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Abstract 

Quantification of imaging features can assist radiologists by reducing 

subjectivity, aiding detection of subtle pathology, and increasing reporting 

consistency. Translation of quantitative image analysis techniques to clinical 

use is currently uncommon and challenging. This thesis explores translation of 

quantitative imaging support tools for clinical neuroradiology use. I have 

proposed a translational framework for development of quantitative imaging 

tools, using dementia as an exemplar application. This framework emphasises 

the importance of clinical validation, which is not currently prioritised. Aspects 

of the framework were then applied to four disease areas: hippocampal 

sclerosis (HS) as a cause of epilepsy; dementia; multiple sclerosis (MS) and 

gliomas.  

A clinical validation study for an HS quantitative report showed that when 

image interpreters used the report, they were more accurate and confident in 

their assessments, particularly for challenging bilateral cases. A similar clinical 

validation study for a dementia reporting tool found improved sensitivity for all 

image interpreters and increased assessment accuracy for consultant 

radiologists. These studies indicated benefits from quantitative reports that 

contextualise a patient’s results with appropriate normative reference data. For 

MS, I addressed a technical translational challenge by applying lesion and 

brain quantification tools to standard clinical image acquisitions which do not 

include a conventional T1-weighted sequence. Results were consistent with 

those from conventional sequence inputs and therefore I pursued this concept 

to establish a clinically applicable normative reference dataset for development 

of a quantitative reporting tool for clinical use. I focused on current radiology 

reporting of gliomas to establish which features are commonly missed and may 

be important for clinical management decisions. This informs both the potential 

utility of a quantitative report for gliomas and its design and content.  

I have identified numerous translational challenges for quantitative reporting 

and explored aspects of how to address these for several applications across 

clinical neuroradiology. 
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Impact statement 

Image quantification reporting techniques are successfully developed and 

applied in the research setting but there are significant barriers to their 

translation for clinical use and to date they are not widely implemented. Here I 

present a translational framework to facilitate development of clinically focused 

quantification solutions. The framework is designed for widespread adoption 

by healthcare technology developers and is relevant to all stakeholders, 

including academic institutions, commercial companies, and clinical adopters.  

A major unknown is the impact of these tools in the hands of clinical end-users. 

The multi-rater clinical validation studies that I have conducted and present in 

this thesis have not been performed before for clinical neuroradiology reporting 

tools. They have involved radiologists and image analysts from a variety of 

clinical institutions across the United Kingdom and Europe. These studies 

inform radiologists on the scope and impact they can expect from these tools 

and also set the standard for equivalent reporting tools to provide similar 

clinical validation evidence, for example those offered by commercial 

enterprises.  

As a consequence of establishing clinical validity, the quantitative reporting 

tool for HS has already been integrated into clinical use in the local tertiary 

neuroradiology centre at the National Hospital for Neurology and 

Neurosurgery, Queen Square, London and the Chalfont Centre for Epilepsy, 

Chalfont St Peter. The translation of this tool has required education and 

engagement across the clinical department, including radiographers, clinical 

scientists, and radiologists alike. In-use evaluation of the reporting tool is 

ongoing, with benefits to radiologists, clinical referrers, and ultimately their 

patients being anticipated. Successful local adoption paves the way for further 

integration into more imaging departments in other institutions.  

The MS work that I have undertaken has cultivated a strong and ongoing 

collaboration with MAGNIMS, the Magnetic Resonance Imaging in Multiple 

Sclerosis pan-European consortium, which pioneers MRI implementation for 

MS with international impact. The MS projects that I have presented in this 

thesis are supported by MAGNIMS and use their multi-centre data. The 
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projects are discussed at twice-yearly plenary meetings where I am able to 

receive feedback and expert guidance from leaders in the field and the results 

of my research can be disseminated.  

Much of the work presented in this thesis is associated with publications in 

peer-reviewed journals. I have presented results of this research in oral 

presentations at national and international conferences including the 

European Society of Neuroradiology (ESNR) annual conference in 2019. The 

MS work was awarded an early career scholarship prize at the joint meeting of 

the American and European Committees for Treatment and Research in 

Multiple Sclerosis (ACTRIMS-ECTRIMS) in 2020.  

I have ongoing support from the UCLH Biomedical Research Centre to 

continue to develop the work that I have conducted to date by undertaking 

postdoctoral research, reflecting the priority that is being placed on 

translational research in the field of healthcare technology.  
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1.1 Application of quantitative MRI biomarkers to clinical neuroradiology 

1.1.1 Current clinical radiology practice 

Clinical radiology practice currently relies upon the individual visual 

assessment and interpretation of an image or series of images by a clinically 

trained medical practitioner, usually a radiologist. The individual radiologist will 

provide a description of qualitative features of the image, and their overall 

impression of the presence and extent of pathology. The features that they 

describe are often difficult to define objectively, and the ability to differentiate 

appearances along a spectrum of normality and abnormality are heavily reliant 

on the radiologist’s accumulated experience and knowledge of the bounds of 

normality, including anatomical and physiological variations. Their ability to 

judge the findings of a particular imaging examination is dependent upon their 

ability to reference it against previous cases they have seen and the training 

they have received. This allows for potential variability of interpretation 

between practitioners.  

Semi-quantitative assessment has been adopted in several key areas in 

response to this. These include visual rating scales (VRS), defined as discrete 

categories which enable clearer communication of key findings, as well as the 

use of structured reporting systems which aim to standardise the content of 

radiology reports. These have been particularly successful in cancer reporting 

where reporting and data systems (RADS) are currently used to communicate 

important findings and facilitate clinical decisions, for example in prostate and 

breast cancer (Barentsz et al. 2016; Mercado 2014). 

Semi-quantitative assessment provides an element of standardisation, 

however it remains a somewhat coarse classifier. Extraction of objectively 

quantifiable features from clinical images and providing a reference normative 

comparison against which to contextualise an individual patient’s imaging has 

the possibility to transform the use of medical images, so that they can be 

interpreted not only as pictures but also analysed for their rich data content.  

The standard visual assessment paradigm that accounts for the mainstay of 

current clinical imaging and possible opportunities for quantitative assessment 

is depicted in Figure 1-1. 
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Figure 1-1. A schematic of how a quantitative imaging tool may be used to assess three crucial 
questions: diagnosis, disease extent, and disease progression. These are mostly evaluated 
by subjective visual assessment in current clinical radiological practice. Figure from deSouza 
et al. 2019. 

1.1.2 Quantitative Imaging Biomarkers (QIBs) 

Biomarkers are measurable objective indicators of a pathological or 

physiological state. They are characteristics that should be possible to 

measure accurately and precisely to provide a true representation of an aspect 

of a particular condition.  

Quantitative imaging biomarkers, QIBs, are defined as objective 

characteristics derived from in vivo images, that can be measured, and can 

indicate either normal physiology, pathology, or response to a therapeutic 

intervention (Sullivan et al. 2015). They offer the potential for detection of key 

features relating to a pathological process with sensitivity and reproducibility 

not attainable by qualitative observations.  

There are several requirements which a QIB should fulfil (Smits 2021). Their 

precision, accuracy and ‘trueness’ should be demonstrated. Precision refers 

to measurement variability, which consists of repeatability and reproducibility. 

Repeatability is the demonstration that consistent measurements are 

produced during repeated trials, whereas reproducibility is defined as 

demonstrating consistent measurements where there has been a change in 

operator, system or measurement device (Kessler et al. 2015). In the case of 
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imaging biomarkers, there are many different sources of potential variability, 

for example between populations and use of different image acquisition 

parameters. Accuracy refers to the performance of the QIB in a clinical setting, 

measured by sensitivity and specificity for the intended condition. Trueness is 

defined as the closeness of a QIB measurement to a certain true reference. 

This is often difficult to definitively establish, for example in cases where the 

reference is histological and therefore often not possible to determine in vivo. 

In other cases, an established reference may not exist.  

Inherent to QIBs, unlike biological biomarkers such as those derived from 

blood analysis, is the fact that their extraction is heterogeneous. This is 

because an imaging feature is being interpreted as a surrogate for a real 

biological process, and this feature is being measured using complex and 

variable equipment, depending on factors like scanner design and the selected 

acquisition protocol.  

The Radiological Society of North America (RSNA) has established the 

Quantitative Imaging Biomarker Alliance (QIBA) to promote the validation and 

translation of QIBs into clinical use. They highlight that quantitative imaging 

requires related elements that facilitate accurate and communicable use of 

QIBs to be addressed; that is the standardisation and optimisation of 

acquisition protocols, data analysis, how data is displayed, and the 

implementation of structured reporting (RSNA 2007). 

Currently QIBs are yet to have a significant impact on clinical imaging routines, 

which is partially due to the paucity of widespread standardisation, as well as 

the lack of technical and clinical validation. The European Society of Radiology 

(ESR) have published guidelines to promote a standard approach to the 

validation of image acquisition and analysis methods (ESR 2020). They base 

QIB validation steps on the three central principles of precision, accuracy, and 

clinical relationship (Figure 1-2).  
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Figure 1-2. Methodological validation of a QIB. From the ESR Statement on the Validation of 
Imaging Biomarkers (ESR 2020). 

 

They suggest that measurement precision should be tested by varying image 

acquisition conditions, for example testing in different centres, using different 

MRI field strengths or multiple scanner vendors, and applying various 

acquisition protocols. Analysis algorithms and software should likewise be 

tested in the hands of different operators and with any processing variability. 

Accuracy may be established against appropriate synthetic phantoms or tissue 

samples; however the guidelines acknowledge that this may not always be 

possible. In these instances, clinical sensitivity and specificity may replace 

accuracy, as they show how strongly the QIB is related to a particular 

pathological or physiological process.  

The third key principle, clinical relationship, refers in this technical validation 

context to the ability to show that the QIB is related to a disease status. This 

relationship may be to detection and diagnosis, or to the assessment of 

response to treatment, or to disease progression over time.  

1.1.3 Clinical translation of QIBs 

Treating technical validation of QIBs as equivalent to biological biomarkers 

sets a standard that should ensure that QIBs that reach clinical use are 



24 
 

thoroughly tested with the potential to make a positive clinical impact. However 

the validation requirements are not trivial to achieve, given the extent of 

variability of image acquisition and processing across the field (Smits 2021). 

Reproducibility of results is difficult to demonstrate in the clinical setting, where 

patients do not routinely have multiple scans at the same time-point to facilitate 

this analysis (deSouza et al. 2019).  

Usually QIBs are first identified, extracted, and tested in group-level research 

studies, which may present a further translational challenge for the application 

to an individual patient. Research software applications are not designed with 

clinical application in mind, which presents several translational challenges. 

They are designed to process imaging data that has been acquired to specific 

research or clinical trial standards which often surpass clinical acquisitions 

both in terms of image quality and standardisation. They also do not engage 

with quality management and medical device regulatory mechanisms or 

clinical validation that should precede implementation in routine radiology 

practice. They are not designed to be easily embedded into hospital 

information technology (IT) infrastructure, for example for deployment within 

the picture archiving and communication system (PACS).  

Considering all these significant implementation barriers, it is important to 

deconstruct the process of QIB extraction and analysis with the clinical 

environment in mind as the target destination, so that a translational framework 

for their use can be explored and implemented.  

Several international efforts are being made to engage in earnest with the 

translational issues facing clinical QIB implementation. The previously 

mentioned RSNA’s QIBA collaborates with the ESR’s European Imaging 

Biomarkers Alliance (EIBALL) to provide guidelines for imaging 

standardisation in terms of acquisition and processing, as well as setting out 

validation procedures for implementation (ESR 2021b).  

These efforts come in place of established quality assurance and control (QA 

and QC) procedures set by regulatory bodies, which do not yet exist for QIBs. 

However, QIBA and EIBALL themselves differ on the guidance thresholds for 

validation that they provide. Both agree on the importance of clearly stating the 
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context for any QIB quantification or validation, for example the population it 

was tested in, and the imaging parameters employed, to ensure that results 

are interpretable in their correct context.  

For widespread adoption of a QIB to occur, comparability of results across 

different platforms and institutions must be demonstrated. Finally, once a QIB 

has been technically and clinically validated in multi-centre studies, its added 

value should be proven. Installation of new software and other necessary 

equipment including QC mechanisms, as well as training or provision of 

qualified staff to operate new processing pipelines come with significant costs. 

Cost effectiveness is an increasingly important concern in financially restricted 

healthcare systems. Cost-benefit analysis should consider the wider context 

of QIB use, including whether they are being used alongside biological 

biomarkers or are able to replace other tests. Prospective analysis should also 

consider whether the cost of QIB use was later offset by improved targeting of 

expensive therapeutic interventions.  

Cost effectiveness may also be partly evidenced by increased efficiency and 

time benefit to radiologists who are facing ever-increasing workloads (Chen 

and Lexa 2017). This potential time saving should be weighed up against any 

additional time required for scanning or post-processing techniques for QIB 

analysis which may delay clinical interpretation. Additional training 

requirements for radiologists in QIB interpretation should also be considered 

(Smith 2011).  

Technical and clinical validity of a QIB are not the only translational 

considerations to overcome. Clinical environments can be somewhat esoteric 

in their organisational procedures and structures, and attitudes towards 

adoption of new technologies may vary and compete with other financial 

investments (Strohm et al. 2020). 

The NASSS framework (Non-adoption, Abandonment, Scale-up, Spread, and 

Sustainability) can be used to pinpoint the key factors affecting implementation 

of complex healthcare technologies (Greenhalgh et al. 2017). It considers 

seven domains: condition, technology, value proposition, adopter system, 

organisation, and wider institutional and social context. When this framework 
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was applied to Dutch healthcare use of a bone density measurement software 

solution (Strohm et al. 2020), researchers found that while users expected the 

application to be of significant added value, in terms of avoiding errors and 

automation of time-consuming manual tasks, there was scepticism regarding 

the technical consistency and reliability of software. Users expect applications 

to be fully integrated with their existing workflows and information technology 

(IT) systems, minimising additional steps required for the radiologist to engage 

with its results.  

Attitudes towards QIB adoption were shown to be influenced by organisational 

openness to innovation. Promotion of innovation by clinical and management 

leadership is complemented by the presence of local departmental champions, 

who take a lead in educating and stimulating interest among their colleagues.  

Some technical understanding amongst radiologists of the technology they are 

using has been shown to be important, not only for understanding the 

limitations of an application but also for creating trust in how results are 

reached (Rubin 2019). It is important that the output of a quantitative tool is 

transparent to the end-user. The absence of guidelines for best practice means 

that evaluation of an application in-use is often unstructured and lacking 

defined outcomes for assessment. It is also difficult to demonstrate to 

radiologists that the application is having a proven clinical impact beyond their 

anecdotal experience. Ultimately some radiologists may fear a perceived 

change in their role or anticipate their professional expertise or autonomy 

being undermined when asked to accommodate QIB technology into their 

workflow (Huisman et al. 2021). Likewise perceived acceptability of the 

technique to referring clinicians is also important as they may otherwise be 

hesitant to incorporate the computer-assisted results into their clinical decision 

making.  

Clinical QIB translation requires development within a quality management 

framework and regulatory approval from a recognised body, for example the 

Conformité Européenne (CE). Regulatory approval currently depends more on 

demonstration of completing technical development stages than of benefit to 
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clinical practice, which may contribute to additional clinical adoption 

uncertainty. 
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1.2 Existing commercial quantitative reporting tools for clinical use 

Several commercial tools exist for MRI QIB quantification in the routine clinical 

neuroradiology setting, predominantly in the form of quantitative reports for use 

in suspected dementia. These reports have received regulatory certification 

from CE and/or the Food and Drug Administration (FDA).  

Despite their regulatory approval, the technical and clinical validation of these 

tools is variable, and it is often difficult for clinicians and clinical institutions to 

establish the evidence that supports their use. In particular, there is a paucity 

of evidence regarding their clinical application and impact on detection 

accuracy and clinical decision making in the hands of end-users. 

The most established and widely used of these commercial tools, NeuroQuant, 

was developed by cortechs.ai (www.cortechslabs.com, cortechs.ai 2021), 

which received FDA clearance in 2006. Reporting tools commonly use 

automated brain segmentation algorithms and present single-subject results 

contextualised by normative reference data in a graphical report format. Most 

tools use atlas-based segmentation approaches while a minority claim to use 

deep learning methods, for example Mediaire (www.mediaire.de, mediaire 

2021).  

Methodologies are often only described as proprietary with no further details 

provided, making them difficult to independently assess. Several companies 

use modified versions of previously technically validated research methods, 

such as Freesurfer (Fischl 2012), used by cortechs.ai and ADM diagnostics 

(www.admdx.com, ADMdx 2021), Voxel Based Morphometry (VBM) (Good et 

al. 2001) used by jung diagnostics (www.jung-diagnostics.de, jung diagnostics 

2021) and Geodesic Information Flows (GIF) (Cardoso et al. 2015), used by 

Brainminer (www.brainminer.co.uk, Brainminer 2021). They all provide 

volumetric quantification of the hippocampi and brain lobes, while some 

provide additional sub-regional volume measurements and ventricular volume.  

It is also variable whether commercial tools offer longitudinal analyses in 

addition to cross-sectional reports. Those that do provide a longitudinal report 

either use an indirect measurement approach by calculating the difference 

between two cross-sectional reports, for example Quantib (www.quantib.com, 

http://www.cortechslabs.com/
http://www.mediaire.de/
http://www.admdx.com/
http://www.jung-diagnostics.de/
http://www.brainminer.co.uk/
http://www.quantib.com/
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Quantib 2021),  or a direct measurement approach such as the boundary shift 

integral (Freeborough and Fox 1997; Prados et al. 2015) or SIENA (Smith et 

al. 2002), including Cortechs.ai, Icometrix (www.icometrix.com, icometrix 

2021) and Combinostics (www.cneuro.com, Combinostics 2021). All tools offer 

integration with clinical workflow platforms, i.e. the Picture Archiving and 

Communication System (PACS).  

Some fundamental aspects of the reports are unfortunately opaque to the 

intended end-user. These include the composition of the reported normative 

reference data, and the details of the QC process. Normative data should 

ideally cover a representative range of age, ethnicity and gender to make it 

broadly applicable. If the reporting tool is intended for implementation across 

many different centres and to handle MRI data from a range of scanner 

vendors and field strengths, this heterogeneity should be replicated within the 

makeup of the normative reference data. Commercial tools that make this 

information difficult to access may limit their own implementation and 

applicability. In the same vein, it is important for the end-user to understand 

what QC is performed to ensure that scans are of adequate quality to enable 

the quantification tool to process it and produce a meaningful and reliable 

result.  

Technical and clinical validation studies using these commercial volumetric 

reporting tools are variable in their quantity. Technical validation is commonly 

performed by comparing the commercial tool to results of manual 

segmentation or a benchmark research tool such as Freesurfer (Fischl, 

Sereno, and Dale 1999). More established companies such as CorTechs.ai 

and Icometrix have undergone the most technical validation in the literature. 

Cortechs.ai segmentation results have been compared against manual 

segmentations (Brewer et al. 2009; Brinkmann et al. 2019), as well as results 

from Freesurfer (Ochs et al. 2015; Yim et al. 2021) and FSL-FIRST in non-

dementia conditions (Lyden et al. 2016; Pareto et al. 2019). Icometrix’s 

dementia tool output has been compared to Freesurfer (Struyfs et al. 2020). 

Clinical validation studies have only been performed for a minority of 

commercially available reporting tools. Hippocampal volumetric results from 

http://www.icometrix.com/
http://www.cneuro.com/
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NeuroQuant have been compared to visual rating scale classification for 

medial temporal lobe atrophy, i.e. the Scheltens scale (Scheltens et al. 1992), 

and they showed good correlation with the visual method (Min et al. 2017; 

Persson et al. 2018). NeuroQuant hippocampal measurements were also 

shown to discriminate AD from a non-dementia group of patients with 

subjective memory complaints or mild cognitive impairment (Persson et al. 

2017). 

Neuroreader, the product by Brainreader (www.brainreader.net, brainreader 

2021) and an open-source research tool volBrain (Manjón and Coupé 2016) 

were compared to both automatic classification results by machine learning 

and to the visual classification of two radiologists, using patient data from a 

single memory clinic. Neuroreader displayed moderate accuracy compared to 

the gold standard and was inferior to neuroradiologists and machine learning 

classification (Morin et al. 2020). A direct comparison of the potential 

prognostic efficacy of Neuroreader and NeuroQuant showed they produced 

comparable results in a longitudinal standardised dataset (Tanpitukpongse et 

al. 2017).  

A clinical accuracy study which used jung diagnostics’ Biometrica reports 

compared two radiologists’ diagnoses with and without the assistance of the 

quantitative reports in a clinical dataset (Hedderich et al. 2020). The presence 

of a quantitative report was shown to significantly improve differentiation of 

dementia patients from healthy controls for one of the raters who was the least 

experienced. It also improved both radiologists’ ability to differentiate between 

dementia subtypes and improved inter-rater agreement. This is the only clinical 

validation study for a commercial tool to date that attempts to simulate the 

clinical workflow and assess the impact of integrating the quantitative report 

with the radiologist’s visual inspection.  

While there is increasing interest in QIB use and their potential clinical 

utilisation, there is a general noticeable lack of clinical validation for 

quantitative neuroradiology reporting tools. Their impact when being applied 

by intended end-users, in studies which use heterogeneous clinical-grade 

http://www.brainreader.net/
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imaging data representing the patient population, should be prioritised to 

facilitate the translation of QIB reporting tools to clinical use. 
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1.3 Aims of this thesis 

In this thesis I will explore the translational pathway required to successfully 

introduce quantitative image analysis techniques into clinical application using 

routine standard of care images. I will set out that a translational QIB pathway 

should aim to automatically derive robust and objective QIBs that are related 

to a disease state, using a validated technique at the level of the individual 

subject, and present results to the clinical practitioner in an accessible and 

interpretable format. I hypothesise that the provision of interpretable QIBs 

within the clinical radiology workflow could increase the clinician’s assessment 

accuracy and confidence and reduce disagreement between independent 

image readers.  

I aim to define a clinical translational framework for the development of 

neuroradiology QIB reporting tools, and then apply elements of the framework 

to four neuroradiological disease areas: hippocampal sclerosis (HS) in 

epilepsy, dementia, multiple sclerosis (MS), and gliomas. I will identify relevant 

QIBs that can be extracted from standard of care image acquisitions for these 

conditions and explore their technical and clinical validation and subsequent 

integration with the clinical workflow. In the cases of HS and dementia, I will 

focus on the clinical validation of quantitative reporting tools for these 

conditions by studying the impact of the reports on end-user accuracy and 

confidence when used as adjuncts to the standard visual assessment. For MS, 

I will apply quantitative methods to clinical MS image protocols that usually 

require non-standard of care imaging sequences, which limits their translation. 

I will apply the results to establishing a clinically applicable reference dataset 

for an MS reporting tool. For gliomas, I will concentrate on establishing the 

clinical need for an image quantification tool and work towards its design by 

studying the content and outcomes of current neuroradiology reporting.  

By applying elements of the translational pathway to these different disease 

areas, I aim to investigate the areas where quantitative reporting tools may 

add value to clinical neuroradiology, quantify what these benefits may be, and 

highlight the challenges that may hamper their clinical translation. 
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2. A translational framework for quantitative MRI 

analysis 
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2.1 The Quantitative Neuroradiology Initiative (QNI) Framework 

I will now introduce a translational framework to address the clinical translation 

of QIBs to the clinical neuroradiology setting.  

The intention of the QNI framework is to provide a structure through which the 

automated image quantification can be efficiently adopted by and implemented 

within clinical neuroradiology practice. The focus is the design and delivery of 

clinically relevant, technically and clinically validated, user-friendly reports of 

regional and/or global brain characteristics. These reports present information 

at the individual patient level with the provision of contextual reference data, 

that are fully integrated into the clinical workflow. 

The framework proposes the following six steps for adoption of specific 

quantitative neuroradiological tools into routine clinical practice, which will be 

described in further detail below and in a pictorial representation in Figure 2-1. 

1. Establish the area of clinical need and the appropriate proven 

quantitative imaging biomarker(s). 

2. Develop a method for automated analysis of the identified QIB(s), which 

includes algorithm development and compilation of suitable reference 

data. 

3. Communicate the results of QIB analysis via an intuitive and accessible 

quantitative reporting tool. 

4. Perform technical and clinical validation of the proposed reporting tool 

5. Integrate the developed analysis pipeline into the clinical reporting 

workflow. 

6. Perform in-use evaluation. 



 

 
 

3
5
 

Figure 2-1. An overview of the QNI framework with pictorial examples given for each of the six translational steps. Steps 2, 3 and 4 use examples 

from studies that follow in this thesis.
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2.1.1 Step 1. Establishing a clinical need and the appropriate QIB 

The basis for accepting a particular imaging parameter as a correlate of the 

pathological process of interest should be demonstrated, and its implications 

for contribution to patient management should be considered. To this end, the 

chosen imaging biomarker should have a demonstrable physiological or 

pathological correlate, display sensitivity to the disease state, and be 

reproducible in its results. There should be a discernible additional benefit 

provided by the use of the QIB in addition to the accepted clinical routine. This 

benefit may be seen in increasing accuracy of diagnosis, prediction of disease 

course or treatment response, or surveillance for change over time. QIB 

relationship to a disease state as well as the particular benefit of measuring it 

should have been established in the research setting prior to its selection as a 

candidate for clinical translation. Evidence may include use of the QIB in a 

clinical trial, and validation against clinical and pathological data.  

2.1.2 Step 2. Developing a method for automated analysis 

An algorithm for automated quantitative analysis of the identified QIB(s) should 

be chosen or developed. This may be derived from those that have previously 

been used in the research setting and which may need to be adapted in some 

way to process clinical MRI data. The technique may have been applied to one 

disease area in the research setting and require alteration for application to a 

different disease area, for example by training an algorithm with new input 

data.  

At this stage disease-specific normative reference data should be identified 

and processed in order to provide context for comparison of an individual 

patient’s findings. Each disease area and biomarker of interest may require its 

own normative dataset to accurately contextualise the results. Ideally, a source 

of high volume, age-matched, generalisable normative data that adequately 

reflects the heterogeneity of clinical imaging data should be established to 

provide a range of normative values which can be taken to represent the 

normal range of values that would be encountered in the population. With large 

reference populations, generalisability of normative reference ranges should 

be less impaired by factors which introduce statistical noise, which include 



 

37 
 

scanner and imaging acquisition parameter differences, as well as patient 

demographic heterogeneity.  

2.1.3 Step 3. Communicating QIB results 

A report of the quantitative analysis should be produced. This should present 

data in a clinically and visually meaningful way, to ensure that the radiologist 

is provided with clear and accessible information that can be easily assimilated 

into their analysis, and their final report. Considered report design is important 

so that quantitative information is organised simply and intuitively. The 

availability of quantitative information may facilitate increased adoption of 

standardised or structured reporting that is already being implemented for 

qualitative analysis in some disease areas.  

2.1.4 Step 4. Technical and clinical validation 

The combined processes of automated algorithm analysis and report 

generation, which can be referred to as the processing ‘pipeline’, should 

undergo technical validation. This includes consideration of image acquisition 

quality with attention to reproducibility, error and artefact which may impact on 

the pipeline’s performance.  

Clinical validation should be established prior to embedded clinical use. A 

useful structure for clinical validation is to perform a proof of concept ‘credibility’ 

study followed by a clinical impact ‘accuracy’ study. These concepts are further 

explored in section 2.1.7.  

2.1.5 Step 5. Workflow integration 

Integration with the established clinical workflow is essential and will increase 

the uptake and acceptance of the reporting tool by radiologists and referring 

clinicians. Basic requirements include compatibility with the data format and 

transfer, i.e. the Digital Imaging and Communications in Medicine (DICOM) 

standard, as well as integration into the PACS. Ideally the automated output of 

the analysis pipeline, the quantitative report, should be viewed within the same 

workstation environment, appearing as an additional DICOM series alongside 

source images. This would allow for the information contained in the report to 
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be efficiently integrated with the radiologist’s visual assessment of the image 

series.  

Analysis software should be developed under the appropriate quality 

management framework for medical devices. United Kingdom (UK) regulations 

are in the process of changing as a consequence of the UK leaving the 

European Union.  Attention to patient data protection and relevant institutional 

information governance should be of high importance.  

The National Institutes of Standards and Technology (NIST, 

https://www.nist.gov/), in their discussion on consideration of the role of QIBs 

in clinical practice, identify three central sources of uncertainty that may arise 

from their use. Uncertainty may arise from natural biological variability between 

subjects, from inconsistency of interpretation of the findings by clinical staff, 

and also from physical measurement variability that is associated with data 

collection and analysis across imaging platforms (Clarke, Sriram, and Schilling 

2008). Several common challenges relating to physical measurement 

uncertainty are particularly important to consider for clinical QIB application, 

which are briefly discussed below. 

2.1.5.1 Acquisition protocols 

Routine clinical MRI protocols may be less sophisticated than those specified 

for research studies. For example, in many centres clinical T1-weighted scans 

may be performed with two-dimensional acquisitions. Isotropic 3D data, which 

is more suitable for quantitative analysis, may not be available in routine 

clinical practice. Inconsistencies in scanning parameters can also cause 

significant variation in tissue contrast. This can make, for instance, automated 

delineation for a subregion of interest challenging. 

2.1.5.2 MRI scanner variability 

Image geometric accuracy varies between scanners and vendors, resulting in 

varying spatial distortions which, if uncorrected, may impact upon regional 

tissue-volume estimates. Quantification accuracy is dependent on high 

reproducibility between MRI scanners. However, this is not generally a primary 

design concern in clinical systems, since scanner variability has a much 
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smaller impact on routine clinical practice based on radiologists’ qualitative 

visual evaluation. 

2.1.5.3 Image artefacts 

Thorough screening of incoming data is necessary in order to detect artefacts, 

such as those arising from patient motion and other errors, as these artefacts 

may impede the automated algorithm in performing accurate quantification or 

produce spurious results. Adaptive correction schemes prior to analysis, such 

as bias field or motion artefact correction, may minimise the number of data 

sets failing to yield reliable volume estimates for a given measurement 

strategy. Many software packages are fully integrated and automated, 

meaning they will produce a numerical result whatever the input data and often 

do not allow intermediate steps to be scrutinized by the end-user. 

2.1.5.4   Automation process 

In order to remove reliance on time-consuming manual or semi-automated 

techniques requiring frequent intervention and monitoring, often by highly 

expert practitioners, quantification methods for clinical application should be 

fully automated. This also protects the process from inter-operator variability. 

Such automated techniques must be generalisable across the range of MRI 

services in the health system, including both scanner type and acquisition 

protocol variations. 

2.1.6 Step 6. In-use evaluation 

Once the automated analysis pipeline has been embedded into the clinical 

workflow, in-use evaluation should be undertaken with respect to the key areas 

of patient management and socio-economic impact. These are the key 

measures by which an automated quantification technique should ultimately 

be validated for their clinical impact and utility. Validation of automated 

techniques has tended to occur in the research setting largely on their technical 

performance alone, by comparison to results of other available methods using 

well curated datasets. Studies exploring the validation of these techniques 

once they have been embedded into clinical practice are sparse, use disparate 

methods and are difficult to conduct. In-use clinical validation should involve 
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not only testing the technical performance of the pipeline with clinical quality 

data, which is likely to be drawn from several different scanners depending on 

the particular imaging department, but just as importantly should capture the 

clinical interpretation and experience of the radiologist end-users. It is 

necessary to demonstrate a measurable benefit in terms of at least one of 

efficiency; interpretation accuracy; improved inter- and intra-reader 

reproducibility and impression confidence. Integration of quantitative reporting 

tools into the multidisciplinary team (MDT) setting, alongside review of a 

patient’s clinical history and other investigations, would provide a robust setting 

for the assessment of whether the quantitative information was providing any 

added value in reaching patient management decisions. The MDT setting 

would allow for collection of the views of radiologists and other clinical team 

members on the usability of the quantitative information in clinical practice, and 

could help to identify any potential practical barriers that may hamper the 

adoption of the quantitative pipeline.  

Ultimately, more widespread deployment across centres would require even 

further and more complex in-use evaluation strategies that include establishing 

standardised imaging protocols or adaptation of the analysis methods to 

account for site variability. The eventual aim should be for a system-wide 

assessment of the impact of the integrated methods on imaging services, 

radiologist end-users, referring clinicians and patients, as well as an economic 

cost-benefit assessment to the implementing hospital. This should be the long-

term goal of a healthcare facility planning to implement a quantitative 

assessment pipeline into their imaging workflow, with a view to a long-term 

ongoing clinical and healthcare economic validation over the course of several 

years.  

2.1.7 Clinical validation pathway (steps 4 and 6 of the QNI framework) 

Pre-deployment clinical validation and conscientious in-use evaluation form a 

complete clinical validation pathway that should be undertaken when applying 

quantitative image analysis tools to a healthcare setting. This pathway can be 

summarised as relating to credibility, accuracy, patient management, and 

socio-economic impact.  
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2.1.7.1 Credibility 

Validation of the proof-of-concept quantitative analysis pipeline and biological 

validation with real-world data should be conducted. A credibility study should 

take the form of a pilot study in which the chosen quantitative image analysis 

tool is applied to clinical MRI scans of patients with established diagnoses of 

the disease of interest and the results of the QIB analysis quality checked. This 

should include technical validation, checks on image acquisition, post-

processing, analysis, and report generation.  

Following these technical checks, a limited clinical validation should be 

performed by experienced blinded expert radiologists who have not seen the 

cases, and who should rate them first according to their routine practice, 

blinded to the quantitative report and again taking the report into account. 

Classical evaluation should then be compared to their impression when using 

the report and their consistency evaluated. Any technical or report presentation 

problems that are exposed at this stage should be remedied and rechecked 

for clinical credibility. 

2.1.7.2 Accuracy 

Once the credibility of the quantitative technique has been established, its 

impact on the clinical reporting process should be examined. This evaluation 

should reproduce the radiologist’s normal reporting environment as closely as 

possible, with the quantitative report displayed alongside all relevant imaging 

series.  

Accuracy study assessment goals should include measurement of radiologists’ 

accuracy and may also include measurement of their subjective confidence 

and/or their reporting efficiency. These outcomes should be assessed both 

with and without the quantitative report being present.  

Images should be presented in a random unpredictable order and should 

include a spectrum of pre-selected clinical cases, which include a mixture of 

disease severity from clearly pathological to more subtle changes, as well as 

normal-appearing control scans where available. The pathology of each case 

should be established to the best available gold standard, to enable 
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assessment accuracy to be determined. This will be specific to the condition 

in question, for example, cerebrospinal fluid (CSF) analysis and 

neuropsychiatric profile in the case of Alzheimer’s Disease (AD). 

The case mix should aim to reflect the spectrum and frequency of pathology 

encountered in a normal radiology workflow. Including a range of severity in 

the case mix is valuable in discerning whether the quantitative report provides 

added value by improving assessment accuracy where the MRI pathology is 

subtle. It may also be useful to include image readers with a clear range of 

expertise, representing the wide spectrum of training and experience levels of 

staff working in a radiology department. It would then be possible to establish 

whether the quantitative report was associated with increased inter-rater 

agreement between these groups, in addition to increased accuracy when 

assessing agreement with the gold standard. It may be of further interest to 

include a cohort of non-clinical image analysts in the assessment exercise, as 

this may uncover additional potential uses for the quantitative analysis tool, for 

example for consideration of its use in education and training. 

2.1.7.3 Patient management 

Based on the outcomes of the accuracy study, and whether this has 

demonstrated a measurable benefit of the quantitative report to the radiologist, 

the analysis pipeline should be integrated within the hospital’s radiology 

department and the tool rolled out to specific reporting radiologists. Whether 

this full integration can be achieved or not will depend on technical 

compatibility of the tool design as well as achieving compliance with the 

relevant medical device regulations. This is an important stage for assessing 

how easily the tool can be integrated into the reporting workflow, and how the 

tool is performing with new clinical data, and regular structured feedback from 

the users should be documented.  

After a period of evaluation that is restricted to named users, the tool may be 

more widely disseminated through the radiology department. This 

dissemination will require adequate staff education and training which includes 

both technical and clinical staff so that the department is globally capable of 

integrating and utilising the new technology.  
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To determine its impact on patient management, a prospective assessment of 

patients’ clinical pathways, which would include assessment of the speed of 

diagnosis, the requirement for repeat investigations, and the basis for 

therapeutic decisions if available, could be compared with cases for which 

quantitative analysis was not available. 

2.1.7.4 Socio-economic impact 

Definitive socio-economic validation would require larger scale, multi-centre 

studies which investigate resource utilisation, productivity, clinician and patient 

perception, and long-term economic impact. This stage of clinical validation is 

particularly challenging due to the a priori requirement for a hospital or 

healthcare system to invest in such tools and their supporting infrastructure 

often long before an economic impact can be reliably demonstrated. 

Ultimately, this is the type of robust business intelligence that is required to 

convince purchasers within a healthcare system to bear the costs of the 

investment in additional software tools. 
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2.2 QNI framework applied to clinical neuroradiology for dementia 

I will now use dementia imaging as an exemplar application to discuss the 

development of QIBs for clinical neuroradiology, referring directly to each step 

of the QNI framework that was detailed in section 2.1. 

2.2.1 Step 1: Establishing a clinical need 

2.2.1.1 Dementia 

Dementia is a term that encompasses a class of conditions which cause 

irreversible progressive decline in cognitive function. It affects an increasing 

number of people worldwide and presents an urgent challenge for health and 

social care. It is estimated that more than 115 million people globally will be 

affected by dementia by 2050 (Winblad et al. 2016).  

Underlying pathological causes of dementia are varied, and structural brain 

imaging can help to identify the differences between the commonest. 

Alzheimer’s Disease (AD) accounts for 50-75% of cases, vascular dementia 

for 20%, and frontotemporal dementia (FTD) for 5% (Cunningham et al. 2015).  

AD is characterised histopathologically by detection of neurofibrillary tangles 

and amyloid plaques within the brain. These cause synaptic and axonal loss 

and subsequent parenchymal atrophy in a progressive regional pattern (Braak 

and Braak 1995). This atrophy can be detected on structural imaging as 

affecting particular brain structures or regions in several recognised patterns 

or AD subtypes (Harper et al. 2014; Risacher and Saykin 2013). 

Classical AD is typified by early medial temporal lobe atrophy (MTA), followed 

by lateral temporal, medial and lateral parietal, and frontal involvement, with 

relative sparing of the occipital lobe and sensory-motor cortex. This pattern on 

MRI is discriminating, as it is not commonly seen in normal ageing, and ante-

mortem MRI findings in AD patients correlate with pathological severity post-

mortem (Harper et al. 2016). 

Mild cognitive impairment (MCI) is identified as a prodromal stage of AD, with 

a 10-15% annual conversion rate to AD, particularly within the subset with an 

amnestic clinical presentation (Risacher et al. 2009). Longitudinal MRI has 
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demonstrated that MCI subjects initially have focal, limited areas of cerebral 

atrophy, mainly in the medial temporal lobes, and this increases in increments 

to the established AD pattern (Whitwell et al. 2008). Quantification of atrophy 

rates, brain volume and morphometry have been useful in prediction of which 

MCI subjects will progress to AD, with differences from stable MCI subjects 

detectable well before clinical AD diagnosis (DeToledo-Morrell et al. 2004; 

Devanand et al. 2008; Risacher et al. 2009).  

Sporadic young-onset AD differs in that it is more likely to be non-amnestic, 

and structural imaging most commonly demonstrates biparietal or bi-parieto-

occipital atrophy, termed posterior cortical atrophy (PCA) (Rossor et al. 2010). 

This pattern is not pathognomonic and can also be seen in dementia with Lewy 

Bodies (DLB), corticobasal degeneration (CBD) and prion disease (Crutch et 

al. 2012). A recent classification system aims to define the PCA syndrome 

based on clinical and radiological features, highlighting the importance of 

structural imaging in this setting (Crutch et al. 2017). 

2.2.1.2 Structural MRI for dementia 

Structural MRI is the mainstay of conventional neuroradiology in current 

dementia practice (Wattjes 2011).  In the diagnostic setting, it is important for 

the exclusion of alternative pathologies, and for establishing the regional 

pattern of atrophy to differentiate between the dementia pathologies 

themselves (Staffaroni et al. 2017). A subjective estimation of disease severity 

or stage can be made by the radiologist based on the degree of atrophy 

present in the context of what would be normal for the patient's age. 

It is not only challenging to establish an early clinical diagnosis of dementia, 

but moreover, the first signs and symptoms can emerge years if not decades 

after the underlying pathophysiological process have been initiated (Counts et 

al. 2016). Recently therefore, dementia research has prioritised the 

identification of potential clinical and imaging biomarkers early in the disease 

course (Risacher and Saykin 2013). 

Validated and clinically adopted QIBs could facilitate diagnosis in the early or 

even prodromal disease phases; provide objective measures of difference 

from the normal aging spectrum; exclude differential diagnoses; and support 
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powerful preclinical drug trials (McEvoy and Brewer 2010a; Salvatore, Cerasa, 

and Castiglioni 2018). There is also a potential role for QIBs as prognostic 

measures, since the relationship between progressive biomarker change and 

clinical disease trajectory can be modelled (Caroli and Frisoni 2009). 

With imaging identified as a potentially powerful diagnostic tool, the 

introduction of objective methods for quantifying dementia-related changes on 

MRI, especially MTA assessment in AD, has become a priority for clinicians 

and researchers. Indeed, the National Institute of Neurological and 

Communicative Disorders and Stroke and the Alzheimer's Disease and 

Related Disorders Association, NINCDS-ADRDA, issued updated guidelines 

which incorporated structural MRI of the medial temporal lobe in the 

assessment of AD; however, no specific method for objective measurement 

was defined (Cedazo-Minguez et al. 2016). 

2.2.1.3 Current practice: visual rating scores 

Visual rating scores, with ‘cut-offs’ defining degrees of abnormality, are a semi-

quantitative means aimed to facilitate communication among practitioners. 

MTA grading was established by Scheltens et al. using a discrete 5-point scale 

for the size of the hippocampal formation as well as the prominence of adjacent 

cerebrospinal fluid (CSF) spaces (Scheltens et al. 1992). Whilst this rating 

system has proven useful for rapid screening in clinical practice, and has good 

inter-observer agreement (Boutet et al. 2012), the ratings by definition remain 

subjective and reliant on the radiologist’s  experience. The cut-off for 

abnormality varies by age (Pereira et al. 2014) and is somewhat arbitrary.  

Other visual rating scores were also developed to characterise additional or 

atypical features that can be seen in AD. The Koedam scale focuses on 

features of PCA, showing good inter-observer agreement and an 87% 

specificity for AD when used in combination with MTA scoring (Koedam et al. 

2011).  

Visual rating scores are useful, rapid and accessible tools in clinical practice. 

Their limitations include insensitivity to subtle or early changes, ambiguity in 

distinguishing pathological change from normal ageing, ceiling and/or flooring 

effects, and being only coarsely discriminating due to their discrete 
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categorisations. They are used to varying degrees by radiologists across 

Europe, depending on levels of training and with unknown reproducibility both 

within and across imaging departments (Vernooij et al. 2019). Fully 

quantitative imaging biomarkers may largely address these issues providing 

practitioner-independent objectivity, at least across a single radiology service. 

2.2.2 Step 2: Developing a method for automated quantitative analysis 

Many biomarkers show promise in early research phases but face bottlenecks 

when it comes to validation and clinical implementation. Frisoni et al. proposed 

a 5-phase framework for development of specific QIBs for prodromal AD, 

adapted from a framework implemented in oncology screening (Frisoni et al. 

2017). Despite being one of the most established imaging biomarkers in AD, 

MTA is still in the early stages of this five-step pathway (ten Kate et al. 2017).  

Standardised validation procedures for automated segmentation algorithms 

based on a harmonised manual segmentation protocol is identified as an 

imminent priority, which will allow for meaningful assessment of algorithm 

reproducibility. Only then can their clinical validity and utility be evaluated in 

the memory clinic. The Frisoni framework integrates well with the QNI 

framework in that it focuses on QIB development and clinical validation, which 

are key parts of the broader, end-to-end translational implementation pathway 

detailed by the QNI.  

In the research context, numerous studies have compared cerebral atrophy 

between AD, MCI and healthy control groups using MRI-based regional 

volume measurement (“volumetric”) approaches rather than visual rating 

scores. Measurement methods have included manual delineation of 

anatomical regions of interest, as well as automated or semi-automated 

volumetry, although with varying protocols for anatomical delineation for 

segmentation (Caroli and Frisoni 2009). More recent methods allow for the 

parcellation of brain components into grey matter (GM) white matter (WM) and 

CSF and for automated voxel level quantification (Despotović, Goossens, and 

Philips 2015; Matsuda 2016). Methods for detecting and quantifying white 

matter vascular disease burden and mitigating the effects of severe WM 

damage on the success of the volume quantification algorithm, will be 
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particularly important in the dementia and ageing populations (Chard et al. 

2010). 

2.2.3 Step 3: Communicating quantitative analysis results 

Presenting the outputs of quantitative analysis tools in a clinically meaningful 

way is key to their translational success. Several commercial software 

solutions for clinically applied global and regional brain analysis are already 

available and in use, the mainstay of which are for dementia imaging but also 

for use in other neurological conditions such as stroke and multiple sclerosis. 

There is growing clinical interest in these tools, which have undergone various 

degrees of technical and clinical validation. As previously mentioned, 

NeuroQuant is a software package based on the Freesurfer algorithm with a 

large normative reference database offered by the company cortechs.ai 

(www.cortechslabs.com, cortechs.ai 2021). Its report includes coloured 

overlays of the segmentation output, tabulated regional brain volume results, 

and normative reference graphs where the subject’s results are plotted on a 

graph displaying percentiles of normative reference volumes. It has been used 

in clinical validation studies of AD (Min et al. 2017; Persson et al. 2018), where 

its results were compared to visual assessment alone, as well as in other 

disease areas such as traumatic brain injury (Ross et al. 2015) and temporal 

lobe epilepsy (Azab et al. 2015; Louis et al. 2020).  

It is however important to recognise that although commercially available tools 

have the appropriate regulatory marking (e.g. CE in the European Economic 

Area, or United States Food and Drug Administration, FDA,) this does not 

necessarily mean that a solution has been fully validated in terms of its clinical 

impact and validity. Regulatory priorities are to demonstrate that the solution 

reliably produces reproducible results and is therefore no direct risk of harm to 

patients, so the process largely prioritises documentation and framework 

implementation for device deployment. Clinical import or efficacy, which are 

key parts of the QNI framework, are not the focus of regulatory approval and 

therefore in isolation CE marking may provide false reassurance regarding the 

appropriateness of introducing a product into clinical use (Feldman et al. 2008; 

Mishra 2017). 

http://www.cortechslabs.com/
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Appropriate reference data for contextualisation of individual subject 

quantitative results is key to QIB clinical interpretability. Reference data from 

healthy control subjects with comparable acquisition parameters that cover the 

appropriate clinical age range should be processed using the same analysis 

pipeline. Standardisation of acquisition protocols for dementia is being tackled 

in part by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Jack et al. 

2008), who provide a rich source of multi-centre data. Their suggested 

protocols are increasingly being adopted by clinical institutions, which will 

enable reference data to become more widely applicable between centres.  

2.2.4 Step 4: Pipeline validation  

The validation of brain segmentation methods is at best challenging, due to 

the general absence in general of ground truth data: most validation studies 

have been based on cross-validation with the performance of alternative 

automated techniques, using data from the same source and with the same 

restrictions (e.g. single-site and vendor, precise scanning parameters). For 

repurposing research-developed QIBs into robust neuroradiological tools, it is 

important to note that most QIB research has focussed on group-level 

discrimination, which does not necessarily mean that the technique under 

consideration will offer sufficient sensitivity to support single-subject 

classification inference (Brewer 2009; Chard et al. 2010). Another challenge is 

that much of the available data used for the development and validation of 

QIBs in controlled research studies may poorly represent relevant clinical 

populations by neglecting comorbidities, socioeconomic status and education 

(Arbabshirani et al. 2017), i.e. the real-world scenario of patients with 

neurological comorbidities and other structural brain abnormalities. 

2.2.5 Step 5: Workflow integration 

A software platform including image data identification and routing functionality 

is required to support integration of the QIB analysis and report generation into 

the hospital electronic information systems, including the PACS. A means of 

identifying examination images series appropriate for analysis is required, in 

our case implanted using customised DICOM series labels. Careful 

consideration should be given to the problem of clinical case stratification, so 
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that reports are generated and interpreted in the appropriate context of 

conventional imaging and clinical history, and unwarranted quantitative reports 

are not generated. Introduction of QIBs into clinical dementia reporting may 

require modifications to the referral process. DICOM image tags could be 

queried by the quantification module to ensure that the report is generated for 

the correct compliant series.  

2.2.6 Step 6: In-use evaluation  

This should initially occur at a departmental level, ideally with engagement 

overseen by a key senior neuroradiologist. Initial training and technical 

systematic evaluation should be followed by a small pilot evaluation involving 

experienced radiologists who are familiar with dementia imaging reporting. 

They should report as per their normal routine, and by comparison corroborate 

the consistency and reliability of the quantitative report. Feedback should be 

gathered on any discrepancy or technical difficulty encountered. Following this 

pilot, all reporting radiologists in the department would be expected to adopt 

the report as part of their dementia imaging assessment. This prerequisites 

training and engagement not only of the radiologist team but also of the 

referring clinical teams. Audit of reporting efficiency and patient management 

pathway timelines would provide measures of service impact in comparison to 

previous practice. Ultimately, higher-level in-use evaluation of the outcome 

benefits of quantitative reporting will require larger-scale, multi-centre studies 

once adoption by single centres has become well established. 
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2.3 Conclusions 

The QNI framework seeks to address the many and varied challenges that 

exist to enable the translation of QIB reporting to the clinical setting. There 

remain some fundamental obstacles to translating these promising imaging 

biomarkers into clinical practice, and the QNI framework provides a structured 

technical and clinical validation process to address these. Lack of large-scale 

and rigorous technical and clinical validation, and over-reliance on CE marking 

for quick commercial deployment, are major potential pitfalls in the field. The 

greatest challenge may be the circular problem of establishing clear evidence 

of clinical and socio-economic benefit, without prior wide-scale adoption. This 

is especially challenging for quantification of conditions that do not currently 

have disease-modifying treatments available, as ground truth is not known, 

and other indicators must be relied on when assessing the added value of a 

diagnostic aid. 

Using dementia as an exemplar for QIB translation, it is clear that imaging and 

clinical biomarkers are adapting our perception of dementia from a largely 

clinical and post-mortem diagnosis of exclusion to a more systematic biological 

paradigm. Incorporating QIBs for dementia into clinical reporting workflows via 

frameworks such as QNI may support earlier and more certain diagnosis. It is 

important to balance the potential that these imaging biomarkers hold with the 

realisation that, within the dementia field, they are still in the early stages of 

validation. Expediting translational pathways, for both dementia and other 

important neuroradiological indications, will require consensus on prioritisation 

of key issues including protocol harmonisation, data sharing, and algorithm 

development. 

In the following chapters, I will apply aspects of the QNI framework to 

translational QIB development in four disease areas, with a focus on technical 

and clinical validation: hippocampal sclerosis, dementia, multiple sclerosis, 

and glioma. 
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3. Quantitative reporting for hippocampal sclerosis 
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3.1 Introduction 

3.1.1 Epilepsy and hippocampal sclerosis 

Epilepsy is a neurological disease affecting approximately 0.5-1% of the global 

population (Choi et al. 2008) characterised by the abnormal discharge of 

neurological activity in the brain. When this abnormal electrical activity occurs, 

an individual will experience irregular neurological functioning, which may be 

manifested in a wide variety of forms, from typical seizures to abnormal 

sensations, to periods of absence or loss of awareness. Epilepsy can be 

broadly categorised as generalised or focal; generalised epilepsy involves 

abnormal electrical activity across the whole brain and is associated with 

impaired consciousness, whereas focal epilepsy arises from a specific location 

in the brain and may or may not affect consciousness. Most of the one third of 

people who suffer from pharmacoresistant disease have a focal epilepsy 

(Sidhu, Duncan, and Sander 2018).  

Focal epilepsies often have an identifiable underlying structural cause that can 

be identified on MRI. Causes include focal cortical dysplasia (FCD), vascular 

malformations and hippocampal sclerosis (HS). HS is the most common 

underlying cause of mesial temporal lobe epilepsy, which itself is the 

commonest form of epilepsy in humans (Engel J. 2001). Although the 

pathogenesis of HS is still unclear, there is a strong association with early 

childhood precursor injuries, which are most commonly childhood febrile 

seizures but also include birth trauma and head injuries (Mathern, Pretorius, 

and Babb 1995). Seizures arising from HS pathology are more often resistant 

to pharmacological therapies than other epilepsy types, and surgical excision 

of the epileptogenic focus can be curative (Engel et al. 2003). 

3.1.2 Histological and neuroimaging biomarkers of HS 

HS is characterised histopathologically by neuronal loss and tissue gliosis 

(Thom et al. 2009) affecting the pyramidal cell layer of the cornu ammonis (CA) 

(Coras and Blümcke 2015). These pathological hallmarks are identifiable by 

their representative features on structural MRI scans, which appear as 

hippocampal volume loss (atrophy), disruption of normal hippocampal 
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architecture, and increased T2-weighted signal intensity (Briellmann et al. 

2002; Van Paesschen 2004). Hippocampal atrophy secondary to the damage 

and loss of neuronal cells can be identified radiologically by loss of height in 

the hippocampal formation itself in combination with widening of the 

cerebrospinal fluid (CSF) spaces that surround it, these being the choroid 

fissure and temporal horn of the lateral ventricle. Histopathological sclerosis of 

the hippocampus is characterised by replacement of neuronal cells with 

astrocytes and microglia, a pathological process known as gliosis. These 

changes of cell type alter the water content and therefore the T2 values of a 

voxel, and can be detected as an increase in T2 relaxation time (Peixoto-

Santos et al. 2017).   

3.1.3 Identifying HS imaging biomarkers on MRI 

A commonly accepted standard protocol for structural MRI in patients with 

epilepsy aims to achieve diagnostic sensitivity to possible aetiologies while 

maintaining clinical practicality (Wellmer et al. 2013):  

a) Three-dimensional isotropic volumetric T1-weighted series for detection 

of cortical malformations or hippocampal volume loss; 

b) Axial and coronal T2-weighted series to assess hippocampal 

architecture; 

c) Fluid attenuated inversion recovery (FLAIR) series, useful for detection 

of HS and FCD; and 

d) Axial T2* gradient echo (GE) or susceptibility weighted images (SWI), 

used to detect vascular or calcified epileptogenic lesions.  

Identification of features consistent with HS on MRI is used in conjunction with 

other clinical investigations to make a diagnosis of HS as the cause of a 

patient’s epilepsy. Moreover, accurate localisation of these HS imaging 

features will enable surgical planning to guide the excision of the epileptogenic 

focus, the aim being to achieve complete resolution of seizures and spare as 

much healthy tissue as possible to limit post-surgical morbidity (Duncan and 

Sagar 1987; Lencz et al. 1992).  

While accurate interpretation of these imaging features is straightforward when 

the hippocampus is significantly atrophied and gliosed, these signs are often 
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more subtle and equivocal earlier in the disease, and accurate detection 

becomes dependent on the experience and subjective opinion of the reporting 

radiologist. There is a particular challenge in accurately detecting bilateral 

cases of HS, as their symmetrical appearance can obscure the presence of 

pathology. Asymmetrical bilateral HS, where one hippocampus is more 

sclerosed or atrophied than the other, could potentially lead to an erroneous 

diagnosis of unilateral HS. Detection of bilateral HS is vital to avoid performing 

a non-curative surgical resection. Other challenges that impair detection of HS 

include where the patient’s head is positioned asymmetrically so coronal 

comparison between sides is difficult without reformatting, and importantly if 

there is concomitant parenchymal volume loss consistent with ageing 

hippocampal atrophy that is due to HS pathology will be less prominent.  

A visual rating study assessing inter-rater agreement on MRI detection of 

hippocampal volume loss in unilateral HS indicated a threshold effect where 

the abnormality was only detected at an asymmetry ratio of 0.7 or lower 

compared to the unaffected side (Reutens et al. 1996). This suggests that 

more subtle volume loss or unrelated atrophy affecting the contralateral 

hippocampus would cause the true pathology to be missed. In a similar vein, 

raised T2-weighted signal can also be very difficult to detect, particularly in 

bilateral HS, not least because the hippocampus and its neighbouring 

structures in the limbic lobe possess innately higher T2-weighted signal than 

the rest of the brain (Asao et al. 2008; Hirai et al. 2000). HS can be 

characterised on MRI by T2-weighted abnormality alone, with no significant 

volume loss (Meiners et al. 1994).  Therefore, for cases of subtle and/or 

bilateral HS, accurate diagnosis based on subjective assessment of structural 

MRI is extremely challenging.  

3.1.4 Quantification of HS neuroimaging biomarkers 

Quantitative analysis of hippocampal volume and T2-weighted signal 

properties has been shown to reduce subjectivity and assist the radiological 

assessment of suspected HS (Bernasconi et al. 2000; Van Paesschen 2004). 

Volumetric analysis performed by segmenting the hippocampus (which was 
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initially done manually and has more recently been automated) has been 

shown to increase diagnostic sensitivity (Coan et al. 2014; Martins et al. 2016).  

T2 relaxometry, also referred to as quantitative T2 (qT2), describes the 

quantification of a tissue’s T2 relaxation properties. T2 relaxometry has been 

shown to increase detection of HS (Jackson et al. 1993), especially given that 

T2 signal change may be the only sign of HS with no significant volume loss 

(Bernasconi et al. 2000). Quantification of T2 hyperintensity allows for 

objective assessment of one of the key radiological features of HS, and has 

been shown to be more sensitive than visual inspection (Namer et al. 1998; 

Van Paesschen et al. 1995). The technique has also been automated and 

been shown to have higher reproducibility than manual processing (Winston 

et al. 2017). Quantification of FLAIR signal is also possible (Huppertz et al. 

2011), but found not to be as powerful as qT2 (Rodionov et al. 2015).  

3.1.5 Aims and hypothesis 

Based on the framework for imaging biomarker validation and clinical 

translation that were set out in Chapter 2, the work in this chapter is focused 

on applying this translational framework to technical and clinical validation of 

quantitative methods for analysis of hippocampal atrophy and sclerosis in 

individuals with HS. 

With the knowledge that these imaging biomarkers have been automated and 

shown to improve HS detection, the aim of this work is to utilise these 

quantitative techniques in an accessible and clinically meaningful way, by 

validating a visually meaningful quantitative report for application to an 

individual subject that provides comparison to a normative reference 

population. It is hypothesised that the use of such a report will increase 

detection of visually equivocal cases of HS and reduce disagreement between 

image interpreters, both of which will enhance the clinical decision-making 

process in the management of patients with HS. 
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3.2 Methods 

3.2.1 Hippocampal segmentation 

Segmentation of the hippocampi was automatically performed using a 

previously described publicly available (https://hipposeg.cs.ucl.ac.uk/) method 

(Winston et al. 2013). The T1-weighted image is segmented using a multi-

atlas-based segmentation algorithm (Similarity and Truth Estimation for 

Propagated Segmentations, ‘STEPS’, (Cardoso et al. 2013)) based on a 

template database of 400 manual segmentations complied from clinical 

epilepsy scans, which includes a wide spectrum of HS severity as well as other 

epileptogenic pathologies. STEPS builds on a propagation method 

(simultaneous truth and performance level estimation, ‘STAPLE’, (Warfield, 

Zou, and Wells 2004)) and adapts it to perform label fusion based on local 

similarities for template selection.  

Group-wise templates of the hippocampal segmentations are created by first 

registering each image to an arbitrarily selected reference image using affine 

transformation to compute an average image, followed by repeated iterations 

of registering all images to the average image using nonrigid transformations, 

which is repeated until convergence is reached.  

The individual subject scan to be segmented is nonlinearly registered to the 

group template and a region of interest (ROI) extracted from the subject scan 

based on the group hippocampal segmentation templates. Following this each 

template scan is coarsely registered to the subject’s ROI and the 75 most 

closely correlated subjects are selected for a second more accurate 

registration. Finally, the 15 most similar cases at each voxel are selected and 

fused using a probabilistic framework to iteratively estimate the genuine 

segmentation. Hippocampal volumes are corrected for intracranial volume by 

applying the same algorithm for whole brain segmentations. 

There are several strengths to this multi-atlas based approach. Use of a 

method which employs an atlas of multiple template images is superior to using 

a single template (Heckemann et al. 2006). Most other atlas-based 

segmentation methods have used small template datasets comprising healthy 

subjects. Comparison of segmentation performance has shown that results for 
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TLE are much worse than for healthy controls or subjects with Alzheimer’s 

Disease (AD) (Kim et al. 2012). The presence of temporal lobe epilepsy is 

associated with a high level of atypical hippocampal configuration or location 

(Bernasconi et al. 2005). Use of this large multi-template atlas with a variety of 

hippocampal pathologies performs better for segmentation of HS scans, which 

have different morphology to hippocampal pathology due to AD (Duan et al. 

2020).  

3.2.2 T2 relaxometry 

T2 relaxometry, also referred to as quantitative T2 (qT2), measures the 

intrinsic T2 relaxation time of a specific tissue. Automated T2 relaxometry 

maps were calculated for each voxel from the T2 signal at two different echo 

times using a monoexponential fit as described and technically validated by 

Winston and colleagues (Winston et al. 2017). 

Once the hippocampi have been segmented using the STEPS algorithm 

described in section 3.2.1, voxelwise T2 maps are calculated from the signal 

S1, S2 at two echo times TE1 and TE2 using a monoexponential fit:  

𝑇2 =
𝑇𝐸2 − 𝑇𝐸1

ln (
𝑆1
𝑆2

)
 

The T1 hippocampal segmentations are registered to the dual-echo PD/T2 

image and then eroded. Cerebrospinal fluid (CSF) signal contamination is 

minimised by eliminating voxels with T2 values higher than 170 ms. The mean 

T2 value can then be calculated in the defined ROI. The CSF cut-off value of 

170 ms was determined by measuring T2 values in a healthy control population 

within each brain compartment (grey matter, white matter, and CSF) and 

finding that 170 ms was the optimal threshold between higher grey matter T2 

values and lower CSF values with the minimum overlap. 

This method has been shown to reliably separate healthy controls from 

subjects with HS, have good agreement with manual methods and in fact have 

superior reproducibility on repeated measurements (Winston et al. 2017). 

Automation replaces the onerous manual approach of delineating ROIs which 

are by necessity limited to a fraction of the real hippocampal volume in order 
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to avoid CSF contamination. By using automated segmentation as the 

template, mean T2 values can be measured across the whole hippocampus. 

Using an erosion at the boundary and thresholding of higher T2 values, the 

issue of CSF contamination is minimised. 

Combined assessment of hippocampal volume and qT2 is both sensitive and 

specific for HS (Coan et al. 2014).  

3.2.3 Cross-sectional volume and qT2 measurements 

The methods described above generate single global values for automated 

volumetry and mean qT2 measurement across the hippocampus. HS may be 

a diffuse or focal process, meaning that these techniques may lack sensitivity 

to subtle focal pathology (Woermann et al. 1998). The ability to quantify these 

biomarkers in a single subject at a more localised level and build a profile along 

the length of the hippocampus would address this limitation, and a method to 

achieve this has recently been proposed (Vos et al. 2019). It uses the global 

processing methods that have already been described (Winston et al. 2013, 

2017) and extends them to obtain profiles along the long axis (anterior-

posterior, A-P) of the hippocampus.  

This methodological extension involves the creation of a normative database 

to establish group average values, against which the single subject’s scan can 

be compared. Briefly, this process involves the generation of a group template 

where a reference dataset of healthy control subjects’ scans is registered to 

an atlas of the Montreal Neurological Institute (MNI) template that has been 

reorientated to place the hippocampal ROIs along the A-P axis. This was done 

with 111 healthy control subjects to generate a dataset-specific group average 

template. The template can then be assigned a distance map along the A-P 

axis from the most posterior (1mm) to most anterior (218mm) slice. 

Hippocampal segmentations generated for the reference dataset are 

transformed to this group template.  

An individual subject’s T1 scan is registered to the group template and for each 

coronal slice the distance map that was created for the group is transformed 

to the subject’s scan, to map the A-P locations for the individual subject in 

relation to the template. Hippocampal cross-sectional area (CSA) is then 
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calculated for the subject’s segmentation, corrected for total intracranial 

volume (TIV). 

The transformation from the template to a subject’s T1 scan is concatenated 

with a transformation from the T1 to PD/T2 scan for the T2 relaxometry 

processing. Template A-P location mapping is similarly transformed to the 

hippocampal segmentation in PD/T2 space to obtain location information for 

the individual subject.  

In order to contextualise the cross-sectional quantification of hippocampal 

volume and qT2 for an individual subject, the reference population’s 

corresponding values have been used to generate normative reference 

ranges. At every 1mm along the A-P hippocampal axis, the mean and standard 

deviation of CSA and qT2 was calculated from the dataset of 111 healthy 

controls. Normative reference ranges (mean±1.96 x standard deviation) were 

then calculated for CSA and qT2 for each location along the long axis of the 

hippocampus.  

To visualise this information, plots along the A-P axis of the hippocampus 

displaying reference ranges for both CSA and qT2 were generated. As CSA is 

derived from the isotropic T1 scan, the individual subject’s profile is shown as 

a continuous line overlayed on the reference plot. As qT2 values are derived 

from a 2D PD/T2 acquisition, with 4mm slice thickness, individual subject data 

points are represented discretely for each slice.  

3.2.4 Quantitative report design 

These methods allow for the construction of a quantitative report of 

hippocampal volume and qT2 values, both as global values and as profile 

values along the long axis of the hippocampus, to enhance the detection of 

focal pathology. The report that has been generated includes global CSA and 

qT2 results in a main table, presented with global refence ranges, as well as 

left to right CSA and qT2 ratios. Additionally, the report continues with a series 

of profile plots depicting left and right hippocampal CSA and qT2 along the P-

A axis, with the reference data range shown in purple, and the individual 

subject’s values overlayed. Left and right A-P plots are also presented 

overlayed on one plot to provide a visual representation of any possible 
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asymmetry between the two sides. The report also includes snapshots of the 

hippocampal segmentations, so that these can be rapidly checked for any 

gross errors. Subject’s demographic information including age, gender, 

scanner, and scan date are also populated to complete the report (Figure 3-

1). 
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Figure 3-1. A quantitative report for a subject with bilateral HS. 
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3.3 Credibility Study 

3.3.1 Aims of the credibility study 

The aims of performing a credibility study were to assess the reliability of the 

quantification pipeline which populates the final HS report when applied to 

clinical MRI studies. The performance of the automated techniques that feed 

into the report were assessed, including a review of the accuracy of the 

automated hippocampal segmentations, and the credibility of the numerical 

values and graphical representations for hippocampal volume and T2 

relaxometry. Results were reviewed to assess if they are adequately 

expressed in the context of normative data. Importantly, review of whether the 

report reflects the clinical impression made independently by expert 

radiologists was performed. 

3.3.2 Methods 

Ten subjects with a radiological diagnosis of HS and 10 healthy controls were 

selected. Subjects had undergone imaging on a 3T GE MR750 scanner with a 

32-channel coil. Sequences included a three-dimensional (3D) T1-weighted 

inversion-recovery fast spoiled gradient recalled echo, a 3D T2 Fluid-

Attenuation Inversion Recovery (T2-FLAIR), and coronal dual-echo fast 

recovery fast spin echo proton-density/T2- weighted. 

Quantitative reports were generated for each of the twenty subjects using the 

methods described in section 3.2. Two expert neuroradiologists assessed the 

T1-weighted and FLAIR images for each subject and made their clinical 

impression (HS right, left, bilateral; or normal). They also evaluated the 

accuracy of the hippocampal segmentations by viewing them as overlays on 

the T1 images using the image viewing platform niftiMIDAS. Finally, they 

appraised the QNI report for whether it was reflective of their clinical 

impressions. The reports were also assessed for any technical or presentation 

issues. 
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3.3.3 Results 

3.3.3.1 Overall report credibility 

Rater 1 found that 17 QNI reports were consistent with their clinical 

impressions. For the three that were not consistent, the common issue 

affecting these cases was that the hippocampus appeared pathologically 

hyperintense on FLAIR, but the qT2 value appeared in normal range and was 

not reflective of the expert’s impression of the presence of pathology. 

Rater 2 found that 18 reports were consistent with their clinical impressions. 

For the two that were not consistent, they noted one had isolated points above 

normal range in the qT2 value, where the FLAIR appeared normal intensity, 

and the other was a case where the hippocampal volumes were reported as 

more asymmetrical than expected from the expert’s visual impression. 

3.3.3.2 Hippocampal segmentations 

Rater 1 approved all forty hippocampal segmentations as credible.  

Rater 2 identified 11 of the forty segmentations as having slight errors, eight of 

which were identified as under-segmentation of the hippocampal tail. These 

errors were described as minor and did not affect the expert’s overall 

impression of the credibility of the QNI report. The manual delineations in the 

template database of Winston et al. 2013 were delineated using the guidelines 

described by Cook et al (Cook et al. 1992), which may vary from other 

delineations (Konrad et al. 2009). 

3.3.3.3 Report layout and presentation  

There were a few minor issues identified in the report presentation. In one case 

the CSA volume plot for a patient who had a high hippocampal volume that 

reached outside the normative range was cropped out of the graph. Another 

report demonstrated that the legend for the qT2 asymmetry graph was 

encroaching on the data points and appearing as part of the results. A minor 

observation was that the standard error bars for the qT2 values were difficult 

to appreciate as they were in blue and blended with the shaded blue of the 

normative range. 
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3.3.4 Outcomes 

Where the qT2 values were within normal range but the FLAIR was 

hyperintense, it was discovered that some of the qT2 values for these very 

sclerotic hippocampi were so high that they were exceeding the threshold that 

is used to exclude CSF signal. This limitation must be considered and 

highlights that the report should be viewed alongside the images for standard 

visual assessment. A limitation of the current report is that no ‘sense check’ is 

given to report reader to indicate that this error has occurred, which could be 

addressed in a user guide for a future report version. Technical solutions to 

this issue could also be explored for example by more stringent erosion of the 

hippocampal boundaries.  

Comments from rater 2 on the minor segmentation errors were mostly 

concerning under-segmentation of the hippocampal tail. The boundaries used 

were based on a template dataset of 400 segmentations, which followed a 

certain definition of anatomical boundaries. The exact anatomical border of the 

hippocampal tail cannot be identified on imaging alone and therefore a 

somewhat arbitrary definition must be imposed. The rater was satisfied that 

the segmentation technique did not affect the credibility of any of the QNI 

reports.  

The small presentation issues were also addressed. The issue of premature 

cut-off was amended by making the maximum threshold of the y-axis scale 

depend on either the patient maximum or the normative curve maximum, 

whichever is higher. The qT2 asymmetry legend was amended by clearly 

separating it from the subject’s data points. The qT2 standard error bars were 

changed from blue to black. 

Performing this credibility study has shown the HS QNI reports to be wholly 

credible in representing hippocampal volume and quantitative T2 relaxometry 

measurements. Issues have been addressed where they were identified, as 

described above.  
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3.4 Clinical accuracy validation study 

3.4.1 Aims and hypotheses 

As set out in chapters 1 and 2, a crucial step along the quantitative imaging 

biomarker translational pathway is robust pre-use clinical validation of the 

analysis tool. It was designed to assess whether the quantitative report, 

deemed credible by experts, impacted of the detection accuracy and/or 

confidence of image reporters of several different levels of prior expertise. 

Performing this multi-rater comparator study allowed several hypotheses to be 

tested: that by using this quantitative report for HS inter-rater variability will 

decrease; HS detection and rater confidence will increase; and that there will 

be an identifiable effect across the groups of raters, with most benefit seen to 

the least experiences image readers.  

3.4.2 Methods 

The clinically acquired data used was considered a service improvement by 

the National Hospital for Neurology and Neurosurgery and the UCL Queen 

Square Institute of Neurology Joint Research Ethics Committee. Informed 

written consent was obtained from control subjects. Study subjects have 

previously been utilised in Vos et al. 2019. 

3.4.2.1 Test dataset 

Forty-three subjects who had been scanned on the same 3T GE MR750 

scanner with 32-channel coil were included, mean age±SD 40.0±14.8 years, 

22 males. Twenty of these subjects were patients with HS and 23 were age-

matched patients with epilepsy who had no focal abnormalities on MRI 

(referred to as ‘MR negative’ epilepsy). Of the 20 HS patients, 15 had a 

histologically-confirmed unilateral HS and 5 had bilateral HS which was 

determined by a consensus of MRI, neurophysiology and semiology.    

3.4.2.2 Reference dataset 

A reference dataset of 111 healthy control subjects underwent imaging with 

the same scanner and scanning protocol, age±SD 40.0±12.8 years, range 

17.0-66.6 years, 52 males), as part of a previous study (Vos et al. 2019).  
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3.4.2.3 Imaging protocol  

The imaging protocol comprised: 

a) 3D T1-weighted inversion recovery fast spoiled gradient recalled echo 

(3D T1);  field-of-view (FOV): 224256256 mm (antero-posterior, left-

right, inferior-superior), acquisition matrix: 224256256, voxel size 1 

mm isotropic, echo/repetition/inversion time (TE/TR/TI) = 3.1/7.4/400 

ms; flip angle 11°; parallel imaging acceleration factor 2; 

b) 3D T2-weighted fluid-attenuation inversion recovery (T2-FLAIR) 

sequence; a 3D fast spin echo (FSE) sequence with variable flip-angle 

readout (CUBE); FOV, matrix, and angulation identical to the 3D-T1, 

but with TE/TR/TI = 137/6200/1882 ms (Vos et al. 2018);  

c) coronal dual-contrast fast recovery fast spin echo proton-density/T2- 

weighted (PD/T2) sequence for T2-quantification; FOV: 220220, 

matrix: 512512, in-plane resolution: 0.43x0.43mm, 55 slices of 4 mm 

thickness (TE effective 30 and 119 ms, TR 7600 ms, SENSE factor 2).  

 

3.4.2.4 Assessment task 

Nine raters were invited to participate in the assessment exercise, where they 

assessed the test dataset images and recorded their impressions both with 

and without the availability of the quantitative report. Reports were presented 

to the raters in a fully randomised manner. The nine raters made up three 

groups of differing radiological experience; three were expert raters who were 

established consultant neuroradiologists; three were radiologists completing 

their specialty training in neuroradiology; and three were image analysts, a 

group made up of MRI radiographers who worked in neurology centres and 

non-clinical research fellows working in epilepsy. 

The raters were blinded to diagnosis and asked to review each of the 43 cases 

twice, in a randomly generated order, once with and once without the 

quantitative report available. Raters were asked to select whether a case was 

normal or abnormal, give their confidence from 1 (no confidence) to 5 (full 

confidence). If the rater selected that a case was abnormal, they had to make 
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a further selection of whether they thought the case was right, left or bilateral 

HS, and again give their confidence level in this decision using the same 1-5 

scale. The only demographic information presented was the subject’s age and 

gender.  

3.4.2.5 Assessment platform design 

The assessment exercise was hosted on a website designed for this purpose, 

to enable raters from multiple centres and geographical locations to 

participate. It also ensured that a standardised assessment platform was being 

used by all raters.  

The website platform that raters used to perform their assessments gave an 

initial introduction to the project and a description of the task, as well as an 

explanation of the layout and contents of the quantitative report, and 

instructions on how to use the website. Once a rater was ready to begin the 

assessment, the website presented the cases to them in a predefined 

randomly generated manner, so that the rater would at separate and 

unpredicted points in the exercise encounter one case twice, once with and 

once without the quantitative report alongside the image series (Figure 3-2).  

Figure 3-2. A snapshot of the website platform where raters performed the assessment task. 
T1, PD, T2 and FLAIR sequences were available in interchangeable panels. The assessment 
form was tabbed alongside the quantitative report.  

The MR studies were presented in three interchangeable orthogonal planes 

(sagittal, coronal and axial), and raters could toggle between the four available 
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series (T1, proton density (PD), T2 and FLAIR) in order to imitate the 

radiologist’s normal working environment as closely as possible.  

3.4.2.6 Statistical analysis 

To determine the effect of the quantitative report on diagnostic accuracy, tests 

from signal detection theory were used (REF). In comparison to the gold 

standard diagnosis, rater assessments were assigned as: 

a) True positive (TP) – correctly abnormal 

b) True negative (TN) – correctly normal 

c) False positive (FP) – incorrectly abnormal 

d) False negative (FN) – incorrectly normal. 

Accuracy was therefore defined as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
𝑥100 

 

Data analysis was hierarchical, starting with counts of correct and incorrect 

assessments as normal or abnormal, against the clinicopathological gold 

standard. Resulting counts with and without the quantitative reports was 

assessed with a McNemar test. Paired t-tests were used to analyse mean 

accuracy and sensitivity between the report vs no report settings. Cohen’s d 

effect size was used to assess the standardised differences in means, with a 

level of d>0.8 being defined as a large effect size (Cohen 2013).  

Agreement of each rater with the gold standard was assessed using Cohen’s 

Kappa, a metric which accounts for chance agreement (Cohen 1960). 

Agreement can be defined as moderate with a Kappa score of 0.60-0.79 and 

strong with a value of 0.80-0.90 (McHugh 2012). The Kappa scores were then 

compared using paired t-tests between the report vs no report settings. The 

analysis steps were then repeated for correct and incorrect rater lateralisation 

of right, left or bilateral HS with and without the quantitative report. Agreement 

between raters and reliability were assessed with Cronbach’s alpha and intra-

class correlation (ICC). 
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Mean confidence ratings with and without the quantitative report were 

assessed using paired t-tests. Effect size was measured with Hedges’ gz 

(Durlak 2009). In a further exploratory analysis, mean confidence scores per 

rater were split by a) whether the diagnosis made was correct or incorrect, b) 

whether or not the quantitative report was available and c) rater experience 

level. This was done using a mixed repeated measures analysis of variance 

(ANOVA) test: 2 (correct vs incorrect) x 2 (report vs no report) x 3 (rater 

experience level) on correctly assessed scans, reported as F and effect 

size partial eta squared η2
p (Lakens 2013). 

P values of ≤0.05 were interpreted as statistically significant.  

3.4.3 Results 

3.4.3.1 Test dataset characteristics 

For the subjects included as test data, each group’s mean age and standard 

deviation (SD) in years (y), and gender ratio was: 

a) Left HS: 39.2y (13.5y) M:F 3:3; 

b) Right HS: 44.7y (16y) M:F 4:5; 

c) Bilateral HS: 42.3y (17.3y) M:F 2:3; 

d) MR negative: 33.8y (10.1y) M:F 13:10. 

There was no significant age difference between HS and MR-negative 

subjects (ANOVA F(1,8)=1.83, p=0.159).  

Mean volume and qT2 values generated by the report pipeline for these test 

subjects are shown in Table 3-1, where left and right HS are combined as 

‘unilateral HS’, volume ratio is calculated as unaffected : affected hippocampus 

and qT2 ratio as affected : unaffected hippocampus. The reference ranges for 

volume and qT2 ratios that were derived from the normative population are 

included for comparison.  

 

 

 



 

72 
 

Table 3-1. Volume and qT2 ratios for the test dataset, presented as unilateral HS, bilateral HS, 
and MR negative groups, with the normative reference ranges quoted for comparison. 

Patient group Volume ratio % (range) 

Normative reference 88.9-
110.6 

qT2 ratio % (range) 

Normative reference 93.7-
104.2 

Unilateral HS 72.8 (54.2 – 89.5) 107.8 (100.3 – 112.4) 

Bilateral HS 86.4 (77.3 – 98.0) 99.2 (92.6 – 103.8) 

MR negative 97.5 (85.9 – 110.1) 98.1 (94.9 – 102.2) 

3.4.3.2  Detection accuracy 

Detection accuracy (defined in section 3.4.2.6) was 87.5% without the 

quantitative report available. There was trend-level improved accuracy when 

raters had the report available, at 92.5% (p=0.07) with a moderate effect size 

(d=0.69) Table 3-2. The largest magnitude improvement effects were seen in 

the consultant radiologist and image analyst groups, with large effect sizes.  

3.4.3.3 Lateralisation accuracy 

Accurate lateralisation of pathology improved with the quantitative report. Of 

cases that raters correctly assessed to be abnormal, they incorrectly assigned 

the pathology (i.e., incorrectly chose right, left or bilateral HS) in 8.3% of cases 

without the report and in only 3.3% of cases when the report was available. 

Overall, lateralisation accuracy of HS by rater showed a trend-level 

improvement with the quantitative report, from 83.5% to 91.5%, p=0.075, with 

a moderate effect size (d=0.68). 

3.4.3.4 Bilateral HS accuracy 

When lateralisation of bilateral vs unilateral cases was compared, there was a 

significant improvement in overall accuracy in detection of bilateral cases with 

the report, p=0.028. There was significantly increased accuracy for detection 

of bilateral HS when using the quantitative report, from mean (SD) 74.4% 

(28.77) to 91.1% (17.64), p=0.042, d=0.70.  
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Table 3-2. Correct detection as normal or abnormal, combined for all raters and by rater group.  

 Rater group 
Without 
Report 

Mean (SD) 

With Report 
Mean (SD) 

p-value 
effect 
size, d 

Correct 
designation 

(normal / 
abnormal) 

Combined 87.3% (4.0) 92.5% (2.2) 0.06 0.73 

1 92.2% (3.6) 96.1% (2.7) 0.30 1.23 

2 85.3% (6.7) 87.6% (3.6) 0.48 0.43 

3 84.5% (15.5) 93.8% (4.8) 0.27 0.81 

Sensitivity 

Combined 87.5% (13) 90.0% (9.4) 0.25 0.41 

1 96.7% (5.8) 98.3% (2.9) 0.74 0.37 

2 76.1% (16.7) 80% (8.7) 0.50 0.30 

3 90% (5) 91.7% (2.9) 0.42 0.41 

Specificity 

Combined 87.4% (15) 95.0% (5.7) 0.14 0.54 

1 88.4% (2.5) 94.2% (6.6) 0.18 1.15 

2 94.2% (5) 94.2% (5) 1 0 

3 79.7% (28) 95.7% (7.5) 0.31 0.78 

Accuracy 

Combined 87.5% (9.0) 92.5% (5.0) 0.07 0.69 

1 92.2% (3.6) 96.1% (2.7) 0.30 1.23 

2 85.9% (6.2) 87.6% (3.5) 0.60 0.33 

3 84.5% (15) 93.8% (4.8) 0.27 0.81 

Rater groups: 1=experts; 2=trainees, 3=image analysts. 

 

3.4.3.5 Rater agreement 

3.4.3.5.1 Agreement between individual raters and the gold standard 

Without the quantitative report, agreement between raters and the gold 

standard was moderate, Kappa (SD) = 0.74 (0.19). Agreement became strong 

when raters had the report available, Kappa (SD) = 0.86 (0.09), p=0.06, with a 

large effect size, d=0.81 (Table 3-3).  

3.4.3.5.2 Agreement between raters 

Reliability of assessment across raters showed some overall improvement in 

Cronbach’s alpha from 0.452 without the report to 0.598 with the report 
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available. Agreement between raters also showed some improvement with the 

report, with the ICC for single measures increasing from 0.073 to 0.138 and 

for average measures from 0.417 to 0.591.  

Table 3-3. Kappa scores for agreement of each rater and each group of raters with the gold 
standard. 

Rater group Rater# No QReport 
With 

QReport 
Net 

change 
p 

value 
Effect size, 

d 

Experts 

1a 0.86 0.82 -0.04   

1b 0.93 0.96 0.03   

1c 0.78 0.96 0.18   

 Combined 0.86 0.91 0.05 0.45 0.78 

Trainees 

2a 0.86 0.82 -0.04   

2b 0.69 0.80 0.11   

2c 0.66 0.74 0.08   

 Combined 0.74 0.79 0.05 0.38 0.68 

Analysts 

3a 0.74 0.93 0.19   

3b 0.30 0.78 0.48   

3c 0.93 0.96 0.03   

 Combined 0.66 0.89 0.23 0.22 1.13 

Total 
Mean (SD) 

 0.74 (0.19) 0.86 (0.09) 0.12 0.06 0.81 

3.4.3.6 Rater confidence 

Difference in confidence levels reported by raters for their assessments with 

report vs no report available, assessed in a series of paired t-tests (Table 3-4), 

showed that raters were significantly more confident in correctly assessing 

both normal (p<0.01, Hedges’ gz=1.78) and abnormal (p<0.01, gz=1.28) scans 

when they had the quantitative report available.  

A mixed ANOVA was used to assess the effect of the quantitative report on 

rater confidence accounting for rater experience level and whether a scan was 

normal or abnormal, in correctly assessed scans. A very large main effect of 

the quantitative report was found, showing that raters were more confident in 

their correct assessments with the report available [F(1,6) = 102.65, p < .001, 

effect size partial eta squared η2
p =.945]. The effect of the quantitative report 



 

75 
 

on rater confidence was moderated by rater experience level, 

[QReport*Experience Interaction F(2,6) = 7.748, p =.022, η2
p =.721], with a 

greater increase in confidence seen in the image analyst rater group [F(1,6) = 

81.491, p < .001, η2
p  =.931]. Additionally, raters were more confident when 

correctly assessing abnormal scans than normal scans, irrespective of 

whether a quantitative report was available [F(1,6)=8.911, p =.024, η2
p =.598]. 

Table 3-4. Rater confidence when classifying normal and abnormal scans. * denotes statistical 
significance at <0.05. 

Δ = change in confidence level on 5-point scale. df: degrees of freedom. ‘Correct normal’ refers 
to raters’ confidence when correctly assessing scans as normal.  

3.4.4 Discussion 

This clinical accuracy validation study was performed to test the effect of a 

quantitative MR biomarker report for detection of HS on the accuracy and 

confidence of image interpreters with differing levels of prior experience. 

Technically validated algorithms for quantification of hippocampal volume and 

qT2 were used to develop an automated report for single-subject biomarker 

reporting with accompanying normative reference data.  

In summary, availability of the quantitative report was found overall to increase 

both assessment accuracy and rater confidence in detecting HS cases. This 

Confidence 
rating 

Δ 
(Report 

-No 
Report) 

SD 
95% 

Confidence 
Interval 

t df p-value 
effect size, 

gz 

Overall 
Confidence 

0.35 0.18 0.21-0.48 5.82 8 <0.01* 1.76 

Normal  0.35 0.18 0.21-0.48 5.90 8 <0.01* 1.78 

Abnormal  0.37 0.26 0.17-0.58 4.23 8 <0.01* 1.28 

Correct normal  0.35 0.15 0.24-0.47 6.99 8 <0.01* 2.12 

Correct 
abnormal  

0.32 0.29 0.10-0.54 3.33 8 0.01* 1.00 

Incorrect 
normal  

0.14 0.37 -0.24-0.53 0.96 5 0.38 0.33 

Incorrect 
abnormal  

-0.31 0.24 -0.69-0.07 -2.61 3 0.08 -0.95 
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was associated with strong effect sizes, despite sometimes reaching only 

trend-level significance, likely secondary to the small number of raters per 

group. Overall assessment accuracy and rater agreement with the gold 

standard both saw a large-effect improvement with report availability. All rater 

groups saw an increase in accuracy, and availability of reports increased 

accuracy of pathology lateralisation. Importantly, there was a significant 

increase in detection accuracy for bilateral HS cases.  

Well-placed confidence in correct assessments increased significantly with 

use of reports. Rater experience level was an important modifier of rater 

confidence, with the largest report effect seen in the image analyst group. 

There were very few instances of a rater making a correct assessment without 

the report and an incorrect one when they had the report available. This 

occurred in 1.7 cases per rater overall, and only in 1.3 cases per rater in the 

consultant radiologist group. These rates were less than the improvement 

shown per rater group with the report available. 

The test dataset used covered a broad spectrum of HS disease severity, as 

the range of volumetry and qT2 data in Table 3-1 demonstrate. An important 

strength was the inclusion of subtle unilateral HS cases with atrophy ratios 

higher than 0.7, a threshold at which it has previously been shown that unaided 

visual detection can be very challenging (Reutens et al. 1996). 

Accurate detection of MR features of HS is a central component to the 

management of patients with temporal lobe epilepsy. When these features are 

subtle or bilateral, accurate detection can be challenging. Previous validation 

studies for use of HS imaging biomarkers have shown increased assessment 

accuracy either alongside visual assessment or to outperform it when used in 

isolation. However these studies have not been designed to emulate the 

clinical environment for intended use, instead using arbitrary abnormality 

thresholds (Hu et al. 2018) or comparing quantification alone to visual 

assessment alone (Farid et al. 2012; Louis et al. 2020; Mettenburg et al. 2019). 

In contrast, this study considers the translational impact of combining standard 

visual assessment with quantification using clear tabulations, reference ranges 

and accessible graphical representations to assist the image interpreter. 
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Demonstrating that the combination of the two assessment processes 

improves HS detection and rater confidence supports it as a viable 

translational solution that could be incorporated as an adjunct into the clinical 

workflow. 

The inclusion of distinct groups of raters with different levels of prior experience 

was useful in order to reflect the clinical situation and clarify which users would 

gain the most benefit from use of a quantitative tool. The largest improvements 

associated with the report were seen in the image analyst group, both for 

assessment accuracy and rater confidence. This was in keeping with the 

hypothesis that the least experienced raters would benefit the most from being 

able to reference the individual subject’s results against a data from a 

reference normative population.  

Interestingly, the expert group of raters saw increased agreement with the gold 

standard (Cohen’s Kappa) with large effect sizes. This group has high baseline 

Kappa scores without the quantitative report, which may reasonably be 

explained by their years of previous experience and familiarity with HS 

compared to other rater groups. However their scores further increased with 

the quantitative report, suggesting a particular value to this group of raters in 

further assisting them in assessment of subtle or visually equivocal cases. 

These results suggest that the quantitative report may assist in levelling out 

the baseline discrepancy in rater expertise, affording individual patients with 

increased objectivity in the assessment received across imaging interpreters.  

Whilst benefits were seen in the trainee radiologist rater group, they were less 

strong than those seen in the image analyst group. This may reflect a stronger 

reliance by image analysts on the report content, while trainees may be less 

inclined to assimilate the report information into their visual assessment in 

subtle cases. The improvements seen in the group of consultant raters seems 

to suggest that they were more able to integrate the report information into 

their visual assessment where necessary for improved detection of subtle 

cases than their more junior colleagues.  

It is very interesting to see that use of the quantitative report in this study led 

to significantly increased assessment accuracy for bilateral HS cases. Bilateral 
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HS presents the dual challenge of being difficult to detect visually, due to the 

perceived preservation of symmetry and relative subtlety until there has been 

significant volume loss and/or sclerosis, and of being extremely important to 

detect accurately in order to avoid non-curative unilateral surgical attempts. 

Some surgical failures may indeed be due to subtle undetected bilateral 

disease that was not detected on imaging (Hennessy et al. 2000).  

The use of a novel analysis and presentation method that quantifies volume 

and relaxometry values along the longitudinal axis of the hippocampus, in 

addition to global hippocampal values, presents an opportunity to more 

accurately localise a focal area of pathology, the identification of which is 

associated with a more favourable surgical outcome (Duncan and Sagar 

1987). This would have to be investigated using histologically confirmed focal 

cases and comparing multidisciplinary decision making with and without the 

use of the quantitative report.  

3.4.4.1 Limitations 

Potential limitations to this study primarily related to the number of raters 

recruited to participate in the rating exercise and the number of cases that they 

were asked to assess. While overall accuracy saw a trend-level improvement 

with the use of the report, and large effect sizes were seen for most outcomes, 

it is likely that statistical significance was not reached due to the study being 

under-powered. When planning this study there were no examples of similar 

previous work available on which to base power calculations. Since the raters 

that were recruited achieved a high level of baseline accuracy without the 

report, a larger test subject set may also have been beneficial to show a 

significant benefit of the report. In addition, raters were performing at a high 

baseline without the report available, which may in part have been due to case 

selection, so it was more difficult to show a significant improvement effect.  

Raters were not informed prior to the exercise how many HS cases they should 

expect to encounter, however it is possible that they were primed to expect 

them at a higher rate than normal clinical practice, due to the nature of the 

exercise. Additionally, it was not possible to fully recreate the expected clinical 

environment, as raters were blinded to any clinical referral information that they 
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might expect to have access to when assessing a patient’s imaging. This was 

a necessary aspect of the study design, in order to attempt to isolate the effect 

of the report from any other informative data that may influence a rater’s 

assessment. However in reality the reporter may integrate other information.  

Case selection presented potential limitations. It was necessary to construct a 

test dataset with a robust clinical and/or pathological gold standard to allow for 

statistical analysis, however this may mean that by default the selected cases 

were those that were more clinically certain than cases that were subtle and 

did not reach surgery. This is difficult to avoid when a gold standard is 

necessary for study design. It was also possible that confirmed unilateral HS 

cases may have had unconfirmed contralateral pathology. It was also 

necessary to use expert neuroradiologist interpretation alongside additional 

clinical data to select bilateral HS cases. Quantitative reports were checked to 

confirm that the bilateral cases were captured adequately by the quantitative 

data; this assumes the diagnostic value of the quantitative report prior to its 

clinical validation.  

Additionally, the non-HS subjects that were used consisted of MR-negative 

patients with epilepsy, who did not have established aetiologies identified, it is 

possible that there may have been undetected hippocampal pathology in this 

group. The test dataset had a wide age range but it was skewed towards 

younger adults, which is in keeping with the natural history of clinical 

presentation with HS.  

All data used, including test and reference populations, was collected on a 

single scanner using a uniform imaging protocol. This is not reflective of the 

clinical reality of multiple scanners and protocols that may be routine in a 

clinical radiology department. While the results of this study can be taken to 

inform practice at this centre, application to more heterogeneous data and 

validation of multicentre reference ranges would be necessary to allow for 

more widespread adoption of the quantification pipeline. While multicentre 

reference values may lead to the tool becoming more representative, 

increased noise may be introduced. However, good interchangeability 
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between reference datasets has been shown in volumetric studies (Vinke et 

al. 2019).  

Since the quantitative report presented both volumetric and qT2 

measurements to the rater, this study did not address which of the two metrics 

is more useful and confers greater increase in accuracy and/or confidence. It 

would be interesting to consider whether a report presenting qT2 

measurements only would achieve similar results to a combined report. 

3.4.5  Conclusion 

This clinical validation study represents a key proof-of-concept within the 

framework of development and translation of quantitative imaging biomarkers 

for clinical radiology use. It has shown that the use of single-subject 

quantification contextualised by normative reference data in an accessible 

graphical report format can improve accuracy of HS assessment, inter-rater 

agreement, and well-placed decision confidence.  

Future directions for development of an HS biomarker tool may include a study 

assessing the effect of the report on the detection of focal pathology 

highlighted by the graphical representations of the hippocampal long axis. 

Additionally, as T2 relaxometry is not a conventional measurement outside of 

specialist epilepsy centres, a modified report could replace the T2 

quantification used here with measurement of FLAIR signal instead, which 

would potentially make the tool more applicable to non-specialist centres. 

However, quantitative T2 measurements, which are not platform-specific, are 

likely to be more translatable between different centres than FLAIR 

quantification, which relies on local acquisition and calibration factors.  

To build upon the results of this clinical validation study and follow the 

framework for clinical imaging biomarker validation that had been described, 

supervised integration into the local clinical service and in-use evaluation will 

allow the quantitative report to be applied to live clinical cases and be tested 

by neuroradiologists in their daily reporting workflow.  
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3.5 Deployment and in-service evaluation  

Based on the results of the clinical validation study, and in line with the six-

step QIB translational framework, the quantitative HS report has been 

systematically phased into early clinical deployment at a local level within the 

clinical neuroradiology service at the National Hospital for Neurology and 

Neurosurgery, Queen Square, London. This has been done by adopting a 

cautious and methodical roll-out strategy. 

3.5.1 Pre-deployment modifications to the HS report 

Subsequent to the clinical validation study, some aesthetic modifications were 

made to the HS report which had been identified as areas which could benefit 

from more clarity. In the table of global hippocampal volume and qT2 values, 

any abnormal values that were outside of the normative reference range were 

made to appear in bold text so that they could more easily be picked out. The 

table was also made larger by moving the QC information onto a second page 

of the report. Additionally, the hippocampal profile plots were ‘flipped’ from 

appearing as P-A on the original reports to now appearing as A-P, which is 

more naturally in line with radiological expectations. An example of the 

updated report is shown in Figure 3-3. 

Instructions for use were added to the second page of the HS report, that were 

not included at the time of the clinical validation study. These instructions are 

important for clinical deployment as they provide the clinician with a context for 

how to interpret the report, important caveats and how to use it as a part of 

their radiological assessment. 
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Figure 3-3. The updated HS report. 
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They also make clear that local clinical deployment of the tool is under the 

remit of an in-house exemption to the current medical device regulations, in 

lieu of official CE marking. The instructions for use were written with these aims 

in mind: 

“This automated report has been developed as a tool to assist in interpretation 

of MRI examinations when a diagnosis of mesial temporal lobe epilepsy is 

suspected. An automated hippocampal segmentation technique (HippoSeg) 

has been used to generate hippocampal volumes and extract quantitative T2 

measurements, and used as input to generate profiles of cross-sectional area 

and T2 along the hippocampal long axis (anterior-posterior). The quantitative 

report displays these values in the context of a normative range from healthy 

control subjects.  

The report should be used as a supporting element of the radiologist’s wider 

assessment, and does not replace conventional assessment or consideration 

of available clinical information and investigations. It only represents 

volumetric and T2 information, in the context of a normative population of 111 

healthy controls (aged 17-67 years), and excludes any assessment of other 

pathology. It does not consider any historical imaging or other scans from this 

session, and should not be used to make assessment of changes in brain 

volumes between timepoints.  

This report should only be used by radiologists trained in QNI Epilepsy 

Hippocampal Report interpretation. Measurements should not be compared to 

those provided by other software packages as algorithm compatibility cannot 

be assumed.  

This tool is not CE-marked for clinical use and its use is allowed under the in-

house exemption of the current regulations regarding medical devices.  

For further detailed information about QNI report design and interpretation, 

please visit qni.cs.ucl.ac.uk.” 
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3.5.2 Pre-deployment planning 

3.5.2.1 Testing the clinical workflow 

Prior to the incorporation of the HS report into the clinical workflow, a pilot test 

was undertaken using a shadow PACS system. This allowed for the testing of 

the analysis pathway, which allows an imaging study to be identified from the 

PACS system for processing with the HS quantification pipeline and a 

populated report to be sent back to PACS, to be viewed by the radiologist as 

an additional series in the patient’s examination (Moggridge et al. 2020). 

Ten real-time clinical cases were tested with this ‘offline’ deployment workflow 

and the resulting HS reports were reviewed by three consultant 

neuroradiologists alongside the patients’ standard imaging series. Comments 

on the report output were made independently by the three consultants, 

followed by a group meeting where all the cases were reviewed and 

impressions were discussed.   

All three reviewers were in agreement that the HS reports generated were 

processed correctly and returned credible quantitative information. Based on 

this consensus, a monitored roll-out of the HS report was authorised to begin 

with a group of pre-specified named consultant neuroradiologists within the 

department (see section 3.5.3).  

3.5.2.2 Departmental training and awareness 

A key element of planning for successful deployment, leading to effective 

uptake and staff engagement, was to ensure that staff from across the 

department were well informed of the background to the HS tool and the aims 

for its implementation. This was done by engaging the lead personnel for 

clinical workflow management, for example the lead radiographer for the 

department, in the deployment plans, as well as holding a dedicated 

presentation to which all staff members were invited. The presentation covered 

all stages in the technical development and clinical validation of the HS report, 

as well as the clinical deployment strategy. This enabled knowledge of the tool 

to be disseminated widely across the clinical department and allowed for direct 

engagement with questions and comments from end-users. 
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3.5.3 In-use evaluation 

Ongoing in-use evaluation has been systematically performed from the outset 

of the limited departmental deployment. Clinical teams have been encouraged 

to request a quantitative report for patients with epilepsy who they are referring 

for MRI where a possible cause may be HS. These cases are filtered onto a 

separate reporting list which is assigned to four specific consultant 

neuroradiologists in the department. Every fortnight a review meeting is held 

between this consultant group to review the reports that have been processed 

and whether there are any issues identified. These meetings are also attended 

by the department’s clinical scientists who process the requested reports so 

that any potential issues raised can be clearly communicated and promptly 

investigated.  

To date, twelve quantitative reports have been issued in this clinical setting. 

Seven reports displayed normal hippocampal volumes and qT2 

measurements. Three reports demonstrated RHS and two demonstrated LHS. 

There were no reports of bilateral HS. In all cases, the quantitative reports 

have aligned with the visual impressions of the reviewing consultant 

neuroradiologists. There have been no concerns raised by the radiologists or 

clinical scientists regarding the quantitative reports themselves. An issue of 

discussion has been how to increase clinical referrer engagement in order to 

increase the throughput of quantitative reports generated. This has been fed 

back to the neurology clinical lead for epilepsy to disseminate to referring 

colleagues.  

Once a substantial case load has been reviewed by the pilot in-use team, and 

it is clear that there are no issues of concern, the workflow will be extended to 

all consultant neuroradiologists in the department for use in their routine 

reporting. In parallel, trainee radiologists spending time in the department and 

who have a high turnover rate will receive regular education and training on 

use and interpretation of the quantitative reports. Once its use is somewhat 

established across the department, a formal audit of use and impact of 

quantitative HS reports will be performed. These in-use evaluation steps are 

important precursors to larger-scale health socioeconomic impact 
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assessments that would ultimately be required to confirm the report’s utility in 

a clinical setting.  
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4. Quantitative reporting for MRI in dementia 
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4.1 Introduction 

The translational framework for imaging biomarkers that I set out in chapter 2 

was followed by the example of its application to MRI in dementia. While I 

provided an outline in that chapter of the considerations for each step in the 

translational framework, this chapter will focus primarily on the development 

and clinical validation of a specific tool to be used by radiologists when 

assessing clinical scans for suspected dementia. Therefore, this chapter 

relates to steps 3 and 4 of the previously described QNI framework.  

Structural MRI is the mainstay of general radiological practice for the 

investigation of patients with memory impairment and suspected dementia 

(Wattjes 2011). It can be used to delineate the differences in cerebral volume 

loss between normal aging and that which signals a superadded pathological 

neurodegenerative process, as well as to differentiate between specific 

dementia subtypes. The increased understanding of the biological basis of the 

different causes of dementia has led to diagnosis moving away from a 

diagnosis of exclusion towards one that can be described by clinical and 

imaging phenotypic patterns (Dubois et al. 2007).  

Pathological atrophy of medial temporal lobe structures can be visualised on 

MRI and constitutes a core diagnostic feature of Alzheimer’s Disease (AD) 

(Jack et al. 2002). Structural MRI can also contribute to differentiation between 

dementia subtypes (Vernooij and Smits 2012). Challenges exist where 

pathological changes are early and subtle, and where appearances overlap 

with changes that are related to non-pathological aging. Radiologists have 

designed visual rating scales as semi-quantitative imaging descriptors that can 

facilitate multidisciplinary assessments and patient follow-up, for example the 

medial temporal atrophy (MTA) scale (Scheltens et al. 1992). However, these 

scales are limited by their discrete nature and are not sensitive enough to 

describe early subtle changes (ten Kate et al. 2017; Pereira et al. 2014).  

Quantification of a patient’s imaging biomarkers and comparison to data taken 

from a healthy reference population could improve differentiation between 

normal and pathological MRI appearances (Brewer 2009), particularly as the 

focus shifts towards prophylactic and/or disease modifying interventions for 
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dementias in the future (McEvoy and Brewer 2010). Indeed, MRI volumetry is 

now well established in the research setting, with volumetric measurements 

often used as surrogate endpoints in clinical trials of potential therapeutic 

interventions for Alzheimer’s Disease (Schwarz et al. 2019; Vandenberghe et 

al. 2017). 

Advances in automated segmentation techniques have facilitated the 

processing of large normative reference datasets for single-subject 

comparison (Brewer 2009; Fischl et al. 2002). The use of normative reference 

data has been greatly enhanced by the availability of large online multi-site 

data repositories, which employ standardised imaging protocols and include 

patient and healthy control populations, the primary example being the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Jack et al. 2008).  

As a result of these advances, there has been a gradual translation from 

research application of automated volumetric MRI analysis to individual 

patients in clinical settings compared to an age-matched normative reference 

population. This could assist radiologists in their interpretation of patterns and 

extent of brain atrophy, and address clinical issues including the limitations of 

visual rating scales and the inter-rater variability inherent in routine visual 

evaluation. Use of quantitative volumetry reports has already been shown to 

increase clinical assessment accuracy (Hedderich et al. 2020; Vernooij et al. 

2018) and to contribute to earlier detection of atrophy (Ross et al. 2013, 2015). 

These promising developments have been accompanied by a recent surge in 

proprietary software tools provided by private companies, whose products 

have received authorisation from regulatory approving bodies such as the 

Food and Drug Administration (FDA) and Conformité Européenne (CE) for this 

purpose. 

Routine use of volumetric software for dementia assessment is currently low 

in clinical centres across Europe, at 5.7% in a recent survey of 193 centres, 

compared to 81.3% who routinely use the MTA scale (Vernooij et al. 2019). 

Significant translational barriers to the implementation of volumetric tools may 

partly explain this, including lack of imaging standardisation in clinical settings, 

and unclear clinical validation outcomes of proprietary software. Radiologists 
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may also be wary of potential additional time investment needed to adapt their 

routine workflow and whether the results of these quantitative tools will be easy 

to interpret. Despite their FDA and/or CE marking, many proprietary software 

solutions lack published clinical validation data. Currently there is no clear 

consensus for how these tools should be implemented in routine clinical 

reporting, particularly in relation to their impact on clinical management 

(Vernooij et al. 2018b). The translational framework that I set out in Chapter 2 

aims to address the evidence gap by outlining a best practice development 

pathway for clinical use of QIB software tools. 

In this chapter, I will present a quantitative report for use in dementia MRI 

assessment and its clinical validation process.  
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4.2 Methods 

4.2.1 Automated brain volume quantification 

Automated processing of brain scans for volumetric quantification has 

replaced cumbersome manual segmentation methods, and the developments 

of freely-available software over recent decades has facilitated this (Brewer 

2009; Fischl et al. 2002). To construct a quantitative report that represents 

regional and global brain volumes, automated parcellation and segmentation 

methods were used.  

4.2.2 Geodesic Information Flows 

Brain segmentation was performed using the Geodesic Information Flows 

(GIF) algorithm (Cardoso et al. 2015). This technique is based on the premise 

of information extrapolation from a limited set of annotated data and applies it 

to a much larger sample. Specifically, it allows the propagation of categorical 

labels and probabilistic segmentations from one dataset to another. It provides 

fully automated multi-atlas segmentation and global and regional volumetry for 

T1-weighted MRI scans. It has been validated against manual segmentation 

methods applied to dementia and other neurodegenerative diseases 

(Bocchetta et al. 2016; Cardoso et al. 2015; Pardini et al. 2016).  

Tissue segmentation for neuroimage analysis has classically been performed 

using probabilistic atlases to propagate and extrapolate information. However 

the observed intensities of an image are often insufficiently informative about 

the underlying tissue composition. This is due to inherent imaging limitations 

including inadequate signal to noise ratio (SNR), contrast to noise ratio (CNR), 

the presence of image artefacts and intensity non-uniformity (INU).  

The addition of a priori spatial localisation information through coordinate 

mapping and propagation of anatomical priors can help to mitigate these 

issues.  Anatomical priors can be generated by manual segmentation of a 

dataset and registration to a groupwise space, however this can obscure the 

morphological differences that represent natural variability and pathology.  

Using several different sources via multi-atlas segmentation can be used to 

approach a good estimation of the actual tissue parcellation, however the 
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composition of the atlases is important, for example propagating information 

from young control data to an older population with Alzheimer’s Disease would 

be problematic as the subjects in the source and target group are so 

morphologically dissimilar.  

Several step-wise propagation algorithms have been devised, which allow for 

a low dimensional representation of the data to be used to propagate 

morphological similarity between datasets via intermediates, leading to 

increased segmentation accuracy (Wolz et al. 2010).  GIF builds on this 

premise and provides a framework that propagates information between 

images using the geodesic path of a spatially-variant graph. The graph 

represents local patches and use of a restricted neighbourhood allows for 

increased accuracy and reduced bias. It is a general framework that can 

propagate different types of information including labels and image intensities. 

The GIF algorithm used to generate these quantitative volumetric reports is 

based on a set of 35 subjects from the OASIS database that were manually 

segmented to produce 140 different labels. These labels contributed to eight 

different tissue classes: cortical grey matter (GM), supratentorial white matter 

(WM), cerebellar GM and WM, corticospinal fluid (CSF), deep GM, and pons.  

4.2.3 Reference dataset 

A reference dataset of subjects with no neurodegenerative disease was 

compiled and processed for contextualisation of individual subject brain 

volumetry.  

It comprised volumetric T1-weighted scans of healthy controls from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI), n=382, age range 56-90 

years, augmented by the addition of younger subjects from the Track-HD study 

cohort, n=79, age range 30-65 years. In total, the normative dataset comprised 

461 subjects, 51.4% female, with a mean age of 70.09 years (SD=12.05). 

Acquisition parameters for each of the study cohorts were as follows. 

ADNI-2 protocol: 
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sagittal plane acquisition using an MP-RAGE/IR-FSPGR pulse sequence on a 

range of 3.0T MRI systems with the following parameters: 8-channel coil, 

TR=400ms, TE=min full, flip-angle=11°, slice thickness=1.2 mm, 

resolution=256 × 256 mm and FOV=26 cm.  

Track-HD protocol:  

T1-weighted image volumes were acquired using a 3D MPRAGE acquisition 

sequence on 3.0T Siemens or a Phillips MRI system with the following imaging 

parameters: TR=2200ms (Siemens)/ 7.7ms (Philips), TE=2.2ms (S)/3.5ms (P), 

FOV=28cm (S)/ 24cm (P), matrix size 256x256(S)/224x224(P), 208(S)/164(P) 

sagittal slices to cover the entire brain with a slice thickness of 1.0 mm with no 

gap. 

4.2.4 Quantitative report design 

The quantitative report brings together the different elements of the processing 

pipeline and displays an individual subject’s quantitative results in the context 

of the normative reference dataset (Figure 4-1). The report displays the 

subject’s demographic information at the top, including identification number, 

age, date of scan and scanner type. Below this it displays snapshots of the 

hippocampal segmentations that have been performed using GIF, overlayed 

in red over the subject’s T1-weighted MRI scan, so that the report user can 

perform their own brief visual assessment of the segmentation output. The 

snapshots are accompanied by the numerical percentile values for left and 

right hippocampus which are calculated in reference to the normative 

population.  

Alongside this is a graph displaying the brain parenchymal fraction (BPF) for 

the individual subject, plotted on a graph displaying BPF by age for the 

reference population. The individual patient’s BPF is displayed as a large red 

dot and each subject in the reference population is represented by a small 

black dot. The mean and standard deviation lines for the reference population 

are displayed on the graph and a traffic-light system of colours is used to show 

the areas of the graph that are within the healthy range (green), within one 
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standard deviation from the healthy range (yellow) and more than two standard 

deviations away from healthy (red).  

 

Figure 4-1. Quantitative report for a patient with AD. 

 

v v v v v 
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Completing the report is a detailed representation of the volume percentiles of 

specific brain regions. This information is communicated in the form of a 

‘bullseye’ plot, which is a means to display complex 3D data in a visually 

simplified format, as has been done elsewhere to represent lesion volume 

information (Sudre et al. 2018). These are expressed as percentile estimates 

against a Gaussian distribution approximation of the specific regional volume 

derived from the healthy reference population, controlling for age, gender and 

total intracranial volume (TIV). Percentiles were calculated based on the use 

of a variant of a generalised logistic function to predict the values from the 

healthy reference database as a continuous variable. This allowed the 

computation of the cumulative distribution function of an individual’s measured 

volumes in reference to the reference population. The inner ring of the bullseye 

represents volume percentiles at the lobar level and the outer ring expands on 

specific sub-regional areas within each of the lobes that are important to 

consider when assessing an MRI scan for the presence of atrophy.  
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4.3 Credibility study 

4.3.1 Aims of the credibility study 

The credibility study aims to assess the credibility of the described automated 

quantification pipeline and report as an aid to MRI interpretation in patients 

with dementia. This will be done by assessing the accuracy of whole brain and 

regional segmentations, evaluating the credibility of the information displayed 

in the quantitative report, and evaluating whether the report is reflective of the 

clinical impression made independently by expert radiologists.  

4.3.2 Methods 

We selected 10 subjects with a radiological diagnosis of either Alzheimer’s 

Disease (AD) or frontotemporal dementia (FTD), and 10 healthy controls. T1-

weighted MRI data was collected between 2014 and 2016 at the National 

Hospital for Neurology and Neurosurgery, Queen Square, London. 

Demographic information and pathology reports of CSF analysis for tau and 

amyloid beta were also collected.  

Data was post-processed with the previously described segmentation software 

tool GIF (Cardoso et al. 2015). As described, GIF was used to calculate whole 

brain and regional volumes for each subject using a multi-atlas segmentation 

approach. Individual subject values were expressed as percentile estimates 

against a Gaussian distribution of previously obtained normative grey matter 

volumes of healthy control subjects. The normative data was derived from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the Track-HD cohort. 

Data was then presented in a report format, with graphs for whole brain GM 

volume plotted against normative volumes, and a ‘bullseye’ representation of 

GM volume percentiles by brain lobe and pertinent sub-regions. 

An expert neuroradiologist with special interest in dementia assessed the T1-

weighted images for each subject and made their clinical impression. The 

expert also evaluated the accuracy of the brain segmentations by viewing them 

as overlays on the T1 images using an image viewing platform niftiMIDAS 

(Clarkson et al. 2015). Finally, the expert appraised the QNI report for whether 

it was reflective of their clinical impressions, by rating whole brain and regional 
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GM volumes as credible or doubtful. The reports were also assessed for any 

technical or presentation issues. 

4.3.3 Results 

4.3.3.1 GM whole brain and regional volumes 

The expert neuroradiologist assessed T1 studies from 20 subjects. Nineteen 

of the 20 were rated as credible for whole brain volume. Only 12 of the 20 

subjects’ regional GM volumes were rated as credible. It was noted that the 

range of normative data was heavily weighted to subjects over the age of 65, 

and this was thought to be causing the doubtful GM regional volumes for 

subjects who were in the younger age ranges. To rectify this, 100 additional 

control subjects below the age of 65 were added to the normative database, 

taken from the track-HD cohort, and the same 20 subjects’ QNI reports were 

re-generated.  

Following this, the same rating process was carried out using the new QNI 

reports. All 20 brain parenchymal fraction measurements appeared credible. 

Regional volume percentiles appeared fully credible for 14 of the twenty. Six 

cases had minor areas of discrepancy, including five which somewhat 

overestimated the amount of atrophy seen visually in certain regions and one 

which somewhat underestimated visual hippocampal atrophy.  

All the cases where regional volumes appeared doubtful were reviewed with 

their regional normative data fits. The statistical ‘best fit’ for the normative data 

was trialled and a polynomial fit was superior (Figure 4-2). These cases were 

then assessed to be credible. 
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4.3.3.2 Technical or presentation issues 

Reports were technically accurate in most cases. In one instance the whole 

brain GM volume for a subject was lower than our parameters allowed for and 

so was not visible on the graph. This issue was rectified when we added more 

cases to our normative database and the data was refitted.  

4.3.4 Outcomes 

Having carried out this credibility study, the quantitative pipeline was applied 

to a larger set of test cases to conduct a clinical validation study with a wider 

group of raters, which assessed the potential benefits to clinical accuracy and 

reporting confidence that may be seen with the use of a quantitative report. 

Figure 4-2. Brain Parenchymal Fraction (BPF) plots. Left – Original BPF graph displaying linear 

model fit with data in age range 50 – 90. Right – updated BPF graph displaying a polynomial fit 

with the addition of data in age range 30 – 90.  
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4.4 Clinical accuracy validation study 

4.4.1 Aims and hypothesis 

This accuracy study was performed to assess the effect of the quantitative 

brain volume report on clinical accuracy of interpretation, across two diagnostic 

steps and three neuroradiological levels of experience. It was hypothesised 

that the use of the quantitative report would decrease interrater variability 

whilst increasing assessment specificity, sensitivity, accuracy, and confidence 

(a) for determining the presence of volume loss and (b) for determining the 

differential diagnosis of AD or FTD; and that the report’s effect would be 

identifiable across the three levels of rater experience. 

4.4.2 Methods 

All subjects in the test dataset gave their informed consent for all parts of the 

study under research ethical approval by the UCL Queen Square Institute of 

Neurology ethics committee.  

4.4.2.1 Test dataset 

A test set of MRI scans was established from 45 subjects scanned at the 

NHNN, using three different 3-T MRI systems:  

1. 41 scans on Trio MRI scanner, (TR=2,200 ms, TI=900 ms, TE=2.9 ms, 

acquisition matrix=256×256, FOV=26 cm, spatial resolution=1.1 mm), 

2. 3 scans on Skyra MRI scanner (TR=2,200 ms, TI=900 ms, TE=2.9 ms, 

acquisition matrix=256×256, FOV=26 cm, spatial resolution=1.1 mm), 

and  

3. 1 scan on Prisma MRI scanner (TR=2000 ms, TI=850 ms, TE=2.93 ms, 

acquisition matrix=256×256, FOV=26 cm, spatial resolution=1.1 mm). 

Sixteen subjects had been diagnosed AD, with CSF levels of beta-amyloid 1-

42 <550 pg/mL and tau:amyloid ratio >1, and fourteen with FTD, based on 

clinical evaluation and CSF markers. Fifteen subjects who had been referred 

to the specialist memory clinic with subjective memory concerns but who were 

deemed to fall within normal ranges upon neurological, cerebrospinal fluid 
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(CSF) and imaging assessment were used as a non-neurodegenerative 

sample. 

4.4.2.2 Assessment exercise 

The study involved three groups of raters each containing three people: 

consultant neuroradiologists; radiology trainees with an interest in 

neuroradiology; and non-clinical image analysts who had experience with 

dementia MRI, either as specialist radiographers or non-clinical dementia 

research fellows. Raters were invited from a range of centres both in the UK 

and across Europe, to ensure a broad representation of previous training and 

experience. The rating exercise was hosted on a website platform to allow for 

remote participation, and it was designed to replicate the standard working 

environment that a radiologist would expect when assessing scans. Raters 

were blinded to all clinical and demographic information relating to the study 

subjects apart from age and gender which was displayed alongside each case. 

The 45 subject scans were presented to the raters twice, in a randomly 

generated order that was unique to each rater, once with and once without the 

quantitative report available alongside the images. Therefore, the assessment 

consisted of ninety rating episodes in total. At each rating episode, the rater 

was asked to assess whether the scan was normal or abnormal, in terms of 

appearance of brain volume for age, and to give their confidence level for that 

assessment on a scale of 1 (very uncertain) to 5 (very confident). If the rater 

had assessed the scan as abnormal, they were then asked whether they 

assessed the abnormality as AD or FTD, and again asked for their confidence 

in this assessment on the 1-5 scale. Ratings were completed over a two month 

period, collected via the website platform and subsequently analysed.  

4.4.2.3 Instructions to raters 

These instructions were supplied to raters as an introduction page on the 

assessment website: 

We have developed a tool to assist MRI interpretation for patients with 

suspected dementia. It is an automated grey matter (GM) segmentation 

technique which calculates whole brain and regional GM volumes from a 
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subject's MRI scan, and presents a QNI report in the context of a normative 

range of control subjects. 

We are keen to test how helpful it is for radiologists and other imaging staff to 

have this quantitative information. In this exercise, you will see a mixture of 

MRI scans from individuals with Alzheimer's dementia (AD), frontotemporal 

dementia (FTD), and those who are cognitively normal. We have chosen to 

focus on AD and FTD at present due to their distinctive patterns of atrophy. 

You will see each scan in three planes and you will be able to scroll through 

the images as you would normally. You will see the same scans twice, once 

with and once without a QNI report, in a randomly mixed order. Please use the 

QNI report where it is available to assist you in making your judgement, 

otherwise please rely on your visual interpretation as you would normally. 

An example QNI report appears on the right. The graph at the top indicates 

the subject's whole-brain volume. The 'bullseye' plot below shows the 

percentile of the GM volume in each lobe and important sub-regions, either 

higher (green) or lower (red) percentile. 

For each scan, we will ask you to give your assessment: 

1.  Your overall impression – normal or abnormal 

2.  If you think the scan is abnormal, specify your diagnosis – AD or FTD 

3. How confident you feel in your diagnosis on a scale 1-5, 1=not at all 

confident, 5=very confident. 

Once you have finished looking at a scan, click NEXT and your assessment 

will be saved. To stop and come back to the exercise at any time, click 

on MENU in the top right hand corner of the screen. The next time you log in, 

the website will take you to the next scan to be reported. You can zoom in and 

out on the report using your mouse wheel. 

Thank you again for your participation, we look forward to sharing the results 

with you! 
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4.4.2.4 Statistical analysis 

We explored the effects of availability of the quantitative report to raters on 

their accurate assessment of the presence of pathological atrophy (normal 

versus abnormal) and then the ability to differentiate between AD and FTD. 

Signal-detection indices were used to assess the following ratings:  

(a) True positive for AD/FTD (correctly assessed as abnormal),  

(b) True negative’ for healthy controls (correctly assessed as normal) 

(c) False positive’ for healthy controls (incorrectly assessed as abnormal), 

and 

(d)  False negative for patients (incorrectly assessed as normal).  

Using these metrics, diagnostic sensitivity, specificity, and accuracy were 

calculated and expressed as percentages: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 𝑥 100 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 𝑥 100 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 𝑥 100 

 

Counts of correctly and incorrectly assessed scans with and without the 

quantitative report available were then analysed using the McNemar test. 

Mean diagnostic accuracy, specificity, and sensitivity across the two conditions 

(report present versus absent) were assessed with paired t-tests.  

Cohen’s kappa was calculated to assess agreement between raters’ 

evaluations and the gold standard, while accounting for chance agreement. To 

further assess the effect of quantitative report availability on consistency and 

reliability among raters, Cronbach’s alpha and intraclass correlation 

coefficients were also calculated.  
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Confidence ratings with the report versus without were calculated as a grand 

mean per rater and for each true disease type (normal, AD, FTD) and were 

assessed using paired t-tests.  

In an exploratory analysis of ratings, the effect of the presence of the 

quantitative report on correct assessment and rater confidence was explored 

in terms of whether the rated scan was in fact normal or abnormal as well as 

how experienced the rater was. This was done using a four-way mixed ANOVA 

(report available × normality × correctness × experience level), to assess the 

interaction between these factors. All statistical analyses were performed with 

SPSS version 24. 

4.4.3 Results 

4.4.3.1 Test dataset characteristics 

Subject groups were age matched (years, mean (SD); gender male:female): 

non-ND group 60 (8.7), 4:11; AD group 61.7 (6.6), 9:7; and FTD group 59.9 

(7.3), 11:3. CSF confirmed that AD subjects had reduced Aβ 1-42 and raised 

mean Tau levels. Mean MMSE was significantly lower for AD (p<0.001) and 

FTD (p=0.03) when compared with the non-neurodegenerative (non-ND) 

group. Mean disease duration (time from first reported symptom to MRI) was 

(years mean, (SD)) 2.7 (1.6) for the AD group and 3.5 (2.4) for the FTD group. 

Test dataset characteristics are shown in Table 4-1. 

Table 4-1. Test subject dataset characteristics. 

 Non-ND 

(n=15) 

AD  

(n=16) 

FTD  

(n=14) 

Total  

(n=45) 

Age in y, mean (SD) 60 (8.7) 61.7 (6.6) 59.9 (7.3) 60.6 (7.4) 

Gender male:female 4:11 9:7 11:3 24:21 

Mean Aβ 1-42 (pg/ml) 878.8 393.3 747.7 - 

Mean Tau (pg/ml) 373.8 855.2 302.6 - 

MMSE, mean (SD) 26.9 (4) 20.5 (6.4) 22 (9.1) - 

Disease duration in y, mean 

(SD) 

- 2.7 (1.6) 3.5 (2.4) - 
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4.4.3.2 Assessment accuracy 

4.4.3.2.1 Assessment of cases as normal or abnormal 

Availability of the quantitative report significantly improved assessment 

sensitivity (p=0.015) but did not significantly change assessment specificity or 

accuracy. A beneficial moderate effect size was seen for assessment accuracy 

(d=0.53). Accuracy calculated by rater group showed a significant increased 

assessment accuracy with the quantitative report for the consultant 

neuroradiologist group, from 71% to 80% accuracy, p=0.02 (Table 4-2).   

Table 4-2. Sensitivity, specificity and accuracy for normal vs abnormal rating across all 
experience levels, both with and without the quantitative report. * denotes statistical 
significance at <0.05. 

Metric Experience Level 
Without report 

Mean (SD) 

With report 

Mean (SD) 
p-value 

d effect 

size 

Sensitivity 

Consultant 68.9% (5) 80% (10) 0.13 1.4 

Registrar 75.5% (8.4) 81.1% (1.9) 0.3 0.8 

Image analyst 70% (25.1) 85.5% (10.1) 0.23 0.9 

All groups combined 71.5% (13.8) 82.2% (7.6) 0.015* 1.03 

Specificity 

Consultant 75.6% (3.8) 80% (13.3) 0.52 0.43 

Registrar 82.2% (10.1) 68.8% (25.2) 0.37 -0.6 

Image analyst 77.7% (3.8) 68.9% (13.8) 0.45 -0.52 

All groups combined 78.5% (6.4) 72.3% (16.8) 0.3 -0.37 

Accuracy 

Consultant 71.1% (2.2) 80% (2.2) 0.02* 4 

Registrar 77.7% (3.8) 77% (9.2) 0.87 -0.1 

Image analyst 72.6% (17.9) 80% (2.2) 0.5 0.46 

All groups combined 73.8% (9.5) 79% (5.1) 0.15 0.53 

 

4.4.3.2.2 Assessment of cases as AD or FTD 

Availability of the quantitative report significantly improved sensitivity for 

detecting AD cases across all raters (p=0.002) (Table 4-3). No significant 

improvements were seen for FTD detection (Table 4-4).  



 

105 
 

In absolute terms, correct assessments of AD and FTD cases increased with 

the quantitative report by 6.9% and 5.6% respectively, however these 

increases were not statistically significant.  

Table 4-3. Sensitivity, specificity and accuracy for AD vs normal rating across all experience 
levels, and percentage of correct assessments for AD, both with and without the quantitative 
report. * denotes statistical significance at <0.05. 

Metric Experience Level 
Without report 

Mean (SD) 

With report 

Mean (SD) 
p-value 

d effect 

size 

Sensitivity 

Consultant 61.3% (12.9) 75.8% (17) 0.05 0.96 

Registrar 79.3% (12.7) 83.9% (4.7) 0.42 0.48 

Image analyst 61.7% (45.1) 71.1% (44.4) 0.01* 0.22 

All groups 

combined 
67.4% (25.8) 76.9% (24.5) 0.002* 0.37 

Specificity 

Consultant 79.6% (8) 82% (14.6) 0.73 0.2 

Registrar 83.1% (7.5) 78.1% (7.8) 0.46 -0.65 

Image analyst 86.6% (4.2) 77.9% (12.9) 0.31 -0.9 

All groups 

combined 
83.1% (6.6) 79.3% (10.7) 0.3 0.42 

Accuracy 

Consultant 70.7% (3.2) 79.2% (10.9) 0.07 1.05 

Registrar 80.3% (2.3) 78.9% (7.4) 0.76 -0.25 

Image analyst 75.8% (16.8) 77.9% (4.2) 0.84 0.17 

All groups 

combined 
75.5% (9.6) 78.7% (4.3) 0.38 0.43 

Correct % AD diagnoses 58.1% (3.4) 65% (4.1) 0.128 0.56 

 

Table 4-4. Sensitivity, specificity and accuracy for FTD vs normal rating across all experience 
levels, and percentage of correct assessments for FTD, both with and without the quantitative 
report. * denotes statistical significance at <0.05. 

Metric Experience Level 
Without report 

Mean (SD) 

With report 

Mean (SD) 
p-value 

d effect 

size 

Sensitivity 

Consultant 57.3% (4.1) 57.2% (6.2) 0.93 -0.01 

Registrar 36.5% (7.8) 35.2% (23.8) 0.94 -0.07 

Image analyst 46.9% (24.9) 58.3% (20.2) 0.1 0.5 

All groups 

combined 
46.9% (16) 50.3% (19.5) 0.52 0.19 

 Consultant 89.2% (9.4) 95% (6.5) 0.19 0.71 
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Specificity Registrar 91.1% (9.7) 77.7% (32.7) 0.42 -0.55 

Image analyst 75.5% (28.9) 85.5% (14.5) 0.46 0.43 

All groups 

combined 
85.2% (17.6) 86.1% (19.7) 0.89 0.04 

Accuracy 

Consultant 73.6% (4.9) 75.9% (3.6) 0.09 0.53 

Registrar 70.5% (11) 65.2% (22.8) 0.52 0.29 

Image analyst 69.1% (15.9) 72.6% (14.3) 0.41 0.23 

All groups 

combined 
71.1% (10.2) 71.2% (14.4) 0.95 0.01 

Correct % FTD diagnoses 38.6% (2.2) 44.2% (2.7) 0.367 0.31 

 

4.4.3.3 Assessment confidence 

When rating cases as normal versus abnormal, a four-way mixed ANOVA 

(report available × normality × correctness × experience level) showed 

availability of the report conferred a significant increase in confidence when 

incorrectly rating abnormal scans (p=0.02, F(1,8)=7.918), with a small effect 

size (η2p= 0.497). This effect did not vary across rater groups.  

Raters were also significantly more confident with the report available than 

without, regardless of correctness (p=0.03, F(1,8)=6.64, η2p=0.453). They 

were significantly more confident when correctly assessing a scan, regardless 

of report availability (p=<0.01, F(1,8)=112.43, η2p=0.934) and also when they 

were rating abnormal versus normal scans, also regardless of report 

availability (p=<0.01, F(1,8)=21.68, η2p=0.73). 

4.4.3.4 Agreement between raters and the gold standard 

For assessment of scans as normal versus abnormal, and for differentiating 

between AD and FTD, there was a significant increased agreement (Cohen’s 

Kappa) for raters in the consultant group with the gold standard (p=0.038 and 

p=0.04 respectively), Table 4-5 and Table 4-6.  
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Table 4-5. Kappa scores for normal/abnormal assessments across all experience levels, both 
with and without the quantitative report. * denotes statistical significance at <0.05.  

Experience 

Level 
Rater# No Report With report Net change p-value 

Consultant 

 
  

A1 0.400 0.586 0.186 

0.038* A2 0.469 0.571 0.102 

A3 0.381 0.492 0.111 

Registrar 

B1 0.455 0.211 -0.244 

0.68 B2 0.522 0.571 0.05 

B3 0.613 0.667 0.054 

Image analyst 

C1 0.169 0.531 0.362 

0.66 C2 0.746 0.556 -0.19 

C3 0.492 0.557 0.065 

Overall Mean 

(SD)  

 0.48  

(0.17) 

0.52 

(0.13) 
0.04 0.34 

 

Table 4-6. Kappa scores for agreement between rated diagnosis and clinically/CSF-confirmed 
AD and FTD diagnoses across all experience levels, both with and without the quantitative 
report. * denotes statistical significance at <0.05. 

Experience 

Level 
Rater# No Report With report Net change p-value 

Consultant 

A1 0.432 0.531 0.099 

0.04* A2 0.45 0.498 0.048 

A3 0.335 0.434 0.099 

Registrar 

B1 0.381 0.22 -0.161 

0.56 B2 0.326 0.428 0.102 

B3 0.494 0.391 -0.103 

Image analyst 

C1 0.02 0.176 0.156 

0.28 C2 0.529 0.496 -0.033 

C3 0.396 0.529 0.133 

Overall Mean 

(SD)  
 

0.37  

(0.15) 

0.41  

(0.13) 
0.037 0.39 
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4.4.3.5 Agreement and reliability across raters 

When assessing scans as normal versus abnormal, Cronbach’s alpha for 

agreement across all raters showed improvement in overall rating reliability 

from 0.886 to 0.925 with the quantitative report available, which can be 

interpreted as an improvement from ‘good’ to ‘excellent’ agreement. The 

intraclass correlation co-efficient, assessed using mixed two-way ANOVA 

across raters, increased from 0.454 to 0.563 for single measures and from 

0.882 to 0.921 for average measures with the quantitative report available.  

4.4.4 Discussion 

This clinical accuracy study was designed to assess the impact of an 

automated quantitative volumetric report on user assessment and confidence. 

An established segmentation algorithm, GIF, was used to develop a 

quantification pipeline which produces a summary report that brings together 

patient demographic information, hippocampal segmentation, brain 

parenchymal fraction, and global- and region-specific brain volumetry 

contextualised against a normative population. 

This study assessed the effects of this novel quantitative volumetric report on 

assessment sensitivity, specificity, accuracy and confidence across three 

groups of raters with different levels of previous image interpretation 

experience. Availability of the quantitative report while interpreting MRI scans 

increased the sensitivity of detecting volume loss across all raters and 

improved both the accuracy and agreement with the gold standard in the 

consultant group of raters. The report also improved sensitivity for detecting 

AD for the image analyst group and for all raters combined, an effect that was 

not seen for FTD discrimination. 

Variability in accuracy, sensitivity, and kappa scores for detecting volume loss 

all reduced with the report. In absolute terms, classification accuracy increased 

overall by over 5%. Given the documented increases in dementia prevalence 

in recent years and its future projections (Ahmadi-Abhari et al. 2017), this 

figure could be of clinical importance if confirmed in a larger study population. 
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Significant improvements seen in the assessments made by the 

neuroradiologist group of raters suggests that experienced image readers are 

well placed to assimilate and make use of the information provided in the 

quantitative report. Conversely, it is possible that less experienced 

neuroradiologists and non-clinical image analysts were over-reliant on the 

report for determining abnormality, as suggested by an overall decrease in 

specificity, although this was not statistically significant. 

When assessing an MRI study for the presence of a neurodegenerative 

disease, neuroradiologists make an assessment of possible disease features 

to determine the presence of abnormality. In this study we have suggested that 

reporters may first assess for the presence of abnormal volume loss. They 

may then concentrate on its distribution and interpret the specific pattern of 

pathological atrophy to be indicative of a certain disease type, such as AD or 

FTD. The results from this study may be interpreted in this two-stage analysis 

context, which in real-world settings are not independent from each other and 

are performed as a single analysis. Providing the quantitative report increased 

the sensitivity of the first stage (i.e., the assessment of volume loss across all 

raters) and improved the accuracy and agreement among the consultant 

group. For differentiating the pattern of atrophy present, the report improved 

sensitivity for AD in the image analysts and for all raters combined but not for 

FTD. The provision of a quantitative report that provides objective measures 

to reproducibly assess volume loss and leading to increased rater agreement 

could be clinically useful in terms of screening, diagnosis and training across 

a clinical dementia service. 

The limited effects on the differential diagnosis on FTD may be explained by 

the low mean age of patients and relatively short disease durations in the study 

population. Cases were possibly more subtle or early in the disease course, 

before specific patterns of atrophy were prominent, which may interact with 

raters being relatively less familiar with MRI appearances of FTD than those 

of AD. However, it is also important to identify atrophy in younger patients while 

it is still subtle, and it is in these cases especially where a quantitative report 

may help to reduce subjective visual disagreement. 
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Interestingly, rater confidence in detecting volume loss and differentiating AD 

and FTD was not significantly affected by availability of the quantitative report. 

Significantly increased confidence was unexpectedly shown when incorrectly 

diagnosing volume loss (i.e., the report introduced false confidence) 

independent of experience level. One potential explanation is that raters based 

their incorrect diagnosis on visual inspection alone and used the report to 

reinforce their diagnosis.  

More work needs to be done to understand and mitigate such findings. 

Rigorous validation is needed before clinical adoption. The importance of 

appropriate training to avoid over-reliance on diagnostic aids, as well as the 

careful planning and monitoring of how tools such as this quantitative report 

are used when implemented in clinical practice, are key to successful 

translational development. Rather than being viewed as a new gold standard 

containing all the answers, quantitative reports should be framed as support 

tools which cannot replace neuroradiological experience, and users should be 

wary of over-reliance.  

As discussed in Chapter 1, several proprietary quantitative tools exist for the 

assessment of dementia, for example Neuroquant (cortechs.ai 2021) and 

icobrain-dm (icometrix 2021). Technical validation of their segmentation 

algorithms has been performed in comparison to other segmentation 

procedures, with promising results (Brewer 2009; Struyfs et al. 2020). 

However, systematic assessments of their impact on clinical image 

interpretation by neuroradiologists have not been published, despite both tools 

being FDA and CE approved.  

There is a noticeable lack of clinical validation studies in the literature for 

volumetric neuroradiological tools. Those that have been conducted have 

typically used only two raters, and do not always assess performance of visual 

inspection combined with quantitative report use. A recent study showed use 

of non-proprietary quantitative reports improved the identification of patients 

versus healthy controls for one of two raters, while both raters improved in the 

differential diagnosis in a group of patients with AD and FTD dementia 

(Hedderich et al. 2020). In another study it was shown that combining 
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quantification of lobar and hippocampal volumes with visual inspection 

improved the diagnostic accuracy of two experienced neuroradiologists, but 

that providing raters with the quantification results alone reduced their 

interpretation accuracy (Vernooij et al. 2018). This finding reinforces that 

quantitative reports should be used as adjuncts that complement visual 

assessment, and that clinical validation of these tools should aim to reflect the 

clinical environment as closely as possible. 

4.4.4.1 Limitations 

This study was somewhat limited in statistical power, potentially due to the 

subject sample size or the number of raters used. The sample size of 45 

subjects was in line with other similar studies using between 36 and 52 

subjects (Heckemann et al. 2008; Hedderich et al. 2018; Vernooij et al. 2018). 

The use of nine raters within three experience levels enabled the assessment 

of the effect of prior reporting experience when introducing quantitative reports. 

Similar work has used only 2 raters (Heckemann et al. 2008; Vernooij et al. 

2018) or a maximum of 3 raters (Hedderich et al. 2018).  

The performance of the non-clinical image analyst group was unexpectedly 

heterogeneous, likely due to disparity in previous experience level. The 

variability in the results within the image analysts and registrar groups could 

also reflect an over-reliance on the report by less experienced reporters. This 

study therefore underlines the importance of considering sample sizes and 

rater groups when validating such quantitative diagnostic aids. Power 

calculations show that future work will need to involve a larger number of raters 

to better assess the effects of the report on assessment performance, and the 

moderators of this.  

Control subjects were recruited from a clinical population who all presented 

with subjective neurological complaints. It is possible that this group contained 

subjects with subtle undetected pathologies, which may have affected rater 

performance. This was, however, a conscious choice to reflect the clinical 

scenario that reporters would face in memory clinic services. Finally, the 

incidence ratio (controls:AD:FTD), forced-choice nature, and lack of 

background clinical data in this study do not adequately reflect routine 
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neuroradiological assessment. In particular it may have been useful to remove 

the forced-choice nature of the assessment by providing a third diagnostic 

category of ‘abnormal, non-AD non-FTD’. 

4.4.4.2 Conclusions 

This clinical accuracy study demonstrates that quantitative volumetric reports 

providing single-subject results referenced to normative data can improve the 

sensitivity, accuracy, and inter-observer agreement for detecting pathological 

volume loss and AD. The largest beneficial effect of the quantitative report was 

seen in the consultant group, suggesting that this group was best placed to 

assimilate and make use of the information provided by the reports. The 

differing effects between three rater experience levels highlight the need for 

future work to clarify the potential benefits and limitations of these reports, and 

the importance of rigorous validation before clinical adoption. Statistical power 

was low, but the effect sizes seen across accuracy and sensitivity were 

moderate-to-large in favour of a beneficial report effect. Importantly, reduced 

variability in sensitivity, accuracy, and rater agreement scores was also noted. 

This study can inform power calculations and study design for future research 

in this field. 
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4.5 Lessons and future work 

4.5.1 Report changes 

Due to the mixed results of the clinical accuracy study, some changes were 

made to the quantitative report presentation. The changes were focused on 

simplifying the regional volume ‘bullseye’ plot, so that it featured fewer 

numbers and used a wider spectrum of colours, to highlight a wider range of 

volumetric information. The new report also features a scale underneath the 

bullseye plot so that users can reference the colour system against the 

numerical scale. The updated report is shown in Figure 4-3. 

Figure 4-3. Updated quantitative volumetric report. 
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4.5.2 User experience insights 

Changes made to the quantitative report were devised based on the outcomes 

of the clinical accuracy study, with a view to increasing usability and 

interpretability of the quantitative information it contains. To directly test how 

the report is used and interpreted, I conducted a focused user insight 

assessment. This was done using cases from the clinical accuracy study which 

were re-processed to generate an updated report. The exercise involved two 

radiologists, users 1 and 2, one of whom was a neuroradiology consultant and 

the other who was a specialist trainee completing higher training in 

neuroradiology. They had not seen the quantitative reports before and 

received no instructions on how to interpret them. I set up a user workstation 

with the randomly selected cases and loaded the new quantitative report next 

to each study. I instructed the users to assess the cases in the way they would 

usually but to incorporate the quantitative report into their workflow. They were 

asked to talk through their thinking for each step of the assessment. These 

‘think-aloud’ exercises were followed by some direct questions which targeted 

specific areas of the report. The full transcripts of these sessions can be found 

in section 4.7. 

4.5.3 User experience outcomes 

Performing these user experience interviews provided useful insights into how 

the quantitative reports are interpreted by target users who have not been 

exposed to them or received training in their use. A very quick learning effect 

was observed for both raters, with many elements of the report having been 

figured out independently within the first or second case.  

It was very clear that the raters were far more reliant on the graphical elements 

and colour scales used in the report than the numerical values and scales 

provided. For example, the users were not clear on the concept of a logarithmic 

scale and did not find it easy to assimilate this concept with the corresponding 

colour scale, however this did not stop them from constructing an accurate 

interpretation of the colour scale itself. Similarly for the BPF graph, the raters 

were reliant on the colour bands and the mathematical concepts were 

secondary, but this did not lead them to draw incorrect conclusions. When they 
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revisited the axis labels of the BPF graph and log scales, they were able to 

consolidate the mathematical concepts somewhat. This speaks to the user 

wanting to ‘dive in’ to using the report in the most accessible way, through use 

of colours and shapes, highlighting that some structured training to underpin 

the quantitative concepts that lie behind these presentation techniques would 

be beneficial before a reporting tool is introduced into a clinical setting.  

It was interesting to observe how the users integrated the report findings into 

their routine assessment. They were not strict in whether they looked at the 

images or the report first, but they usually made a clear distinction between 

their visual assessment and the information contained in the report, and were 

often explicitly articulating whether the quantitative information supported or 

undermined their visual assessment. There were no cases in which their 

assessment changed due to the quantitative report, rather it consolidated their 

visual interpretation. As these were two raters with substantial neuroradiology 

experience they did not display over-reliance on the report that may be 

encountered with less experienced raters.  
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4.6 Plans for a future clinical accuracy study 

4.6.1 Reflecting on the completed clinical accuracy study 

The clinical validation study that was detailed in section 4.4 of this chapter 

involved nine raters – three each of neuroradiology consultants, trainees, and 

non-clinical image analysts – who used a website platform to assess the T1-

weighted brain MRI scans of 45 subjects who were evenly split between AD, 

FTD and subjective memory complaints. The nine raters assessed the scans 

with and without a quantitative volumetric report available, in a randomly 

generated order.   

The main outcomes of the study were: 

• The quantitative report improved sensitivity for detecting 

neurodegeneration across all raters combined (p=0.015). 

• Consultant neuroradiologists’ assessment accuracy (p=0.02) and 

agreement with the gold standard (kappa scores, p=0.038) significantly 

improved with the use of quantitative reports. 

• Inter-rater agreement improved from ‘good’ to ‘excellent’. 

 

However, several issues were encountered and there were some unexpected 

outcomes, which are important to reflect on and address for a potential further 

clinical accuracy study. Statistical power was limited by the number of raters 

who participated, with most results reaching trend-level significance despite 

moderate to large effect sizes. Disparity was recorded in the performance of 

raters within the non-clinical image analyst group, and small rater numbers per 

rater group meant that it was difficult to show a clear benefit for most outcomes.  

It is possible that there was an element of selection bias affecting the subject 

cohort. Group numbers between AD, FTD and subjective memory complaints 

were roughly equal. Raters were not primed to expect an even split, and since 

this does not reflect true prevalence, may have been a source of confusion for 

some raters. Additionally, there was increased confidence in incorrect 

diagnoses when raters had the quantitative report available, which may 
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suggest an over-reliance on the report and/or misinterpretation of its contents 

by some raters. 

Actions undertaken following the clinical accuracy study included making 

aesthetic changes to the quantitative report, to include a clearer colour coding 

system and streamlined use of numbered scales, and undertaking one-to-one 

simulations and interviews with radiologists while using the updated reports, 

as has been described earlier in this section.  

4.6.2 Planning a future clinical validation study 

4.6.2.1 Aims and design of a future clinical validation study  

A future clinical validation study would aim to build upon the results found in 

the pilot study, by performing a larger study involving more raters to reach 

higher statistical power. It would allow for the updated report format to be 

tested. 

In designing this future study, several design points are important. The setting 

should reflect the radiologist’s normal reporting environment as closely as 

possible, with the automated report displayed alongside the imaging series. 

Assessment of radiologists’ accuracy, confidence, and reporting efficiency 

may all be measured.  Cases should be presented in a randomised order, 

twice, with and without the quantitative report being available. The case mix 

should include a varying degree of structural pathology, from clearly 

pathological to more subtle changes, as well as normal control subjects. 

Including a range of severity in the case mix is valuable in discerning whether 

the added quantitative information is most impactful where the pathology is 

subtle or unclear. The case mix should also aim to reflect the normal incidence 

of cases and the commonest patterns of atrophy that are routinely encountered 

in standard radiology practice in a memory clinic setting. The pathology of each 

case should be established to the best available gold standard, depending on 

the condition in question (for example, CSF analysis and neuropsychiatric 

profile in the case of AD and FTD) (Table 4-7).  
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Table 4-7. Case selection criteria. The criteria in bold are essential requirements for a case to 
be selected. bv=behavioural variant; PPA=primary progressive aphasia; DLB=dementia with 
Lewy bodies; PSP=progressive supranuclear palsy.  

Designation 
No. 

cases 
Clinical criteria 

Laboratory 

marker 
Radiology marker 

Subjective 

memory 

complaints 

15 

MMSE ≥ 26 

Clinical assessment has 

excluded dementia 

Normal cognition confirmed 

at follow-up 

Normal CSF 

MRI: atrophy 

commensurate with 

age; no specific 

pattern suggestive 

of pathology 

Amnestic MCI / 

Prodromal AD 
5 

MMSE 21-26 

Change from normal cognition, 

but not meeting dementia 

criteria 

Objective impairment in one or 

more cognitive domains 

Preservation of independence 

in functional abilities 

Went on to have confirmed 

AD at follow-up 

Abnormal 

CSF ratio of 

tau/Aβ 

 

MRI: a good 

spectrum - within 

normal 

limits/MTA/PCA 

AD 10 

MMSE ≤ 24 

Interference with function in 

usual activities of daily 

living 

Cognitive impairment in 

minimum 2 domains 

Abnormal 

CSF ratio of 

tau/Aβ 

 

 

MRI: MTA or PCA 

FTD 6 

Clinically confirmed with 
extended follow-up or 
genetically 
bvFTD: disinhibition, 
apathy/inertia, loss of 
sympathy/empathy, 
compulsive behaviours, 
hyperorality, dysexecutive 
neuropsychologic profile 
PPA: language difficulty most 
prominent feature and causing 
impaired daily living, other dx 
excluded 

Normal CSF 

ratio of 

tau/Aβ 

 

MRI:  

Frontal and/or 

temporal lobe 

atrophy 

DLB 5 

Clinically confirmed: 

Core clinical features: 

fluctuating cognition, visual 

hallucinations, REM sleep 

disorder, at least 1 

parkinsonian feature 

Supportive clinical features: 

sensitivity to antipsychotics, 

postural instability, recurrent 

falls, syncope, autonomic 

dysfunction, hypersomnia, 

hyposmia 

 

MRI: generalised 

cortical atrophy 

(more frontal and 

parietotemporal 

regions); relative 

focal atrophy of 

midbrain, 

hypothalamus. 

Relative 

preservation of 

medial temporal 

lobe structures 
 

Positive 123I-FP-CIT 

SPECT (DaTscan) 
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PSP 4 

Clinically confirmed: 

Early postural instability, falls, 

oculomotor deficits (vertical 

gaze palsy), akinesia, frontal 

lobe impairments (speech & 

language, behaviour), lack of 

response to levodopa 

 

MRI: midbrain 

atrophy 

 

 

It would be useful to include several levels of expertise, ranging from 

experienced sub-specialty radiologists to general radiologists, and radiology 

trainees. This would provide insight into how the quantitative report interacts 

with experience level and whether the report affects inter-rater agreement 

between and within these groups. Rater groups could be defined as consultant 

neuroradiologists who work in specialist centres and have experience leading 

dementia MDT meetings; consultant general radiologists who work in general 

hospital settings but have an interest in brain MRI; and trainees undertaking 

their specialist training in neuroradiology. 

Based on the effect sizes for assessment accuracy from the pilot study, power 

calculations show that 40 raters would provide a 90% chance of observing a 

positive effect. Rater recruitment should be from multiple centres. Aiming to 

recruit raters from a minimum of eight centres would allow for a mix of working 

practices and prior experience to be represented.  

Improved rater instructions are required prior to completing the assessment 

exercise. This could include a video or animation explaining the format of the 

quantitative report in more detail. It may also be useful to include some practice 

cases that raters could perform prior to the real task. An important point to 

highlight to raters in the instructions is that cases have been selected for 

dementia-related volumetric abnormality that is able to be assessed on T1-

weighted imaging, and not for white matter pathology or any other incidental 

comorbidities. 

A potential extension would be to try to analyse quantitative report 

engagement metrics, for example by using a survey that is embedded into the 

rating exercise, thereby gathering real-time feedback, however this would 
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require very careful planning and design, perhaps guided by a user experience 

or human computer interaction expert.  

4.6.2.2 Power calculations 

Based on the results of the clinical validation study carried out, it is possible to 

calculate that the following sample size estimations to help inform future 

studies. To achieve an 80%, 90%, and 95% chance of observing a positive 

effect, 30, 40, and 45 raters would be required to participate in a future study, 

respectively.  

Power assessments using the results of the pilot study have shown that 

increasing the number of raters would be more effective than substantially 

increasing the number of cases that they are asked to rate.  Increasing the 

number of scans to be assessed would afford some increased ability to 

sensitively assess effects of the report within each rater. While this is very 

important, diminishing returns would be observed with each scan added above 

around 50. As it has already been shown that there are relatively large effects 

sizes of the quantitative report, a future study would aim to assess the size and 

consistency of those effects across a larger pool of raters so that more 

confident inferences can be made about the effect of the report at the 

population level.  

4.6.2.3 The case cohort 

This should aim to strike a balance between representing the typical case mix 

a radiologist would expect to encounter during a reporting session, thereby 

providing ecological validity, and ensuring that group numbers are able to 

provide statistically meaningful experimental sensitivity or construct validity. 

For example, if ecological validity alone was considered, then the number of 

FTD cases included should be small. However, the implications of this would 

be that one mis-rated FTD scan would lead to large changes in accuracy for 

FTD assessment. If construct validity is to be favoured, raters should be 

instructed not to take population prevalence base rates into account, at the 

expense of achieving a true representation of the real-world scenario.  
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Ecological validity is deduced from population prevalence. Expert consensus 

suggests that in the UK approximately 62% of dementia is due to Alzheimer's 

disease, 17% to cerebrovascular disease, 10% to mixed aetiologies, 4% to 

dementia with Lewy bodies, 2% to Parkinson's disease dementia, 2% to 

frontotemporal dementia and 3% to other causes (Prince et al. 2014). 

However, that is different to the case mix of those who present to memory 

clinics, which includes people who do not end up with a dementia diagnosis.  

An NHS England audit of London memory services carried out in 2019 

included data from nine memory clinics across London (Cook, Souris, and 

Isaacs 2019). Of 455 individuals that were seen in these clinics 63% received 

a diagnosis of dementia, ranging from 49-81% per service. The subtype 

diagnosis given in those individuals older than 65 years was: AD - 42%, 

vascular dementia - 18%, mixed dementia - 22%, and other dementias - 13% 

(Figure 4-4). 

 

Figure 4-4. Snapshot from Cook et al. 2019, an audit of nine memory clinics in London for the 
years 2016 and 2019. 

An ecologically valid study should more closely mirror the memory clinic 

prevalence figures than the overall population prevalence figures, since this is 

more in line with the case mix that a radiologist would encounter. 

Example figures are suggested below, maintaining ecological validity. Time 

investment by raters needs to be factored in so that task engagement is 

maintained as much as possible. Raters could be expected to spend 

approximately five minutes on each case, and each case is rated twice, which 

allows for some time estimates for completing the assessment exercise.  

1. 40 cases: 16 normal aging, 16 AD, 8 other – 6-7 hours. 
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2. 45 cases: 18 normal aging, 18 AD, 9 other – 7.5 hours. 

3. 60 cases: 24 normal aging, 24 AD, 12 other – 10 hours. 

The quantitative report only represents information about brain atrophy, 

derived from the T1-weighted imaging sequence, and does not provide any 

information about other important aspects of dementia pathology, for example 

white matter hyperintensities or microhaemorrhages. Therefore it is 

debateable whether cases with vascular pathology should be expressly 

included in a clinical accuracy study. 

In clinical practice, radiologists will encounter individuals with a wide spectrum 

of vascular burdens, ranging from irrelevant to being the primary cause of the 

cognitive problem. Since the aim of a clinical validation is to reflect the 

radiologist’s normal reporting environment as closely as possible, and the 

ultimate intention is to apply the quantification to all patients seen by dementia 

clinic consultants, which will include patients with vascular disease, then these 

cases should be represented.   

It may be useful to state in the instructions for raters that there are no purely 

vascular dementia cases included in the case mix, that some cases may have 

a vascular component, but that the quantitative report is only providing 

information for the atrophy element of the scan. However, the relationship 

between white matter lesion loads and grey matter atrophy should be kept in 

mind when selecting appropriate representative cases (Lambert et al. 2015). 

Within each category, it will be important to include a range of severity of 

cases, guided by radiological and clinical assessment. Cases should be 

graded by an expert neuroradiologist for their severity, so that a satisfactory 

mix is established. Typical atrophy patterns should make up the mainstay of 

cases. For example, for the AD group, most cases should have an MTA 

pattern, but some could have a posterior cortical atrophy (PCA) pattern, in line 

with real-world prevalence in the studied age range. 
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4.7 Supplementary material 

In this section the content of the ‘think-aloud’ exercises and direct interview 

questions are transcribed in full.  

4.7.1 User 1 responses 

4.7.1.1 ‘Think-aloud’ cases 

Case 1 

This is a 56 year old female, 3T scanner. It looks like there’s been some 

segmentation of hippocampal volumes and it’s been plotted on – these are 

presumably standard deviations. And this is plotted in relation to that. Looking 

at this top row first, it looks like the volumes are two standard deviations below 

for this red dot. Just trying to correlate what that red dot is because – not quite 

sure what these mean – it says right 7.44 and left 1.54 – presumably this is 

percentile? It seems to have passed all the quality control. And I take it this is 

regional atrophy left vs right hemisphere. Percentile versus healthy volume… 

so I guess this is showing that there’s predominantly frontoparietal volume 

loss.  Inferior frontal gyri bilaterally, left orbitofrontal, and the lateral and medial 

parietal. So, I can see how that all correlates with the imaging findings, shows 

that the left side is more affected that the right visually just having a quick look 

at it, because the left insula looks much more widened and parietal atrophy 

seems more prominent – so I can now correlate what the report shows to what 

I can see structurally. But it’s easier to interpret that whilst looking at the 

imaging, or look at the imaging and then interpret that, than just looking at it 

straight up, having not seen it before.  

Case 2 

So looking at the report first – a 58 year old female – again with hippocampal 

segmentation. Again, I wasn’t entirely clear what the red dot represents – 

whether that’s an overall volume for both combined or one individually, I’m 

presuming it’s both combined, because there’s only one number on here which 

is two standard deviations below – oh no hold on – sorry I just read this bit up 

top – brain volume as a percentage of TIV. So I think I misinterpreted those on 

the previous so – that’s the hippocampal volume compared to a healthy 

population and that’s the overall brain volume and I was just previously 

interpreting that as the hippocampal volume so again that shows that the brain 

is two standard deviations below what you’d expect for total intracranial 

volume. Presumably this is for the distribution of age matched controls?  

In terms of regional analysis again showing predominantly parietal atrophy in 

both hemispheres and I’m just trying to figure out what these bits are – okay 

so they’re scales – and again it looks like it’s further divided into lobar volumes, 
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basal ganglia volumes and pontine volume as well. So if I just correlate that 

again with the scan, according to that what I should expect to see is 

predominantly parietal and some occipital on the right volume loss. And that 

looks like it correlates visually with what I’m seeing, right worse than left. I 

understand it a bit more now, I think I went through it too quickly last time. I 

didn’t take time to understand what each bit represented.  

Case 3 

This is a 65 year old female – looking at the top row first and getting a feel for 

the hippocampal volumes percentiles – which are similar bilaterally – and the 

overall brain parenchymal fraction – again appears reduced compared to what 

presumably represents a kind of population, potentially age-matched – oh so 

the age is down here – okay fine that’s also now a bit more clear that the age 

is at the bottom. The patterns of atrophy show predominantly orbitofrontal, 

temporal pole and lateral parietal of the left and right. So I guess the next step 

is looking at this and putting it all together into whether it fits a particular pattern 

of atrophy that might kind of give a particular diagnosis – because normally I 

guess you’d look at the imaging and whether there’s particular regional atrophy 

and whether that would point you towards a specific diagnosis. But I think what 

I’ve found most useful is looking at that in conjunction with the imaging and 

then correlating the two together. The only other thing is that this is all based 

on T1 – I’d obviously also look for other sequences as well looking at things 

like FLAIR for white matter lesions and vascular disease burden, T2 for 

strategic infarcts, and SWI for any microbleeds, so then you could combine the 

segmented volumetric analysis in with that, and that would give you more of a 

broader picture as to what was going on.  

 

4.7.1.2 Direct questions 

1. How do you interpret the hippocampal percentiles that are given? 

That’s a good question. So it’s bilaterally around 13.6 percentile. But I’m not 

sure how that compares in terms of the normal variation that you might expect. 

I mean this is compared to a healthy population, but is that age-matched or 

not? That’s what I’d like to know. It might be more clear if it was in a format 

similar to the BPF which compared by age and how it deviates by standard 

deviation. So I’m not entirely sure how to interpret that in isolation.  

 

2. How do you interpret the colours? 

It’s useful when I looked at it in the context of the imaging. Just looking at it as 

it is, I’m just looking at it as a very basic red/yellow/green colour scheme, red 
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showing the areas where the atrophy is most marked, and using that to 

generate a picture of what I might expect to see on the imaging. I’m not using 

it particularly as – I guess it looks like a log scale? Or percentiles? – but I’m 

not looking at the numbers specifically, just looking at the colours to see if 

there’s a regional distribution of atrophy, and then comparing it with what I see 

on the imaging. More as a visual. 

 

3. Have you used the colour scale at the bottom? 

No, I actually hadn’t looked at that. Colour range – percentile – log scale. So it 

looks like there is a lot more colour range variation for the lower 50% compared 

to the top 50%. But I’m not entirely sure how to interpret that either. I’d have to 

look at it a bit more, read around it a bit more, how the percentiles apply and 

how to interpret those. I’m quite neutral about it. I think it might be useful but I 

would need to know more about how to apply that in the context of this graph.  

 

4. How do you interpret the bullseye plot inner and outer circles? 

I think this [inner circle] overall represents the lobes and the outer circle is 

looking at specific regions of that lobe. So it gives you the frontal lobe overall 

and then a specific gyrus and how that area is contributing to the overall 

volume loss. Only covers specific gyri, maybe that’s because they’re more 

implicated in the dementia process, that’s why they’ve been picked out. But 

again I’d probably look at that in the context of the imaging rather than in 

isolation. You can always go back to the imaging and see if other areas are 

affected that haven’t been shown on the plot.   

4.7.2 User 2 responses 

4.7.2.1 ‘Think aloud’ cases 

Case 1 

In the top left you’ve got a hippocampal volume relative to a healthy population 

so on the right is a 7.4 percentile and on the left a 1.5 percentile. And I think 

that’s obviously at the low end of normal percentiles, so at the bottom end. And 

then the brain parenchymal fraction I suppose is a surrogate for the global 

cortical atrophy scale so we’re looking at where in terms of the global atrophy 

or the brain volume of this patient as per an expected intracranial volume and 

again they’re in the bottom 25, bottom fraction, so they’ve got an abnormal 

brain parenchymal fraction. The quality control I suppose rates the quality of 

the scan in terms of its signal to noise, contrast to noise, the amount of artefact, 

and it passes on all of those fronts. And then the regional analysis, okay so 
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this gives a regional assessment of where the degree of volume shrinkage 

compared to a healthy person. Okay so for a 56 year old female there’s quite 

marked cortical atrophy which is most marked in the parietal and temporal 

regions but also affecting the orbital-frontal regions on the left hand side. The 

hippocampal volumes are reduced on both sides more severe on the left-hand 

side as shown in the hippocampal volume percentile. So in a patient of this 

age, you would look for more posterior if you were thinking of Alzheimer’s or 

presenile Alzheimer’s you’d look for a more posterior atrophy pattern so let’s 

have a look at that. So yes that tends to fit, there’s posterior parietal atrophy 

involving the precuneal areas of the brain, more so than the frontal regions, so 

yes this would probably do for presenile onset of Alzheimer’s.  

Case 2 

60 year old female patient. Doesn’t tell us any clinical details. [Scrolls though 

the scan]. Okay so there’s abnormal brain volume loss particularly affecting 

the left cerebral hemisphere particularly affecting the frontal lobe and temporal 

lobe for example the parasylvian regions are abnormally widened. Looking at 

the regional analysis that seems to fit so inferior frontal gyrus and also 

shrinkage in the temporal lobe. At first glance the hippocampal volumes don’t 

appear to be too bad. I’m just trying to find the colour map. Basal ganglia 

occipital parietal temporal okay. But the left hippocampal volume on the 

regional analysis is reduced. Let’s have a look. Okay there is widening of the 

sylvian fissure as we noted on the axial. On the coronal it’s on the left side 

more than on the right side. The architecture of the hippocampus is quite 

difficult to assess on the left side but it does look asymmetrical and you can 

also see that the choroid fissure is open as well. And it better demonstrated 

the degree of sylvian fissure widening as well and posterior frontal atrophy. So 

I suppose in a patient of this age depending on what the clinical picture was 

I’d be thinking of an FTD pattern of dementia. And just seeing if that 

correlates…yes that’s about right.  

Case 3 

Okay so this is a 65 year old female scanned on 3T, just having a quick look 

at the hippocampal volume percentiles, so bilaterally they’re reduced but 

appears to be fairly symmetrical in the reduction on both sides. The brain 

parenchymal fraction is reduced to below the sort of – I don’t know what that 

centile is supposed to mean – but the overall fraction is reduced for age. The 

study meets the quality control standards. Looking at the regional analysis 

we’d expect to see atrophy in both temporal poles, on the left side 

predominantly as well as bilateral lateral parietal volume loss. The rest of the 

brain in the regional analysis appears okay. So I just want to go through the 

axials and give myself a general overlook [scrolls though the scan]. So left 

temporal pole is very… so there is asymmetry at the left temporal pole with 

increased widening and parenchymal volume loss. There’s widening of the 



 

127 
 

lateral sulcus of the sylvian fissure on the left. Frontal volumes look reasonably 

well preserved. And quick look at the hippocampi they don’t look too affected 

so I’ll have a look at those on the coronal. Okay they are affected. So the 

patient is 65 so just in that indeterminate region if you are using the MTA 

scoring system. But yes there’s opening of the choroid and sylvian fissure on 

both sides and there’s at least an MTA 2 on both sides, possible MTA 3 looking 

at the hippocampi on the regional analysis, supposedly they’re okay. I would 

say these are MTA 2 on both sides. But yes they’re symmetrical. I think with 

the anterior temporal pole atrophy on the left you’d probably be thinking again 

an FTD and probably a semantic type FTD depending on the clinical findings 

and the neurological assessment.  

Case 4 

So a 77 year old female scanned on the 3T. Quality control is fine. At a glance 

the parenchymal fraction adjusted for age looks fine and the hippocampal 

volumes look reduced on the left but within the 50th centile so an average 

centile on the right. So looking at the regional analysis there looks to be some 

slight reduction in the medial parietal volume on the right but otherwise nothing 

particularly striking. So the colour range would make it… I don’t really 

understand this log… oh it’s a log scale okay fine so… it’s not particularly 

intuitive the log scale but towards the lower end of the centile range between 

2 and 3 on the log scale, so let’s have a look at the scan… [scrolls though the 

scan]. It’s not a great quality scan. Quite a lot of motion. Some lacunar infarcts 

in the very deep perforator territories. There isn’t any obvious asymmetry even 

in the medial temporal regions but I’ll just assess that on the coronal. So I think 

for the age the mesial temporal structures and the hippocampi in particular are 

passable, I wouldn’t say that they were pathologically atrophied. Just looking… 

It’s probably symmetrical posterior parietal atrophy but again I would probably 

pass this for age and according to the brain parenchymal fraction the brain 

volume is relatively well preserved. So yeah I don’t think there is an obvious 

neurodegenerative disorder here based on this but obviously you’d have to 

marry that up with the clinical findings and the mesial temporal structures look 

okay for age.  

4.7.2.2 Direct questions 

1. Can you tell me how you interpret the percentiles for the hippocampal 

volumes? 

So it says compared to a healthy population… so they’ve obviously taken an 

age adjusted standard and taken the volumes and segmented their 

hippocampi and compared them to that. So I’m looking at it and I’m seeing if 

firstly there’s any reduction. I don’t really know about this scale, as in what 

you’d call a normal centile but obviously the lower the centile the more chance 
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that that’s pathological for age, and then the second thing I’m looking at is if 

there’s a big discrepancy between the two sides. So here there’s a 25 

percentile difference between the left and the right so that’s how I’m 

interpreting that.  

 

2. Can you tell me about the BPF graph? 

Okay so this I suppose, just looking at the brain volume as a percentage of the 

total intracranial volume and again adjusted for age, so it’s like a normogram, 

and you’re seeing where again segmental analysis of the entire brain volume, 

where it roughly falls on the normogram. So you can see in this patient it’s 

within the green zone which is taken as between 0.78 and 0.85 so essentially 

that fraction as a percentage of the total intracranial volume so 78-85% is what 

you’d expect in a normal fraction for the population for age. The blue dotted 

lines are a bit distracting. I’m guessing the solid blue line equates to the line of 

best fit through that scatter plot. And then you’ve got probably standard 

deviations away from that mean? That’s probably how I would interpret it. So 

positive and negative away from the mean. So you can see the cluster of 

people closest to the line represents the mean and that’s the standard 

deviation from the mean. But I think depending on how long you have to look 

at the study, it would be useful to have a look at this to start with and to try to 

make sense of it because I think if you’re trying to do this quickly that’s not 

particularly intuitive to analyse.  

[Unprompted] The QC is quite straightforward, it’s completely intuitive, and it’s 

useful because obviously you don’t want to extrapolate more from the scan 

than the quality of the scan, so that’s a good feature to have. And especially if 

you’re comparing between centres with different imaging parameters, different 

scanners, then it’s useful to have that as well.  

 

3. How do you interpret the regional analysis? 

That’s actually really useful. Again it takes a little bit of time to work out the 

traffic lights and the way it’s laid out. Again when you look at it the first time 

you probably think it’s a bit over the top, a bit too much data but then the more 

cases I did the more I looked at that to start with to get an idea of the overall 

picture of what I was expecting to then see on the scan. I probably used the 

colour coding more than I actually used the numerical data. So the logarithmic 

scale I’m not particularly statistically orientated but someone would probably 

just have to explain that before I used that just to make sure I understand it. I 

don’t really understand the logarithmic scale. Is there a reason why it couldn’t 

be just a linear numerical scale? So I think the colour coding element is really 

good, really intuitive and helpful for correlation between the structural findings 
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on the scan and the data. Inner circle is the lobes of the brain and the outer 

circle is segmented into different parts of that lobe. So for example you can 

see the temporal lobe overall and then also taking into account those two other 

segments of the temporal lobe, and then if you go further out of the tree, 

because it’s a tree-and-branch sort of thing, you see what accounts for the 

reduction in the temporal lobe volume. So if you take the basal ganglia, it’s a 

green, so it’s between 10 and 50 on the scale. But you can see that the 

putamen is essentially completely normal, 100% on the scale but the caudate 

is between 1- 10 so probably about 5, so taken together, overall they average 

out to being within the healthy range I suppose.  

 

4. Is there anything that you would change? 

Least intuitive is the log scale and all the numbers, because I think it needs to 

be as user friendly as possible. Obviously you don’t want to say that it’s not 

going to be totally user friendly but if you’re having to look at all these scales 

as well as looking at all the rest of it, it’s quite busy. And also if you’re showing 

it in an MDT or something, you want to be able to reference to the clinicians 

where the abnormality is, and I think the colour coding stands out and makes 

sense so I’d say that and the BPF when you get your eye into it is good as 

well. But the least intuitive would be the actual log scales being put on the 

illustration. It doesn’t add much to have the scale at the bottom or the numbers 

going up the middle. Overall I think the traffic lights and regional analysis is 

quite useful and especially the way it’s structured in terms of the way its fanning 

out, that’s quite nice. It gives you a visual representation and it’s radiologically 

orientated so the right is on the left and the left is on the right so the same way 

that you’re interpreting the scan you’re interpreting the picture.  
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5. Quantitative analysis for MRI in multiple sclerosis 
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5.1 Introduction 

5.1.1 Multiple sclerosis (MS) 

MS is an autoimmune disorder affecting of the central nervous system (CNS). 

It commonly first presents in young adults aged 20 to 30, and is characterised 

by inflammation, causing demyelination, and axonal loss, which leads to 

neurodegeneration (McGinley, Goldschmidt, and Rae-Grant 2021; Sand 

2015). Its aetiology is not fully understood but it is thought to result from 

complex interactions between genetic and environmental or lifestyle factors. 

There is higher prevalence of MS within families, supporting a genetic element, 

the commonest genetic locus being a major histocompatibility complex, HLA-

DRB1. Prevalence is also higher at higher latitudes worldwide, reaching 300 

per 100,000 people, thought to be linked to lower sun exposure and therefore 

lower vitamin D levels in these geographical regions. 

MS is characterised by lesions throughout the CNS, typically affecting 

myelinated regions of white matter (WM). Lesions arise through inflammation 

and damage to the myelin that surrounds axons. While WM lesions are the 

typical hallmark of MS, lesions also affect the grey matter (GM). Axonal 

damage leading to neuronal loss has in recent years been recognised to occur 

from the early stages of disease (Nygaard et al. 2015; Pérez-Miralles et al. 

2013).  

Diagnosis of MS relies on a combination of clinical, imaging and laboratory 

features that must fulfil specific criteria in a patient where there is a high a priori 

suspicion of a positive diagnosis and other inflammatory neurological 

conditions that can mimic MS have been excluded (Thompson et al. 2018). A 

patient’s initial symptomatic demyelinating event is referred to as clinically 

isolated syndrome (CIS), where the patient experiences symptoms typical of 

MS, commonly involving the optic nerve, brainstem or spinal cord, and MRI 

examination demonstrates lesions consistent with MS, but the pattern does 

not fully meet the MS classification criteria. These patients have a high 

probability of converting to relapsing-remitting MS in the future (Kappos et al. 

2007; Kuhle et al. 2015). Conversely, a radiologically isolated syndrome (RIS) 

is an uncommon incidental presentation defined by the presence of classical 
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MS features on MRI examination in the absence of any clinical syndrome, 

where no possible alternative preferred diagnosis is evident (De Stefano et al. 

2018). A large retrospective study showed that 34% of individuals with RIS 

experience their first clinical event consistent with CIS or MS within five years, 

and analysis suggested that younger age, male gender and spinal cord lesions 

are the most significant predictors for an individual with a RIS experiencing a 

future clinical event (Okuda et al. 2014).  

Most patients with MS have the relapsing-remitting form of disease, referred 

to as RRMS. It is defined by acute clinical exacerbations interspaced with 

periods of recovery, which is either complete or incomplete, from which 

disability tends to accrue incrementally over time. Diagnosis is made based on 

a combination of the clinical presentation of typical symptoms and signs, and 

consistent imaging features.  

As well as ruling out any differential diagnoses as being more likely, the 

diagnosis of MS also must meet the criteria of dissemination in space (DIS) 

and dissemination in time (DIT). DIS is a requirement that lesions are detected 

in at least two distinct areas of the CNS that are typically affected by MS. This 

may be confirmed clinically by two demyelinating events affecting different 

neurological sites, or radiologically, by confirming the presence of typical 

lesions on MRI in at least two anatomical territories: periventricular, 

juxtacortical, infratentorial, and spinal cord. The DIT criteria requires that CNS 

lesions can be shown to have developed over time, to reduce potential 

misdiagnosis of monophasic inflammatory CNS events. Similarly to DIS, this 

criteria can be met clinically or radiologically. Only lesions that are active 

enhance with gadolinium, so a combination of enhancing and non-enhancing 

lesions on a single MRI scan indicates DIT. Two serial scans may show the 

appearance of new lesions with reference to the initial scan and also fulfil DIT 

criteria.  

While the relapsing-remitting form of MS is the most common, there are also 

important progressive phenotypes. Primary progressive MS, PPMS, is 

characterised by the unremitting progression of symptoms and decline in 

neurological function from the time of diagnosis, and affects about 15% of 
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patients with MS (Miller and Leary 2007). Secondary progressive MS, SPMS, 

describes established progression of decline in neurological function following 

an initially relapsing disease course. After 20 years of RRMS around 40% of 

patients will transition to SPMS (Rovaris et al. 2006).  

In addition to the phenotypic descriptions of MS disease course, which are 

limited and do not sufficiently reflect the underlying pathophysiology, 

terminology expressing the presence or absence of disease activity has 

evolved. Disease activity encompasses relapses, progression between 

phenotypes, and MRI evidence of new inflammatory lesions and pathological 

brain atrophy, representing active neurodegeneration (Lublin et al. 2014). The 

concept of ‘no evidence of disease activity’ (NEDA), defined as the absence of 

relapses, disability progression, and active MRI lesions, is frequently used as 

an endpoint in clinical trials for disease-modifying MS treatments. 

Basing MS classification on its classical clinical phenotypes is increasingly 

acknowledged as insufficient, since they are removed from the underlying 

pathophysiological phenotypes, demonstrate significant overlap in terms of 

imaging, clinical and laboratory findings, and transitions between them are 

difficult to pinpoint accurately. Recently, machine learning techniques have 

been used to identify common features between patients with MS based on 

their brain MRI, and the novel MRI-based ‘cortex-led’, ‘normal-appearing WM- 

led’, and ‘lesion-led’ subtypes have been shown to have distinct patterns of 

disability progression and responses to treatment (Eshaghi et al. 2021). 

Developments like this could help to stratify patients more effectively for clinical 

trials and eventually facilitate treatment personalisation (Gafson, Craner, and 

Matthews 2017).  

5.1.2 Neuroimaging biomarkers of MS using standard of care images 

MS pathology is driven by both innate and adaptive immune system, with 

activation of microglia and macrophages, as well as B and T lymphocytes, 

which are recruited by CNS-specific target antigens. These mediate 

demyelination and axonal loss, the latter being the main driver of neurological 

decline and permanent clinical disability. Conventional MRI techniques can be 
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used to detect the neuroimaging correlates of inflammation, demyelination and 

axonal loss.  

Typical MS lesions in the brain are ovoid in shape, aligned perpendicular to 

the lateral ventricles and perivenular (Sand 2015). They appear as areas of 

high signal intensity on T2-weighted and T2-FLAIR sequences and are iso- to 

hypo-intense on non-contrast-enhanced T1-weighted MRI. Recent consensus 

recommendations between European and North American expert advisory 

groups promote the use of standardised imaging protocols. They recommend 

that 3T imaging is preferable to 1.5T if available, and core sequence 

acquisitions should be a three-dimensional (3D) T2-FLAIR sequence, an axial 

T2-weighted sequence, and a gadolinium contrast-enhanced T1-weighted 

sequence at baseline (Wattjes et al. 2021). For follow-up imaging, contrast-

enhanced T1-weighted imaging is not recommended. Quantification of 

inflammatory activity in terms of number and volume of MS-typical lesions is 

central to patient monitoring and clinical trial outcome reporting. While lesions 

that affect the cortical grey matter have been shown to be an important 

correlate of long-term disease progression (Haider et al. 2021), they are 

difficult to detect on standard of care imaging protocols (Geurts et al. 2011).  

The neuroimaging correlate of axonal loss is the observation of established 

reduced brain volume that is more accelerated than due to an individual’s age 

alone. Brain volume loss in MS has been shown to occur at more than 0.4% 

per year (De Stefano et al. 2016), compared to an expected 0.05-0.3% volume 

loss observed in healthy controls depending on their age (Battaglini et al. 

2019). Even faster rates of atrophy may be observed in the deep grey matter 

(Bishop et al. 2017; Eshaghi et al. 2018). Brain volume loss on MRI has been 

shown to correlate with actual histological tissue loss (Popescu et al. 2016) as 

well as with short- and long-term measures of clinical disability (Losseff et al. 

1996; Scalfari et al. 2018). Atrophy of the grey matter seems to correlate with 

clinical disability and cognitive impairment more than whole brain or WM 

atrophy (De Stefano et al. 2003), and has been shown to occur from disease 

onset in association with acute inflammation (Chard et al. 2002). While it is not 

currently utilised in disease classification or diagnostic criteria, the importance 

of brain atrophy as a prognostic factor is recognised in the research field 
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(Sastre-Garriga, Pareto, and Rovira 2017). Imaging standardisation and 

improved quantification methodology as well as technical and clinical 

validation at the individual patient level could facilitate its implementation as a 

useful clinical tool (Rocca et al. 2017).  

5.1.3 Quantification of MS neuroimaging biomarkers 

Volumetric quantification techniques measuring MS lesion load and brain 

volume have been developed in the research setting and have been used in 

clinical trials, where image acquisition is somewhat standardised and quality 

controlled, and where multiple image contrasts are available (Danelakis, 

Theoharis, and Verganelakis 2018; Lindig et al. 2018). Lesion segmentation 

techniques generally rely on the availability of 3D, multi-contrast source image 

data, i.e. requiring both 3D T1- and typically T2-FLAIR-weighted images (de 

Boer et al. 2009; Simões et al. 2013). Classical brain tissue segmentation 

typically requires a 3D T1-weighted image dataset. Tissue segmentation can 

be affected by the presence of WM lesions, and this can be mitigated against 

by detecting and correcting for them (Valverde et al. 2015).  

Radiologists could benefit from incorporation of automated volumetric lesion 

and brain volume assessments in their routine clinical workflow. Recent 

promising developments have been made towards clinically useful solutions 

that are able to tolerate image quality and acquisition heterogeneity, by using 

T2-FLAIR to measure central (i.e. periventricular) lesion volume and central 

atrophy as representative measures of the whole brain status. This has been 

shown to be effective and reproducible using heterogenous clinical data 

including two-dimensional (2D) T2-FLAIR data (Dwyer et al. 2019; Zivadinov 

et al. 2018). However, clinical centres are increasingly adopting guidelines for 

a 3D T2-FLAIR protocol, and proprietary tools focus on providing 3D 

volumetric quantification. 

Translating group-level findings to the individual patient is challenging. The 

provision of reference data against which an individual’s quantitative results 

can be compared is important, as it provides context to the output values. In 

one study, comparison of individual MS patients’ brain volumes to a large 

cross-sectional reference dataset showed that patients with a low brain volume 
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compared to the reference were more than two times more likely than other 

patients to develop disability progression over the next two years (Sormani et 

al. 2017). While studies have shown that global brain volume measures are 

associated with clinical outcomes in MS patient populations, it is more 

challenging to show associations with specific regional cortical and deep GM 

atrophy patterns that are known to occur in MS  (Pichler et al. 2016). This may 

be due to limitations in segmentation techniques and underlying variability of 

clinical data (Sastre-Garriga et al. 2020).  

5.1.4 Commercially available quantitative imaging reports for MS 

Several proprietary software tools have been developed specifically for 

quantification of MRI biomarkers for clinical use in MS patients. These tools 

have received certification for clinical use from entities like CE and FDA, 

however they are generally sparse in their technical and clinical validation in 

comparison to established academic research tools. 

The icobrain MS tool is a quantitative report provided by the Belgian company 

Icometrix (icometrix 2021).  It combines assessment of WM lesions and brain 

volume, using dual T1 and T2-FLAIR input (Jain et al. 2015). The report 

provides snapshots of WM lesion and cortical GM segmentations, lesion 

volume quantification and distribution in the periventricular, juxtacortical, deep 

white matter and infratentorial regions, and whole brain and GM volumes, also 

expressed as percentiles in the context of a normative reference population, 

details of which are not publicly available. It includes a longitudinal element 

providing annualised percentage volume change and whether there are new 

or enlarging lesions.  

The proprietary method was included in an independent technical validation 

study against established research methods applied to an MS population, 

where substantial differences were shown to exist between methods and 

technical issues including sensitivity to scanner upgrade were highlighted as 

important issues that may undermine the tool’s direct clinical applicability 

(Steenwijk et al. 2017). Beyond technical comparisons, independent clinical 

validation studies involving neuroradiologists have not yet been published.  
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LesionQuant is another example of a commercial solution, offered by 

Cortechs.ai (cortechs.ai 2021) as an extension to their NeuroQuant brain 

volume quantification tool (Brewer et al. 2009). It also presents lesion 

quantification metrics by region and highlights whether lesions are new, 

expanding or shrinking in a longitudinal comparison. It does not provide 

reference data for lesion quantification measurements; this is only provided for 

the brain regional volumetric section of the report. Like icobrain MS, it also 

requires combined T1-weighted and FLAIR input, and its proprietary lesion 

segmentation method is not publicly accessible. It has been assessed in a 

clinical validation where its results were compared to a neuroradiologist’s 

visual scoring in a group of 56 patients with MS with good correlation but with 

a tendency to underestimate lesion counts (Brune et al. 2020). Standalone 

head-to-head comparisons like this do not replicate the clinical scenario and 

underscore the importance of assessing quantitative report information 

combined with and as an adjunct to the radiologist’s visual assessment. 

5.1.5 Developing a FLAIR-only quantification pipeline 

As mentioned, while several proprietary solutions exist that perform lesion and 

brain volume quantification, these require 3D T1-weighted images as well as 

T2-FLAIR images. In the standard clinical routine, a 3D T1-weighted scan is 

not routinely performed and not recommended by current guidelines, apart 

from a contrast-enhanced diagnostic study (Schmierer et al. 2019). While a 

possible solution to this would be to advocate for changing recommended 

acquisition protocols to include a 3D T1-weighted sequence, this adds to 

clinical workloads, and it is therefore worthwhile exploring the value of T2-

FLAIR-only quantification. Proprietary solutions are also variable in the 

information they offer, some providing only lesion-related data, and variable 

reference data which often does not include MS-population reference data. It 

is also difficult to determine how these solutions have been validated for clinical 

application, and the gold standard they have been assessed against 

(Wilkinson and van Boxtel 2019). These issues present a considerable 

translational barrier for integration of well-validated and valuable quantitative 

techniques for clinical MS imaging. The differences between lesion and brain 
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volume quantification in the research and clinical settings is illustrated in Figure 

5-1.  

The aim of the work in this chapter is to address an aspect of this important 

translational challenge, that of performing automated lesion and tissue 

segmentation using a single T2-FLAIR input. The performance of T2-FLAIR-

only quantification will be compared to a conventional multi-sequence 

approach. Additionally, the performance at different field strengths will be 

investigated by using a multicentre dataset of subjects with CIS who have been 

scanned at 1.5T and 3T within the same week.  

This work will aim to establish whether T2-FLAIR-only lesion and brain 

segmentation introduces more variability compared to conventional 

techniques, with the hypothesis set that T2-FLAIR-only segmentation will 

achieve comparable results.



 

 
 

1
4

0
 

 

Figure 5-1.    Illustration of the processing steps required for lesion and brain tissue segmentation in the research setting, where a T1 sequence is available, 
versus the clinical setting, where all steps must be performed on a FLAIR sequence. 
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5.2 Methods 

5.2.1 Dataset 

The dataset used, which has previously been described elsewhere (Hagens et 

al. 2018), consists of subjects recruited between 2013 and 2015 from six 

different clinical MS centres across Europe, who are members of the Magnetic 

Resonance Imaging in Multiple Sclerosis (MAGNIMS) network 

(www.magnims.eu, MAGNIMS 2021). For this study, a subset of 66 subjects 

with CIS were used.  

The inclusion criteria for CIS subjects were defined according to the 

international panel on MS diagnosis (Polman et al. 2011), and subjects had no 

other immunological, vascular or oncological previous medical history. The 

study was approved by local review boards and all participants gave their 

written informed consent to participate.  

5.2.2 MRI acquisition 

MRI scanning was performed on 1.5T and 3T scanners within the same week. 

Scanning parameters were applied in line with established MAGNIMS 

guidelines (Wattjes et al. 2015), using a multi-sequence scanner optimised 

acquisition protocol, which included in particular an isotropic gradient echo 3D 

T1-weighted and 3D turbo spin echo T2-FLAIR sequence. Table 5-1 details 

the acquisition parameters for each centre and field strength.  

Table 5-1. MRI sequence parameters by centre, for 1.5T and 3T. 

MAGNIMS 
Centre 

1.5T 3T 

Vendor Parameter 3D T1 3D FLAIR Vendor Parameter 3D T1 3D FLAIR 

VU 
University 
Medical 
Center 

Amsterdam 

GE Signa 
HDxt 

Type GRE TSE GE 
Discovery 

MR750 

Type GRE TSE 

Slice 
orientation 

Sag Sag Slice 
orientation 

Sag Sag 

Measured 
voxel size 

(mm) 

1.0x1.0x1
.0 

1.4x1.4x1.2 Measured 
voxel size 

(mm) 

1.0x1.0x1
.0 

1.1x1.1x1
.2 

TR (ms) 12.4 6500 TR (ms) 8.2 8000 

TE (ms) 5.2 115 TE (ms) 3.2 130 

Flip angle 
(degrees) 

12  Flip angle 
(degrees) 

12  

Turbo factor  191 Turbo factor  230 

Inversion 
times (ms) 

450 1994 Inversion 
times (ms) 

450 2340 

University 
Hospital 
Basel 

Siemens 
Avanto 

Type GRE TSE Siemens 
Verio 

Type GRE TSE 
Slice 

orientation 
Sag Sag Slice 

orientation 
Sag Sag 

http://www.magnims.eu/
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Measured 
voxel size 

(mm) 

1.0x1.0x1
.0 

1.0x1.0x1.0 Measured 
voxel size 

(mm) 

1.0x1.0x1
.0 

1.0x1.0x1
.0 

TR (ms) 2700 6000 TR (ms) 1570 5000 
TE (ms) 3.37 352 TE (ms) 2.67 402 

Flip angle 
(degrees) 

8  Flip angle 
(degrees) 

9  

Turbo factor  141 Turbo factor  141 
Inversion 

times (ms) 
950 2200 Inversion 

times (ms) 
900 1800 

St. Josef 
Hospital 
Bochum 

Siemens 
Avanto 

Type GRE TSE Philips 
Achieva 

Type GRE TSE 
Slice 

orientation 
Sag Sag Slice 

orientation 
Sag Sag 

Measured 
voxel size 

(mm) 

1.1x1.1x1
.0 

1.0x1.0x1.0 Measured 
voxel size 

(mm) 

1.1x1.1x1
.0 

1.0x1.3x1
.0 

TR (ms) 10 4800 TR (ms) 10 5000 
TE (ms) 4.6 291 TE (ms) 4.2 354 

Flip angle 
(degrees) 

8  Flip angle 
(degrees) 

15  

Turbo factor  204 Turbo factor  182 
Inversion 

times (ms) 
1000 1650 Inversion 

times (ms) 
1100 1900 

UCL 
Institute of 
Neurology 

London 

Siemens 
Avanto 

Type GRE TSE Philips 
Achieva 

Type GRE TSE 
Slice 

orientation 
Sag Sag Slice 

orientation 
Sag Sag 

Measured 
voxel size 

(mm) 

1.0x1.0x1
.0 

1.0x1.0x1.0 Measured 
voxel size 

(mm) 

1.0x1.0x1
.0 

1.2x1.2x1
.2 

TR (ms) 1900 6500 TR (ms) 6.9 8000 
TE (ms) 3.37 202 TE (ms) 3.1 388 

Flip angle 
(degrees) 

15  Flip angle 
(degrees) 

8  

Turbo factor  125 Turbo factor  120 
Inversion 

times (ms) 
1100 2000 Inversion 

times (ms) 
821 2400 

Hospital 
Clínico San 

Carlos 
Madrid 

GE Signa 
HDxt 

Type GRE TSE  Type GRE TSE 
Slice 

orientation 
Sag Sag Slice 

orientation 
Sag Sag 

Measured 
voxel size 

(mm) 

0.98x0.98
x1.0 

0.98x0.98x1
.0 

Measured 
voxel size 

(mm) 

0.98x0.98
x1.0 

0.98x0.98
x1.0 

TR (ms) 10 6000 TR (ms) 10 6000 
TE (ms) 4.2 136 TE (ms) 4.2 135 

Flip angle 
(degrees) 

12  Flip angle 
(degrees) 

12  

Turbo factor  220 Turbo factor  220 
Inversion 

times (ms) 
450 1837 Inversion 

times (ms) 
450 1840 

Sapienza 
University of 

Rome 

Siemens 
Avanto 

Type GRE TSE Siemens 
Verio 

Type GRE TSE 
Slice 

orientation 
Sag Sag Slice 

orientation 
Sag Sag 

Measured 
voxel size 

(mm) 

1.0x1.0x1
.0 

1.2x1.2x1.3 Measured 
voxel size 

(mm) 

1.0x1.0x1
.0 

1.0x1.0x1
.0 

TR (ms) 1900 6500 TR (ms) 1900 5000 
TE (ms) 3.37 202 TE (ms) 2.93 395 

Flip angle 
(degrees) 

15  Flip angle 
(degrees) 

9  

Turbo factor  125 Turbo factor  141 
Inversion 

times (ms) 
1100 2000 Inversion 

times (ms) 
900 1800 

GE=General Electric; Sag=sagittal; GRE=gradient echo; TSE= turbo spin-echo; TE=echo time; TR=repetition time 

5.2.3 White matter lesion detection 

All scans were read during the original study by Hagens and colleagues by 

consensus joint reading using a digital workstation (Sectra [Linköping, 

Sweden] IDS7 version 16.2.28), by three experienced readers in random 

order, with a minimum interval of two weeks between reading 1.5T and 3T 

scans. White matter lesions were defined as areas of abnormal WM 

hyperintensity, consistent with CIS lesions, that were apparent on T2-FLAIR 

images and were larger than 3mm in diameter. The image readers had 
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information regarding localisation of clinical signs and symptoms as detected 

by the neurologist, but were agnostic to subject age, gender and clinical centre.  

5.2.4 Manual WM lesion segmentation 

To investigate whether automated lesion segmentation resembles 

segmentation of any white matter hyperintensity, or typical MS lesions more 

closely, two types of manual segmentation were performed. Rater 1 performed 

manual segmentation of CIS lesions as guided by the expert consensus 

labelling described above (referred to in results as ‘manual method 1’). Rater 

2 performed manual segmentation on a subset of subjects not guided by the 

expert consensus labels, and instead included any hyperintensity in the white 

matter (referred to in results as ‘manual method 2’).  

5.2.5 Automated WM lesion segmentation 

T1 and T2-FLAIR images were segmented using the Bayesian Method of 

Model Selection (BaMoS) (Sudre et al. 2015), which is an unsupervised 

hierarchical model selection framework, which facilitates distinction of different 

types of expected and unexpected signal intensities following brain 

parcellation. Standard two sequence input segmentation with T1 and T2-

FLAIR images was performed, and then repeated on the same dataset using 

T2-FLAIR as the only input sequence. This involves fitting a Gaussian mixture 

model to the data, and optimising the number of components required for each 

tissue class, in a similar way to the original two sequence method. The output 

parcellations obtained were post-processed using a database composed 

solely of T2-FLAIR images for the removal of false positives.  

5.2.6 Brain tissue segmentation 

Brain segmentation was performed using Geodesic Information Flows (GIF) 

(Cardoso et al. 2015), a fully automated multi-atlas-based approach which has 

previously described in detail in chapter 4. This was done in two ways: 

1. Using a 3D T1 image database, namely the original GIF database 

composed of T1 images that were expertly manually labelled, and  
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2. Using a newly-constructed GIF database which contained both 3D T1 

and 3D T2-FLAIR images.  

5.2.7 The new multi-modal GIF database 

The new database was constructed using co-registered 3D T1 and 3D T2-

FLAIR imaged from 100 healthy control subjects derived from the Southall and 

Brent Revisited ‘SABRE’ study cohort (Tillin et al. 2012) (age range 46-90 

years, mean age 72, 51.1% males).  

The acquisition parameters were: 

1. 3D sagittal T1 multishot, inversion-prepared gradient echo: repetition 

time 6.9 ms; echo time 3.1 ms; voxel size 1.0x1.0x1.0 mm3; and 

2. 3D sagittal T2-FLAIR: repetition time 4800 ms; inversion time 1650 ms; 

echo time 125 ms; voxel size 1.0x1.0x1.0 mm3. 

The original T1 labels were used to automatically segment the new T1 images, 

and these labels were then propagated to the T2-FLAIR images. Performance 

of GIF with the original and new image databases was compared by 

segmenting the CIS cohort’s 3D T1 images for direct comparison of the effect 

of database change. The new GIF database performance was then tested with 

3D T1 only, and T2-FLAIR only images from the CIS subject cohort. To assess 

tissue segmentation performance in the context of high WM lesion loads, a 

subset analysis of the 10% of cases with the largest lesion volumes was 

performed. 

Prior to segmentation T2-FLAIR images were registered to T1 space to allow 

for voxel-wise comparisons. Performance was tested with varying degrees of 

WM lesion inpainting (Chard et al. 2010). This was done using a patch-based 

method (Prados et al. 2016) to make three comparisons: uncorrected, manual 

WM lesion filled, and BaMoS outlier filled. 

5.2.8 Statistical Analysis 

5.2.8.1 WM Lesions 

WM lesions were assessed by segmentation method and field strength for 1) 

absolute lesion volume (median and interquartile range, IQR) and 2) 
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percentage lesion volume difference. Differences were compared with related-

samples Wilcoxon signed rank tests. Dice similarity coefficient (DSC) was 

used to compare similarity between automated segmentation methods.  

DSC is calculated as: 

𝐷𝑆𝐶 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

Where TP = true positive, FP = false positive and FN = false negative.  

Proportion of lesion volume difference between conventional and T2-FLAIR-

only segmentation methods was calculated as (T2-FLAIR-only volume – 

conventional volume / conventional volume). Median percentage volume 

difference was calculated as median (conventional volume – T2-FLAIR-only 

volume / average volume)*100.  

5.2.8.2 Brain volumetry 

Brain volume group means between T1 and T2-FLAIR GIF were compared 

using paired t-tests. A no-intercept linear regression model was used to 

compare volume results for three main tissue classes (GM, WM and CSF) and 

the combined total intracranial volume (TIV) between T1 and T2-FLAIR inputs 

into the GIF database. The use of a no-intercept model was in line with the 

expectation of unity between methods and calculations were made for model 

fit using the Akaike Information Criterion (AIC) for both intercept and no-

intercept models.  

A subset analysis of the 10% of subjects with the highest WM lesion load was 

performed in order to assess tissue segmentation performance in the context 

of more radiologically advanced disease.  

The biological utility of T2-FLAIR-only volumetry was assessed by evaluating 

the ability of the segmentation methods to demonstrate age differences. The 

CIS cohort that was used for this study had by nature developed little disease-

related atrophy, so a general linear model was used to assess brain volume 

effects of age for both methods. Effect sizes were calculated using Cohen’s f, 

where values 0.10, 0.25 and 0.40 represent small, medium and large effect 

sizes, respectively (Cohen 2013), to determine the number of cases that would 
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be required to show group differences for age using each segmentation 

method. Statistical analysis was performed using SPSS Version 25.0.  
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5.3 Results 

This study assessed MRI scans from 66 subjects with CIS. Their mean age 

(standard deviation) was 34.7 (8.4) and 71% were female. Subjects had a 

median Expanded Disability Status Scale (EDSS) score of 2.0 (range 0-6.0).   

5.3.1 Manual and automated assessment of WMH and MS lesions 

Comparison of total lesion volume with Wilcoxon signed rank tests showed 

statistically significant differences between manual method 1 and all other 

segmentation methods, manual method 1 producing lower lesion volumes than 

all other methods at both 1.5T and 3T, p<0.001. For manual method 2, at 1.5T, 

lesion volumes were not significantly different to T2-FLAIR-only segmentation 

results (p=0.239) and at 3T not significantly different to conventional 

automated (T1+T2-FLAIR) segmentation results (p=0.231).  

At 1.5T, T2-FLAIR-only lesion volumes were significantly larger than those 

produced with conventional T1+T2-FLAIR segmentation (p=0.01). However at 

3T conventional and T2-FLAIR only segmentation results were not significantly 

different (p=0.819).    

Median lesion volume in millilitres (ml) and IQR by segmentation method is 

shown in Table 5-2 and Figure 5-2. An example case showing the 

segmentation results obtained using the four WM lesion segmentation 

methods is shown in Figure 5-3.  

Table 5-2. Median lesion volume and interquartile range (IQR) for each segmentation method 
and field strength. 

Lesion 
segmentation 

method 

Field strength 
Median lesion 
volume (ml) 

Inter-quartile 
range (IQR) 

Manual 1 1.5T 0.63 2.44 
3T 2.25 3.17 

Manual 2 1.5T 3.84 4.83 
3T 5.51 4.88 

BaMoS 1.5T 3.38 5.03 
3T 6.48 5.90 

T2-FLAIR-only 
BaMoS 

1.5T 4.61 4.81 
3T 6.25 6.95 
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Figure 5-2. Box plots showing lesion volume (median and IQR) by segmentation method and 
field strength. 

 

 

Figure 5-3. An example of WM lesion segmentation results for manual method 1, top left; 
manual method 2, top right; multi-sequence BaMoS, bottom left; and FLAIR- only BaMoS, 
bottom right. 
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Mean DSC (SD) between conventional and T2-FLAIR-only lesion 

segmentation are 0.46 (0.24) for 1.5T and 0.57 (0.19) for 3T (Figure 5-4). Dice 

similarity coefficients (DSC) between lesion segmentation methods are shown 

in Table 5-3. 

Table 5-3. Dice similarity coefficients between lesion segmentation methods by field strength. 
SD, standard deviation. 

Lesion segmentation 
method comparison 

Field 
strength 

Dice similarity coefficient 
Mean (SD) 

Manual 1 vs Manual 2 
1.5T 0.21 (0.20) 

3T 0.28 (0.21) 

Manual 1 vs BaMoS 
1.5T 0.25 (0.23) 

3T 0.32 (0.22) 

Manual 2 vs BaMoS 
1.5T 0.52 (0.25) 

3T 0.53 (0.24) 

Manual 1 vs T2-FLAIR BaMoS 
1.5T 0.21(0.21) 

3T 0.29 (0.20) 

Manual 2 vs T2-FLAIR BaMoS 
1.5T 0.37 (0.23) 

3T 0.43 (0.19) 

BaMoS vs T2-FLAIR BaMoS 
1.5T 0.46 (0.24) 

3T 0.57 (0.19) 

 

Proportion of lesion volume difference between conventional and T2-FLAIR-

only segmentation methods was median (IQR) 0.33 (-1.75 – 1.45) for 1.5T, 

and -0.13 (-1.87 – 0.18) for 3T. Median percentage volume difference was -

28.7% for 1.5T and 13.6% for 3T.  
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Figure 5-4. Boxplots representing dice similarity coefficient values between methods by field 
strength. 

5.3.2 Brain tissue volumes 

Results for each of three key segmentation methods for mean cortical grey 

matter volume are presented in Table 5-4 by field strength. These are mean 

volume in ml, (SD) by method 1) original GIF database with T1 input: 503.4 

(5.93) at 1.5T and 501.8 (6.10) at 3T, 2) new multi-modal GIF database with 

T1 input: 515.5 (6.04) at 1.5T and 512.7 (6.12) at 3T, and 3) new multi-modal 

GIF database with T2-FLAIR input: 529.8 (7.30) at 1.5T and 523.0 (6.77) at 

3T. 

Results for tissue volume segmentation with varying degrees of WM lesion 

inpainting show no significant change of GM volume measurements, as shown 

in Table 5-5. Therefore all results presented here have been processed using 

WM lesion inpainting from conventional BaMoS WM segmentation. Violin plots 

for the three tissue classes shown in Figure 5-5 demonstrate that the 

distribution of tissue segmentation volumes at the individual subject level were 

very similar for the T1 and T2-FLAIR groups at both field strengths.  
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Table 5-4. GM volume in ml by GIF method (sequence input and GIF database). Mean volume, 
standard deviation (SD). 

Input 
GIF 

Database 
Field 

strength 
Mean GM 

Volume (ml) 
SD 

T1 

original 1.5T 503.4 5.93 

original 3T 501.8 6.10 

new 1.5T 515.5 6.04 

new 3T 512.7 6.12 

T2-FLAIR 

new 1.5T 529.8 7.30 

new 3T 523.0 6.77 

 

 

Table 5-5. Mean cortical GM volume as a percentage of TIV, by GIF segmentation method, 
and by WM lesion inpainting method, for 1.5T and 3T.  

CGM segmentation 
method, 1.5T 

WM lesion 
inpainting 
method 

Mean (SD) GM 
volume as % of 

TIV, 1.5T 

Mean (SD) GM 
volume as % of 

TIV, 3T 

T1 (new GIF 
database) 

None 31.64 (1.15) 31.80 (1.10) 

Manual 31.67 (1.15) 31.81 (1.10) 

BaMoS 31.81 (1.22) 31.89 (1.13) 

T2-FLAIR (new 
GIF database) 

None 33.20 (1.62) 33.23 (1.43) 

Manual 33.22 (1.63) 33.15 (1.31) 

BaMoS 33.29 (1.66) 33.24 (1.43) 
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Figure 5-5. Violin plots displaying the actual volumes (in ml) returned per subject by tissue 
class and field strength – CSF, WM and GM – grouped by segmentation method. FLAIR 
=adapted GIF database with T2-FLAIR input; T1 original =standard GIF database with T1 
input; T1 multimodal =adapted GIF database with T1 input. Violin plots were created using R. 

 

All combinations of paired t-tests performed separately for 1.5T and 3T 

showed significant differences, p<0.001, with T2-FLAIR input producing higher 

mean GM values at both field strengths. Example subject results are shown in 

Figure 5-6. 

Linear regression modelling for CSF, WM, GM and TIV was performed for 

these segmentation method comparisons. There was no evidence of model fit 

deterioration based on AIC calculations (Table 5-6).  
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Figure 5-6. A subject’s cortical GM segmentation shown for 1.5T (top panel) and for 3T (lower 
panel), using the multimodal GIF database. T1 segmentation is denoted in pink, and T2-FLAIR 
segmentation is shown in blue. An enlarged image overlaying both T2-FLAIR and T1 
segmentations is included on the right of each series, showing areas of discrepancy, 
highlighted in the yellow boxes. 

 

Table 5-6. Akaike Information Criterion (AIC) calculations for model fit for both intercept and 
no-intercept models, for cortical GM volume comparison between GIF methods. 

GM volume 
comparison 

Field strength 
AIC 

Intercept No intercept 

T1 (original vs. new 
database) 

1.5T 234.63 233.55 

3T 220.83 221.78 

T1 vs T2-FLAIR 
(new database) 

1.5T 432.00 430.00 

3T 397.06 395.23 

 

Results of T1 segmentation using the original and new GIF databases are 

presented in Table 5-7. For T1 and T2-FLAIR results using the new GIF 
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database, linear regression model results are shown in Table 5-8. For GM 

volume using the new database, the model showed at 1.5T that R² was 0.997, 

β (SE) 1.028 (0.007), and at 3T that R² was 0.998, β (SE) 1.019 (0.006). Figure 

5-7 and Figure 5-8 show the GM correlations for change in GIF database and 

change of input sequence by field strength. These demonstrate a widening of 

the 95% confidence intervals for the correlations between GM volumes derived 

using T1 and T2-FLAIR input.  

Table 5-7. Linear regression outputs for comparison of T1 inputs into the original T1-only and 
new GIF database using a no-intercept model. β=slope coefficient, SE=standard error 

 

 

Table 5-8. Linear regression outputs for comparison of T1 and T2-FLAIR inputs into the new 
GIF database. β=slope coefficient, SE=standard error 

 

 

Tissue Field strength β (SE) R² 

GM 
1.5T 1.054 (0.008) 0.996 

3T 1.041 (0.006) 0.998 

WM 
1.5T 0.987 (0.008) 0.996 

3T 1.036 (0.009) 0.995 

CSF 
1.5T 0.913 (0.012) 0.988 

3T 0.850 (0.008) 0.994 

TIV 
1.5T 0.984 (0.004) 0.999 

3T 0.988 (0.004) 0.999 

Tissue Field strength β (SE) R² 

GM 
1.5T 1.028 (0.007) 0.997 

3T 1.019 (0.006) 0.998 

WM 
1.5T 0.995 (0.007) 0.997 

3T 1.055 (0.008) 0.996 

CSF 
1.5T 0.944 (0.012) 0.989 

3T 0.859 (0.009) 0.994 

TIV 
1.5T 0.973 (0.004) 0.999 

3T 0.999 (0.004) 0.999 
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Figure 5-7. Scatter plots for GM volumes in ml; T1 input into conventional and new GIF 
database. Top graph: 1.5T. Lower graph: 3T. Coefficient shown in upper right-hand corner 
and 95% CI shown with dotted lines. 
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Figure 5-8. Scatter plots for GM volumes in ml; T2-FLAIR vs. T1 input into new GIF 
database. Top panel: 1.5T. Lower panel: 3T. Coefficient shown in upper right-hand corner 
and 95% CI shown with dotted lines. 
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A subset analysis of tissue segmentation results was performed for the 10% 

of subjects with the highest lesion loads, in order to address generalisability of 

these results to other MS populations. In this subset the lesion volume in 

millilitres as calculated using conventional BaMoS was mean (SD) 14.1 (5.8) 

at 1.5T and 15.5 (6.5) at 3T. Linear regression results for GM segmentation 

between T1 and T2-FLAIR for this subset using the new GIF database were β 

(SE) 1.029 (0.024) and R2 0.997 for 1.5T and 1.022 (0.019), R2 0.998 for 3T, 

as shown in table X. An example of GM segmentation results for a subject with 

a high WM lesion load is shown in Figure 5-9.   

For each segmentation methods univariate analyses were computed for GM 

volume versus age, which showed that GM volumes were significantly 

associated with TIV and age and therefore these were included as covariates 

for all subsequent models. Field strength was included as a fixed factor. For 

all three of the GIF database sequences and input combinations, age was a 

significant covariate: 1) conventional T1 GIF (R2=0.999, standard error 

(SE)=0.178 p=0.001), 2) T1 using the new GIF database (R2=0.999, 

SE=0.182, p<0.001), and 3) T2-FLAIR using the new GIF database (R2=0.998, 

SE=0.247, p=0.005). Effect sizes for age, Cohen’s f, were for T1 GIF f=0.36 

and for T2-FLAIR GIF f=0.27. 

Figure 5-9. GM segmentation performance in the context of high WM lesion load, using 
the new GIF database (pink = T1, blue = FLAIR). 
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5.4 Discussion 

This study aimed to investigate how automated T2-FLAIR-only lesion and 

brain segmentation would compare to conventional segmentation methods in 

a group of CIS subjects at two field strengths. Clinical MS imaging protocols 

often do not include a volumetric T1 sequence, which is usually required by 

standard T1 or multi-sequence automated quantification techniques, thereby 

limiting the use of these methods in clinical settings.  

Therefore, this study hypothesised that results of T2-FLAIR-only segmentation 

would provide results that are comparable to T1 and multi-sequence methods. 

A cohort of CIS subjects from multiple centres who had been scanned at 1.5T 

and 3T in the same week was used to compare the output of WM lesion and 

brain tissue volume segmentation using established methods, namely BaMoS 

and GIF algorithms, to that from adapted T2-FLAIR versions of these tools.  

Lesion segmentation with the automated T2-FLAIR-only method was 

comparable to conventional automated segmentation at 3T. At both 1.5T and 

3T, brain tissue segmentation was robust using the T2-FLAIR method, as 

evidenced by high R2 linear regression values and maintained age-related 

brain volume change discrimination.  

5.4.1 WM lesion segmentation 

Two types of manual WM lesion segmentation were used for comparison of 

the automated methods, one based on expert consensus reading of MS-

specific lesions and the other that included all WM hyperintensities in the 

image and not only MS-specific lesions, at 1.5T and 3T. The WM 

hyperintensities that were not identified by experts to be MS lesions could 

include non-specific WM lesions consistent with vascular disease or aging, as 

well as periventricular caps and bands, or indeed image artefacts. There may 

also be some which are true MS lesions that are not captured by conservative 

inclusion criteria. 

Results of the two manual segmentation methods varied from each other quite 

considerably, and automated segmentation results were much more similar to 

the second manual method. This finding highlights that classical segmentation 
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algorithms can be limited in their ability to discriminate true MS-type lesions 

from any WM hyperintensity.  

It is important to consider that this may be an inherent limitation in applying 

intensity-based methods to quantify MS-specific pathology, and may rely on 

visual quality control measures or ensuring that eventual clinical end-users are 

aware of the limitation if full automation is implemented.  

There were differences in lesion segmentation performance between field 

strengths, as discussed further in section 5.4.3. Automated T2-FLAIR-only 

lesion segmentation results at 1.5T were comparable to a manual method 

which segmented all WM hyperintensities (manual method 2). At 3T lesion 

volumes were not significantly different between conventional and automated 

methods, and proportional lesion volume differences were very small. This 

contrasted with the scenario at 1.5T, where lesion volumes were not 

comparable between the two automated methods.   

Use of a CIS cohort meant that relatively lower WM lesion loads were 

expected, which in turn made lesion segmentation method comparison 

challenging and produced low dice scores. It is accepted that accurate 

automated lesion segmentation is more accurate at higher lesion loads 

(Carass et al. 2017). An important future step would be to apply this method to 

an MS population with higher lesion loads.  

5.4.2 Brain tissue segmentation 

The T2-FLAIR-only brain tissue segmentation method tested here generated 

similar results to the conventional T1 method, with very high R2 and low 

standard error values. The coefficients quoted in tables 6 and 7 can be 

interpreted as simple multiplicative factors between the two methods and their 

raw sizes demonstrate minimal differences in brain tissue volume 

measurements between change of GIF database, sequence input, and a 

combination of both changes. In a subset analysis of cases with high WM 

lesion volumes, robust tissue segmentation performance was maintained.  

T2-FLAIR-only GIF also maintained the demonstration of biological effects in 

the study population, as subject age remained a highly significant association 
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with GM tissue volume. The age-related effect sizes were of a similar 

magnitude between T1 and T2-FLAIR GIF. 

These results support the potential utility of T2-FLAIR-only automated brain 

tissue segmentation as a clinical tool for brain volume analysis. Further work 

would be needed to establish its validity in other MS phenotypes where there 

is likely to be more marked parenchymal atrophy present. Currently it is not an 

expected element of standard clinical care to report the neurodegenerative 

aspect of MS. Even though it is recognised as an important biomarker in the 

research setting, it faces barriers to clinical adoption (Sastre-Garriga et al. 

2020). Automated segmentation tools could assist in this translational 

challenge (Sormani et al. 2017), however technical hurdles such as the one 

explored here need to be addressed. Many clinical centres still use a non-

volumetric T2-FLAIR sequence in their MS protocols, and there are useful 

tools that have been shown to be able to measure central atrophy accurately 

from heterogeneous 2D T2-FLAIR data (Zivadinov et al. 2018). However there 

is increasing adoption of a 3D T2-FLAIR sequence by clinical centres for their 

MS imaging in line with the most current guidance (Filippi et al. 2019; Saslow 

et al. 2020; Sastre-Garriga et al. 2020), in parallel with an increasing clinical 

interest in adoption of quantification techniques, making this work timely and 

relevant.  

5.4.3 Field strength and acquisition 

This study has shown that T2-FLAIR-only tissue segmentation is robust, with 

the application of small multiplicative differences between volumes obtained 

with T1-based segmentation. There is some variation in performance between 

field strengths, with differences in the multiplicative factors and slightly lower 

variance at 3T than 1.5T. As already discussed, WM lesion volume results 

were overestimated at 1.5T. These points should be considered when planning 

to implement automated segmentation methods for clinical use; results for 

different patients and at different timepoints may not be directly comparable if 

there is a change in field strength (Han et al. 2006; Lysandropoulos et al. 

2016).  

Technical differences between scanners and acquisition parameters can 
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impact on the performance of automated segmentation algorithms, even within 

a single field strength (Biberacher et al. 2016), which is a fundamental issue to 

consider in the clinical setting. Automated segmentation methods utilising T1 

images have been shown to be sensitive to differences in sequence 

parameters on the same scanner amounting to volumetric errors of 4-5% at 

1.5T, which would obscure biological effects (Haller et al. 2016). This issue is 

compounded by the limited experience to date in standardising T2-FLAIR 

acquisition protocols, in contrast to the advances that have recently been seen 

with T1 imaging standardisation (George et al. 2019; Jack et al. 2015). 

Initiatives like ADNI have been leading the efforts to standardise protocols and 

minimise these sources of bias (Brewer 2009).  

Similar work towards standardisation of 3D T2-FLAIR acquisition may address 

a significant amount of variability, at least across a single clinical service 

initially and ultimately across centres to facilitate research and data sharing. 

Harmonisation initiatives for T2-FLAIR with direct applicability to MS imaging 

are being championed by MAGNIMS, the North American Imaging in MS 

Cooperative (www.naimscooperative.org, NAIMS 2021) and the Consortium 

of Multiple Sclerosis Centres (www.mscare.org, CMSC 2021), (Saslow et al. 

2020; Wattjes et al. 2021). Adoption of these efforts will facilitate validation and 

interpretation of results of automated segmentation algorithms in the clinical 

setting.  

5.4.4 Limitations 

Several limitations affected this study. Whilst the dataset was multi-centre and 

multi-vendor, therefore providing a realistic mimic of a clinical dataset, subject 

numbers per centre were not balanced and image homogeneity was not 

guaranteed. Use of a CIS cohort meant that it was difficult to address the effect 

of disease-mediated brain atrophy on T2-FLAIR-only brain tissue 

segmentation, which is important for MS imaging. A subset analysis of CIS 

subjects from the cohort with high lesion loads did however show consistently 

good results for segmentation performance. Additionally, scan-rescan 

reproducibility within each field strength was not tested for brain segmentation 

measurements due to the lack of an available dataset.  

http://www.naimscooperative.org/
http://www.mscare.org/
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5.4.5 Conclusions 

This study has shown that T2-FLAIR-only automated brain volume 

segmentation is comparable to conventional T1 or dual-modality methods, with 

lower lesion segmentation reliability at lower field strengths. Future work with 

other MS phenotypes, combined with efforts towards clinical image acquisition 

harmonisation, would further improve clinical validation. This important 

translational task is one aspect of a wider challenge. For the provision of fully 

automated, robust quantification methods for clinical use, ongoing efforts need 

to be pursued in terms of standardisation of imaging protocols and validation 

of quantification methods at the individual patient level. These issues must be 

addressed if WM lesion and brain volume analysis is to be widely adopted and 

meaningfully utilised in radiological MS reporting for patient benefit. 
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5.5 Towards a reporting tool for clinical MS application 

5.5.1 A FLAIR-based MS reporting tool 

Based on the previous work, I have been working towards the design and 

construction of a quantitative report based on data extracted from FLAIR 

images for use in clinical MS reporting. 

The aim is to summarise and present the quantitative results for an individual 

MS patient contextualised with normative and MS population reference data. 

The reporting tool would aim to assist the radiologist’s routine reporting 

workflow. It would focus on the analysis of demyelinating lesions, and 

supplement this with pertinent regional brain volume information.  

Useful information that could be extracted would include volume, number and 

regional distribution of white matter lesions. Lesion load could be presented 

within the four diagnostic regions (periventricular, juxtacortical, deep white 

matter, and infratentorial) that define dissemination in space. Providing 

regional lesion volume data may be more useful than a single summated WM 

lesion volume which may be difficult to interpret longitudinally, given that 

lesions may shrink as well as grow or appear de novo between timepoints 

(Dwyer et al. 2018). In addition, the individual’s WM lesion load could be 

contextualised with reference data taken from a healthy control population and 

a group of subjects with MS.  

Given the challenges to accurate interpretation of summated WM lesion 

volume measurements, quantification of brain volumes may arguably be more 

useful. These could be presented in reference to the expected age-matched 

normative reference and the MS population would provide an indication of the 

severity of neurodegeneration affecting an individual patient. However 

providing generalisable reference ranges in an MS population of mixed 

disease durations is challenging and likely to be inherently uncertain. In a 

similar vein to the quantitative report for dementia discussed in chapter 4, a 

graph displaying global brain volume as measured by brain parenchymal 

fraction (BPF) plotted on the reference data, as well as a ‘rose plot’ of focal 

regions that are known to be particularly affected by MS – for example the 

thalamus, precuneus, hippocampus, and brainstem – may be included. 
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There is an interesting opportunity to include an additional QIB that has been 

shown to be useful in an MS population – namely predicted brain age (Cole et 

al. 2020). The brain age model uses machine learning to predict chronological 

age from MRI data (Cole and Franke 2017). It can be applied to identify 

individuals with a gap between their chronological age and the accelerated 

ageing of their brain as a potentially important imaging biomarker which can 

predict mortality (Cole et al. 2018). It has previously been used to demonstrate 

a ‘brain age gap’ between chronological age and accelerated brain ageing due 

to a range of pathologies, including dementia (Franke and Gaser 2012), 

schizophrenia (Koutsouleris et al. 2014) and traumatic brain injury (Cole, 

Leech, and Sharp 2015). When it was applied to an MS patient cohort it was 

sensitive to disease-related brain atrophy and correlated with clinical 

progression (Cole et al. 2019, 2020). Further studies are needed to establish 

whether a cross-sectional brain age metric is useful for prognostication in MS. 

To date, the technique has not yet been fully applied to volumetric FLAIR 

images. Inclusion of this relatively new QIB that has been validated in the 

research setting into a reporting tool, following technical validation with FLAIR 

input, would allow for its technical and clinical validation with clinical grade 

data.  

5.5.2 Methods 

5.5.2.1 Reference data 

In order to work towards the development of an MS reporting tool, appropriate 

FLAIR reference data from healthy control and MS populations is being 

established having been granted UCL ethical approval.  

Several open-source datasets have been identified which include a 3D FLAIR 

sequence in their protocols. However, the majority of these datasets contain 

older subjects above the age of 50, whereas MS is a disease that commonly 

begins in younger adults. Therefore, the MAGNIMS group was invited to 

contribute data for QNI and FLAIR brain age validation. This MAGNIMS 

collaboration has meant that MS centres from across Europe have shared 3D 

T1 and FLAIR data from healthy control populations covering an expanded 

age range, from 18 to 93 years. The data sources are now explained.   
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EPAD is the European Prevention of Alzheimer’s Disease Consortium (ep-

ad.org, EPAD 2021), which is conducting multi-site pan-European imaging and 

cognitive and biomarker research (Solomon et al. 2018). Those EPAD subjects 

with an overall Clinical Dementia Rating (CDR) score of zero were selected to 

be included in this healthy control reference population. 

ADNI-3 is the latest cohort of the Alzheimer’s Disease Neuroimaging Initiative 

(adni.loni.usc.edu/adni-3/, ADNI 2021). Those subjects defined as healthy 

controls by the study were included. NIFD is the common name given to the 

University of California San Francisco (UCSF) frontotemporal lobar 

degeneration neuroimaging initiative (memory.ucsf.edu/research/studies/nifd, 

UCSF 2021). The control group from this study was used here. MPI refers to 

the Max Planck Institute Leipzig Mind-Brain-Body dataset (Mendes et al. 

2019).  

The following MAGNIMS centres have contributed data so far: Vall d’Hebron 

University Hospital, Barcelona, Spain; the San Raffaele Scientifica Insititute, 

Milan, Italy; University of Siena, Siena, Italy; and the Medical University Graz, 

Graz, Austria. More data is anticipated from MAGNIMS centres in Oxford, 

Naples, Hanover, Oslo and Mainz.  

5.5.2.2 Processing pipeline 

Each subject’s 3D FLAIR scan is processed using the following steps. Firstly 

N3 bias field correction is performed to correct for intensity nonuniformity 

(Sled, Zijdenbos, and Evans 1998). Next, lesion segmentation is performed 

using the nicMS algorithm (Valverde et al. 2017), which is a freely available 

patch-based convolutional neural network (CNN) method 

(github.com/sergivalverde/nicMSlesions/, Valverde 2021). Lesion 

segmentation results are then used to perform lesion filling (Prados et al. 

2016). Brain tissue segmentation with GIF is then performed using the lesion-

filled image (Cardoso et al. 2015). BPF is computed from the GIF outputs. 

Finally, the WM is split into layers which define lesion location (Sudre et al. 

2018), and each lesion is assigned to one of the following location definitions: 

cortical GM, juxtacortical, deep WM, periventricular, cerebellum, brainstem, 

deep GM, leukocortical, or mixed WM/GM.  

http://ep-ad.org/
http://ep-ad.org/
http://adni.loni.usc.edu/adni-3/
http://memory.ucsf.edu/research/studies/nifd
https://github.com/sergivalverde/nicMSlesions/
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5.5.3 Preliminary results 

The normative reference dataset characteristics are described in Table 5-9. 

Graphs in Figure 5-11 show the age distribution of this preliminary healthy 

control reference dataset followed by scatter plots of lesion count, lesion 

volume, BPF, cortical GM and WM volumes. Example lesion segmentation 

results from the processing pipeline are shown in Figure 5-10. 

Table 5-9. Summary characteristics of each component of the healthy control reference 
dataset. M=male, F= Female. SD=standard deviation.  

Data source 
Number of 

subjects 
M:F 

Age 

Mean (SD) 
Field Strength 

EPAD 832 347:485 64.2 (6.8) 1.5T and 3T 

ADNI-3 99 48:51 76.5 (8.0) 3T 

NIFD 116 51:65 62.9 (7.6) 3T 

MPI 86 73:13 34.4 (17.7) 3T 

Barcelona 46 13:33 44.5 (9.7) 3T 

Milan 186 100:86 33.5 (11.9) 3T 

Siena 27 15:12 36 (8.4) 3T 

Graz 33 13:20 30.5 (8.9) 3T 

Total 1425 660:765 57.2 (16.5)  

 

Figure 5-10. Example lesion segmentation results for a healthy control 
subject from the ADNI cohort of the normative reference database.  
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Figure 5-11. Results for the healthy control reference dataset. BPF = brain parenchymal fraction. CGM = cortical grey matter, WM = white matter, 
ml=millilitres. 
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5.5.4 Ongoing work towards an MS reporting tool 

Establishing reference data forms the basis of the MS quantitative report. The 

strengths of this healthy control reference dataset include its multi-centre 

nature and good coverage of the age range of 18-93 years. Ongoing work is 

focusing on establishing a reference MS population dataset that will be 

processed using the same segmentation pipeline.  

The aim will be to display the healthy control and MS reference curves on a 

single graph, showing the differences between brain and lesion volumes in 

healthy versus subjects with MS. A gap between the two curves for brain 

volumes would reflect the neurodegenerative element of MS pathology (as 

depicted in Figure 5-12). The individual subject whose images are processed 

using the quantitative reporting tool would have their measurements plotted in 

the context of both of these reference populations.  

 

Figure 5-12. Difference in brain volume with age between healthy and MS populations. 
Figure from Giovannoni et al. 2016. 

 

A mock-up version of the planned final MS quantitative reporting tool is shown 

in Figure 5-13. Patient and scan details would be followed by snapshot 

segmentation results overlaid on axial slices of the subject’s FLAIR scan. 

Results for lesion load and lesion count per diagnostic region would be 

tabulated alongside normalised brain volume and the subject’s predicted brain 

age.  
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Figure 5-13. A plan for the content and layout of a quantitative report for MS. 

Lesion load per region could then be represented using a bullseye plot, 

accompanied by a scatter plot of lesion volume by age which compares healthy 

and MS reference populations. Regional brain volumes that are particularly 

relevant in MS could be presented using a traffic light system referenced 

against the healthy control population. Finally, BPF could be displayed on a 
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reference graph which presents an MS and healthy control population plotted 

simultaneously.  

Performing pre-use clinical validation in the form of credibility and accuracy 

studies, using similar methods to those demonstrated in previous chapters, will 

be fundamental for assessing the clinical utility and potential benefit of 

implementing this MS quantitative report. Future work that could potentially 

build on this initial report construction would be to work towards a longitudinal 

assessment tool which could quantify changes in brain and lesion volume over 

time and calculate the likely disease trajectory. There are also potentially 

useful extensions to the brain age concept, for example modelling predicted 

EDSS based on brain imaging appearances, which would require rigorous 

validation. 
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6. Structured reporting for gliomas based on 

VASARI criteria 
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6.1 Introduction 

6.1.1 Gliomas 

Gliomas are a diverse group of tumours that arise from the glial cells of the 

central nervous system. They are the commonest intrinsic primary brain 

tumours and account for the majority of malignant brain tumours (Ostrom et al. 

2017). Gliomas arise from various glial cell types and are classified into four 

World Health Organisation (WHO) grades which reflect their pathological and 

molecular genetic features (Louis et al. 2016). Grades I and II are also referred 

to as low-grade gliomas (LGG) and grades III and IV as high-grade gliomas 

(HGG). Higher grading is associated with more aggressive features and lower 

median survival. While LGGs have lower mortality, they are associated with 

morbidity including epilepsy and impaired cognitive function, and there is a 

high recurrence rate after LGG resection (Buchlak et al. 2021).  

Molecular genetic features appear to be the most important in determining the 

aggressiveness of glioma subtypes, which can differ from their histological 

subtypes (Thust et al. 2018). The WHO classification includes three main 

categories of adult diffuse glioma based on isocitrate dehydrogenase (IDH) 

gene mutation and chromosomal co-deletion of chromosome arms 1 and 19 

(1p/19q co-deletion). Gliomas of equivalent cell type and grade that are IDH 

mutant have a more favourable prognosis compared to those that are IDH-

wild-type (Suzuki et al. 2015). Definitive glioma grading requires tissue for 

histology, the results of which determines ongoing treatment strategy. The 

mainstay of treatment is maximum safe surgical resection and radiotherapy 

often combined with adjuvant temozolomide chemotherapy (Stupp et al. 2005). 

6.1.2 Clinical MRI for gliomas 

Features on structural MRI can help neuroradiologists to predict glioma type 

and severity, as well as being fundamental to surgical planning and monitoring 

of treatment response. Certain important structural MRI features are more 

suggestive of low- or high-grade pathology. If a glioma appears low-grade it 

may be managed by interval imaging assessment as opposed to urgent 

neurosurgical intervention. Whilst structural MRI is not used in isolation when 
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making these important assessments, objective agreement and clear reporting 

of structural MRI features facilitates diagnosis and the subsequent decision-

making process for the multidisciplinary team and the patient. 

The use of multi-sequence MRI protocols allow various glioma features to be 

highlighted according to underlying tissue characteristics, including peri-

tumoural oedema / infiltration, tumour necrosis and haemorrhage. However, it 

should be noted that conventional MRI signal properties cannot distinguish, for 

example, between peri-tumoural oedema from tumour invasion. A typical 

protocol would include pre- and post-contrast enhanced T1-, T2- and FLAIR-

weighted sequences as well as diffusion weighted imaging (DWI). This 

protocol is recommended as the minimum for clinical use by the European 

Society of Neuroradiology (ESNR) (Thust et al. 2018), based on clinical trial 

standards set out by the European Organisation for Research and Treatment 

of Cancer (EORTC) and the United States National Brain Tumour Society 

(NBTS) in the EORTC-NBTS protocol (Ellingson et al. 2015).  

Structural and DWI sequences are often supplemented with advanced imaging 

to further explore specific characteristics, for example perfusion weighted MR 

imaging and magnetic resonance spectroscopy, which can further elucidate 

tumour subtype or increase the suspicion of high grade features (Fouke et al. 

2015). These advanced imaging techniques are used by approximately two-

thirds of European imaging departments, as reported in a recent survey of 220 

centres (Thust et al. 2018).  

The heterogeneity of gliomas is reflected by the wide variety of associated 

imaging features. Much research has focused on which MRI features are 

associated with particular histological and molecular genetic features, with 

subsequent management and prognostic relevance. Prediction of glioma 

genotype from imaging phenotypes – referred to as radiogenomics – is 

developing apace (Smits 2021).  The preoperative MRI study is key for 

neurosurgical planning, by informing whether the patient should undergo 

biopsy or resection, delineating safe resection margins, and highlighting the 

potential risk of complications and involvement of eloquent brain functions. 
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Tumour size and location features additionally inform oncological management 

by determining suitability for radiotherapy.  

6.1.3 Aims of this chapter 

Current clinical neuroradiology reporting practice relies on the individual style 

of the neuroradiologist, informed by their own training and experience. While 

certain imaging features may be frequently mentioned in reports for gliomas 

others may be less reliably included. In particular, communication of 

quantitative information like lesion size or proportion of enhancement may 

benefit from standardisation for diagnostic characterisation as well as 

monitoring any change in the tumour appearance on serial imaging. Work 

towards structured reporting of brain tumours in the clinical setting has shown 

increased reliability of feature detection compared to free-text reporting (Bink 

et al. 2018; Zhang et al. 2019). To this end, the American Society of 

Neuroradiology, American College of Radiology and the Radiological Society 

of North America (RSNA) have collaborated on a Common Data Elements 

(CDE) project, which sets out to achieve agreed uniform essential concepts or 

features that should be included in a radiology report for a given clinical 

indication. 

The Visually Accessible Rembrandt Images feature-set or VASARI criteria 

(wiki.cancerimagingarchive.net) are a set of 26 standardised imaging features 

which describe characteristics of gliomas on structural MRI. They have been 

validated based on the glioma literature as the most useful set of imaging 

features from a large dataset of baseline HGG and LGG imaging studies, and 

were shown to correlate with tumour genotype on pathological assessment 

(Gutman et al. 2013). They have been shown to be effective in predicting 

treatment outcome and survival in the context of both low and high grade 

gliomas (Wangaryattawanich et al. 2015; Zhou et al. 2017). 

The CDE project suggests as a key example that a set of CDEs could be 

directly derived from the most valuable VASARI criteria (Jordan and Flanders 

2019). These agreed elements would include terminology and numerical 

grading systems, and could also incorporate quantitative imaging biomarkers 

extracted by imaging post-processing software. A standardised approach also 
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has secondary benefits to teaching, research and quality improvement 

(Flanders and Lakhani 2012).  

To determine how imaging studies are currently being reported for patients 

with glioma, this chapter will assess free-text reporting by neuroradiologists at 

a tertiary centre against a standardised set of reporting criteria derived from 

VASARI. The aim is to identify which information is most commonly missed 

and, upon a second read of the images, to also establish whether any 

potentially important features were missed in the free-text reports that would 

inform the ongoing care of the patient.  

A wide variety of reporting style and content is anticipated, and by comparing 

free-text report content to a standardised reporting method based on VASARI, 

important missing information may be identified. Within the context of MRI 

biomarker translation for clinical use that I set out in Chapter 2, this study 

focuses on steps 1 and 2 of the translational framework, namely establishing 

the clinical use case and identifying potential imaging features of interest for 

translational development of quantitative imaging biomarkers for glioma 

reporting. I anticipate that it will inform the design of a useful reporting structure 

for standardised glioma reporting, which may combine structured report and 

quantification elements, with a view to facilitate both effective communication 

with the multidisciplinary team and patient management.  
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6.2 Methods 

6.2.1 Case selection 

Current glioma reporting in a tertiary neuroradiology centre (Lysholm 

Department of Neuroradiology, National Hospital for Neurology and 

Neurosurgery, Queen Square, London, UK) was assessed. Local clinical 

service improvement approval was given for this study. A hundred baseline 

reports were retrospectively identified for adult patients (>18 years old) with 

previously unknown gliomas that were either confirmed as glioma on 

histopathology or in the absence of tissue confirmation were judged to be 

glioma by multidisciplinary team meeting (MDT) consensus. These 100 cases 

were identified by review of neuro-oncology MDT meeting lists.  Reports were 

all issued by a consultant neuroradiologist, including from those who provide 

the out-of-hours service. A consultant neuroradiologist was either the sole 

author of the report or was jointly reporting with a specialist neuroradiology 

trainee.  

All reports were included based on the imaging protocol including pre- and 

post-gadolinium contrast enhanced T1-weighted, T2 weighted, FLAIR and 

DWI sequences. There were some cases where the patient has undergone 

two separate scans at baseline, initially without contrast and then contrast-

enhanced, in very short succession. These were recorded as jointly reported 

by two consultants and the free text of each report was combined to 

incorporate all features mentioned. Additional information recorded was 

whether the patient has had a CT scan directly prior to the MRI scan, and any 

histopathology results if available.  

6.2.2 VASARI scoring criteria 

Free text reports were scored against a scoring proforma derived from the 

VASARI criteria. Table 6-1 sets out a brief summary of evidence to date that 

supports each VASARI feature. Features were grouped into the following 

categories: location; size; T2/FLAIR characteristics;  contrast-enhanced T1 

(T1+c) and diffusion characteristics; and all other features, as shown in Figure 

6-1. 



 

177 
 

The scoring form was used to assess each of the 100 free-text reports. If a 

feature was mentioned, it was checked off on the form, with direct quotes from 

the reports recorded. If a reporter had documented that a feature was not 

present, in order to highlight an important negative finding (e.g., ‘there is no 

calcification’), or if a feature was possible (e.g., ‘there may be calcification’), 

this was also recorded. 

Table 6-1. List of VASARI features and a brief description of their clinical utility.  

VASARI Feature Evidence 

Tumour location (f1) High agreement between raters (Gutman et al. 2013; Hyare et al. 2019) 

Side of lesion centre (f2) 
Highest agreement of the VASARI criteria, LGG subtypes can show differences in 

spatial distribution (Wijnenga et al. 2019) 

Eloquent brain (f3) May be associated with IDH mutation status (Hyare et al. 2019) 

Enhancement quality (f4) 
Can be helpful in distinguishing typical IDHwt glioblastoma (rim enhancement) 

from IDH-mutant features (e.g. solid, speckled) (Berberich et al. 2018) 

Proportion enhancing (f5) 
Variably reported to be valuable for genotyping (Su et al. 2019; Zhou et al. 2017) 

and predictive of outcomes (Wangaryattawanich et al. 2015) 

Proportion nCET (f6) Potentially useful biomarker for IDH status in glioblastoma (Lasocki et al. 2017) 

Proportion necrosis (f7) Significant agreement between raters (Gutman et al. 2013) 

Cysts (f8) Useful for prediction of IDH mutation (Maynard et al. 2020).  

Multifocal / multicentric 
(f9) 

Multifocality associated with significantly worse prognosis for glioblastoma (Patil 
et al. 2012) and IDH1 mutation in LGG (Park et al. 2018). 

T1/FLAIR ratio (f10) 
Proportion nCET easier to record and more commonly reported. May predict 

mutation status (Hyare et al. 2019) 

Thickness of enhancing 
margin (f11) 

Difficult for human eye to accurately and consistently measure. Could be a useful 
genetic discriminating feature in diffuse midline gliomas (Chauhan et al. 2021). 

Definition of enhancing 
margin (f12) 

Not a widely investigated or useful sign in a recent systematic review (Lasocki et 
al. 2020) 

Definition of non- 
enhancing margin (f13) 

High agreement between raters, and reported as a predictor in an IDH typing 
study (Darlix et al. 2017). 

Proportion oedema (f14) 
Not possible to reliably distinguish oedema and non-enhancing infiltrative glioma 

components (Eidel et al. 2017) 

Haemorrhage (f16) 
Can be difficult to reproduce between raters and/or distinguish from 

mineralisation. Some evidence of association with 1p19q codeletion  (Lasocki et 
al. 2020).  

Diffusion characteristics 
(f17) 

Can predict IDH mutation status (Xing et al. 2017) and differentiate HGG and LGG 
(Zhang et al. 2017). 

Pial invasion (f18) Possible prognostic differentiator in IDH wild type LGG (Park et al. 2020) 

Ependymal extension 
(f19) 

Associated with poorer outcomes for GBM (Mistry et al. 2017) 

Cortical involvement (f20) Low reader agreement. Possible prognostic indicator in LGG (Park et al. 2020) 

Deep white matter 
invasion (f21) 

Difficult to be sure of whether this is present on structural MRI but suspicion of 
major tract involvement could inform advanced imaging. May be predictive of IDH 

mutation status (Hyare et al. 2019). 
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nCET crosses midline (f22) May be associated with IDH mutation status (Shen et al. 2020). 

CET crosses midline (f23) May be associated with IDH mutation status (Shen et al. 2020). 

Satellites (f24) Captured under (f9) 

Calvarial remodelling 
(f25) 

Indolent glioma subtypes are usually recognised well enough without relying on 
this sign, not considered useful in (Hyare et al. 2019). 

 

6.2.3 Second read of images and free text reports 

Following the initial read of the free-text reports and recording of contents using 

the proforma, a ‘second read’ of the images was performed. The same 

proforma was used to record the findings of the second read. Where there was 

any doubt over a feature, these cases and their second read structured reports 

were reviewed with an expert consultant neuroradiologist for consensus. 

Original report contents as recorded in the proforma were then compared to 

the second read reports and discrepancies identified. A score was given to 

each case to reflect the findings of any differences between original and 

second reports: 1. Any differences unlikely to affect interpretation; 2. Some 

important differences, however unlikely to change interpretation; 3. Some 

important differences which may impact on scan interpretation.
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Figure 6-1. Glioma report assessment proforma based on VASARI criteria. nCET = non-contrast-enhancing tumour.  

T1+c = T1 + contrast. DWM = deep white matter. 
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6.3 Results 

6.3.1 Subject demographics 

A hundred patients with glioma were included who had undergone a baseline 

MRI which detected a glioma between the years 2017 and 2021. Their age 

range was 17-87, mean (SD) 54.4 (16.8).  Sixty-six of these patients had a CT 

scan of their head in the days immediately before their MRI. On histopathology, 

66% were found to have an HGG (WHO grade III or IV), 14% LGG, and 20% 

had no histopathology (of this group, 14 were suspected HGG and 6 suspected 

LGG).  

6.3.2 Radiology reports 

Reports were from the previous five years: 3 from 2017, 7 from 2018, 41 from 

2019, 41 from 2020 and 8 from 2021. Most reports were by 21 individual 

consultant neuroradiologists, who reported 82 cases in total. Joint reports with 

two consultants involved were issued in 12 cases. Six reports were provided 

by the out-of-hours consultant service. The number of reports issued by each 

of these 23 sources is depicted in Figure 6-2, which shows that there is a wide 

variation of how many reports were issues by each, ranging from one to 12. 

 

Figure 6-2. Bar chart showing the number of reports produced by each author. The letters 
signify individual consultant radiologists. OOH = out of hours service. JOINT = joint reports. 
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6.3.3 Features reported 

The features that were included within the free-text reports by group of 

characteristics were recorded using the VASARI-based proforma (that is, 

location, size, T2/FLAIR, T1+c and diffusion, and other features). Graphs 

depicting the results of each category of characteristics as reported in read 1 

and read 2 are displayed in Figure 6-3. 

6.3.3.1 Location Characteristics 

Almost all reports (99%) mentioned the laterality of the tumour and epicentre 

was recorded in 97%. Only 12% mentioned the involvement of eloquent brain 

regions. Twenty-one percent of reports stated that the tumour was either 

multifocal or multicentric with a further 5% stating that this was a possible 

feature and 43% stating that the tumour was not multifocal, as an important 

negative. The number of lobes affected was reported in 84% of cases.  

6.3.3.2 Size characteristics  

None of the reports included a volumetric measurement of the tumour. Only 

20% provided measurement in three planes. Two percent included two plane 

measurement, 7% gave a measurement in one plane, and 33% used a 

descriptive word only (e.g. ‘large’ or ‘small’). The remaining 38% did not 

provide any measurement or description of tumour size, as shown in Figure 

6-4. 



 

 
 

1
8
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Figure 6-3. Results by set of features shown as bar graphs; free-text features ‘1st read’ are shown in blue, and  
structured report features ‘2nd read’ are shown in orange.  
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Figure 6-4. Pie chart showing how tumour size was reported. 

 

6.3.3.3 T2/FLAIR characteristics 

The proportion of nCET/oedema was not quantified in any of the reports. 

Thirty-five percent gave a qualitative assessment of the proportion however, 

using expressions like ‘there is marked surrounding oedema’. A further 28% 

mentioned that oedema was present without using a word to describe its 

proportion, and 2% mentioned that there was no oedema as an important 

negative (e.g., ‘there is no peritumoural T2/FLAIR hyperintensity’). The 

definition of the non-enhancing margin was only mentioned in 12% of cases, 

using descriptions such as ‘well defined’, ‘irregular’, and ‘heterogeneous’. 

Crossing or contact with the midline was mentioned by 19%, and a further 7% 

mentioned this as an important negative. The T2/FLAIR mismatch sign was 

mentioned more often as an important negative, in 13% of cases, and only as 

being present in 1% of cases. No reports mentioned the T1/FLAIR ratio. 

6.3.3.4 T1+c and diffusion characteristics 

Twelve percent of reports included a descriptive word denoting proportion of 

enhancement, using expressions like ‘there is moderate enhancement’. A 

further 14% mentioned that there was no enhancement. However, 
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substantially more reports included a description of the enhancement quality, 

at 80% of reports. Descriptions used included ‘patchy’, ‘peripheral irregular’, 

‘homogeneous’ and ‘focal’. The definition of the enhancing margin is described 

by 1% of reports. Nine percent of reports state that the contrast enhancing 

tumour contacts the midline, and a further 2% include it as an important 

negative. The presence of necrosis with subjective description of its proportion 

was included in 26% of reports, using phrases like ‘predominantly necrotic’ and 

‘small areas of necrosis’, and a further 1% including it as an important negative. 

Description of diffusion characteristics was more consistently included, by 57% 

of reports, using descriptions such as ‘reduced diffusivity’ and ‘central diffusion 

restriction’. In 12% this feature was included as an important negative (‘there 

is no restricted diffusion’). Diffusion was not quantified in any of the reports.    

6.3.3.5 Other features 

Cysts were mentioned as being present in 31% of reports and as possible in 

1%. Calcification was reported as present in 5% of cases, being possible in 

another 5%, and absent in 3%. Haemorrhage was mentioned as being present 

in 31% reports, with a further 5% saying it was possible but uncertain, and 11% 

including it as an important negative. Pial invasion was reported to be present 

in 5% of reports, possible in 1% and absent in 7%. Ependymal extension was 

mentioned as present in 16% reports, and 3% included the feature as an 

important negative. Cortical involvement was mentioned by 30% of reports, as 

possible by 1% and as an important negative by 2%. Deep white matter 

invasion was reported in 23% of cases, as possible in 1% and as an important 

negative in 1%. Calvarial remodelling was a feature mentioned in 3% of 

reports, with a further 1% mentioning it as an important negative.  

6.3.4 Second read of images 

6.3.4.1 Location characteristics 

All cases were described in terms of their laterality, epicentre, and number of 

lobes affected. Forty-one percent were recorded as involving eloquent brain 

regions as defined by the VASARI features (that is, involving one of speech 

motor, speech receptive, motor and vision anatomical regions). This was in 
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contrast to the 12% of cases where this was mentioned in the original reports. 

A similar number of cases to the original reports were described as multifocal, 

at 22%.  

6.3.4.2 Size characteristics 

All cases received a measurement of the tumour in three planes, as per the 

VASARI definition.  

6.3.4.3 T2/FLAIR characteristics 

All cases were described in terms of proportion of nCET/oedema and the 

definition of their non-enhancing margin. Twenty-nine percent of cases were 

reported to cross or contact the midline, in contrast to 19% of first reports.  

6.3.4.4 T1+c/diffusion characteristics 

All cases were described in terms of proportion enhancing, proportion 

necrosis, and their diffusion characteristics. Enhancement quality and 

definition of the enhancing margin was described in 88% of cases. Enhancing 

tumour crossing or contacting the midline was reported in 12% of cases, 

slightly more than the first reads which totalled 9%.  

6.3.4.5 Other features 

Cysts were reported in 34% of cases, slightly more than the 31% in first 

reports. Likewise for calcification, 8% of cases were reported as being positive 

for calcification in contrast to 5% of first reports, with a further 5% reported as 

having possible calcification. Haemorrhage was reported in 31% of cases and 

possible in 5%, which exactly matched first report frequencies. Pial invasion 

was reported in 11% of cases and possible in 6%, whereas it was only 

mentioned in 5% of first reports. Ependymal extension was reported in 19% 

and possible in 8%, which had been reported as present in 16% of first reads. 

Cortical involvement was found in 77% of cases, whereas this had only been 

mentioned in 30% of first reads. Forty percent of cases were reported to 

involve deep white matter tumour invasion, greater than the 23% mentioned in 

first reports.   
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6.3.5 Outcome grading 

A pre-defined grading system was applied to each case by comparing the 

contents of first read and second read reports, an example of which can be 

seen in Table 6-2 and Figure 6-5. The large majority of cases, 82%, were 

assessed as grade 1, i.e. any differences would be unlikely to change overall 

interpretation. For all these cases there were additional features that were 

covered in the second read report, which contributed to a clearer picture of the 

imaging findings, however they did not cause a significant change in overall 

interpretation. These features included providing a three-plane measurement 

of tumour size.  

For 12% of cases which were graded at level 2, the additional features included 

in second read reports were significant, however did not reach the threshold 

for affecting the overall interpretation of the scan. For example, these were 

cases where eloquent brain or deep white matter invasion was not described 

in the original report, which would be important for surgical planning, but the 

tumour was inoperable, or the patient was too frail to undergo surgery. The 

reporters that gave level 2 reports were: H, I, M, OOH, R, who with one report 

each at level 2; U, with two reports at level 2, and JOINT reports, with three 

reports at level 2.  

Finally, 6% of cases were graded at level 3, where the important features that 

had been missed out of the first read reports may have had an impact on how 

the case would be interpreted. This included cases where involvement of 

eloquent brain or deep white matter was not described and it would be useful 

for surgical planning. Two cases underwent review of the images at MDT, 

where further functional MRI and diffusion tensor imaging tractography was 

recommended due to suspicion of involvement of eloquent areas. Two cases 

underwent emergency debulking before they could be reviewed at MDT. The 

final two cases were misreported as extra-axial.  The reporters who gave level 

3 reports were: I and OOH with one level 3 report each, and N and U with two 

level 3 reports each.  
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As numbers of report per reporter are small and there is a wide variety in the 

number of reports made by each, it is difficult to compare inter-rater 

performance. Comparing the three raters who wrote the most reports, T, U and 

JOINT, T’s reports were all at level 1, U had two reports at level 2 and two 

reports at level 3, and there were three JOINT reports at level 2. 

Table 6-2. An example of first and second read comparison. This case was rated as level 3 – 
the extra features highlighted in red text were assessed to be significant to interpretation. 

Feature Read 1 Read 2 

Laterality Right Right 

Epicentre Frontal Frontal 

Eloquent brain  Yes 

Multifocal No No 

Number of lobes 1 1 

Size No Size 3 planes 

Proportion nCET/oedema Moderate 50% 

Definition of non-enhancing margin  Ill defined 

nCET crosses/contacts midline  Yes 

T1/FLAIR ratio  Mixed 

Proportion enhancing  10% 

Enhancing quality Irregular Marked/avid 

Proportion necrosis Large component 40% 

CET contacts midline  No 

Definition of enhancing margin  Well defined 

Diffusion description Free Facilitated 

Cysts Yes Yes 

Calcification  No 

Haemorrhage Yes Yes 

Pial invasion  Yes 

Ependymal extension  No 

Cortical involvement  Yes 

Deep white matter invasion  Yes 

Calvarial remodelling  No 

  

 

Figure 6-5. Axial T2 (left) and contrast enhanced T1 (right) images shown for the case 
reported in table 2. 
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6.4 Discussion 

One hundred baseline clinical reports for glioma were assessed for their 

contents against the VASARI feature set. A second read of the imaging series 

provided a comparison. Specific features were found to be consistently under-

reported in free text reports. These omissions fall into two broad categories. 

The first category is expressing size or semi-quantitative properties. Tumour 

size was not reported at all in 38% of cases and was given a descriptive word 

in a further 33%. Additionally, there was a lack of reporting features of 

proportion, i.e. proportion of enhancement, necrosis, and oedema/infiltration. 

The second category relates to the documentation of detailed anatomical 

information. This includes missed descriptions of cortical involvement, possible 

deep white matter invasion, and the impact on eloquent brain regions.  

Addressing these features in the baseline preoperative report may provide a 

more complete description that could facilitate multidisciplinary decision 

making and treatment planning. These decisions include whether the patient 

would benefit from any further imaging, for example if the baseline report 

raised the possibility of deep white matter tract or eloquent brain involvement, 

diffusion MRI and fibre tractography and functional MRI may be performed 

next. While these features are likely to be highlighted by the radiologist and 

neurosurgeon at an MDT review of the images, describing these features in 

the baseline report may mean that the patient undergoes advanced imaging 

more quickly, and that potentially all their imaging could be reviewed at the 

same MDT rather than having to be recalled prior to the surgical management 

plan being finalised.  

By performing a third stage of analysis where first and second reads were 

compared and classified based on the degree of their discrepancies, there 

were cases identified where this type of additional information may have 

assisted in reaching management decisions. While no adverse outcomes were 

associated with missing information in baseline reports, since all cases were 

reviewed at MDT meetings and discussed by experts, conversely it was 

deemed that the omitted information may have facilitated or eased the pathway 

of patient management had it been present. This is difficult to define and is an 
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inherently a subjective judgement, however it can be supported in all cases by 

evidence from the patient’s subsequent management records. For example, 

the patient underwent more advanced imaging following an MDT, when the 

anatomical features raising suspicion of involvement of eloquent brain areas 

had not been mentioned in the report. Another example is of a tumour being 

mistakenly reported as a likely meningioma, where more careful review of 

features such as pial invasion and cortical involvement would have helped to 

classify the tumour as intra-axial.  

A larger minority of cases were classified as grade 2, where omissions were 

important but deemed not to meet a threshold of impacting patient 

management. This category included cases where the omissions were 

equivalent to grade 3 cases in terms of their potential significance, but where 

the patient was significantly frail, surgical management was not considered 

viable and instead the patient received best supportive care. In other grade 2 

cases the tumour itself was deemed inoperable due to its size or location, and 

this mitigated the importance of detailed feature description. There were few 

cases where there was a significant straightforward human error, which 

ultimately could be corrected and would be unlikely to affect patient 

management, for example where the radiologist described the tumour as being 

on the left when it was actually on the right. These human error events may be 

reduced by use of structured reporting. Since the sample used contained 

reports by so many different radiologists and since the split between them was 

uneven it is difficult to make conclusions about inter-rater performance. The 

six cases with level 3 errors were made by four reporters who had reported 

between 2 and 12 cases. Of the twelve joint reports, three contained level 2 

errors. 

6.4.1 Structured reporting 

Structured reporting offers several other potential benefits in the context of 

clinical glioma reporting. In free-text reports, the absence of certain features is 

inconsistently mentioned by reporters in order to highlight these features as 

important negatives. It is clear from the results that important negatives are 

very inconsistently reported. The presence of every feature on a structured 



 

190 
 

report means that by default no important negatives would go unmentioned. 

Structured reporting would also encourage consistency in feature reporting by 

prompting the reporter for clear concise descriptions. Report design could 

specify that a reporter provides a two-plane measurement of the tumour and 

even provide brief instructions for which planes and maximum diameters to 

select. However, the correct balance would need to be achieved. It would be 

important to provide the reporter with the opportunity to combine structured 

and free-text descriptions, since not all features of an imaging examination can 

be captured by the VASARI features. Several examples of this important 

additional information were encountered within this dataset, for example the 

description of a previous stroke, the encroachment of tumour on a major blood 

vessel, and crucially several cases where important descriptions were given of 

midline shift and/or other worrying signs of raised intracranial pressure which 

necessitated urgent neurosurgical review. 

Certain VASARI features are associated with a paucity of evidence or are 

difficult to fulfil, for example providing a measurement of thickness of tumour 

margin. Calvarial remodelling is of limited importance as an indicator of an 

indolent LGG. Therefore the structured report itself may benefit from refining, 

taking into account the features that are both the most relevant and also the 

most under-reported and focusing on those, in order to make the exercise as 

beneficial as possible, while increasing reporter engagement and reducing 

reporting time.  

Structured reports have been shown to increase clinical referrer satisfaction 

due to content and report clarity (Schwartz et al. 2011) and reduce feature 

omissions (Lin, Powell, and Kagetsu 2014). This may be particularly relevant 

for glioma reporting given the wide range of possible features and appearance 

heterogeneity, a radiologist may focus on the same few features for every 

report or miss important additional features due to ‘satisfaction of search’ 

(Ganeshan et al. 2018).  A careful balance must be reached between adopting 

structured reporting for its benefits and still ensuring that the radiologist is able 

to fully express their impressions without introducing perceived or actual 

limitations (Weiss and Langlotz 2008). 



 

191 
 

The baseline reporting template designed by the brain tumour reporting and 

data systems (BT-RADS) focuses on a sub-selection of VASARI features: 

tumour location, FLAIR abnormality, enhancement, and diffusion properties 

(www.btrads.com, BTRADS 2021). It also signposts additional features to 

check including whether there is any evidence of infarction, hydrocephalus or 

significant haemorrhage. Its follow-up report includes a progression score 

based on the Response Assessment in Neuro-oncology (RANO) criteria (Wen 

et al. 2010). BT-RADS reports have been shown to be more concise and 

include less ambiguity than free-text reports (Zhang et al. 2019), however their 

accuracy and completeness have not been compared to reports containing a 

more extensive representation of the VASARI features.  

6.4.2 Glioma imaging biomarker quantification 

Additionally, the potential role of quantification or semi-quantification as part of 

a structured clinical reporting system has not been widely addressed. In a 

survey of 220 European radiology centres, it was clear that very few centres 

used quantification methods to assess parameters like tumour size or ADC 

values (Thust et al. 2018). This may be due to a combination of factors 

including a lack of available software, limited opportunities for user training, 

and reporting time pressures. While there is RANO guidance recommending 

two-plane measurement of tumour size at follow up, most radiologists provide 

a visual descriptive estimate, a finding that has been reproduced in this study. 

Two-plane measurement has been shown to correlate well with tumour 

volume, particularly in HGGs (Galanis et al. 2006). Another study showed that 

two-plane measurement had moderate intra-rater agreement but that a tumour 

had to have grown by 10ml for a radiologist to detect that it had progressed 

(Berntsen et al. 2020).  

Many key glioma features lend themselves to quantification, but as 

demonstrated in this study these are some of the features that are consistently 

under-reported. Tumour irregularity and infiltration combined with the overall 

heterogeneity of glioma features means that manual measurement of 

quantitative features can be highly variable both within and between raters (Bø 

et al. 2017; Vos et al. 2003). 

http://www.btrads.com/
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Automated tumour segmentation methods could therefore have an important 

clinical role, potentially providing whole tumour volumetry as well as tissue 

composition information by segmentation of necrotic, enhancing and 

oedema/infiltration components. Algorithms continue to be technically 

validated against each other in the research setting, commonly through 

initiatives like the annual Brain Tumour Image Segmentation (BRATS) 

benchmark challenge (Menze et al. 2015). Deep learning algorithms have 

shown technical promise with standardised research-quality data (Pereira et 

al. 2016) and less frequently with smaller cohorts of clinical grade data at 

baseline and for longitudinal analysis (Meier et al. 2016; Porz et al. 2014). 

Efforts towards broader feature extraction for HGG neurosurgical planning, 

including distance or overlap of tumour with particular brain structures and 

other VASARI features, have shown promise in a recent large multi-centre 

study (Kommers et al. 2021). Further clinical validation is needed to 

demonstrate that automated deep learning-based segmentation and feature 

extraction can perform reliably across glioma grades despite clinical 

challenges such as robustness to multiple scanners, acquisitions, missing 

sequences, and computational constraints.  

6.4.3 Towards a quantitative report for gliomas 

This study has been focused on the early stages of imaging biomarker 

translation as per the framework I described in Chapter 2. It will contribute to 

setting the clinical picture for further work towards introducing automated 

reporting for gliomas and performing clinical validation in a similar way as I 

have for other disease areas. A structured quantitative report for glioma should 

focus on the features that are difficult to describe, under-reported, and known 

to be of diagnostic and management benefit, which have been highlighted by 

this study. It would require robust technical validation to select a segmentation 

technique that is shown to perform optimally with heterogenous clinical data, 

application of clinically useful brain atlases, and demonstration of accurate 

registration and labelling in the presence of anatomical distortion. 

Standardisation and consistent reporting of key glioma imaging biomarkers in 

the clinical setting has the potential to facilitate streamlined patient 
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management in terms of neurosurgical and/or radiotherapy planning; improve 

communication between clinicians; contribute towards training of radiologists 

and neurosurgeons; promote adoption of precision medicine and provide a rich 

source of clinical data for radiogenomic analysis (Smits 2021). 
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7. Conclusions 
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7.1 Thesis overview 

7.1.1 Summary of work 

Having identified that quantitative imaging biomarkers (QIBs) face many 

barriers to clinical adoption and often lack adequate clinical validation, I began 

by setting a practical framework for the development of quantitative reporting 

tools to promote their effective translation to the clinical neuroradiology setting. 

The framework I set out places clinical validation at the centre of the 

translational process, highlighting the importance of both pre-use validation 

and in-use evaluation. Reframing the technical development of quantification 

methods with a clinical application in mind from the outset is likely to foster the 

development of validated tools that will serve an outstanding clinical need, 

encourage clinician engagement, and prioritise workflow integration.  

I applied elements and principles from the translational framework to the 

development of quantification tools for several disease areas. For hippocampal 

sclerosis (HS) as a cause of focal epilepsy, technically validated methods for 

hippocampal volume and signal intensity measurement were combined and 

used to process normative reference data, from which a quantitative report 

was constructed. I designed and performed a clinical validation study involving 

multiple clinical end-users with different experience levels. A study that 

combines visual assessment with quantitative information has not previously 

been performed for HS in the literature. This study showed that when users 

integrated the information from the quantitative report into their assessments, 

they were more accurate in detecting HS, especially cases of bilateral HS.  

Improved detection of HS has positive implications for clinical decision making, 

in particular bilateral HS non-curative surgical attempts may be reduced. 

Report users were also more confident in their correct assessments than when 

it was not available. Demonstrating the clinical validity and potential added 

value of the HS quantitative report has paved the way for its clinical workflow 

integration into the local neuroradiology department, and in-use evaluation is 

under way. Positive engagement of radiologists, radiographers and clinical 

scientists across the department is facilitating the integration process.  
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A similar clinical validation approach was applied to a volumetric quantification 

tool for use in suspected dementia. The clinical validation study I conducted 

that compared reporters’ accuracy and confidence with and without the 

quantitative report available showed that reports conferred increased 

sensitivity to detection of abnormal volume loss and subjects with Alzheimer’s 

Disease. The most experienced raters also displayed increased accuracy in 

their assessments and increased agreement with the gold standard. Inter-rater 

agreement also improved with the report from good to excellent agreement. 

The results for this clinical validation study reflect the complexity of dementia 

imaging assessment: regional brain volume measurements convey complex 

patterns associated with different pathologies that can overlap with normal 

ageing appearances in the early stages. This reinforces the principle that 

quantitative reports should be used as complementary additional information 

for the radiologist to assimilate into their overall assessment. While there are 

many commercial tools available for use in dementia imaging assessment, 

none have published a clinical validation study of similar scope, the largest 

published involving just two raters. Plans that I set out for a larger validation 

study engaging even more raters would build on the positive foundations of 

this work. 

For quantification of brain volumes and lesions in multiple sclerosis, I tackled 

a different translational challenge, that of applying a processing pipeline that 

usually requires non-protocol T1-weighted images to widely clinically available 

FLAIR images. I showed that using FLAIR as the single pipeline input 

produced comparable results to the conventional multi-sequence scenario in 

a multi-centre, multi-vendor clinical dataset of patients with clinically isolated 

syndrome. The study allowed me to explore additional translational 

challenges, including the need to promote acquisition standardisation and 

account for field strength differences. I built on the positive results of the 

FLAIR-only pipeline by constructing a normative reference dataset that covers 

a wide age range, which will be used as the foundations of a quantitative MS 

reporting tool. It will be more directly applicable to the routine clinical setting 

than available commercial tools, which have not dealt with the significant 

translational barrier of requiring multi-sequence inputs. 
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For gliomas, the focus was on gaining an understanding of current clinical 

reporting practices and using this to establish the possible clinical need for 

development of a quantitative reporting tool. This study established that the 

content of free-text reports is highly variable, and that they often lack tumour 

measurements and other potentially important anatomical and location details 

that are considered when planning treatment. Some reports reviewed had 

omissions that had the potential to impact on management decisions if the 

reports were used in isolation of multidisciplinary review meetings. The 

important missing features identified have the potential to be automatically 

quantified and this work paves the way towards constructing a clinically 

meaningful quantitative report for glioma imaging.  

7.1.2 Further applications 

There are numerous interesting extensions leading from the work I have 

presented in this thesis within the same disease areas. For example, the HS 

report could be modified to quantify FLAIR signal properties instead of T2, 

which would make it more generalisable to centres which do not routinely 

perform T2 relaxometry. A longitudinal report of hippocampal atrophy and 

signal change over time may be useful in cases where surgical resection is not 

immediately indicated, for example where changes are very subtle at symptom 

onset and clinicians would prefer to repeat imaging after a time interval to 

assess for developing HS imaging appearances. There are also possibilities 

to explore detection methods for other causes of focal epilepsies, for example 

for focal cortical dysplasia (FCD), where there are several different techniques 

available which assess for abnormalities of the cortical grey matter (Wang, 

Ahmed, and Mandal 2020).  

For dementia, a natural progression from the cross-sectional reporting tool 

would be to develop a report for longitudinal comparisons. This would require 

extension of the normative reference dataset to include longitudinal follow-ups 

of healthy controls so that rates of atrophy could be meaningfully compared. A 

reference AD population could also be included, so that an individual’s atrophy 

rate can be plotted against both populations. Since the current reporting tool 

processes the T1-weighted series only to quantify brain volumes, a useful 
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extension would be to extend the processing pipeline to include other 

sequences for assessment of the white matter. Assisted detection of white 

matter hyperintensities, as well as microbleeds and lacunes, would provide a 

more complete picture of the impact of vascular disease or assist with the 

assessment of potential vascular dementia.  

The MS FLAIR-only processing pipeline could usefully be adapted to provide 

a longitudinal assessment for change in lesion load and provide a 

measurement of an individual’s brain atrophy rate. This would similarly require 

additional longitudinal reference data for healthy control and MS populations 

to be processed. As discussed in chapter 5, brain age modelling could form a 

novel extension to a quantitative MS reporting tool.  

The work on current glioma reporting informs quantitative feature extraction for 

a glioma reporting tool. Longitudinal assessment is also important in glioma 

imaging, particularly for low grade gliomas to assess for high-grade 

transformation. Inclusion of QIBs such as diffusion values or perfusion 

measurements in a quantitative report for glioma would require careful 

validation and attention paid to result interpretability for the individual subject. 
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7.2 Outlook  

Clinical application of radiological quantification solutions is still in its infancy. 

Commercial offerings of automated quantitative analysis tools are rapidly 

increasing, employing both artificial intelligence (AI) and non-AI based 

solutions (Rezazade Mehrizi, van Ooijen, and Homan 2021). Validation of 

these tools has not kept up with their development and in most cases their 

efficacy and value are still unknown. The FDA has produced an action plan in 

response to this growth period, providing guidance for development of AI-

based software as a medical device (fda.gov/media/145022/download, FDA 

2021). They set out plans to update existing regulatory frameworks and state 

that development will be encouraged to take a patient-centred approach and 

promote real-world evaluation studies. Similarly, a group of academic and 

commercial stakeholders have recently published the ECLAIR guidelines 

(Omoumi et al. 2021), which guides intended users and institutions on how to 

evaluate available AI solutions when considering their adoption. They place 

emphasis on the key elements of validation, usability, and integration that I 

have been exploring in this thesis.  

Despite the availability and increasing uptake of automated quantification 

tools, there is no publicly accessible data available on the in-use evaluation of 

commercial quantitative reporting tools once they have been adopted into a 

clinical environment. European Medical Devices Regulation have recently 

declared that companies must start to report post-market clinical follow-up 

which includes data on the tool’s clinical performance and safety data to 

achieve certification or revalidation, so by necessity it is likely that this will 

become more transparent in the future 

(ec.europa.eu/health/md_sector/overview_en, EU 2021).  

Development of quantitative reporting should engage multiple stakeholders to 

work together to embed these new opportunities into clinical radiology. This 

multi-stakeholder approach, where partnerships are formed between 

academia, healthcare institutions and commercial organisations, should in 

theory create an environment where products are developed with attention 

paid to technical robustness and clinical applicability (Recht et al. 2020). Each 

http://www.fda.gov/media/145022/download
https://ec.europa.eu/health/md_sector/overview_en
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stakeholder may contribute different areas of expertise and access, which 

complement each other to assist clinical translation, as illustrated in Figure 7-1.  

 

Figure 7-1. Stakeholders in the development of new quantification tools for clinical application 
can offer different strengths.  Figure from Recht et al. 2020.  

Engagement of radiologists as key stakeholders is crucial for successful 

clinical translation of quantitative reporting tools. There is a spectrum of 

attitudes towards integration of these tools into their reporting workflows, 

ranging from scepticism and mistrust to enthusiasm and high expectations that 

may be difficult to fulfil (Strohm et al. 2020).  

For radiologists to overcome their scepticism or mistrust of these applications, 

or indeed to dispel the perception that the tool may have an unrealistic positive 

impact on their work, it has been proposed that some training in the principles 

of image processing and analysis methods should be incorporated into 

radiology training programmes and examinations (Recht et al. 2020). A recent 

international survey showed that while approximately half of the 1041 

respondents had an open and proactive attitude, radiologists who only had a 

basic understanding of these concepts were significantly more fearful of job 

replacement and less open to adopting them (Huisman et al. 2021).  

Educational resources are being established by, for example, the American 

College of Radiology’s Data Science Institute (acrdsi.org, ACR 2021), and the 

European Society of Radiology (myesr.org/ai, ESR 2021a). Technical 

education should be accompanied by scientific evidence that supports 

implementation of the new tool in the form of clinical validation studies. As 

http://acrdsi.org/
http://www.myesr.org/ai
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discussed, this evidence is currently sparse, and presents a significant 

implementation barrier for radiologists and referring clinicians who value 

evidence-based healthcare (Strohm et al. 2020). 

A recent review of CE marked AI image analysis applications across radiology 

evaluated all relevant published literature on their validation using a 

hierarchical model of efficacy, presented in Table 7-1 (van Leeuwen et al. 

2021), which aligns closely with elements of the QNI framework.  

Table 7-1. A hierarchical model for the level of evidence of efficacy of an imaging tool. From 
van Leeuwen et al. 2021. 

Level Explanation Typical measures 

Level 1t 
Technical efficacy 

Article demonstrates the technical feasibility of the software 
Reproducibility, inter-software agreement, error rate 

Level 1c 

Potential clinical efficacy 

Article demonstrates the feasibility of the software to be clinically 

applied 

Correlation to alternative methods, potential predictive value, 

biomarker studies 

Level 2 
Diagnostic accuracy efficacy 

Article demonstrates the stand-alone performance of the software 

Standalone sensitivity, specificity, area under the ROC curve, or Dice 

score 

Level 3 
Diagnostic thinking efficacy 

Article demonstrates the added value to the diagnosis 

Radiologist performance with/without AI, change in radiological 

judgement 

Level 4 

Therapeutic efficacy 

Article demonstrates the impact of the software on the patient 

management decisions 

Effect on treatment or follow-up examinations 

Level 5 
Patient outcome efficacy 

Article demonstrates the impact of the software on patient outcomes 
Effect on quality of life, morbidity, or survival 

Level 6 

Societal efficacy 

Article demonstrates the impact of the software on society by 

performing an economic analysis 

Effect on costs and quality-adjusted life years, incremental costs per 

quality-adjusted life year 

 

Of the 100 commercial tools they identified, the authors found that 64 had no 

published evidence at any level. Twenty-seven percent of the studies 

published relating to the other 36 products included some assessment at level 

3 efficacy or higher. For neuroradiology applications, this level of efficacy was 

only reached by two studies, which have been discussed elsewhere in this 

thesis (Brewer 2009; Ross et al. 2015). Only a minority of identified studies 

used multi-centre and multi-vendor data.   

Radiologists occupy the forefront of the digitised work environment before all 

other healthcare disciplines, and many identify themselves as the logical 

pioneers for use of automated support tools (Strohm et al. 2020). They should 

be actively engaged in the development of these tools, as domain experts who 

can identify areas of clinical need, as well as conceptualise and design 

solutions with a higher likelihood of successful clinical translation (Scheek, 

Rezazade Mehrizi, and Ranschaert 2021). Their engagement is also key for 
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managing integration of reporting workflows, including coordination with 

radiographers and PACS managers. In-use evaluation by early adopters 

allows for common issues to be identified and for testing of the tool on complex 

or unusual cases, thereby more clearly defining the clinical use boundaries of 

the software solution.  

Demonstrating health economic benefit of a quantitative tool is a fundamental 

aspect of assessing its clinical impact, however this is difficult to demonstrate. 

A recent paper estimated the average cost per patient for volumetric 

quantification in neurocognitive diseases to be approximately eighty-two US 

dollars (Raji, Ly, and Benzinger 2019) when using regulatory-approved 

commercial solutions. It is difficult to establish how much costs may vary 

depending on operational and implementation factors as well as nuances of a 

particular healthcare system and reimbursement strategies. Actual final cost is 

much more difficult to calculate in terms of impact on an individual patient’s 

healthcare expenditure and potential added value. Health technology 

assessment (HTA) is a multidisciplinary process that uses explicit 

methodology to determine the value of a given health technology, taking into 

account existing alternatives, clinical effectiveness, safety, and economic 

implications, as well as ethical and legal issues, organisational aspects, and 

wider impact on patients and the population (Drummond et al. 2008; O’Rourke, 

Oortwijn, and Schuller 2020). In the United Kingdom, the National Institute for 

Health and Clinical Excellence (NICE) uses HTAs to evaluate health 

technologies for use in the National Health Service (NHS), within its evidence 

standards framework for digital health technologies (NICE 2018). 

As current development of quantitative reporting tools tends to be in silos, with 

each solution being designed towards a specific task or disease area, costs 

and infrastructure demands on a radiology service to be able to implement 

several of them at once may become inhibitive (van Leeuwen et al. 2021). The 

development of generalisable algorithms and suites of applications that may 

become available directly from scanner manufacturers or PACS companies 

may be valuable as more tools become clinically validated.  
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More attention needs to be directed towards availability and quality of 

reference data. As discussed in previous chapters, there are several 

international research-led initiatives towards image acquisition standardisation 

and data sharing.  As more clinical images start to enter the quantification 

pipeline, within due boundaries of ethics and data sharing regulations, their 

quantitative results could form a rich source of reference data for directly 

relevant clinical quantification tools as well as research into the rapidly 

expanding field of radiomics (Hosny et al. 2018). Ultimately radiomics aims to 

incorporate QIB signatures with other disease biomarker and patient 

demographic characteristics to deliver personalised diagnostic and prognostic 

assessment. Solutions for image optimisation and data harmonisation will play 

an important role in utilising clinical data for big data analysis and construction 

of multi-site reference populations (Fortin et al. 2018).  

7.2.1 Summary 

In this thesis I have established that quantification tools for radiology reporting 

should be viewed as adjuncts to the radiologist’s expert visual assessment. 

They should be developed with contributions from multiple stakeholders all 

working towards delivering a technically robust, clinically validated solution that 

can be integrated into clinical workflows. Translational barriers exist that 

require companies, research bodies and clinicians to work together in 

partnership to overcome. These include application generalisability, image 

acquisition standardisation, and sourcing of relevant reference data. The 

potential value of these tools to radiologists, and subsequently to their patients, 

needs to be underpinned by accessible transparent evaluation of their 

scientific validity, with increased priority given to the demonstration of clinical 

assessment accuracy and proactive evaluation of their performance once they 

are adopted into the clinical environment. 
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