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ABSTRACT

Aims. We introduce a novel approach to reconstructing dark matter mass maps from weak gravitational lensing measurements. The
cornerstone of the proposed method lies in a new modelling of the matter density field in the Universe as a mixture of two components:
(1) a sparsity-based component that captures the non-Gaussian structure of the field, such as peaks or halos at different spatial scales,
and (2) a Gaussian random field, which is known to represent the linear characteristics of the field well.
Methods. We propose an algorithm called MCALens that jointly estimates these two components. MCALens is based on an alternating
minimisation incorporating both sparse recovery and a proximal iterative Wiener filtering.
Results. Experimental results on simulated data show that the proposed method exhibits improved estimation accuracy compared to
customised mass-map reconstruction methods.
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1. Introduction

In recent years, interest has increased in exploring the two
most dominant components of the universe: dark matter and
dark energy. To this end, large-scale imaging and spectroscopic
surveys are currently under development, such as the Euclid mis-
sion (Laureijs et al. 2011), the Rubin Observatory Legacy Sur-
vey of Space and Time (Abell et al. 2009), and the Roman Space
Telescope (Spergel et al. 2015), which will map the sky with
unprecedented accuracy. A prominent cosmological probe for
these surveys is weak gravitational lensing.

Weak gravitational lensing measures correlations in the
small distortions of distant galaxies caused by the gravitational
potential of massive structures along the line of sight. Its effect
on distant source galaxies is twofold: the galaxy shapes are
magnified by a convergence field, κ, while the galaxy elliptic-
ities are perturbed from their underlying intrinsic value by a
shear field, γ. To contribute constraints on cosmological param-
eters and models, two-point correlation functions of the shear
have been used with considerable success (Kilbinger et al. 2013;
Alsing et al. 2016a). This type of correlation is sufficient to sta-
tistically describe the Gaussian structures of the lensing field,
such as those expected to be present either in the early universe
or at large scales that are less affected by gravitational collapse.
To capture non-Gaussian structures such as those expected in
smaller scales at later time, higher order moments of the shear
need to be employed (Munshi & Coles 2017).

On the other hand, the convergence density field is not
observed directly as a result of the mass-sheet degeneracy
(Bartelmann & Schneider 2001; Kilbinger 2015). Physically,

the convergence field reveals the projected total matter den-
sity along the line of sight, weighted by a lensing kernel in
the mid-distance between the observer and the galaxy sources.
The density field is inhomogeneous, encompassing Gaussian-
type large-scale structures, as well as non-Gaussian features,
such as peaks. To shed light on the way in which the conver-
gence density field constrains cosmology, peak statistics (e.g.
Jain & Van Waerbeke 2000; Marian et al. 2011; Lin & Kilbinger
2015; Liu & Haiman 2016; Peel et al. 2017a; Fluri et al. 2018;
Li et al. 2019; Ajani et al. 2020) and higher order correlation
functions and moments, such as the Minkowksi functionals (e.g.
Kratochvil et al. 2012; Shirasaki et al. 2012; Petri et al. 2013),
have been applied directly on mass maps. It is therefore essen-
tial for mass-mapping methods to preserve both Gaussian and
non-Gaussian features during the reconstruction process.

Mass-mapping methods solve an ill-posed problem because
the sampling of the lensing field is irregular and the signal-
to-noise ratio on small scales is low. A widely used algo-
rithm to perform mass mapping is the Kaiser-Squires method
(Kaiser & Squires 1993), which is expressed as a simple lin-
ear operator in Fourier space. However, it is inevitable that this
estimator returns poor results because it does not take partic-
ular care of the noise or missing data. A different approach,
motivated also by the Bayesian framework, is that of Wiener
filtering (Wiener 1949). In this approach, a Gaussian random
field is assumed as a prior for the convergence map, which is
responsible for inserting some bias that prevents our estimate
from over-fitting (Zaroubi et al. 1995). Moreover, a recently
proposed customised method is the algorithm called gravita-
tional lensing inversion and mapping using sparse estimators
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(GLIMPSE2D; Lanusse et al. 2016). GLIMPSE2D is a highly
sophisticated algorithm that takes advantage of the sparse regu-
larisation framework to solve the ill-posed linear inverse prob-
lem. GLIMPSE2D is based on sparse representations (i.e.
wavelets) and is therefore well designed to recover piece-wise
smooth features. An analytical comparison of these three esti-
mators is provided in Jeffrey et al. (2018a).

In this paper we propose to bridge the gap between the
sparse regularisation method of GLIMPSE2D and the Wiener-
filtering method by modelling the matter density field in the
universe using both linear and non-linear characteristics. Specif-
ically, we assume that the density field is modelled as a mix-
ture of two terms: (1) a non-Gaussian term that adopts a sparse
representation in a selected wavelet basis (Starck et al. 2015),
and (2) a Gaussian term that is modelled using a Gaussian ran-
dom field (Elsner & Wandelt 2013; Horowitz et al. 2019). The
non-Gaussian signal component is able to capture the non-linear
characteristics of the convergence field, such as peaks, while the
Gaussian component of the signal is responsible for capturing
the lower-frequency characteristics of the underlying field, such
as smooth variations. To our knowledge, this is the first time that
this mixture modelling is proposed for mass-map reconstruction.

This paper is structured as follows. In Sect. 2 we intro-
duce the formalism of weak gravitational lensing and describe
the mass-map reconstruction problem. To this end, we provide
a brief overview of the current algorithms of Kaiser-Squires,
Wiener filtering, and GLIMPSE2D. We then present our pro-
posed mass-mapping method in Sect. 3. The method is novel
in the sense that it exploits both sparsity in the wavelet domain
and a Gaussian random field model. Section 4 illustrates the
enhanced estimation performance of the proposed method by
providing experiments conducted on both simulated and real
data.

Notation: We use (·)∗ to denote the Hermitian transpose
of a matrix or the adjoint operator of a transform. With ‖·‖1
and ‖·‖2 we denote the `1 and `2 norm, respectively, (‖x‖1 =∑N

i=1 |xi|, ‖x‖22 = xT x). The determinant of a matrix or the abso-
lute value of a scalar is denoted by |·|, while diag(x) stands for
a diagonal matrix that contains the elements of vector x on its
diagonal. Finally, RN is the N-dimensional Euclidean space, 0
denotes the zero vector, 1 the all-ones vector, and IK is the K×K
identity matrix.

2. Weak-lensing mass mapping

Gravitational lensing describes the phenomenon where the light
emitted from distant galaxies is deflected as it passes through
a foreground mass distribution. The lensing effect distorts the
images of distant galaxies; the distortion is proportional to the
size and shape of the projected matter distribution along the line
of sight. Specifically, the mapping between the source coordi-
nates, β, and the lensed image coordinates, θ, is given by the
lens equation (e.g. Kilbinger 2015),

β = θ − ∇ψ(θ), (1)

where ψ(·) defines the lensing potential that conceals the deflec-
tion of light rays by the gravitational lens. Under the Born
approximation, which assumes that the lensing potential is
weak enough, we may linearise the coordinate transformation
of Eq. (1) by using the Jacobian A = ∂β/∂θ as

βi = Ai jθ j, (2)

where Ai j = ∂βi/∂θ j are the coefficients of the amplification
matrix A , and we assume the Einstein summation convention.

The symmetrical matrix A can also be parametrised in terms of
the convergence, κ, and the shear, γ, as

A =

[
1 − κ − γ1 −γ2
−γ2 1 − κ + γ1

]
. (3)

The convergence can then be defined as a dimensionless quantity
that relates to the lensing potential through the Poisson equation,

κ =
1
2

(∂1∂1 + ∂2∂2)ψ =
1
2
∇2ψ, (4)

while the shear is mathematically expressed as a complex field
whose components also relate to ψ,

γ1 =
1
2

(∂1∂1 − ∂2∂2)ψ and γ2 = ∂1∂2ψ. (5)

Equation (3) shows that the convergence causes an isotropic
change in the size of the source image because it appears in
the diagonal of A . In comparison, the shear causes anisotropic
changes of the image shapes. The convergence κ can also be
interpreted via Eq. (4) as a weighted projection of the mass den-
sity field between the observation and the source. Factoring out
the term (1− κ) in Eq. (3) leaves the amplification matrix depen-
dent on the reduced shear,

A = (1 − κ)
[

1 − g1 −g2
−g2 1 + g1

]
, (6)

which is directly measured in lensing surveys, and it is defined
as g = γ/(1 − κ). In the weak-lensing limit, where γ, κ � 1, the
reduced shear is approximately equal to the true shear, that is,
g ' γ.

In this paper we are interested in recovering the convergence
κ from the reduced shear data. This is an ill-posed inverse prob-
lem because of the finite sampling of the reduced shear over a
limited area of the survey and the presence of shape noise in
the measurements. In the following we review some of the cus-
tomised weak-lensing mass reconstructing algorithms, namely
the Kaiser-Squires, the Wiener filtering, and the GLIMPSE2D
methods.

Kaiser-Squires. A theoretical framework for reconstructing
convergence maps from the observable weak-lensing shear in the
Fourier domain was proposed in Kaiser & Squires (1993). As we
showed in Eqs. (4) and (5), the convergence and shear are both
expressed as second-order derivatives of the lensing potential.
Their interrelation through the lensing potential ψ is expressed
by a two-dimensional convolution (Kaiser & Squires 1993),

γ(θ) =
1
π

∫
R2

d2θ′D(θ − θ′)κ(θ′), (7)

where D(θ) = −1/(θ1 − iθ2)2. This convolution is equivalently
expressed in Fourier space as the element-wise multiplication,

γ̃(k) = π−1D̃(k)κ̃(k), (8)

where k is the wave vector, and the Fourier transform of the
kernel D(θ) is given by

D̃(k) = π
k2

1 − k2
2 + 2ik1k2

k2
1 + k2

2

, (9)

with k1 and k2 being the two frequency components of k. Dis-
cretising Eq. (7) and adopting matrix notation, we may consider
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that the observed shear γ is generated as a linear combination of
the convolution matrix A and the unknown underlying field κ,

γ = Aκ + n, (10)

where n is the statistical uncertainty vector associated with the
data. Based on Eq. (8), A can be decomposed in Fourier space
as A = FPF∗, where F denotes the discrete Fourier transform,
F∗ is its adjoint, and P is the diagonal operator that defines the
convergence field-shear relation in Fourier space,

γ̃ = Pκ̃ =

k2
1 − k2

2

k2 + ı
2k1k2

k2

 κ̃ (11)

where k2 = k2
1 + k2

2 and κ̃ = Fκ.
Equation (11) corresponds to a discretised version of Eq. (8).

As it stands, the Kaiser-Squires inversion of Eq. (11) has several
drawbacks. First, it is not defined for k = 0, which stems from
the mass-sheet degeneracy (i.e. the mean value of the conver-
gence field cannot be retrieved). Next, it is ill-posed because
typically, the shear field is a discrete under-sampling of the
underlying convergence field. Neither does it take masked data
into account. Nonetheless, the Kaiser-Squires estimate is still
used in practice because it is easy to apply.

Wiener filtering. The Wiener filter was introduced in the
1940s (Wiener 1949), and it is the optimal linear filter in the min-
imum mean-square sense that provides a denoised version of the
desired signal. The Wiener-filtered estimate of the convergence
map can be expressed using the linear equation

κG = Wγ, (12)

where the matrix W is given by

W = (AΣκA∗ + Σn)−1A∗Σκ, (13)

and Σκ and Σn are the pre-defined covariance matrix of the con-
vergence and the noise, respectively. When the noise is not sta-
tionary, the Wiener-filter solution is not straightforward, and
an iterative approach is required. This is discussed in the next
section.

From a Bayesian perspective, Wiener filtering is equivalent
to the maximum a posteriori (MAP) estimator given that the
convergence is a zero-mean Gaussian signal with covariance
Σκ. When we assume that shear measurements are distorted by
uncorrelated Gaussian noise, the likelihood function shares the
noise properties, that is,

p(γ|κ,Σn) = |2πΣn|
− 1

2 exp
[
−

1
2

(γ − Aκ)∗Σn
−1(γ − Aκ)

]
, (14)

while the distribution of the Gaussian random field can be writ-
ten as

p(κ|Σκ) = |2πΣκ|−
1
2 exp

[
−

1
2
κ∗Σκκ

]
. (15)

Given Eqs. (14) and (15) above, the MAP estimator is expressed
as

κG = arg maxκ {p(κ|γ)} ∝ arg maxκ {p(γ|κ,Σn)p(κ|Σκ)}

∝ arg maxκexp
[
−

1
2
κ∗Σκκ −

1
2

(γ − Aκ)∗Σn
−1(γ − Aκ)

]
,

(16)

which leads to the minimisation

κG = arg minκ
{
‖γ − Aκ‖2Σn

+ ‖κ‖2Σκ

}
. (17)

It is easy to see that the minimum is attained at κG = Wγ, where
W is the Wiener filter given in Eq. (12).

The implementation of the Wiener filter requires the inver-
sion of the matrix W that includes both a signal covariance
matrix component and the noise covariance matrix component.

The unknown κG is assumed to be a Gaussian random
field with a covariance matrix diagonal in Fourier space, Σκ =
F∗CκF, where Cκ is a diagonal matrix with diagonal values equal
to the theoretical power spectrum Pκ. When the noise is station-
ary, its covariance matrix is also diagonal with diagonal elements
equal to the noise power spectrum Pn. In this case, the filter solu-
tion is obtained in Fourier space by κ̃G = W̃γ̃, where the Wiener
filter is W̃ =

Pκ
Pκ+Pn

. In practice, the noise is generally not sta-
tionary and depends on the number of shear measurements in
the area related to a given pixel of the shear field. Therefore the
noise covariance matrix is diagonal in pixel space, not in Fourier
space, and the Wiener-filter solution becomes harder to derive,
requiring either making an incorrect assumption (i.e. that the
noise is stationary) or inverting a very large matrix. This ren-
ders its inversion computationally complex and prone to numer-
ical errors. To circumvent this computationally intensive opera-
tion, a forward-backward (FB) proximal iterative Wiener filter-
ing was proposed in Bobin et al. (2012) for the denoising of cos-
mic microwave background spherical maps, exploiting the prop-
erty that the signal and noise covariance matrices are diagonal in
pixel and Fourier space, respectively. Equation (17) comprises
two separable terms,

f1(κ) =‖ γ − Aκ ‖2Σn
and f2(κ) = ‖κ‖2Σκ . (18)

Following the FB method (Starck et al. 2015), we can solve
Eq. (18) by designing an iterative fixed point algorithm as

κk+1 = proxµ f2 (κk
G + ∇ f1(κk

G)), (19)

which is known to converge when µ < 2/‖A∗Σn
−1A‖2,

Combettes & Wajs (2005).
Computing the proximal operator in Eq. (19), we have the

following iterative Wiener-filtering algorithm:
– Forward step:

t = κn + 2µA∗Σ−1
n (γ − Aκn) (20)

– Backward step:

κn+1 = F∗
(
Pκ

(
Pη + Pκ

)−1
)

Ft, (21)

where t is an auxiliary variable, µ = min(Σn), Pη = 2µI and κ0 =
0. This algorithm is free from matrix inversions because both Σn
used in Eq. (20) and Pκ used in Eq. (21) are diagonal matrices.
A similar algorithm, exploiting transformations between pixel
and harmonic space, was proposed by Elsner & Wandelt (2013)
using the messenger field framework. These methods can also
be adapted to efficiently sample from the posterior distribution of
the unknown mass map (Alsing et al. 2017; Jeffrey et al. 2018b).
The Wiener approach recovers the Gaussian component of the
convergence field well, but it is far from optimal at extracting
the non-Gaussian information from the data because peak-like
structures are suppressed. This has motivated the development
of sparse recovery methods based on wavelets.
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Sparse recovery. It has been shown that sparse recovery
using wavelets is a very efficient way to reconstruct convergence
maps (Starck et al. 2006b; Leonard et al. 2012; Lanusse et al.
2016; Peel et al. 2017b; Price et al. 2020). The mass-mapping
problem is addressed as a general ill-posed problem, which is
solved through weighted `1-norm regularisation in a wavelet-
based analysis sparsity model. Sparsity in the discrete cosine
transform (DCT) domain was also proposed to fill the missing
data area in the convergence map (Pires et al. 2009).

The GLIMPSE algorithm avoids any binning or smoothing
of the input data that could potentially cause loss of information.
The primary cost function is

arg minκ

{
1
2
‖γ − T PF ∗κ‖2Σn

+ λ‖ω �Φ∗κ‖1 + iR(κ)
}
, (22)

where T is the nonuniform discrete Fourier transform (NDFT)
matrix, P is defined in Eq. (11), λ is a sparsity regularisation
parameter, ω is a weighting vector, Φ∗ is the adjoint operator of
the wavelet transform, and iR is an identity function that drives
the imaginary part of the convergence to zero. This cost function
is also generalised in GLIMPSE2D in order to replace the shear
by the reduced shear, or to incorporate the flexion information.
It has been shown that GLIMPSE2D significantly outperforms
Wiener filtering for peaks recovery, while Wiener filtering does
better on the Gaussian map content (Jeffrey et al. 2018a).

Deep learning. Deep-learning techniques have recently been
proposed and appear to be very promising (Jeffrey et al. 2020).
The input of the neural network is not the shear field directly,
but rather the Wiener-filter solution. We could imagine that the
closer we are to the true solution with standard techniques such
as Wiener filter or sparsity, the better deep learning can improve
the solution. Open questions related to deep learning remain
to be answered, such as its generalisation to cosmologies not
present in the training data set, or the potential bias introduced
by using a theoretical power spectrum in the Wiener-filter solu-
tion serving as input of the neural network.

3. Modelling with sparsity and a Gaussian random
field

3.1. New convergence map model

We showed two different models in Sect. 2: the first modelling
the convergence map as a Gaussian random field, which recov-
ers the large scales of the convergence map well but suppresses
peak structures, and the second assuming the convergence map is
compressible in the wavelet domain (i.e. sparse modelling). The
sparse recovery is clearly complementary to the Wiener-filter
solution because it recovers peaks extremely well, but recovers
the Gaussian content poorly.

To address these limitations, it appears to be natural to intro-
duce a novel modelling approach, where the convergence field
κ is assumed to comprise two parts, a Gaussian and a non-
Gaussian:

κ = κG + κNG. (23)

The non-Gaussian part of the signal κNG is subject to a sparse
decomposition in a wavelet dictionary, while the component κG
is assumed to be inherently non-sparse and Gaussian.

The morphological component analysis (MCA) has been
proposed (Starck et al. 2004; Elad et al. 2005) to separate two
components mixed in a single image when these components

have different morphological properties. This appears to be
impossible because we have two unknowns and one equation,
but it was shown that it is sometimes possible to extract these
two components if we can exploit their morphological differ-
ences. This requires different penalisation functions CG and CNG
on each of these two components, and we need to minimise

min
κG,κNG

{
‖γ − A(κG + κNG)‖2Σn

+ CG(κG) + CNG(κNG)
}
. (24)

The MCA performs an alternating minimisation scheme:
– Estimate κG assuming κNG is known:

min
κG

{
‖(γ − AκNG) − AκG)‖2Σn

+ CG(κG)
}
. (25)

– Estimate κNG assuming κG is known:

min
κNG

{
‖(γ − AκG) − AκNG)‖2Σn

+ CNG(κNG)
}
. (26)

Examples of these decompositions are shown on the MCA
web page1. A range of MCA applications in astrophysics can be
found in Starck et al. (2003), André et al. (2010), Möller et al.
(2015), Bobin et al. (2016), Melchior et al. (2018), Joseph et al.
(2019) and Wagner-Carena et al. (2020).

Gaussian component κG. We used the standard Wiener-
filter modelling where κG is assumed to be a Gaussian random
field,

CG(κG) = ‖κ‖2Σκ , (27)

and the solution of Eq. (25) is obtained using the iterative Wiener
filtering presented in the previous section.

Non-Gaussian component. There are different ways to use
a sparse model in the MCA framework. The most obvious would
be to use standard `1 or `0-norm regularisation in a wavelet-
based sparsity model, as is done in the GLIMPSE2D algorithm.
This would give

CNG(κNG) = λ‖Φ∗κNG‖p, (28)

where p = 0 or 1, Φ is the wavelet matrix, and λ is the regulari-
sation parameter (Lagrange multiplier).

After implementing this approach, we found that large
wavelet scales and Fourier low frequencies are relatively close,
leading to difficulties in separating the information. We there-
fore investigated another approach that first involves estimating
the set Ω of active coefficients, that is, the scales and positions
where wavelet coefficients are above a given threshold. These
are typically between three and five times the noise standard
deviation relative to each wavelet coefficient. Ω can therefore
be seen as a mask in the wavelet domain, where Ω j,x = 1 if
a wavelet coefficient detected at scale j and position x, that is,
when | (Φ∗A∗γ) j,x |> λσ j,x, and 0 otherwise. The noise σ j,x
at scale j and position x can be determined using noise reali-
sations as in the GLIMPSE algorithm. An even faster approach
is to detect the significant wavelet coefficients on Φ∗A∗Σn

− 1
2γ

instead of Φ∗A∗γ. The noise is therefore whitened because the
noise factor A∗Σn

− 1
2 is Gaussian with a standard deviation equal

to unity and with a uniform power spectrum. We implemented
both approaches and found similar results, although the second
approach is easier.

1 http://jstarck.cosmostat.org/mca
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When this wavelet mask Ω is estimated, we can estimate the
non-Gaussian component κNG by

min
κNG

{
‖Ω �Φ∗ ((γ − AκG) − AκNG)) ‖2 + CNG(κNG)

}
, (29)

with CNG(κNG) = iR(κNG).
This changes the original formalism because the data fidelity

term is now different, but it presents a very interesting advan-
tage. When Ω is fixed, the algorithm is almost linear and only
the positivity constraint remains. Therefore we can easily derive
a good approximation of the error map just by propagating noise
and relaxing this positivity constraint. This is further discussed
below. Similarly to the GLIMPSE method, a positivity constraint
is applied on the non-Gaussian component κNG. Peaks in κ can
be on top of voids, and therefore have negative pixel values.
As peaks are captured by the non-Gaussian component, they
are positive by construction in κNG, but the convergence map
κ = κG + κNG can still be negative at peak positions. The larger
the non-Gaussianities, the more we can expect MCALens to
improve on linear methods such as the Wiener filtering.

The prior signal auto-correlation of the Gaussian component
is included within the signal covariance term of the Gaussian com-
ponent. We encode no explicit prior auto-correlation for the non-
Gaussian signal and no explicit prior cross-correlation between
the Gaussian and non-Gaussian component. Clearly, these cor-
relations exist, but including their contribution in the prior in
this framework would be extremely difficult theoretically and in
practice. However, these correlations will still appear in the final
reconstruction, driven by the correlation information in the data.

3.2. MCALens algorithm

Algorithm 1 MCALens algorithm
1: Input: Shear map γ1,γ2, signal and noise covarianceΣκ,Σn,

and detection level λ.
2: Initialise: κNG

(0) = κG
(0) = Ω = 0, µ = min(Σn) , Pη = 2µI.

3: Calculate wavelet coefficients: α = Φ∗A∗Σn
− 1

2γ.
4: ∀ j, x, set Ω j,x = 1 i f | (α) j,x |> λ.
5: for n = 0, . . . ,Nmax − 1 do
6: —————– Find κNG ——————–
7: Calculate the shear residual: γr = γ − A(κ(n)

G + κ(n)
NG).

8: Calculate the sparse residual: sr = A∗Σn
− 1

2γr.
9: Calculate the sparse residual in the mask:

smr = Φ (Ω � (Φ∗sr)).
10: Get the new sparse component: S = κ(n)

NG + smr.
11: Positivity constraint: κ(n+1)

NG = [S]+.
12: —————- Find κG ———————–
13: Calculate the shear residual: γr = γ − A(κ(n)

G + κ(n+1)
NG ).

14: Forward step: t = κG
n + 2µA∗Σ−1

n γr.

15: Backward step: κG
n+1 = F∗

(
Pκ

(
Pη + Pκ

)−1
)

Ft.
16: end for
17: return

(
κG

(Nmax), κ(Nmax)
NG

)
.

We solved the recovery problem of Eq. (23) using a two-step
optimisation procedure. First, a gradient descent step to minimise
Eq. (29) to recover the non-Gaussian component κNG. This was
followed by an iteration of the iterative Wiener filtering to min-
imise Eq. (17). Details of the method are given in Algorithm 1.

The number of scales Ns used to compute the wavelet
transform of an Nx × Ny image are automatically derived by

Fig. 1. RAMSES simulations: Error vs. scale for Wiener filter (red) and
MCAlens (blue).

Ns = int(log(min(Nx,Ny))). The λ parameter is a detection level,
which was fixed for all our experiments with real and simulated
data to 5, that is, five times the noise standard deviation. This is
a conservative threshold and gave excellent results.

3.3. Errors

Much attention has recently been given to estimate errors or
uncertainties with mass-map products. For linear methods such
as Wiener filtering or Kaiser-Squires, it is easy to estimate
the standard deviation (or root-mean-square, RMS) per pixel,
just by propagating noise realisations using the same recon-
struction filters. The uncertainty per pixel does not, however,
give the probability that a clump in a reconstructed image is
true or only due to some noise fluctuations. Another approach,
closer to certain science cases with maps, estimates the signif-
icance of clumps. Peel et al. (2017b) used Monte Carlo sim-
ulations to address the significance of clumps. Repetti et al.
(2019) proposed a hypothesis test called BUQO to perform the
same task, requiring the user to define manually a mask around
the clump. Similarly, Price et al. (2019) performed hypothesis
tests of Abell-520 cluster structures using highest posterior den-
sity regions. With MCALens, we can include aspects of both
approaches.

RMS and signal-to-noise ratio maps. Algorithm 1 includes
two steps that involve a non-linear operator, first to estimate
Ω in line 4 and then in line 11 to perform the positivity con-
straint. To propagate noise realisations, Ω has to be set to the
one obtained with the data, and this non-linearity step therefore
does not occur, so that only the positivity remains. A full lin-
ear algorithm could therefore be obtained just by removing this
positivity constraint during the noise propagation by replacing
κ(n+1)

NG = [S]+ in Algorithm 1, line 11 by κ(n+1)
NG = S. This causes

more noise to enter the solution because few pixel values with
negative values in κNG are not thresholded, and the derived RMS
map is therefore slightly conservative. We can therefore build
noise realisations, run the MCALens algorithm on each reali-
sation, and derive the RMS map by taking pixel per pixel the
standard deviation of the obtained reconstructed maps. The
signal-to-noise ratio (S/N) map is derived by dividing the abso-
lute value of the reconstructed map by the RMS map.

Significance map. Algorithm 1 obtains in line 4 the wavelet
mask Ω by comparing the wavelet coefficients, α = Φ∗A∗Σn

− 1
2γ,

to the threshold λσ where σ = 1 as the noise is whitened with
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Fig. 2. RAMSES simulations. Top panel: true convergence map and MCAlens recovery. Bottom panel: Gaussian components and sparse compo-
nents. The sum of these two maps is equal to the top right MCAlens map.

unit variance. This corresponds to performing a hypothesis test
H0 that the wavelet coefficient is due to noise alone, and if a
given wavelet coefficient α j,x is such that | α j,x |> λ, then the H0
hypothesis is rejected and we assume that the coefficient ampli-
tude cannot be explained by noise fluctuations and is therefore
due to signal. λ is therefore directly related to the significance of
the wavelet coefficients, and the mask Ω indicates which coeffi-
cients are detected with a given significance level. Ω j,x is binary,
and we build the significance map s by sx =

∑
j Ω j,x, that is, a

simple co-adding of all binary scales. Such a map could also be
used as a way to automatically derive the user mask required in
the BUQO method (Repetti et al. 2019). We present in Sect. 4
examples of RMS, S/N, and significance maps.

3.4. Extension to the sphere

When a wide-field map needs to be reconstructed, the flat
approximation can no longer be used, and we have to build a
map on the sphere. A traditional approach is to decompose the
sphere into overlapping patches, assume a flat approximation on
each individual patch, reconstruct each patch independently, and
finally, recombine all patches on the sphere. This solution is cer-
tainly good enough to recover clumps relative to clusters, that
is, the non-Gaussian component, but certainly not good enough
for the Gaussian component, which contains information at low

frequencies. In the framework of the DES project, a 1500 deg2

map has been reconstructed (Chang et al. 2018) using HEALPIX
pixelisation (Górski et al. 2005) and a straightforward spherical
Kaiser-Squires algorithm consisting of

1. calculating a spin transform of the HEALPIX shear map
to obtein the E and B spherical harmonic coefficients,

2. smoothing by a Gaussian the E and B modes in the spher-
ical harmonic domain,

3. applying an inverse spherical transform independently to
each of these two modes to obtain the two convergence maps κE

and κB.
Sparsity in a Bayesian framework (Price et al. 2021) and

forward-fitting in harmonic space (Mawdsley et al. 2020) have
also recently been proposed for spherical mass mapping. Using
similarly a HEALPIX shear and convergence pixelisation, we
can also easily derive an extension of the iterative-Wiener filter-
ing and the MCALens algorithm by

– replacing the matrix A = FPF∗ in Eq. (10) by A = 2Y0Y∗,
where sY and sY∗ represent the forward and inverse spin-s spher-
ical harmonic transforms, respectively,

– replacing the wavelet decompositionΦ used in Eq. (28) by
the spherical wavelet decomposition (Starck et al. 2006a).

Then the same MCAlens algorithm as in Algorithm 1 can be
used to derive a spherical convergence map. An example is given
in Sect. 4.3.
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Fig. 3. RAMSES simulations. From left to right: RMS map, S/N map, and significance map.

3.5. B-mode

We focused earlier on the convergence map (i.e. E-mode). The
MCAlens algorithm given in Algorithm 1 remains valid when
E and B mode are to be estimated by adopting the following
notation:

γ =

(
γ1
γ2

)
, κ =

(
κE
κB

)
,A =

 k2
1−k2

2
k2

2k1k2
k2

2k1k2
k2 −

k2
1−k2

2
k2

 ,α =

(
αE
αB

)
,

Pκ =

(
PκE

PκB

)
,Φ =

(
ΦE
ΦB

)
,

where the matrix Φ consists of applying a sparse decomposi-
tion independently on each mode. In practice, we used the same
wavelet decomposition for both modes (i.e.ΦE = ΦB). The deli-
cate point is applying the Wiener filter to the B-mode at line 15 of
the algorithm. In theory, PκB = 0, and by construction, no Gaus-
sian component can be recovered. Because the B-mode is mainly
useful for investigating systematic errors, we are not interested
in recovering the B-mode least-squares estimator (which is zero),
and we find it more useful to process the B-mode similarly to the
E-mode. We therefore advocate use PκB = PκE instead. In this
way, the fluctuations in the E-mode can be properly compared
to those in the B-mode.

4. Experimental results

4.1. Toy-model experiment

We used a simulation derived from RAMSES N-body cosmo-
logical simulations (Teyssier 2002), with a ΛCDM model2, with
a pixel size of 0.34′ × 0.34′ and a galaxy redshift of 1. To obtain
a realistic mask and noise behaviour, we used the MICE pixel
noise covariance derived for the DES project (see Appendix A).
As the pixel resolution is different, it leads to an optimistic real-
isation, but it has the advantage of illustrating the effect of our
MCA model well.

We ran MCAlens using 100 iterations, λ = 5 (i.e. detec-
tion at 5σ), the MICE covariance matrix, and the theoretical
power spectrum was the true map power spectrum. To evalu-
ate the results, we ran 100 different noise realisations, and we
applied both Wiener filtering and MCAlens. We calculated the
reconstruction error at different resolutions with

Err%(σ) =
‖ Gσ (M (κ − κt)) ‖

‖ Mκt ‖,
(30)

where ‖ x ‖=
√∑

i x2
i , κ is the reconstructed convergence map, κt

is the true convergence map, Gσ(x) is the convolution of x with
2 See http://www.projet-horizon.fr

Fig. 4. Columbia simulations. Error vs. scale for four different meth-
ods: Kaiser-Squires (light blue), Wiener (red), sparsity (orange), and
MCAlens (blue).

a Gaussian with standard deviation σ, and M is the binary mask
with Mk = 1 if the covariance matrix is not infinite at location
k (i.e. we have data at this location) and 0 otherwise. Figure 1
shows the mean error Err%(σ) for the Wiener filter and MCAlens
solutions. The black curve shows the difference between the
Wiener-filter error and the MCAlens error. This allows us to
better visualise that the improvement is larger at fine scales. It
is interesting to note that MCAlens is better than Wiener filter
even at large scales. When the MCAlens non-Gaussian compo-
nent contains a significant number of features as in the case of
this experiment, these features also contribute in a a non negligi-
ble way on larger scales, which explains why MCAlens remains
better than Wiener filtering at large scales. MCAlens leads to a
clear improvement in terms of quadratic error. The top panels of
Fig. 2 show the simulated convergence map and the MCAlens
reconstructed map. The bottom panels show the Gaussian and
the non-Gaussian part recovered from the noisy data. The sum
of these two components is equal to the MCAlens reconstruc-
tion (top right). This shows that the non-linear and linear com-
ponents can be recovered well. Figure 3 shows the RMS map,
the S/N map, and the significance map.

4.2. Columbia lensing simulation

We used a convergence map, released by the Columbia
lensing group3 (Liu et al. 2018), corresponding to a cosmo-
logical model with parameters

{
Mν,Ωm, 109As,Mν, h,w

}
=

{0.1, 0.3, 2.1, 0, 0.7,−1}, and with a pixel size of 0.4′ × 0.4′.

3 http://columbialensing.org
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Fig. 5. Columbia convergence map recovery. Top panel: a true convergence map, a Wiener-filter map, and a Kaiser-Squires map smoothed with a
Gaussian with an FWHM of 3.8 arcmin. Middle panel: MCAlens map and its Gaussian and sparse components. The sum of these two last maps is
equal to the first map. Bottom panel: RMS, S/N, and significance maps.

We rebinned the map to 0.8′ × 0.8′, and similarly to the previ-
ous experiment, we simulated noisy data using the same MICE
covariance, applying a global rescaling in order to have realis-
tic noise corresponding to a mean number of galaxies equal to
30 per arcmin2, as we expect in future space lensing surveys. To
evaluate the results, we ran 100 different noise realisations, and
we applied Kaiser-Squires, sparse recovery, Wiener filtering, and
MCAlens. For the sparse recovery and MCAlens, we used λ = 5
(i.e. detection at 5σ), and for Wiener filtering and MCAlens, we
the used the theoretical power spectrum as the true convergence
map power spectrum.

Figure 4 shows the error computed using Eq. (30). In addi-
tion to the well-recovered peaks, MCAlens also leads to a clear
improvement in terms of quadratic error compared the other
methods. In contrast to the RAMSES experiment, we see here a
convergence at large scales between MCAlens and Wiener filter
because the MCAlens non-Gaussian component contains only a

few peaks (see Fig. 5, middle right), which therefore contribute
only negligibly to the largest scales.

The top row of Fig. 5 shows the simulated convergence map,
the Wiener-filter result, and the Kaiser-Squires reconstruction
with smoothing applied. The middle row shows the MCAlens
map and its Gaussian and non-Gaussian parts recovered from
the noisy the data. The sum of these two components is equal to
the MCAlens map. Similarly to previous experiments, the non-
linear and the linear components are well recovered. The bottom
row of Fig. 5 shows the RMS map, the S/N map, and the signifi-
cance map.

4.3. Spherical data

We created a full shear map from the full-sky MICE simulated
map and its covariance matrix, which has about three galaxies
per arcmin2. We ran the spherical MCAlens method with 200
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Fig. 6. MICE simulations. Top panel: true convergence map at 1 and 3 degrees. Bottom: MCAlens sparse and Gaussian components.

Fig. 7. COSMOS data. Top panel: galaxy count map, Wiener-filter map, and Kaiser-Squires map smoothed with a Gaussian with an FWHM of
2.4 arcmin. Bottom panel: Glimpse, MCAlens, and MCAlens B-mode maps.

iterations, λ = 5 (i.e. detection at 5σ), and we used the power
spectrum of the simulation as the theoretical power spectrum.
The top row of Fig. 6 shows the simulated noise-free map at
1 and 3 degrees, and the bottom row shows the MCAlens non-
Gaussian and Gaussian components.

4.4. COSMOS field

In this last section, we apply MCAlens to reconstruct a con-
vergence map of the 1.64 deg2 HST/ACS COSMOS survey

(Scoville et al. 2007). We used the bright galaxies shape cata-
logue produced in Schrabback et al. (2010).

The results after MCAlens was applied on COSMOS data are
presented in Fig. 7. The top row shows the galaxy count map, the
Wiener-filter map, and the Kaiser-Squires map smoothed with a
Gaussian at a full width at half maximum of 2.4 arcmin. The bot-
tom row shows the Glimpse, MCAlens E-mode, and MCAlens
B-mode maps. White dots show the locations and redshifts of
X-ray selected massive galaxy clusters from the XMM-Newton
Wide Field Survey (Finoguenov et al. 2007) with 0.3 < z < 1.0.

A99, page 9 of 13

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202039451&pdf_id=6
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202039451&pdf_id=7


A&A 649, A99 (2021)

5. Conclusion

A novel mass-mapping algorithm has been presented that is able
to recover high-resolution convergence maps from weak grav-
itational lensing measurements. Our proposed process involves
a model with two components, a Gaussian and a non-Gaussian,
for which we developed an efficient algorithm to derive the solu-
tion. We showed that we can also handle a non-diagonal covari-
ance matrix. We extended the method so that it can deal with
spherical maps, which is needed for future surveys such as the
Euclid space mission. Our experiments clearly show a significant
improvement compared to currently used algorithms.

In the spirit of reproducible research, the MCAlens
algorithm is publicly available in the CosmoStat’s Github pack-
age4, including the material needed to reproduce the sim-
ulated experience (folder examples/mcalens_paper and script
make_fig.py).
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Appendix A: MICE simulations

We used the public MICE (v2) simulated galaxy catalogue,
which is constructed from a light cone N-body dark matter simu-
lation (Fosalba et al. 2015a,b; Crocce et al. 2015; Carretero et al.
2015; Hoffmann et al. 2015; Tallada et al. 2020). The MICE
catalogue provides the calculated weak-lensing (noise-free)
observables shear and convergence. In a given patch of sim-
ulated sky, we selected galaxies in the redshift5 z range
[0.6, 1.4]. Each galaxy corresponds to a noisy shear measure-
ment, and we subsampled with a density of ∼8000 galaxies
per deg2.

5 Redshift due to the expansion of the Universe is used as a proxy for
distance to a galaxy, as it is an observable that monotonically increases
with distance from an observer.

Uncorrelated, complex shape noise values were randomly
drawn from a Gaussian distribution and added to the shear value
of each selected galaxy. This noise per galaxy is zero mean
and has a variance 2σ2

ε = 0.1636 (as estimated from data
(Jeffrey et al. 2018a)). The final pixelised noise (n) has a vari-
ance that depends on the number of galaxies per pixel.

In our simulated data, we mimicked these conditions by
choosing to remove all galaxies in given regions. Here no shear
measurements are available, and the noise variance is effectively
infinite. The top row of Fig. A.1 shows a simulated convergence
map with the DES SV footprint and mask, and the bottom row
shows two simulated observed shear component maps, γ1 and γ2.

Fig. A.1. Top: true MICE convergence map with DES SV footprint and mask. Bottom: two simulated observed shear components, γ1 and γ2.
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Appendix B: Wiener-filter tour

B.1. Wiener filter and inpainting

Missing data are a common problem for galaxy surveys because
foreground objects that obscure the background galaxies have to
be masked out. In addition to the non-stationary noise, observed
shear fields therefore also present missing data. By noting the
mask M as equal to 1 if we have shear measurements at a pixel
position and zero otherwise, missing data can be handled in
Wiener filtering by forcing the noise covariance matrix to be
very high at locations where M = 0. This causes the solu-
tion to be different from zero and smoothed in the missing data
area, and it remove border-effect artefacts. The Wiener filtering
can therefore be seen as an inpainting technique because it fills
the missing area in the image. Alternative inpainting techniques
were proposed in the past through sparse recovery techniques
(Pires et al. 2009; Lanusse et al. 2016) or Gaussian constraint
realisations (Zaroubi et al. 1995; Jeffrey et al. 2018a). Because
the Wiener model assumed the solution to be a Gaussian random
field, it would make sense to have a solution where the inpainted
area presents the same statistical properties as in non-inpainted
area. This property is by construction verified with constraint
realisations, and it was shown that this is also the case with
sparse inpainting (Pires et al. 2009). A similar sparse inpaint-
ing can be very easily included in the proximal Wiener filtering,
minimising the following equation:

κG = arg minκ
{
‖M(γ − Aκ)‖2Σn

+ β‖κ‖2Σκ + λ‖Φ∗κ‖p
}
, (B.1)

where p = 0 or 1, Φ is the discrete cosine eictionary (DCT), and
λ is a Lagrangian parameter. We obtain the forward-backward
algorithm, called InpWiener:

– Forward step:

t = κn + 2µA∗Σ−1
n (M(γ − Aκn)) (B.2)

– Backward step:

κn+1 = Mu + (1 − M)∆Φ,λu (B.3)

where and ∆Φ,λ is the proximal operator defined in Pires et al.
(2009), which consists of applying a DCT transform to u,
thresholding the DCT coefficients, and reconstructing an
image from the thresholded coefficients, and

u = F∗
(
Pκ

(
Pη + Pκ

)−1
)

Ft. (B.4)

Areas for which we possess information are processed as in
the usual Wiener-filter case, while the inpainting regularisation
affects area with missing data (i.e. when M = 0).

Concerning Eq. (B.1), it is interesting to note the following
relations between InpWiener and other methods:

– KS: if β = 0, λ = 0 and Σn is diagonal with constant values
along the diagonal (i.e. stationary Gaussian noise), InpWiener
leads to the non-iterative standard Kaiser-Squires solution.

– GKS: If β = 0 and λ = 0, the least-squares estimator is
derived with the iterative algorithm: κn+1 = κn +2µA∗Σ−1

n (M(γ−
Aκn)), with µ = min(Σn). As it generalises the Kaiser-Squires
method, we call this algorithm GKS.

– FASTLens: If β = 0 and Σn is diagonal with constant
values along the diagonal, InpWiener leads to the FASTLens
inpainting algorithm (Pires et al. 2009).

– GIKS: If β = 0, InpWiener leads to an inpainted gener-
alised the Kaiser-Squires solution where the InpWiener forward
is unchanged, and the backward step becomes

κn+1 = M t + (1 − M)∆Φ,λ t. (B.5)

Similarly to Sects. 3.5 and 3.5, these algorithms can handle
data on the sphere and jointly reconstruct E and B modes.

Inpainted Wiener-filter experiment. To test InpWiener, we
used the public MICE (v2) simulated galaxy catalogue presented
in Appendix A.

Figure B.1 shows the Wiener-filter solution (left) and the
inpainted Wiener-filter solution (right) derived from the shear
components shown in Fig. A.1.

B.2. Agnostic Wiener filtering

The Wiener-filter method needs to know the theoretical power
spectrum Pκ, and the solution therefore varies with the assumed
cosmological model used to derive Pκ. To avoid this issue, a solu-
tion could be to estimate Pκ directly from the shear measure-
ments, for instance using a mask correction as in Upham et al.
(2020). Bayesian techniques have also been used to infer the
map and power spectrum (Wandelt et al. 2004; Jasche & Lavaux
2014; Alsing et al. 2016b). An alternative approach is to used the
GIKS inpainting algorithm to first fill the missing area and then
compute the power spectrum of the inpainted map. When GIKS
is applied to the data and a set of R noise realisations, the final
estimator is

Pκ = powspec(κData) −
1
R

∑
i

powspec(κReai ). (B.6)

Because the data noise Pκ will still be noisy, a final denoising
step or a function fitting can be done.

As an illustration, we fitted the function f (k, a, u, e, c) =
exp(| a ∗ (uk)−e |) + c to the estimated noisy Pκ. Figure B.2
shows an example of an estimated power spectrum following this
approach.

Experiment: Effect of an unknown theoretical power spec-
trum. In this experiment, we used the same public MICE sim-
ulations, and we extracted 18 shear different shear maps with
different noise realisations. For each of them, we applied the
forward-backward Wiener-filter algorithm using the true theo-
retical power spectrum, and we applied the inpainted agnos-
tic Wiener-filter method on the same data, re-estimating for
each of the 18 shear data sets the theoretical power spectrum.
Figure B.3 shows the reconstruction errors at different resolu-
tions for Kaiser-Squires, Wiener filter, and inpainted agnostic
Wiener filter. The inpainting clearly has no effect on the recon-
struction error, which is expected because only the area where
the mask is equal to one is used in the error calculation, and
also because the agnostic approach has very little effect on the
final solution. We do not claim that we should use an agnostic
approach when a Wiener filtering is applied, but it is interesting
to have this option available, for example when Wiener filtering
is used without any assumption about the cosmology, and to give
us the possibility to verify whether cosmological priors affect the
results.
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Fig. B.1. Wiener and inpainted Wiener solutions.

Fig. B.2. Theoretical power spectrum of one convergence map. In black
the true theoretical power spectrum; in red, the spectrum estimated
using the GIKS algorithm, corrected from noise power spectrum, and
in blue the fit.

Fig. B.3. Reconstruction error at different resolution for Kaiser-Squires,
Wiener filter, and inpainted agnostic Wiener filter.
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