
of deep learning and neural networks, see Goodfellow et al. (2016).

Recent works have demonstrated that the statistics extracted by
a CNN are more powerful than both the two-point functions and
peak counts, hinting that such models are accessing additional
cosmological information present in the data.

This should not be surprising as CNNs have the capacity to be
sensitive to both global scales and local features, and as such, should
be able to be sensitive to both the power spectrum and peak count
signals (Ribli et al. 2019; Cheng et al. 2020).

In contrast to most other works which adopt simple CNN ar-
chitectures, in this work we opt for a state-of-the-art deep residual
network model (He et al. 2015b). In recent years, ResNets have
become an established standard architecture for image classification
and regression tasks, significantly outperforming simpler CNNs (He
et al. 2016).

Our ResNet model, which we will refer to as a deep compressor,
accepts the noisy Kaiser–Squires map as an input, and is tasked with
returning two numbers, which will constitute our summary statistics.
The details of the model are presented in Section 7.

5 DATA A N D F O RWA R D M O D E L

5.1 DES SV data

DES is a ground-based photometric galaxy survey, which observed
in the southern sky from the 4-m Blanco telescope in Chile with five
photometric filters (Flaugher et al. 2015). The SV (A1) data8 come
from an initial run of 139 deg2, but with depth approximately that of
the full 6 yr survey (Chang et al. 2015). Data selection choices match
Jeffrey et al. (2018).

We make a redshift cut of 0.6 < zmean < 1.2, where zmean is the
mean of the z posterior for each galaxy. In our analysis, we use a
single tomographic redshift bin for all selections, matching the shear
peak analysis for this data set performed in Kacprzak et al. (2016).

8http://des.ncsa.illinois.edu

By using more bins, one could generate multiple maps that probed
different redshifts through a range of peak lensing kernels, giving the
possibility of more constraining power.

5.2 Dark matter simulations

We use 74 independent dark matter simulations, each with a different
pair of cosmological parameters 	m and σ 8, and each covering
an octant of the celestial sphere. All simulations used a standard
flat �CDM cosmological model with Hubble parameter H0 =
70 km Mpc−1s−1 and fixed values of the scalar spectral index and
baryon density, ns = 0.95 and 	b = 0.044, respectively. Fixing these
parameters can be interpreted as using a Dirac delta as the prior
probability distribution for these parameters during inference.

The dark matter simulations are generated using the L-PICOLA

code (Howlett et al. 2015), which is based on the COLA (Tassev,
Zaldarriaga & Eisenstein 2013) algorithm. This uses a combination
of second-order Lagrangian perturbation theory (2LPT) and a particle
mesh (PM) which requires fewer time steps than ‘full’ N-body (e.g.
Gadget Springel 2005) and which therefore can generate simulations
more quickly.

We used a 1250 Mpc h−1 comoving simulation box, 7683 particles,
and a 15363 grid. A z < 1.6 light-cone was generated with up to four
box replicates, using 30 time-steps from z = 20. The initial conditions
used the linear matter power spectrum from Eisenstein & Hu (1999).

5.2.1 Mock shear maps

To generate a convergence map from a simulation, the matter particles
were binned using the HEALPIX (Górski et al. 2005) pixelization
of the sphere with NSIDE = 2048 in comoving radial shells of
50 Mpc h−1. The particle density ρ map in a given redshift was
converted into an overdensity δ = ρ/ρ̄ − 1 using the average density
in the shell ρ̄. The convergence was calculated per pixel using
equation (10), under the Born approximation (see Appendix B).
We use the n(z) in the lensing kernel matching the DES SV data,
which we approximate by summing the individual posterior redshift
distributions per galaxy from the BPZ photometric redshift code (Coe
et al. 2006), matching the original analysis of this dataset (Abbott
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Figure 4. Example octant convergence κ field calculated by ray tracing
an L-PICOLA dark matter simulation. From such a field we generate 18
non-overlapping DES SV mock data sets. The convergence field has been
smoothed with a σ = 10 arcmin Gaussian kernel for visualization purposes.

et al. 2016). The convergence maps were downgraded to NSIDE =
1024. Fig. 4 shows an example of the resulting convergence map.

The drawback of the COLA approach is the accuracy of the dark
matter distribution. The finite spatial resolution and fewer time-steps
used by the COLA method particularly affect small distance scales.
Fig. 2 shows a suppression of the L-PICOLA power spectrum at scales
of � > 700 of order 10 per cent (relative to NICAEA9, Kilbinger et al.
2009 theory), as is expected with COLA methods. We correct the
power of the L-PICOLA convergence using the NICAEA predictions
with halofit (Smith et al. 2003).

We estimate the smooth part of the Cκ (�) from a convergence
map realization using a polynomial order 1 Savgol filter with
window size 91 for each convergence map and reweighting spherical
harmonics. We rescale the spherical harmonic coefficients of the map
by the ratio of the NICAEA theory and only the smooth part of the
measured simulation power spectrum, which ensures that the natural
fluctuations inherent in Cκ (�) for a given realization are preserved.

The octant convergence fields are transformed to shear fields
using spherical transformations as described in Section 3. The mask
introduces small errors in the large-scale shear field, which are
negligible for the much smaller data patches, especially once the
non-smooth data mask and noise are included.

To generate mock DES SV shear maps, square patches of 256 ×
256 pixels with 4.5 arcmin resolution are extracted from the spherical
map with a gnonomic projection. The 139 deg2 DES SV mask is then
applied by excluding pixel data outside the observed area. From an
octant we extract 18 non-overlapping DES SV mock data sets.

Noise realizations are generated from the data by randomly
exchanging the ellipticity values between galaxies in the catalogue to
remove the lensing signal and leave the shape noise remaining; this

9nicaea.readthedocs.io

standard process assumes the variance due to lensing is negligible
contribution to the ellipticity variance per galaxy. This method
generates realistic, non-Gaussian shape noise in our mock catalogues.

Of the effects excluded from our forward modelling, the uncer-
tainty in the redshift distribution and the intrinsic alignments of
galaxies (Kirk et al. 2015) are likely to have the largest impact. In
future work, these effects can be included in the mock data with a
chosen data model, and any associated nuisance parameters included
in the inference (for treatment of nuisance parameters while keeping
low-dimensional summary statistics for likelihood-free analyses, see
Alsing & Wandelt 2019).

5.2.2 Peak count validation

By construction the power spectra of the mock data match those
predicted by theory (see Section 5.2.1). For the peak statistics, we
validate our mock data against higher resolution and more accurate
N-body predictions.

We use the public MICE lensing simulations (Fosalba et al. 2015)
as a higher resolution ‘truth’, against which we can validate our
forward-modelled data that used the approximate L-PICOLA N-body
method. We generate 18 non-overlapping MICE maps, using the
same source galaxy distribution, mask and shape noise generation
method, to match the L-PICOLA mock data. From these mock maps,
the peak count summary statistics are calculated identically in both
cases.

All cosmological parameters in our forward-model pipeline, other
than those to be inferred from the data, are fixed to the MICE
values. We take four points in parameter space [	m, σ 8] closest
to the MICE values, such that the four points form the corners of a
quadrilateral with the MICE parameter values inside. At each of these
four parameter points, we take the average of the 18 mock peak count
summary statistics; in Fig. 3 these are labelled ‘Nearest L-PICOLA’.

From the 18 MICE realizations, we calculate the mean and
the standard deviation for each element. The standard deviation
corresponds to the larger blue shaded confidence interval in Fig. 3
labelled ‘Data ‘error bar’. This standard deviation corresponds to
the square root of the diagonal of the data covariance (as used in a
standard likelihood analysis), and so tells us whether a discrepancy
between MICE and L-PICOLA is larger than the expected scatter in the
observed data. The smaller orange confidence interval with plotted
error bars are the standard errors on the mean (the larger confidence
interval scaled by 18− 1

2 ). In the left-hand panel of Fig. 3, there
is agreement with the overall shape of the peak count distribution
between MICE and L-PICOLA. The right-hand panel shows the
difference between L-PICOLA and MICE, in which shows that there
are some differences between all four L-PICOLA curves for certain κ

bins, in particular the bins either side of the n(κ) peak and the two
highest κ bins.

To quantify the discrepancy and ascertain whether it is significant,
we evaluate the reduced chi-squared statistic. As a conservative
approximation, we take the mean of the four L-PICOLA curves as
the prediction μ and calculate the reduced chi-squared

χ2
ν = 1

ν

∑
ij

(di − μi)
T �−1

ij (dj − μj ), (20)

for the different elements of the data vector di with degrees of freedom
ν = 11 (as the unknown parameters are fixed) and covariance �

estimated from the four L-PICOLA sets (a total of 72 realizations).
For χ2

ν using the uncertainty due to the finite number of MICE
simulations, we scale � by 18, resulting in χν ≈ 3.4. For the
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realistic data covariance, we calculate χν ≈ 0.2. There is therefore
a measurable difference between MICE and L-PICOLA with a poor
fit of χν > 1 with simulation errors alone. However, with realistic
data noise, a χν 
 1 implies that this discrepancy is subdominant in
comparison to other uncertainty contributions.

The discrepancy would not give a significant parameter shift, as
it is within the noise level of the data. Some shift is nevertheless
still there, so this discrepancy may be too large for key results from
cosmological surveys. Additionally, for data sets more constraining
than the DES SV data, this discrepancy would become more
significant.

By using a simulation with only dark matter particles to validate
our forward model, we are excluding tests for baryonic effects. These
effects should appear at small scales, and we are likely to have
suppressed them for DES data due to our 10 arcmin smoothing (Weiss
et al. 2019). Further validation tests with high-resolution simulations
with baryonic effects included would validate this.

6 R E SULTS: POW ER AND PEAK SUMMARY
STATISTICS

6.1 Overview

In this section, we present the likelihood-free inference results using
the power spectra and peak count summary statistics measured from
the DES SV weak gravitational lensing mass maps. These are crafted
summaries that we expect to be informative with respect to our
unknown cosmological parameters θ . We leave the results from the
deep compressor, extracted informative summaries from the lensing
mass maps using deep CNNs, to the next section.

For the power and peak summary statistics, we first use a neural
compressor to reduce our high-dimensional measured summaries
d to low-dimensional compressed summaries t . We then estimate
the density p(t|θ) using PYDELFI. We validate this density using an
ensemble of NDEs.

The likelihood is then evaluated for the compressed summaries
of the observed (compressed) data to and combined with the prior
p(θ) to give our posterior probability for the parameters given our
compressed power spectra and peak count summary statistics.

6.2 Data compression

Using PYDELFI, we aim to estimate the conditional distribution
p(t|θ ), with compressed summary statistic t . As discussed in
Section 2.4, the compression of the summary statistics down to the
same dimension as the parameters θ (in this case two) is done to
improve the density estimation with finite simulated summaries; the
density estimation is done in {t, θ} space, rather than {d, θ}.

In Alsing & Wandelt (2018), it was shown that for an underlying
true likelihood, the optimal compression is lossless for a fiducial
value of the parameter θ . For an underlying Gaussian likelihood, this
score compression is linear (assuming the covariance is parameter-
independent) and corresponds to the MOPED compression (Heavens,
Jimenez & Lahav 2000) often used in astrophysical data compres-
sion. In general, the optimal score compression reproduces sum-
maries that are transformations of, and have the same constraining
power as, the maximum-likelihood estimate under the assumed
likelihood parameter estimates, t = F (d) = θMLE.

Rather than using an assumed likelihood, our main result uses
neural compression, where t = Fϕ(d) is approximated by a neural
network. This is achieved by training over an augmented training
set of {d+, θ+}, aiming to minimize the following loss function with

respect to the neural network parameters ϕ:

J (ϕ) = ||Fϕ(d+) − [Aθ+ + b]||22, (21)

which is averaged over simulated data d+ and parameter pairs θ+

from the augmented training set, with fixed rescaling A and shift b to
normalize for efficient training depending on network architecture.
In this approach, unlike for the density estimation, the mock data
d+ need not be independent, and we therefore generate 2500 data
realization per simulated convergence octant to create the augmented
training set.

In comparison to the score compression having an equivalence
with maximum-likelihood estimation for an assumed likelihood,
this choice of loss J (ϕ) has an equivalence with a mean posterior
estimate (Jaynes 2003), but without an assumed likelihood and with
an implicit prior given by the distribution of the training labels θ+.

An alternative commonly used loss is the L1 norm, for example,
||F(Y) − X||1, corresponding to minimizing the least absolute
deviation (LED) or mean absolute error (MAE), which would have an
equivalence to a median posterior estimate. This was similarly tested,
but resulted in more lossy compression when tested with simulated
data (see Appendix A).

However, once the neural compression is trained for a
given summary statistic using the augmented set {d+, θ+}, the
compressor is fixed and the density estimation of p(t|θ ) is performed
with PYDELFI with the unsimulated observed data. A suboptimal data
compression will lead to larger scatter in {t, θ} spaces, leading to
inflated parameter constraints, but not to incorrect inference.10

The chosen network architecture and training scheme are de-
scribed in Appendix A.

6.3 PYDELFI density estimation of p(t|θ )

To robustly estimate the distributions p(t|θ ), we used an ensemble
of NDEs with PYDELFI.

We used two (full-rank) Gaussian MDNs and two MAFs. The
two MDNs had two and three Gaussian components respectively,
and both had two dense hidden layers with 30 neurons per layer.
The two MAFs had four and five MADE layers respectively, each
with two dense hidden layers with 50 neurons per layer. We used
tanh activation functions throughout. The final reconstructed density
p(t|θ) is then taken as a weighted average of the individual NDEs,
weighted by the value of the loss achieved during training (i.e. model
averaged relative to their individual performances).

The density estimation was carried out using the transformed
parameters θ ′ = [	m, S8 = σ8(	m/0.3)0.5]. This coordinate trans-
formation simplifies the density estimation task, and the densities
can then be transformed back to θ = [	m, σ8]. We restrict the density
estimation procedure to our eventual prior range of 0.1 < 	m < 0.8
and 0.45 < S8 < 1.05.

Beyond the usual training-validation split during training imple-
mented in PYDELFI, combined with early-stopping to avoid overfit-
ting, the individual estimates from the neural density ensemble can
be used as a further (visual) validation step. Fig. 5 shows the marginal
posterior probabilities (see the next section for details) for the
parameters 	m and S8 =σ 8(	m/0.3)0.5 using the joint peak and power
spectrum summary statistics. If the marginal distributions for each
independent density estimation were in disagreement, this would
be evidence that we had insufficient forward-modelled simulations

10As with all data analysis, poor data compression or cuts can lead to loss of
information and less ability to infer the unknown parameters.
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Figure 5. Validation of probability density estimation: marginal posterior distributions for the different NDEs in the PYDELFI ensemble with the (neural
compressed) joint peak and power spectrum data. The orange line is the marginal posterior using the final stacked density. Though the individual density
estimates are stacked with weights corresponding to their loss during training, there is nevertheless general agreement between the estimates. In future surveys,
these distributions would give an estimate for where new simulations should be run in parameter space during active learning.

to constrain the density. The marginal distributions are generally in
good agreement, albeit with some scatter.

If we were to run more simulations, we could use the scatter
between the NDEs in the ensemble to make decisions about where
to run new simulations, a process known as active learning. Such
an acquisition procedure can reduce the number of simulations
necessary for robust likelihood-free inference (Alsing et al. 2019) and
will be an important tool for large-scale implementation in current
and upcoming galaxy survey analysis.

6.4 Posterior probabilities

The chosen prior is uniform with respect to the physical parameters
	m and σ 8, but still bounded by 0.1 < 	m < 0.8 and 0.45 <

σ 8(	m/0.3)0.5 < 1.05. This prior range is the unshaded region in
Fig. 6. To ensure this prior is used, evaluating in terms of 	m and
S8 = σ 8(	m/0.3)0.5 and applying a prior p(S8) ∝ (	m/0.3)−0.5 gives
the same posterior as evaluation of the learned likelihood in terms of
	m and σ 8 directly.

As the posterior is in low dimension, evaluation on a grid (96 ×
96) is much simpler than Markov Chain Monte Carlo sampling. The
final smooth posterior distributions use CHAINCONSUMER (Hinton
2016) Kernel Density Estimation with the evaluated posterior grid
points.

The left-hand panel of Fig. 7 shows the posterior probability for
the two unknown parameters from the compressed power spectrum
using the weak lensing map from DES SV data. The right-hand panel
shows the posterior probability for the unknown parameters from
the compressed peak count summary statistic using the DES SV
weak lensing map. The central panel shows the parameter posterior
probability distribution from the compressed joint power spectrum
and peak count summary statistic.

The 2D posterior for our peak n(κ) statistic (right-hand panel)
from our observed data is centred with low 	m and high σ 8, and
is therefore sharply cut by the lower limit of the prior p(	m). The
resulting marginal posterior distribution for 	m is ostensibly more
sharply peaked, but this is due to the prior boundary rather than the
data constraints.

Figure 6. The 74 parameter pairs corresponding to the input cosmology of
the forward-modelled data. The dashed lines shows the limits of the prior
range (as described in Section 6) and the shaded region is therefore excluded
by the prior during parameter inference.

The parameter constraints for the combined summary statistics
(central panel) are modestly improved relative to the power spectrum
alone. The change in marginal posterior with respect to the parameter
combination S8 = σ 8 (	m/0.3)0.5 is shown in Fig. 10.

We can compare the resulting marginal in Fig. 10 with the main
result from the original shear two-point correlation DES analysis
(Abbott et al. 2016), which gave a marginal S8 = 0.81 ± 0.06 and
is, therefore, completely consistent. Fig. 2 of Abbott et al. (2016)
shows the 2D posterior distribution, which appears in agreement to
our power-spectrum result (left-hand panel, Fig. 7), but cannot be
directly compared as the summary statistics, including data selection
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Figure 7. Posterior probability distributions from neural compressed summary statistics. The left-hand panel shows the posterior probability distribution from
the power spectrum, the centre panel shows the joint peaks and power spectrum, and the right-hand panel shows the posterior from peaks alone. The resulting
marginal posterior distribution for 	m from peaks alone is particularly peaked due to the prior lower bound for 	m, not due to the data constraints.

Figure 8. Architecture of the ResNet deep compressor. This network
compresses the Kaiser–Squires weak lensing map into a 2D summary statistic,
which is constructed to be informative with respect to our two unknown
cosmological parameters. These informative summaries are evaluated for all
the many simulated mock data maps and the single observed data maps to be
used for the likelihood-free inference step.

effects (e.g. scale cuts) and modelling choices, are different. The joint
posterior from original DES shear peak paper (Kacprzak et al. 2016)
is even less directly comparable, as there are significant differences
with error modelling, map making, and the definition of the peak
count summary statistic, though the inferred parameters are not
discrepant with our result or with Abbott et al. (2016).

7 R ESULTS: MASS MAP DEEP COMPRESS O R

7.1 Overview

In this section, we present the likelihood-free inference results using
compressed summary statistics t directly extracted from the DES
SV weak lensing mass map using deep CNNs, the deep compressor.
As described 4.4, CNNs are flexible feature extractors that can be
optimized as to find maximally informative summary statistics from
the mass map.

We first describe our CNN architecture, the ResNet-18 model.
This acts as the function that takes the noisy Kaiser–Squires mass
map as input and returns the compressed summaries. This network
is included in the SSELFI implementation.

This implementation uses the MSE loss function to train the
network (as described in Section 6.2) and also the Variational Mutual
Information Maximization (VMIM) as an optimization objective
(described below) to extract optimally informative summaries of
the mass map.

As in the previous section, we use PYDELFI estimate the den-
sity p(t|θ ). The likelihood is then evaluated for the compressed
summaries of the observed data to and combined with the prior
probability distribution p(θ) to give our posterior probability for the
parameters given deep compressor summary statistics extracted from
the DES SV weak lensing mass map.

7.2 Convolutional neural network architecture

As discussed in Section 4.4, we base the deep compressor method on
a standard deep ResNet architecture (He et al. 2015b). Specifically,
we adopt a ResNet-18 model. The main component of this archi-
tecture is the ResNet block, in which a shortcut connection directly
connects the input of the block to its output while on a parallel
second branch the input is processed through several convolution
layers (with associated non-linear activation functions) before being
merged with the shortcut branch at the output of the block. This CNN
architecture has proven extremely efficient, and enables the training
of extremely deep models, with over 1000 layers.

The residual structure of ResNet alleviates one of the main limi-
tations that prevents very deep neural networks training efficiently:
vanishing gradients (Bengio, Simard & Frasconi 1994; Hochreiter &
Schmidhuber 1997). Gradient backpropagation (see Goodfellow
et al. 2016) is hindered by the convolutional and non-linearity layers,
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to the point that in a standard CNN architecture deeper than about
10 layers, the upper layers of the model (close to the input) may not
receive enough gradient signal to properly train. A residual network
does not face this issue as gradients always have an almost unhindered
path to reach any layer of the network model through this residual
connection. Another aspect that helps explain the superiority of
ResNet in practice is an easier initialization of the network parameters
(He et al. 2015a). As each individual layer of a ResNet typically
has to model small residual changes between input and outputs of
the residual block, a random zero-mean initialization is already an
appropriate choice.

The ResNet-18 model begins with an initial single convolution
layer with a larger 7 × 7 pixel kernel with a rectified linear
unit (ReLU) activation and batch normalization. The following
convolutional layers have a 3 × 3 pixel kernel size; again, each with
ReLU activation and batch normalization. The input Kaiser–Squires
map is 224 × 224, with a border region removed as a simple solution
to deal with edge effects. The full network is shown in Fig. 8.

Once the network is trained, the 2D output of the model acts as
our CNN compressed summary statistic.

Our implementation is publicly available (see Appendix B) and
is based on the official TensorFlow ResNet implementation11 for
Google’s Tensor Processing Units (TPUs). Training such a ResNet
on TPU allows us to reach a high throughput of over 5500 examples
per second, bringing training time to just under 4 h for 110 000
training steps on the free Google Colab service.

7.3 Optimization objective

Training the compressor to yield informative statistics can be done
in several ways. In the simplest approach, we could train the network
to perform regression of the cosmological parameters under either
an L2 norm (MSE) or L1 norm loss. As explained in Section 6.2,
these correspond to training the model to estimate the mean and
median of the posterior distribution respectively. This corresponds
to the approach followed in a number of previous works (described
in Section 4.4) of using CNNs for convergence maps analysis. This
does not necessarily ensure the recovery of maximally informative
summary statistics in general, though for fixed fiducial parameter
values and assumptions of Gaussianity this may be true (Section 6.2).

Another approach to train the deep compressor model is to
attempt to maximize the mutual information I (t, θ ) between the
output summary statistics and cosmological parameters. The mutual
information quantifies how much knowledge about θ is obtained by
an observation t . The mutual information can be formally defined
with respect to the Kullback–Leibler divergence (Kullback & Leibler
1951) as:

I (t, θ ) = DKL(p(t, θ ) ‖ p(t)p(θ))

=
∫

dnθ dn t p(t, θ ) log

(
p(t, θ )

p(t)p(θ)

)

=
∫

dnθ dn t p(t, θ ) log

(
p(θ |t)
p(θ )

)

=
∫

dnθ dn t p(t, θ ) log p(θ |t) −
∫

dnθ p(θ ) log p(θ)

= Ep(t,θ )

[
log p(θ |t)] − Ep(θ )

[
log p(θ)

]
= Ep(t,θ )

[
log p(θ |t)] − H (θ ),

(22)

11https://github.com/tensorflow/tpu

where p(t, θ ) is the joint distribution of summary statistics and
cosmological parameters, which is sampled by the simulations, and
the expectation value is with respect to samples θ and t. On the
right-hand side of the second expression, we recognize the entropy
H (θ) of the distribution of cosmological parameters in the set of
simulations.

In the context of data compression, a compressed t is obtained
from a realization d of the high-dimensional signal (in this case the
full lensing mass map). In this case we parametrize this mapping
as t = Fϕ(d) using our ResNet-18 model. Our goal is therefore to
find the parameters ϕ of the deep compressor that maximize the
mutual information between summary statistics and cosmological
parameters, given by

ϕ∗ = arg max
ϕ

I (Fϕ(d), θ ). (23)

Unfortunately, the mutual information as expressed in equa-
tion (22) is not tractable, and estimation of this quantity remains an
open problem in statistics and machine learning. However, the topic
of mutual information estimation has attracted significant attention
in the machine learning literature recently (e.g. Tishby & Zaslavsky
2015; Alemi et al. 2016; Chen et al. 2016), due in part to its potential
for representation learning. These recent work have in common that
they rely on tractable bounds on the mutual information, which allows
for the mutual information to be optimized for instance in the context
of training a deep neural network.

A variety of bounds exist with various properties, and we direct
the interested reader to a recent review (Poole et al. 2019), but in
this work, we adopt the Barber & Agakov (2003) variational lower
bound. This is given by

I (t, θ ) ≥ Ep(t,θ )

[
log q(θ |t; ϕ′)

] − H (θ ), (24)

where q(θ |t; ϕ′) is a variational conditional distribution, which aims
to model the posterior p(θ |t). This lower bound becomes an equality
when q(θ |t; ϕ′) matches the true posterior p(θ |t). Using this bound,
and taking advantage of the fact that H (θ ) is constant for a given
training set, we can restate the optimization problem as:

arg max
ϕ,ϕ′

Ep(d,θ )

[
log q

(
θ |Fϕ(d); ϕ′)] (25)

This procedure is known as VMIM, and the optimization problem
can be solved by gradient descent over the weights of the neural
network Fϕ , and parameters of the variational distribution q(ϕ′).

In practice, to train the neural compressor under VMIM, we use
a conditional Normalizing Flow to model q(θ |t; ϕ′). We adopt a
four-stage MAF, each stage containing two hidden layers of size
128, and we train jointly the concatenation of the ResNet-18 and this
Normalizing Flow model under the loss:

JVMIM(ϕ, ϕ′) = −
N∑

n=1

log q
(
θ+

n |Fϕ(d+
n ); ϕ′), (26)

where the sum is over the samples {θ+
n , d+

n } from the augmented
training set.

After training, we discard the trained density estimator q(ϕ′)
and only export the neural compressor Fϕ . This is used to then
compress the Kaiser–Squires maps to summary statistics which are
used in the PYDELFI likelihood-free framework described in previous
sections.
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Figure 9. The posterior probability distributions from the two CNN map
compressed statistics with the MSE (red dashed line) and VMIM (purple
solid line) loss function.

Figure 10. The marginal posterior probability densities for the parameter
combination S8 = σ 8 (	m/0.3)0.5 from the power spectrum compressed
summary (dotted orange line), the joint power spectrum and peak compressed
summary statistic (solid blue line), and from the two CNN map compressed
summary statistics with MSE loss (dashed purple line) and VMIM loss
(dashed–dotted red line).

7.4 Posterior constraints from deep CNN compression of the
DES SV mass maps

Fig. 9 shows the posterior probability distributions from the DES SV
weak lensing mass map using two CNN compressed map summary
statistics. Each CNN had been trained using the same augmented
training data but using different loss functions: the MSE and the
VMIM.

As with the neural compression of the power spectrum and peak
summary statistics, the network was trained and its weights fixed
before application to data. Freezing the network architecture and
weights before using the observed data removes the opportunity
to take advantage of randomness in training, where one could,
consciously or not, retrain in the hope of getting a different result

due to scatter (a form of confirmation bias). This procedure of fixing
the weights is a form of blinding.

The CNN map compressed summary statistics (both MSE and
VMIM) have slightly tighter constraints in the marginal posterior
shown in Fig. 10 than the other summary statistics. These deep com-
pressor summaries result in a higher posterior mean (e.g. comparing
the joint power × peaks with VMIM) for the S8 = σ 8 (	m/0.3)0.5

parameter combination, but the posteriors are clearly not in tension
in either the S8 marginal (where the joint power×peak 2σ credible
interval contains the value of the VMIM mean posterior) or in the
full 2D posterior (compare Figs 7 and 9).

8 D I SCUSSI ON AND C ONCLUSI ONS

In this work, we have used likelihood-free inference to estimate
the posterior probability distributions of unknown cosmological
parameters given observed DES SV weak lensing map statistics. This
likelihood-free framework used a forward modelling approach to
include the underlying physics and the combined effects of multiple
sources of data and measurement noise.

The mock data summary statistics, labelled with their associated
cosmological parameters, were compressed and compared with the
observed data (also compressed) to estimate the likelihood p(do|θ )
for the given compressed summary statistic. With this simulation-
based likelihood reconstruction for the DES SV data, the posterior
distributions for the following summary statistics were evaluated:
weak lensing map power spectrum (Fig. 7, left-hand panel), weak
lensing map peak count summary statistic (Fig. 7, right-hand panel),
the joint power×peak summary statistic (Fig. 7, centre panel), and
a deep learning compressed summary statistic of the weak lensing
map using CNNs (Fig. 9).

We use the PYDELFI (Alsing et al. 2019) package to perform
the density estimation likelihood-free inference. To improve the
efficiency of the density estimation, we aim to find some compression
function taking the data summaries d and giving low-dimensional
compressed summaries t = F (d) that retains the information about
the unknown parameters. We aimed to learn such a compression
function using deep neural networks (Section 6.2). Compressing the
weak lensing map directly, rather than compressing summaries (e.g.
power spectra), is an extension of this, which was implemented using
deep CNNs (Section 7).

In this work, we have implemented a series of validation steps
in our likelihood-free inference pipeline. Some of these tests aim
to validate the forward model, which ensures the reliability of
the physics and the data modelling. We also validate the density
estimation step, which ensures the reliability of the resulting posterior
distributions given the simulated data.

To validate the forward model we compare the measured summary
statistics from our simulations with summary statistics measured
from higher resolution simulations. In our case, we show that, up
to the noise level of our data, the L-PICOLA simulations give power
spectra and peak count summary statistics that are consistent with
the MICE simulations. In this framework, we can deal with known
unknowns. For example, we are aware that approximations in the
L-PICOLA algorithm impact the small scales in the matter density,
and therefore satisfied that the discrepancy in the power spectrum at
high � exists and is below the noise level.

There may be unknown unknowns in the forward model that
are more difficult to validate. For example, one could construct a
generator that created mock data with the power spectra matching
theory perfectly, but still had a theoretically incorrect power spectrum
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covariance. Here, we must rely on the physics encoded in the
simulator to reflect the true behaviour of our system (the evolution
of the cosmic matter density), and test for inaccuracies that could be
reasonably expected (e.g. finite-resolution, N-body approximations,
and baryonic effects). In all parameter or model inference, one should
be able to describe the data model, and the same concerns about
unknown unknowns should apply.

The clarity afforded by the ability to forward model mock data
is a strength of likelihood-free inference. In the likelihood-free
framework, the individual elements of the forward model are distinct
and testable, so are less easily hidden.

In this work, our forward model includes or implicitly accounts
for: non-Gaussian shape noise, the non-Gaussian density field, all
mask and spatially-varying shape noise effects, resulting higher order
moments of the sampling distribution, projection and flat-sky/Limber
effects.

Effects that are often included as nuisance parameters, but which
we have omitted, are the intrinsic alignments and the uncertainty in
the photometric redshift distribution of the source galaxies. With
the addition of extra nuisance parameters, we could have used
different models to include the intrinsic alignments of galaxies. This
is something that can be done in future work. Kacprzak et al. (2016)
found that parameter constraints from peak counts can indeed be
shifted by the effects of intrinsic alignments.

We could additionally include uncertainties in the photometric
redshift distribution, either by simply marginalizing over nuisance
parameters that re-calibrate or transform the distribution (e.g. Abbott
et al. 2016) at the expense of additional parameters or, more generally,
including the redshift analysis in the forward model.

To validate the density estimation step, we trained an ensemble of
NDEs with different architectures. Fig. 5 shows marginal posterior
distributions for the different NDEs (from the compressed joint
power×peak data). The results from the different density estimators
are in general agreement, though additional simulations with certain
parameter combinations would decrease the variance of the ensem-
ble. The model averaged stack of NDEs that is used for deriving
the final posterior is more robust than any individual NDE in the
ensemble.

By running additional simulations ‘on the fly’, one could update
the density ensemble after each new batch of simulations to learn
where in parameter space to best run the next batch. Active learning
has been shown to be far more efficient in terms of the number
of simulations needed (Leclercq 2018; Alsing et al. 2019). For
likelihood-free inference using N-body simulations from data from
current and upcoming surveys, with much larger volumes and a larger
parameter space, this approach may be vital.

The likelihood-free approach can not only account for non-
Gaussianity (which is not just a problem for the higher order statistics
in weak lensing), but it also provides an efficient and alternative
analysis pipeline that avoids many of the troublesome aspects of the
standard cosmological inference pipelines. For example, with the
same number of simulations that may be used to estimate the inverse
covariance matrix for a Gaussian likelihood, we have estimated the
full sampling distribution of the compressed summaries.

The likelihood-free framework improves the reliability of infer-
ence from standard summary statistics (e.g. power spectra) by pro-
viding a flexible and robust way forward by using direct comparison
of simulations with data. It can also allow us, without resorting to
misleading likelihood approximations, to use non-standard summary
statistics of our data (including peaks and deep CNN map statistics)
that can extract information beyond the standard summaries. As

well as opening up non-standard summary statistics, likelihood-
free inference for weak lensing surveys may also enable us to
extract information from non-standard weak lensing observables
(e.g. magnification, Hildebrandt, van Waerbeke & Erben 2009; van
Waerbeke 2010; Duncan et al. 2013; Heavens, Alsing & Jaffe 2013;
Hildebrandt et al. 2013; Alsing et al. 2015) that have been inhibited by
complicated systematics effects that could (in principle) be included
in forward simulations.
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École Normale Supérieure (ENS) and also acknowledges support
from Science and Technology Facilities Council (STFC) grant
ST/R000476/1.

Some of the results in this paper have been derived using the
HEALPY package (Zonca et al. 2019). We also acknowledge use
of MATPLOTIB (Hunter 2007), KERAS (Chollet et al. 2015), TENSOR-
FLOW (Abadi et al. 2015), and CHAINCONSUMER (Hinton 2016).

DATA AVAI LABI LI TY

The data underlying this article are publicly available from the DES
Data Management system as part of the SVA1 Gold Release:
https://des.ncsa.illinois.edu/releases/sva1

We have made the simulations used, along with associated
code, publicly available: https://github.com/NiallJeffrey/Likelihood
-free DES SV. Links to packages used in this paper are including in
Appendix B.

REFERENCES

Abadi M. et al., 2015, TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Systems. Available at: https://www.tensorflow.org/ (accessed
December 20)

Abbott T. et al., 2016, Phys. Rev. D, 94, 022001
Abbott T. M. C. et al., 2018, Phys. Rev. D, 98, 043526
Akeret J., Refregier A., Amara A., Seehars S., Hasner C., 2015, J. Cosmol.

Astropart. Phys., 2015, 043
Alemi A. A., Fischer I., Dillon J. V., Murphy K., 2016, CoRR, preprint

(arXiv:abs/1612.00410)
Alsing J., Wandelt B., 2018, MNRAS, 476, L60
Alsing J., Wandelt B., 2019, MNRAS, 488, 5093
Alsing J., Kirk D., Heavens A., Jaffe A. H., 2015, MNRAS, 452, 1202
Alsing J., Heavens A., Jaffe A. H., Kiessling A., Wandelt B., Hoffmann T.,

2016, MNRAS, 455, 4452
Alsing J., Heavens A., Jaffe A. H., 2017, MNRAS, 466, 3272
Alsing J., Wandelt B., Feeney S., 2018, MNRAS, 477, 2874
Alsing J., Charnock T., Feeney S., Wand elt B., 2019, MNRAS, 488,

4440
Amendola L. et al., 2016, Living Rev. Relativ., 21, 2
Barber D., Agakov F., 2003, in Proc. 16th International Conference on Neural

Information Processing Systems. NIPS’03. MIT Press, Cambridge, MA,
USA, p. 201

Bartelmann M., Schneider P., 2001, Phys. Rep., 340, 291
Bengio Y., Simard P., Frasconi P., 1994, IEEE Trans. Neural Netw., 5, 157
Bishop C., 1994, Working Paper, Mixture Density Networks. Aston Univer-

sity, England
Cameron E., Pettitt A., 2012, MNRAS, 425, 44
Carassou S., de Lapparent V., Bertin E., Borgne D. L., 2017, A&A, 605, A9
Castro P. G., Heavens A. F., Kitching T. D., 2005, Phys. Rev. D, 72, 023516

MNRAS 501, 954–969 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/501/1/954/6006276 by U
niversity C

ollege London user on 05 January 2022

https://des.ncsa.illinois.edu/releases/sva1
https://github.com/NiallJeffrey/Likelihood-free_DES_SV
https://www.tensorflow.org/
http://dx.doi.org/10.1103/PhysRevD.94.022001
http://dx.doi.org/10.1103/PhysRevD.98.043526
http://dx.doi.org/10.1088/1475-7516/2015/08/043
https://arxiv.org/abs/1612.00410
http://dx.doi.org/10.1093/mnrasl/sly029
http://dx.doi.org/10.1093/mnras/stz1900
http://dx.doi.org/10.1093/mnras/stv1249
http://dx.doi.org/10.1093/mnras/stv2501
http://dx.doi.org/10.1093/mnras/stw3161
http://dx.doi.org/10.1093/mnras/sty819
http://dx.doi.org/10.1093/mnras/stz1960
http://dx.doi.org/10.1007/s41114-017-0010-3\hskip \z@ \hskip \z@ \hskip \z@ \hskip \z@ \hskip \z@ \hskip \z@ \hskip \z@ 
http://dx.doi.org/10.1016/S0370-1573(00)00082-X
http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.1111/j.1365-2966.2012.21371.x
http://dx.doi.org/10.1051/0004-6361/201730587
http://dx.doi.org/10.1103/PhysRevD.72.023516


968 N. Jeffrey, J. Alsing and F. Lanusse

Chang C. et al., 2015, Phys. Rev. Lett., 115, 051301
Charnock T., Lavaux G., Wandelt B. D., 2018, Phys. Rev. D, 97, 083004
Chen X., Duan Y., Houthooft R., Schulman J., Sutskever I., Abbeel P., 2016,

CoRR, preprint (arXiv:1606.03657)
Cheng S., Ting Y.-S., Ménard B., Bruna J., 2020, MNRAS, 499, 5902
Chollet F. et al., 2015, Keras. Available at: https://keras.io (accessed Decem-

ber 20)
Coe D., Benı́tez N., Sánchez S. F., Jee M., Bouwens R., Ford H., 2006, AJ,

132, 926
Cooley J. W., Tukey J. W., 1965, Math. Comput., 19, 297
Dark Energy Survey Collaboration, 2016, MNRAS, 460, 1270
Davies F. B., Furlanetto S. R., 2016, MNRAS, 460, 1328
Diaz Rivero A., Dvorkin C., 2020, Phys. Rev. D, 102, 103507
Dietrich J. P., Hartlap J., 2010, MNRAS, 402, 1049
Dodelson S., 2003, Modern Cosmology. Academic Press, Amsterdam
Duncan C. A. J., Joachimi B., Heavens A. F., Heymans C., Hildebrandt H.,

2013, MNRAS, 437, 2471
Eisenstein D. J., Hu W., 1999, ApJ, 511, 5
Fagioli M., Tortorelli L., Herbel J., Zürcher D., Refregier A., Amara A., 2020,
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APPEN D IX A : SUMMARY STATISTIC NEURAL
COMPRESSION TRAINING

For the neural compression of the power and peak summary statistics,
we tested a series of architectures with varying activation functions,
loss functions, and learning rates. The final (best performing)
architecture used three dense hidden layers with 100 nodes, each
followed by a ReLU activation function, and a final dense layer (to a
two-element output) without an activation function. The network was
trained using the stochastic optimizer Adam (Kingma & Ba 2014)
with 130 000 training samples and 55 000 validation samples (gener-
ated using the data augmentation method described in Section 6.2).
The network, which showed no evidence of significant overfitting,
was trained for 20 epochs.

For the loss function we considered two options: the L1 loss and
the L2 MSE loss (e.g. equation 21). As discussed in Section 6.2,
the L2 minimization corresponds to a point estimate of the posterior
mean and the L1 minimization corresponds to a point estimate of
the posterior mode. From the augmented training data, a small
sample of four realizations were taken as mock observations and
each compressed in two different ways (with L1 and L2 trained
networks). The compressed summaries were used in our PYDELFI

pipeline with the result that the L2 MSE loss consistently gave
slightly tighter constraints (with the four mock observations) than
the L1 loss. Any differences between the two choices of loss function
were nevertheless extremely small.

All of these tests were performed before the final likelihood-free
inference step using data, to avoid misleading results due to post-hoc
analysis (analogous to ‘p-hacking’).

APPENDI X B: PUBLI C CODE

In this work, we have used code to generate mock simulations,
compress the observed summary statistics of the data, and estimate
the likelihood-free posterior probability densities.

(i) To generate the mock simulations, we use the L-PICOLA dark
matter simulation code (Howlett et al. 2015): https://cullanhowlett.
github.io/l-picola/.

(ii) To convert the dark matter overdensity shells into convergence
maps, we use a Born approximation ray tracing code, which we have
made available: https://github.com/NiallJeffrey/born raytrace.

(iii) For density estimation likelihood-free inference, we use the
PYDELFI code (Alsing et al. 2019): https://github.com/justinalsing/
pydelfi.

(iv) For the deep compressor CNN summary statistic extraction,
we use SSELFI: https://github.com/EiffL/SSELFI.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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