
NeuroImage 244 (2021) 118601 

Contents lists available at ScienceDirect 

NeuroImage 

journal homepage: www.elsevier.com/locate/neuroimage 

Neural networks for parameter estimation in microstructural MRI: 
Application to a diffusion-relaxation model of white matter 

João P. de Almeida Martins a , b , 1 , ∗ , Markus Nilsson 

a , 1 , Björn Lampinen 

c , Marco Palombo 

d , 
Peter T. While 

b , e , Carl-Fredrik Westin 

f , g , Filip Szczepankiewicz a , f , g 

a Department of Clinical Sciences, Radiology, Lund University, Lund, Sweden 
b Department of Radiology and Nuclear Medicine, St. Olav’s University Hospital, Trondheim, Norway 
c Department of Clinical Sciences, Medical Radiation Physics, Lund University, Lund, Sweden 
d Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom 

e Department of Circulation and Medical Imaging, NTNU-Norwegian University of Science and Technology, Trondheim, Norway 
f Radiology, Brigham and Women’s Hospital, Boston, MA, United States 
g Harvard Medical School, Boston, MA, United States 

a b s t r a c t 

Specific features of white matter microstructure can be investigated by using biophysical models to interpret relaxation-diffusion MRI brain data. Although more 
intricate models have the potential to reveal more details of the tissue, they also incur time-consuming parameter estimation that may converge to inaccurate 
solutions due to a prevalence of local minima in a degenerate fitting landscape. Machine-learning fitting algorithms have been proposed to accelerate the parameter 
estimation and increase the robustness of the attained estimates. So far, learning-based fitting approaches have been restricted to microstructural models with a 
reduced number of independent model parameters where dense sets of training data are easy to generate. Moreover, the degree to which machine learning can 
alleviate the degeneracy problem is poorly understood. For conventional least-squares solvers, it has been shown that degeneracy can be avoided by acquisition with 
optimized relaxation-diffusion-correlation protocols that include tensor-valued diffusion encoding. Whether machine-learning techniques can offset these acquisition 
requirements remains to be tested. In this work, we employ artificial neural networks to vastly accelerate the parameter estimation for a recently introduced 
relaxation-diffusion model of white matter microstructure. We also develop strategies for assessing the accuracy and sensitivity of function fitting networks and use 
those strategies to explore the impact of the acquisition protocol. The developed learning-based fitting pipelines were tested on relaxation-diffusion data acquired 
with optimal and sub-optimal acquisition protocols. Networks trained with an optimized protocol were observed to provide accurate parameter estimates within short 
computational times. Comparing neural networks and least-squares solvers, we found the performance of the former to be less affected by sub-optimal protocols; 
however, model fitting networks were still susceptible to degeneracy issues and their use could not fully replace a careful design of the acquisition protocol. 
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. Introduction 

Microstructure imaging uses compartment modelling of diffusion
RI (dMRI) data with the aim to map specific tissue quantities

 Alexander et al., 2019 ; Nilsson et al., 2013 ; Novikov et al., 2019 ). A
entral goal in microstructure imaging has been to estimate the vol-
me fractions of different microstructural components such as axons
 Lampinen et al., 2020 , 2019 ; Veraart et al., 2018 ). Estimating vol-
me fractions rather than signal fractions is challenging, however, be-
ause it requires the simultaneous estimation of both diffusion and re-
axation properties of the different model compartments. This kind of
nverse problem is sensitive to degeneracy issues ( Jelescu et al., 2016 ;
ampinen et al., 2019 ), in which multiple sets of model parameters can
escribe the acquired data equally well. Parameter estimation can also
e computationally slow, preventing real-time mapping. A potential so-
ution is to employ machine learning to accelerate the parameter esti-
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ation process ( Golkov et al., 2016 ). However, the current literature
acks systematic assessments of the advantages and drawbacks of this
pproach, which is surprising considering the exponential increase in
nterest for such methods. 

Artificial neural networks (ANNs) and other machine learning ap-
roaches have been applied previously to accelerate the estimation
f microstructure parameters from dMRI data ( Barbieri et al., 2020 ;
ertleff et al., 2017 ; Golkov et al., 2016 ; Grussu et al., 2020 ; Gyori et al.,
019 ; Hill et al., 2021 ; Kaandorp et al., 2021 ; Nedjati-Gilani et al., 2017 ;
alombo et al., 2020 ; Reisert et al., 2017 ). For example, a random for-
st regressor has been used to fit a compartment model for white mat-
er (WM) microstructure in the presence of water exchange ( Nedjati-
ilani et al., 2017 ) and to fit the SANDI model for grey matter properties
 Palombo et al., 2020 ). Reisert et al. (2017) applied machine learning
o a Bayesian estimation approach which dramatically accelerated the
tting of two- and three-compartment models. Barbieri et al. (2020)
rsity, Lund, Sweden. 
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pplied ANNs to the intra-voxel incoherent motion model. An impor-
ant open question, however, is what impact the training strategy has
n the fitting performance. This is particularly relevant when applied to
on-linear multi-compartment models with many independent model
arameters, which we here refer to loosely as ‘high-dimensional mod-
ls’. The generation of training data scales poorly with the number of
odel parameters, as sampling each combination of p model parame-

ers in m steps requires m 

p samples. As p increases, it is unavoidable
hat a finite set of samples becomes sparse in the p -dimensional model
arameter space, risking selection bias. Here, we investigate the impact
f different sampling patterns within this space on the performance of
he neural network. 

Apart from accelerating model fitting, neural networks may in prin-
iple also reduce the requirements on the imaging protocol by learning
riors from training examples ( Golkov et al., 2016 ). For example, neu-
al networks have been used to learn a mapping between fully-sampled
nd sub-sampled datasets, which can in turn be used to stabilise model
tting performance against substantial degrees of data down-sampling
 Alexander et al., 2017 ; Tian et al., 2020 ). However, we do not expect
achine learning approaches to completely alleviate degeneracy issues.

ndeed, for cases where the acquisition protocol does not provide suf-
cient information to resolve between different parameter values, the

earning-based estimates will simply equal the mean of the model pa-
ameter distribution used for training ( Reisert et al., 2017 ). 

The aims of this study were to compare training strategies, to pro-
ose tools to evaluate the performance of model fitting neural net-
orks, and to test to what degree neural networks can solve problems
ith degeneracy. As a testbed, we use a high-dimensional relaxation-
iffusion microstructure model of WM ( Lampinen et al., 2020 , 2019 ;
eraart et al., 2018 ). For this model, parameter estimation is enabled
y state-of-the-art imaging protocols featuring so-called b-tensor encod-
ng ( Topgaard, 2017 ; Westin et al., 2016 ) combined with diffusion-
elaxation correlations ( de Almeida Martins et al., 2020 ; de Almeida
artins and Topgaard, 2018 ; Lampinen et al., 2019 ). We investigated

he ability of neural networks to speed up model fitting, and explored
he extent to which they can offset the requirements on the acquisition
rotocol. 

. Theory 

White matter microstructure can be modelled by multiple compart-
ents with different microstructural properties but a common orien-

ation distribution ( Alexander et al., 2019 ; Novikov et al., 2019 ). In
his description, the measured signal is the convolution between an ori-
ntation distribution function (ODF) P ( ̂𝒏 ) and a microstructural kernel
 ( ̂𝒖 ⋅ �̂� ) 

 ( ̂𝒖 ) = ∫|�̂� |=1 𝑃 ( ̂𝒏 ) 𝐾 ( ̂𝒖 ⋅ �̂� ) d ̂𝒏 , (1)

here �̂� and �̂� are unit vectors defining the symmetry axes of the ODF
nd of the diffusion encoding process, respectively. Note that the mi-
rostructural kernel depends on the relative angle between �̂� and �̂� ,
os 𝛽 = �̂� ⋅ �̂� . In this work, we assign an effective transverse relaxation
ime T 2 and an apparent microscopic diffusion tensor D to each com-
onent, and use exponentially decaying functions to model the effect
f these microstructural properties on the relaxation-diffusion-weighted
ignal ( Veraart et al., 2018 ). Under these assumptions, the microstruc-
ure kernel is written as a weighted sum of exponentials 

 ( ̂𝒖 ⋅ �̂� ) = 𝑆 0 

𝐽 ∑
𝑗=1 

𝑓 𝑗 exp 
(
− 𝐁 ( ̂𝒖 ) ∶ 𝐃 𝑗 ( ̂𝒏 ) 

)
exp 

( 

− 

𝜏E 
𝑇 2; 𝑗 

) 

, (2) 

orresponding to a mixture of J components with signal fraction f j , trans-
erse relaxation time T 2; j , and diffusion tensor D j . The colon “: ” denotes
he Frobenius inner product, B : D = 

∑
𝑖 

∑
𝑗 𝐵 𝑖𝑗 𝐷 𝑖𝑗 . Information about T 2; j 

nd D j is encoded into the signal by the echo time 𝜏E and diffusion en-
2 
oding tensor B ( ̂𝒖 ), respectively, both of which are experimental vari-
bles. To simplify the model, we only consider axisymmetric B ( ̂𝒖 ) and
dditionally assume that the component-wise D j are axisymmetric. 

The convolution expressed in Eq. (1) can be simplified by factorizing
oth P ( ̂𝒏 ) and K ( ̂𝒖 ⋅ �̂� ) in their spherical harmonic coefficients p lm 

and
 lm 

, respectively: 

 ( ̂𝒏 ) = 

∑
𝑙 

∑
𝑚 

𝑝 𝑙𝑚 𝑌 𝑙𝑚 ( ̂𝒏 ) , (3)

nd 

 ( ̂𝒖 ⋅ �̂� ) = 

∑
𝑙 ′

𝑘 𝑙 ′0 𝑌 𝑙 ′0 ( ̂𝒖 ⋅ �̂� ) , (4)

here Y lm 

are the spherical harmonics basis functions 

 𝑙𝑚 ( Θ, Φ) = 

√ 

2 𝑙 + 1 
4 𝜋

( 𝑙 − 𝑚 ) ! 
( 𝑙 + 𝑚 ) ! 

𝐿 

𝑚 
𝑙 
( cos Θ) exp ( 𝑖𝑚 Φ) , (5)

ith the 𝐿 

𝑚 
𝑙 

( x ) term denoting the associated Legendre polynomials. The
ummations in Eqs. (3) are carried out for order l = 0, 1, 2, …, and de-
ree m = − l , − l + 1, …, l . In Eq. (4) , we have taken the axial symmetry of
he microstructural kernel K ( ̂𝒖 ⋅ �̂� ) into account ( Lampinen et al., 2020 ;
ovikov et al., 2018 ). Symmetry around the polar axis implies k l’ m ’ = 0

or either m’ ≠ 0 or odd l’ . Taken together, this means that the k l’ m ’ co-
fficients are reduced to their 0th degree terms k l ’ 0 (typically written as
 l ’ ) and only even-ordered spherical harmonic terms ( l’ = 0, 2, …) pro-
ide non-trivial contributions. Using the spherical harmonics addition
heorem, Eq. (4) can be rewritten as 

 ( ̂𝒖 ⋅ �̂� ) = 

∑
𝑙 ′

𝑘 𝑙 ′0 

𝑙 ′∑
𝑚 ′=− 𝑙 ′

𝑌 𝑙 ′𝑚 ′ ( ̂𝒖 ) ̄𝑌 𝑙 ′𝑚 ′ ( ̂𝒏 ) 
√ 

4 𝜋
2 𝑙 ′ + 1 

. (6)

Inserting Eqs. (3) and (6) into Eq. (1) and making use of the or-
honormality of the spherical harmonics basis finally yields ( Driscoll and
ealy, 1994 ; Healy et al., 1998 ) 

 ( ̂𝒖 ) = 

∑
𝑙 

∑
𝑚 

𝑘 𝑙0 𝑝 𝑙𝑚 𝑌 𝑙𝑚 ( ̂𝒖 ) 
√ 

4 𝜋
2 𝑙 + 1 

, (7)

here �̂� can be parameterized by the polar and azimuthal angles, 𝜃 and
, describing the orientation of B , �̂� ≡ (sin 𝜃 cos 𝜙, sin 𝜃 sin 𝜙, cos 𝜃). 

The spherical harmonic coefficients of the microstructure kernel ( k l 0 )
nd the ODF ( p lm 

) are estimated as the inner products between a given
pherical harmonics basis function Y lm 

and either K ( ̂𝒖 ⋅ �̂� ) or P ( ̂𝒏 ). Due
o the orthonormality of the spherical harmonics basis, the inner prod-
cts are given by multiplication with the complex conjugates of the Y lm 

,
ollowed by integrations over the unit sphere. For the microstructural
ernel, this procedure results in ( Lampinen et al., 2020 ) 

 𝑙0 ≡ 𝑘 𝑙 = 𝑆 0 

𝐽 ∑
𝑗=1 

𝑓 𝑗 

√
4 𝜋( 2 𝑙 + 1 ) I 𝑙𝑗 exp 

(
− 𝑏 𝐷 I; 𝑗 

(
1 − 𝑏 Δ𝐷 Δ; 𝑗 

))
exp 

( 

− 

𝜏E 
𝑇 2; 𝑗 

) 

, 

(8) 

here b is the conventional b -value and b Δ denotes the normalized
nisotropy of the diffusion encoding tensor B ( Eriksson et al., 2015 ). The
sotropic diffusivity and the normalized diffusion anisotropy ( D I and D Δ)
re related to the axial and radial diffusivities ( D || and D ⊥) of the diffu-
ion tensor according to D I = ( D || + 2 D ⊥)/3 and D Δ = ( D || − D ⊥)/3 D I
 Conturo et al., 1996 ); in its principal axis, a given D can thus be rep-
esented by a diagonal matrix parametrized as diag( D I (1 − D Δ), D I 
1 − D Δ), D I (1 + 2 D Δ)). The I lj factors are a function of the regular
egendre polynomials, L l , and defined as 

 𝑙𝑗 = ∫
1 

0 
exp 

(
− 𝛼𝑗 𝑥 

2 ) ⋅ 𝐿 𝑙 ( 𝑥 ) d 𝑥, (9)

ith 𝛼j = 3 bD I; j b ΔD Δ; j . 
Different diffusion MRI models feature different numbers of com-

onents and impose different constraints on the component properties.
ere we consider a two-compartment model ( J = 2) comprising a “stick ”
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omponent (S) with D Δ;S = 1 and a “zeppelin ” (Z) component with D Δ;Z 
1. Truncating the spherical harmonic summation at the second order

 l max = 2) then yields the signal according to 

 ( 𝒆 , 𝒎 ) = 𝑆 0 

[ 
𝑓 S exp 

(
− 𝑏𝐷 I;S 

(
1 − 𝑏 Δ

))
×

( 

I 0;S + 4 𝜋I 2;S 
∑
𝑚 

𝑝 2 𝑚 𝑌 2 𝑚 ( 𝜃, 𝜙) 

) 

exp 
( 

− 

𝜏E 
𝑇 2;S 

) 

+ 

(
1 − 𝑓 S 

)
exp 

(
− 𝑏𝐷 I;Z 

(
1 − 𝑏 Δ𝐷 Δ;Z 

))
×

( 

I 0;Z + 4 𝜋I 2;Z 
∑
𝑚 

𝑝 2 𝑚 𝑌 2 𝑚 ( 𝜃, 𝜙) 

) 

exp 
( 

− 

𝜏E 
𝑇 2;Z 

) 

] 

, (10) 

here m ∈ { − 2, − 1, 0, 1, 2}. The derivation of Eq. (10) uses the 𝑝 00 =
 00 = 1∕ 

√
4 𝜋 ODF normalization ( Lampinen et al., 2020 ; Novikov et al.,

018 ). The vectors e and m capture the experiment-related parame-
ers, e = ( 𝜏E , b, b Δ, 𝜃, 𝜙), and scalar model parameters, m = ( f S , D I;S ,
 I;Z , D Δ;Z , T 2;S , T 2;Z , p 20 , Re ( p 21 ), Im( p 21 ), Re ( p 22 ), Im( p 22 )), where
e ( 𝑝 𝑙𝑚 ) = ( 𝑝 𝑙𝑚 + ( −1 ) 𝑚 𝑝 𝑙− 𝑚 )∕2 and Im ( 𝑝 𝑙𝑚 ) = ( 𝑝 𝑙𝑚 − ( −1 ) 𝑚 𝑝 𝑙− 𝑚 )∕2 𝑖 denote

he real and imaginary parts of the p lm 

coefficients, respectively. We
efer to the model expressed by Eq. (10) as the Standard Model with Re-
axation (SMR). This name is chosen to mark its descendance from the
standard model ” of WM microstructure ( Novikov et al., 2019 ) and to
mphasize the fact that it accounts for compartment-specific T 2 times. 

The SMR model parameters can be determined by fitting Eq. (10) di-
ectly to the acquired signals ( Lampinen et al., 2020 ). An alternative
trategy is to fit to some representation of the signal, such as the spher-
cal harmonics coefficients. Veraart et al. (2018) used a model fitting
ramework that effectively reduces the dimensionality of the parameter
pace by means of performing a rotationally invariant factorization of
he voxel-wise ODFs ( Novikov et al., 2018 ; Reisert et al., 2017 ). The ini-
ial step of such framework consists in projecting the measured signal
nto a spherical harmonic basis 

 ( ̂𝒖 ) = 

∑
𝑙 

∑
𝑚 

𝑆 𝑙𝑚 𝑌 𝑙𝑚 ( ̂𝒖 ) . (11)

he S lm 

coefficients are subsequently converted to rotational invariants
 l , and fitted to the corresponding rotationally invariant terms of the
 ( ̂𝒖 ) ⊗K ( ̂𝒈 ⋅ �̂� ) convolution 

 𝑙 = 𝑝 𝑙 𝑘 𝑙 , (12)

here k l is the 0th degree term of the microstructural kernel as defined
y Eq. (8) . The rotationally invariant coefficients, S l and p l , are com-
uted from ( Novikov et al., 2018 ) 

 𝑙 = 

√ 

4 𝜋
∑

𝑚 
||𝑥 𝑙𝑚 ||2 

( 2 𝑙 + 1 ) 
, (13)

here x lm 

are the spherical harmonics coefficients, and x l ≡ S l or x l ≡
 l . At sufficiently low b -values, signal projections with l > 2 have small
ontributions to the measured signal Jespersen et al., 2007 ) and the sum
n Eq. (11) is typically truncated at the second order term ( l = 2). The fit-
ing framework summarized by Eqs. (11) –( (13) is commonly referred to
s the “RotInv ” approach due to its use of rotational invariants. The l = 2
otInv approach condenses the five p 2m 

, m ∈{ − 2, − 1,0,1,2} parameters
f the SMR model onto a single p 2 invariant capturing the orientation
oherence of the sub-voxel diffusion domains, thus reducing the dimen-
ionality of the fitting problem by four parameters. 

. Methods 

.1. Neural network architecture and training 

In this work, we constructed feedforward neural networks in MAT-
AB R2020b (The MathWorks, Inc.), and used them to fit vectors of
calar parameters, m = ( f S , D I;S , D I;Z , D Δ;Z , T 2;S , T 2;Z , p 20 , Re( p 21 ),
3 
m( p 21 ), Re( p 22 ), Im( p 22 )), to sets of measurements S ( 𝜏E , B ). We ex-
lored various network designs with different numbers of hidden nodes
nd/or layers before deciding on two final network architectures: an ar-
ificial neural network featuring 3 fully connected hidden layers with a
ecreasing number of nodes (180, 80, and 55) and a deeper/wider neu-
al network featuring 4 fully connected hidden layers with 250 nodes
ach. All hidden layers were activated by hyperbolic tangent (tanh)
unctions and the deeper/wider network also featured batch normaliza-
ion layers between the fully connected inner layers and their respective
anh activations. To distinguish the networks, we refer to them as the
hallower neural network (SNN) and deeper neural network (DNN), re-
pectively. Both SNN and DNN comprise an output layer with 11 nodes
orresponding to the parameters in m . The input comprised a given
umber ( E ) of signal samples acquired with a pre-defined relaxation-
iffusion encoding protocol. We considered three different acquisition
rotocols; with E = 164, E = 242, and E = 270 samples ( 𝜏E , B ). Indepen-
ent networks were trained for each protocol, meaning that 3 SNNs and
 DNNs were evaluated. To remove the influence of S 0 from the fitting
roblem, we normalized the input vector to the median signal acquired
t the lowest b-value and shortest echo-time. 

Supervised network training was performed using a mean squared
rror loss 

SE = ‖𝒎 targ − 𝒎 net ‖2 2 , (14) 

here m targ is the ground-truth target vector, m net is the corresponding
etwork output vector, and 

|| ⋅ || 2 denotes the Euclidean norm. The m targ parameters were
escaled between 0 and 1 using a min-max normalization strategy be-
ore being supplied to the networks. The networks were trained with sets
f voxels with randomly generated model parameters and noisy signal
amples S ( 𝜏E , B ), as detailed in Section 3.2 . The SNNs were trained with
 batch size of 0.5 ⋅10 6 and a scaled conjugate gradient optimiser. The
NNs were trained in a mini-batch fashion using a total of 5 ⋅10 6 training

ets, a mini-batch size of 50 ⋅10 3 , and an Adam optimiser. Throughout,
raining data was divided such that 75% of the original data was used
o update the weights and biases and 25% was used for cross-validation.
verfitting was addressed by an early stopping method that terminated

raining following an increase of the MSE of the validation data for 5
SNN) or 20 (DNN) consecutive epochs. 

Network GPU training took approximately 83 min for the SNNs and
4 min for the DNNs on two parallel NVIDIA GeForce RTX 2080 SUPER,
ach with 8 GB of memory. Both graphic cards were installed on a high-
nd consumer-grade desktop computer with 32 GB memory and an 8-
ore Intel i9–9900k 3.6 GHz CPU with 2 threads per core. 

.2. Generating training data 

We studied the impact of training data generation strategies on the
etwork performance, including training based on uniformly sampled
nd real brain data. Training parameter vectors were created by two
trategies: 

- m unif was synthetically constructed by random sampling of uncorre-
lated uniform distributions within the bounds described in Table 1 ; 

- m brain was constructed from in vivo brain data by randomly sampling
parameter vectors estimated from a NLLS fit of Eq. (10) . This dataset
contains parameter correlations found in a typical brain dataset from
a healthy adult. 

The m brain vectors comprise the solutions of a nonlinear least-squares
NLLS) fit of Eq. (10) to in vivo signal data, referred to as m fit , together
ith an additional parameter set m mut , consisting of random mutations
f the fitted solutions, given by 

 mut = 𝑿 ◦𝒎 f it , (15)

here ‘ ◦’ denotes the element-wise (Hadamard) product, and X is an
1-dimensional vector of normally distributed numbers. Each element
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Table 1 

SMR parameter bounds. The diffusivity bounds were enforced by limiting D ||;S , 
D ||;Z and D ⊥;Z to the [0.2, 4.0] 𝜇m 

2 /ms interval. For T 2;S and T 2;Z , the lower 
bound removes the influence of the assumedly fully-attenuated myelin water, 
and the large upper bound of T 2;Z enables it to capture effects of increased values 
in white matter lesions ( Lampinen et al., 2019 ) as well as possible contamination 
with cerebrospinal fluid which is expected to have a larger influence on the more 
isotropic zeppelin compartment ( Lampinen et al., 2020 ). 

Bounds f S D I;S [μm 

2 /ms] D I;Z [μm 

2 /ms] D Δ;Z T 2;S [ms] T 2;Z [ms] 

Minimum 0 0.07 0.2 − 0.46 30 30 
Maximum 1 1.33 4.0 0.86 300 1000 
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f X is an independent and identically distributed random variable sam-
led from a normal distribution with mean 1 and standard deviation
.3. The standard deviation of X was chosen following brief in silico ex-
eriments which revealed that virtually indistinguishable training/test
esults are obtained for standard deviations within the [0.2, 0.5] in-
erval, provided all other training/network parameters are kept con-
tant. The number of m fit vectors was kept constant ( 𝑛 f it ≈ 1.5 ⋅10 5 ), and
he total number of mutated vectors was defined as 𝑛 mut = 𝑛 brain − 𝑛 f it .
he introduction of mutated parameters is a data augmentation tech-
ique, designed to simultaneously compensate for the relative low num-
er of m fit vectors and expand the ( f S , D I;S , D I;Z , D Δ;Z , T 2;S , T 2;Z , p 20 ,
e( p 21 ), Im( p 21 ), Re( p 22 ), Im( p 22 )) domain of the m brain parameter

argets. 
The training vectors, m train , were combinations of m brain and m unif 

arameter vectors. Using a given total number of vectors ( 𝑛 tot ) and vary-
ng number of m brain parameters ( 𝑛 brain ), we modulated the fraction of
n vivo brain data, 𝑓 brain = 𝑛 brain ∕ 𝑛 tot , between 0 and 1 in steps of 0.05.
he SNN training sets contained a total of 𝑛 tot = 5 ⋅10 5 parameter vec-
ors, while the DNN training sets contained 𝑛 tot = 5 ⋅10 6 . Fig. S1 in the
upporting Information shows the distribution of m fit , m mut , and m unif 
arameters that compose a typical 𝑛 tot = 5 ⋅10 5 SNN training dataset. 

Signal data were generated from m train using Eq. (10) and one of
hree different ( 𝜏E , B ) acquisition protocols: 

- The optimized protocol comprises tensor-valued encoding with full
relaxation-diffusion-correlation optimized for minimal SMR param-
eter variance ( Lampinen et al., 2020 ) 

- The unoptimized protocol comprises tensor-valued encoding
with relaxation-diffusion-correlations restricted to low b -values
( Lampinen et al., 2019 ). This protocol was an early attempt to
design a diffusion-relaxation protocol with b-tensor encoding. It
preceded the optimized protocol and was configured to fit into
an available timeslot by following heuristics without a formal
performance optimization, and was later found to yield degenerate
results in white matter ( Lampinen et al., 2020 ). 

- The LTE-only protocol comprises diffusion-relaxation optimized for
minimal SMR parameter variance but includes only linear b-tensor
encoding ( b Δ = 1) ( Lampinen et al., 2020 ). Just as the unoptimized

protocol it has been found to yield degenerate solutions in white
matter. 

Additional details on the various protocols can be found in their re-
pective references and in Table S1 of the Supporting Information. We
mphasize that all training data used in this study was generated using
he SMR forward model, Eq. (10) , rather than using raw in vivo brain
ata. 

Noise was sampled from the Rice distribution and added to the
round-truth synthetic signals. Because relaxation-diffusion MRI data
omprises voxels with different signal-to-noise ratio (SNR), the ampli-
ude of the SNR at S 0 = S ( 𝜏E = 0, B = 0) was uniformly varied in the
nterval SNR ∈ [80, 160]. Considering the relaxation-diffusion proper-
ies of typical healthy WM ( T 2 ≈ 70 ms, D I ≈ 0.9 𝜇m 

2 /ms), this choice
esults in SNR ∈ [30, 60] at the point of maximal signal of the opti-

ized protocol ( 𝜏 = 63 ms, b = 0.1 ms/ 𝜇m 

2 ), SNR amplitudes that are
E 

4 
onsistent with tensor-valued dMRI measurements of the in vivo brain
 Szczepankiewicz et al., 2019a ). Finally, networks were trained using
 train vectors as targets and their corresponding in silico noisy signals as

nputs. 

.3. Network evaluation 

To find the optimal fraction of m unif and m brain parameters (adjusted
y the f brain parameter), we trained SNNs with varying values of f brain ,
eployed them on in silico data generated from an unseen subject, and
ompared the various networks in terms of accuracy of the resulting pa-
ameter estimates. Network accuracy was assessed via normalized root-
ean-squared errors (NRMSE) and linear correlations with ground-truth

alues in terms of the Pearson correlation coefficient ( 𝜌). The NRMSE
aptures the absolute agreement between the target ground-truth pa-
ameters and their corresponding network estimates, whereas 𝜌 captures
he linear target-to-estimate correlation strength. The f brain optimization
rocess is discussed in more detail in section S3 of the Supporting Infor-
ation. Briefly, the f brain hyper-parameter controls a trade-off between

ccuracy to WM-relevant parameters and network generalizability, and
e found f brain = 0.5 to provide an optimal balance between accuracy
nd generalizability. From this point onward, we concentrate on net-
orks trained with f brain = 0.5 datasets and evaluate them in further
etail using correlation plots. 

The accuracy performance of an f brain = 0.5 SNN, an f brain = 0.5 DNN,
nd a standard NLLS solver were compared on the basis of NRMSEs and
earson correlation coefficients. The comparison was performed using
wo distinct in silico datasets: one based on m fit vectors from WM and
eep GM data ( m fit;WM-like ), and another based on m unif vectors. Each
ataset comprised a total of 10 ⋅10 3 parameter vectors and their respec-
ive in silico signals. The ground-truth synthetic signals were corrupted
ith Rician distributed noise and the SNR at the S 0 point was sampled
niformly from the [80, 160] range. 

The effects of different acquisition protocols on network perfor-
ance were evaluated in terms of NRMSE and sensitivity to parame-

er changes. The latter was gauged by modulating the non-orientational
arameters of an SMR solution ( f S , D I;S , D I;Z , D Δ;Z , T 2;S , T 2;Z ) one at a
ime by 10% and measuring the response in all parameters. The orig-
nal parameter set was based on in vivo data from the corona radiata

here f S = 0.45, D I;S = 0.58 𝜇m 

2 /ms, D I;Z = 1.36 𝜇m 

2 /ms, D Δ;Z = 0.44,
 2;S = 69 ms, T 2;Z = 60 ms ( Lampinen et al., 2020 ). Subsequently, in
ilico datasets were generated for each of the 6 modulated datasets, Rice
oise was added with SNR = 160 at S 0 , and parameter estimation was
erformed with protocol-specific networks. 

To investigate if the reduced parameter space of RotInv fitting im-
acts the performance of ANN-based fitting, we trained an SNN using
otationally invariant in silico datasets and the same optimal f brain value
ound for the SMR networks. RotInv training vectors, m train;RI , were gen-
rated from the m train vectors ( Section 3.2 ), using Eq. (13) to convert
he full SMR parameters to RotInv parameters ( f S , D I;S , D I;Z , D Δ;Z , T 2;S ,
 2;Z , p 2 ). The RotInv in silico signal data was generated in four steps:
1) signals were calculated using m train and Eq. (10) ; (2) noise was
dded to the in silico signal data with a SNR ∈ [80, 160] at S 0; (3)

 lm 

components were estimated by projecting the noisy S ( 𝜏E , B ) signals
o a spherical harmonics basis; and (4) S l, l = {0,2} signals were calcu-
ated from S lm 

using Eq. (13) . As with the full SMR model, training was
erformed using m train;RI as targets and their corresponding synthetic
oisy signals as ANN inputs. 

Trained SMR (RotInv) networks were tested on previously unseen
 unif ( m unif;RI ) and m brain ( m brain;RI ) synthetic datasets at an SNR ∈

80, 160] at S 0 . Performance was compared in terms of their respec-
ive target-estimate correlations. All networks were trained/tested in a
eave-one-out fashion where the training and testing m brain ( m brain;RI )
atasets were generated using in vivo data from different subjects
 Section 3.5 ). 
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.4. In vivo data acquisition 

We analysed data from three adult volunteers previously reported
n ( Lampinen et al., 2020 ). The study was approved by the re-
ional ethical review board in Lund and written informed consent
as obtained from all volunteers prior to scanning. Measurements
ere performed on a MAGNETOM Prisma 3T system (Siemens Health-

are, Erlangen, Germany) using a prototype spin-echo EPI sequence
hat facilitates user-defined gradient waveforms for diffusion encod-
ng ( Szczepankiewicz et al., 2019a ). Data were collected using echo
imes between 63 and 130 ms, repetition time of 3.4 s, voxel size of
.5 mm 

3 , 40 slices, matrix-size of 88 × 88, in-plane and through plane
cceleration factor of 2 × 2 (GRAPPA), partial-Fourier of 3/4, band-
idth = 1775 Hz/pixel, and “strong ” fat saturation. Diffusion encoding
as performed with gradient waveforms optimized to maximize the en-

oding strength per unit time and to suppress concomitant field effects
 Sjölund et al., 2015 ; Szczepankiewicz et al., 2019b ). A total of 270
ombinations of 𝜏E and B were used, according to the optimized proto-
ol in Table S1 of the Supporting Information. Total acquisition time
as 15 min. 

.5. In vivo data processing and parameter estimation 

Prior to analysis, all in vivo data were corrected for eddy-currents
nd subject motion using ElastiX ( Klein et al., 2009 ) with extrapolated
arget volumes ( Nilsson et al., 2015 ). Susceptibility-induced geometric
istortions were corrected using the TOPUP tool in FMRIB software li-
rary (FSL) ( Smith et al., 2004 ). Gibbs ringing artefact correction was
erformed according to the method described in ( Kellner et al., 2016 ).
o suppress the influence of noise, we filtered data with a 3D Gaussian
ernel with a standard deviation of 0.45 times the voxel dimensions
 Lampinen et al., 2020 ). 

The SMR model parameters were estimated from a voxel-by-voxel
LLS fit of Eq. (10) to the post-processed data. The fitting process was
erformed with the multidimensional dMRI toolbox ( https://github.
om/markus- nilsson/md- dmri ) ( Nilsson et al., 2018 ), with MATLAB’s
uilt-in lsqcurvefit function. To remove outliers, model fitting was per-
ormed twice in each voxel and the result with lowest residual was re-
ained ( Lampinen et al., 2020 ). The initial guesses were sampled uni-
ormly from the parameter bounds in Table 1 . The resulting estimates
ere stored and used to compute in silico signal data following the proce-
ure detailed in Section 3.2 . NLLS fitting of a single in vivo brain dataset
ook approximately 8 h (approximately 5.5 s per voxel) on the CPU de-
cribed in Section 3.1 . The computations were carried out using parallel
omputing and multi-threading. 

Finally, previously trained networks were used to estimate the pa-
ameters from Eq. (10) from in vivo data, which took approximately
 and 20 s for the whole brain using the SNN and DNN, respectively.
raining was performed on in silico m train data with an optimal f brain 
raction. The training process followed a leave-one-out scheme, where
he networks were trained on synthetic data generated from two sub-
ects before being deployed/tested on a third, previously unseen, sub-
ect. Neural network fitting provided voxel-wise parameter maps that
ere compared to the ones obtained from a conventional NLLS fitting
pproach. 

. Results 

.1. Neural network parameter estimates 

SNN-based parameter estimation was approximately 10 4 times faster
han NLLS fitting on the same computer, and yielded parameters in
ood agreement with the ground-truth targets and preserved contrast
etween regions characterized by distinct ( T 2 , D ) properties ( Fig. 1 ).
or example, the estimated f S and p 2 are high in WM regions generally
nd highest in orientationally coherent WM regions such as the corpus
5 
allosum , similar to the in-silico ground-truth. However, a reduced con-
rast was observed in the T 2;Z maps, where the distinction between WM
darker) and cortical GM (brighter) regions is more prominent in the
round-truth map. The T 2;Z estimates are also characterized by consid-
rable differences between ground-truth and estimated parameters in
he long T 2 regions such as the lateral ventricles. The largest overall
iscrepancy between estimated and ground-truth parameters was found
or D Δ;Z , likely because the signal is insensitive to it when | D Δ;Z | < 0.5
 Eriksson et al., 2015 ). Using an ANN trained on synthetic data to di-
ectly fit in vivo experimental data resulted in noisier maps. Neverthe-
ess, it preserved an anatomically plausible contrast. Given the strong
orrelations between in silico ground-truth maps and network estimates,
he noisier appearance of the in vivo parameter maps is likely because
he SMR model cannot accurately represent the underlying in vivo data.
n vivo SNN parameter estimates from WM regions of interests are dis-
layed in Table S2 of the Supporting Information, where they are addi-
ionally compared to NLLS estimates. 

Fig. 2 shows that SNN-based estimates correlated well with the
round-truth parameter targets, with most parameters yielding linear
orrelation coefficients close to or above 0.9. The referenced figure fo-
uses on the performance of a network trained with in silico S ( 𝜏E , B )
ata generated with the optimized protocol and an even mix of random
nd WM-like samples ( f brain = 0.5), and distinguishes between perfor-
ance on parameters obtained by uniform random sampling (light blue
oints) and parameters derived from in vivo non-cortical brain data (dark
lue points). Red points correspond to parameter vectors derived from
ow component-specific signal fractions, as described in the figure cap-
ion. Poor performance is observed for low D Δ;Z values, where the net-
ork yields D Δ;Z ≈ 0.3 regardless of the underlying ground-truth. This

an be attributed to an intrinsic difficulty in distinguishing between the
iffusion-weighted signals of components with | D Δ;Z | < 0.5 components
 Eriksson et al., 2015 ). Moreover, a poor target-to-estimate correspon-
ence was seen for T 2;Z -times where these were longer than the maximal
cho time. 

The parameter maps estimated from the deeper network are in good
greement with their respective ground-truth targets (Figs. S3 and S4
f the Supporting Information correspond to Figs. 1 and 2 ). In Fig. S4,
e observed that DNN-based fitting resulted in slightly stronger corre-

ations between network estimates and ground-truth parameter targets.
lthough in vivo maps from DNN and SNN are similar, differences can
e found in D Δ;Z and T 2;Z ; the DNN produces a noisier D Δ;Z and the
 2;Z map has a higher contrast between WM and cortical GM. Both of
hese features are likely artefactual, and suggest that the DNN is more
usceptible to differences between the SMR signal predictions and the
easured in vivo data. 

The errors and prediction-target correlations of the ANN-based esti-
ates are compiled in Table 2 , where they are also compared to a con-

entional NLLS solver. The NLLS, SNN, and DNN approaches all have a
omparable accuracy for in silico datasets designed to capture WM ( T 2 ,
 ) properties. By contrast, the function-fitting networks are observed to
e more accurate than the NLLS approach for synthetic m unif parameter
ectors. 

.2. Effect of acquisition protocol on network accuracy and sensitivity 

In this section, we focus on the relationship between acquisition pro-
ocol design and network performance. Fig. 3 shows that ANN-based
tting could partly but not completely eliminate the known fit degener-
cy in the unoptimized and LTE-only protocols: ANNs based on the opti-

ized protocol provide lower estimation errors (NRMSE) than the ANNs
ased on the other two protocols. Comparing these two protocols, we
ote that the unoptimized protocol yields relatively more accurate esti-
ates of D I;S , and T 2;Z , while the LTE-only protocol yields more accu-

ate estimates of f S , D I;Z , D Δ;Z , T 2;S , and p 2 . Fig. 3 also shows that the
erformance of both SNN and DNN is less affected by sub-optimal ac-
uisition protocols than the traditional NLLS approach ( Fig. 3 ). For the

https://github.com/markus-nilsson/md-dmri
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Fig. 1. Deploying trained networks on previously unseen in silico and in vivo data provides anatomically plausible parameter maps in under 10 s (including data 
management times). The first and second columns compare the ground-truth targets and network predictions, respectively, of the in silico dataset. Difference maps 
are shown in the third column. Parameter maps obtained from applying a trained network on in vivo brain data are displayed in the fourth column. 

N  

a  

c  

g  

c  

m
 

c  

c  

n  

u  

u  

i  

t  

a  

t  

p  

t  

u  

7

LLS approach, the use of the unoptimized or LTE-only protocols leads to
 considerable increase of the estimation errors, while only a slight in-
rease of NRMSE is observed for the DNN or SNN approaches. This sug-
ests that ANNs may partly alleviate parameter estimation difficulties
aused by a protocol that is inadequate in relation to the microstructure
odel. 

Fig. 4 shows the sensitivity of the various protocols to parameter
hanges. Networks trained on data generated with the optimized proto-
ol are sensitive to all parameters, but slightly underestimate the mag-
itude of the change, particularly in D Δ;Z . The parameter-specific mod-
6 
lations did not have a major effect on the estimation of the remaining
nmodulated parameters. An exception was found when the underly-
ng T 2;Z is increased by 10%, which results in a 3% overestimation of
he unchanged D I;S . Compared to the optimized protocol, the unoptimized

nd LTE-only protocols exhibit a lower sensitivity to the small parame-
er modulations and appear to be unresponsive to changes in D Δ;Z (both
rotocols) and D I;S ( LTE-only ). In addition to lower sensitivity, the unop-

imized protocol also resulted in less accurate estimations of the unmod-
lated parameters, with a 10% modulation of f S leading to an erroneous
% increase in T 2;S . 
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Fig. 2. Scatter plots of ground-truth parameters vs . neural network predictions. Light blue points show results when the network is deployed on uniformly distributed 
random model parameters. The dark blue points correspond to an in silico dataset derived from a nonlinear least-squared fit to measured brain data where voxels 
within CSF and cortical GM were excluded by masking out regions where microscopic anisotropy ( Lasi č et al., 2014 ), 𝜇FA, is lower than 0.6. The red points correspond 
to regions where poor accuracy is expected, i.e. , where the signal fraction of the relevant component ( “stick ” or “zeppelin ” depending on the parameter) accounts 
for less than 15% of the total signal or, for the p 2 map, parameter vectors where the “zeppelin ” component accounts for more than 85% of the total signal fraction 
and | D Δ;Z | < 0.4. The inner legends show the Pearson correlation coefficients ( 𝜌) of the blue points. For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article. 

Table 2 

Accuracy performance of DNN-, SNN- and NLLS-based fitting approaches. Performance is evaluated 
on synthetic data simulated from two different sets: uniformly sampled random parameters ( m unif ), 
and parameters derived from least-squared model fitting to in vivo WM and deep GM data ( m fit;WM-like ). 

Metric Dataset Fitting method Fitting time [s] f S D I;S D I;Z D Δ;Z T 2;S T 2;Z 

NRMSE m fit;WM-like NLLS 967 0.07 0.07 0.04 0.1 0.08 0.01 
SNN 0.2 0.07 0.08 0.03 0.1 0.07 0.02 
DNN 0.3 0.07 0.08 0.03 0.09 0.07 0.02 

m unif NLLS 2201 0.08 0.21 0.18 0.21 0.16 0.21 
SNN 0.1 0.05 0.11 0.10 0.15 0.12 0.14 
DNN 0.5 0.05 0.11 0.10 0.14 0.11 0.14 

𝜌 m fit;WM-like NLLS 967 0.90 0.87 0.91 0.78 0.78 0.98 
SNN 0.2 0.90 0.84 0.93 0.70 0.76 0.96 
DNN 0.3 0.91 0.85 0.92 0.73 0.77 0.95 

m unif NLLS 2201 0.97 0.79 0.78 0.71 0.85 0.77 
SNN 0.1 0.98 0.93 0.94 0.86 0.92 0.87 
DNN 0.5 0.99 0.93 0.94 0.88 0.92 0.88 
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.3. Neural network fitting of rotationally invariant microstructural 

eatures 

Fig. 5 A shows that training a SNN with rotational invariants results
n slightly stronger correlation between target and estimated param-
ters (compare with the scatter plots of Fig. 2 ). We note a consider-
ble improvement in accuracy at low D Δ;Z values, where the constant
 Δ;Z ≈ 0.3 behaviour observed for the full SMR model (see Fig. 2 ) is
o longer present. Applying the RotInv network to an unseen in vivo

 l = {0,2} dataset results in parameter maps with anatomically plausible
ontrast (see Fig. 5 B). Consistent with the better D Δ;Z accuracy perfor-
ance of the RotInv approach, we note that the RotInv D Δ;Z in vivo map
as a smoother appearance and better demarcates cortical/non-cortical
arenchyma than its non-rotationally invariant SMR counterpart (com-
are the fourth column of Figs. 1 with 5 B). 

Interestingly, in vivo maps smoother than the ones displayed in
ig. 5 B can be attained from an ANN that was trained on unreasonably
oisy in silico data. Fig. 6 displays the in vivo parameter maps obtained
7 
rom a RotInv network trained with SNR ∈ [20, 40] at S 0 , which is 4
imes lower than that used in Fig. 5 . The resulting maps have a smooth
ppearance and exhibit anatomically plausible contrast. For example,
egions with high f S correspond to WM regions, the lateral ventricles
re characterized by low f S and high D I;Z values, and darker/brighter
 Δ;Z regions demarcate cortical/non-cortical parenchyma. While it is

empting to favour the seductively ‘robust’ maps of Fig. 6 over the nois-
er maps of Fig. 5 B, we note that the low-SNR RotInv network results
n weak correlations between target and estimated parameters (compare
he scatter plots of Fig. 6 with those of Fig. 5 B). For example, SNN-based
stimates of D Δ;Z may yield a smooth map that appears robust, but a
loser inspection reveals that the D Δ;Z estimates in WM and deep GM re-
ions are equal to the mean of the target D Δ;Z distribution and constitute
n exceedingly inaccurate estimate of the underlying ground-truth. The
endency for networks to return the mean of the training parameter dis-
ribution has been reported in studies of the RotInv model ( Reisert et al.,
017 ) and the behaviour was explained in detail by Coelho et al.
2021) . 
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Fig. 3. Optimized acquisition protocols result in ANN- and NLLS-based parameter estimates with smaller errors. The bar plots indicate the normalized root-mean- 
squared errors (NRMSE) between ground-truth and predicted parameters, for learning-based (DNN and SNN) and NLLS fitting approaches, and for in silico datasets 
generated with different acquisition protocols. The leftmost plots correspond to a tensor-valued ( 𝜏E , B ) protocol optimized for minimal parameter variance, the 
optimized protocol ( Lampinen et al., 2020 ); the middle plots correspond to a sub-optimal tensor-valued ( 𝜏E , B ) protocol where relaxation-diffusion correlations are 
exclusively established at low b-values, the unoptimized protocol ( Lampinen et al., 2019 ); the rightmost plots show the results for a ( 𝜏E , B ) protocol optimized for 
minimal parameter variance when limited to linear diffusion encoding ( b Δ = 1), the LTE-only protocol ( Lampinen et al., 2020 ). Panel A shows network performance 
on parameters sampled from a uniform distribution, and panel B shows the performance on in silico data based on least-squares fitting results to in vivo non-cortical 
brain tissue data. 

Fig. 4. Sensitivity of acquisition protocols to 10% parameter modulations. The matrices display the relation between an induced parameter change and the observed 
response. When a single parameter on the y-axis is modulated by 10%, the response can be read in all other parameters along the x -axis. An ideal network would 
report a diagonal matrix with the value 10% on the diagonal, and zero otherwise. The optimized protocol appears sensitive in all parameters, whereas the unoptimized 

protocol lacks sensitivity D Δ;Z and the LTE-only protocols lacks sensitivity to both D Δ;Z and D I;S . 
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. Discussion and conclusions 

Replacing traditional NLLS solvers with function-fitting neural net-
orks enables vastly faster parameter estimation when using high-
imensional microstructural models. On a consumer-grade desktop com-
uter, the fitting time was reduced from hours (NNLS) to seconds
ANN). Naturally, the NNLS fitting times, based on the relatively slow
rust-region-reflective algorithm, can be improved by linearizing the
tting problem ( Daducci et al., 2015 ) or by using GPU-based solvers
 Harms et al., 2017 ). However, while such procedures have enabled
hole brain fitting of non-linear models within minutes ( Daducci et al.,
015 ; Harms et al., 2017 ), we still expect the seconds-long forward pass
8 
f an ANN to provide a competitive choice in terms of computation
ime. 

The ANN-based estimates were observed to be in good agreement
ith synthetic data that mimicked healthy WM as well as data that

panned the entire space of allowed model parameters. When de-
loyed on unseen in vivo brain data, neural networks provide maps
hat are consistent with known brain anatomy and preserve contrast be-
ween regions with different relaxation-diffusion properties. Our find-
ngs are encouraging and in line with recent advanced dMRI mod-
lling studies that use machine learning techniques for parameter es-
imation ( Barbieri et al., 2020 ; Bertleff et al., 2017 ; Golkov et al.,
016 ; Grussu et al., 2020 ; Gyori et al., 2019 ; Hill et al., 2021 ;
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Fig. 5. Neural network fitting of a rotationally invariant (RotInv) model results in strong target-estimate correlations and plausible maps. (A) Correlations between 
network-based parameter estimates and ground-truth parameter targets. The estimates were obtained from a RotInv network trained using a fraction of f brain = 0.5 
between rotationally invariant m brain and m unif training parameter vectors. The colour-coding and legends follow the same convention as Fig. 2 . (B) Maps of mi- 
crostructural diffusion parameters – f S , D I;S , D I;Z and D Δ;Z – obtained from fitting a RotInv network to rotationally invariant in vivo brain data. 
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aandorp et al., 2021 ; Nedjati-Gilani et al., 2017 ; Palombo et al., 2020 ;
eisert et al., 2017 ). A combination of error metrics, correlation anal-
sis, and sensitivity matrices was found to provide a useful set of tools
or quantitatively assessing parameter-specific accuracy/sensitivity and
or identifying the limitations of learning-based approaches. These tools
acilitate a survey of the performance across all dimensions of the
MR model, for example, revealing that D Δ;Z was consistently less ac-
urate than other parameters, as expected from previous studies that
ave emphasized that it is difficult to estimate ( Eriksson et al., 2015 ;
ampinen et al., 2020 , 2019 ). By contrast, visual inspection of ANN-
ased parameter maps was found to provide limited insight on the gen-
ral performance of the networks. Indeed, smooth and anatomically
lausible maps can be achieved even with poor network performance
nd data with low SNR. This is a common and deceptive pitfall that
as strong implications for the evaluation of performance in machine
earning approaches ( Reisert et al., 2017 ). 

We found no evidence that voxel-wise ANN-based parameter estima-
ion can fully alleviate the degenerate fitting landscape typically present
hen working with biophysical models in dMRI ( Jelescu et al., 2016 ) or

eplace an exhaustive sampling of all relevant experimental dimensions
 Coelho et al., 2019 ; Lampinen et al., 2020 ). Fig. 3 shows worse perfor-
ance in terms of parameter estimation errors (NRMSE) for the two pro-

ocols with known degeneracy problems ( Lampinen et al., 2020 ). Simi-
arly, Fig. 4 shows that only the optimized protocol can faithfully recover
arameter-specific changes while the other two cannot. These are both
9 
igns of unresolved degeneracies. Indeed, we cannot expect good perfor-
ance for LTE-only and unoptimized protocols because these protocols

an yield virtually identical signal vectors for different model param-
ters; the inverse problem has many solutions ( Lampinen et al., 2020 ,
019 ). Nevertheless, ANN-based fitting showed an advantage compared
ith the traditional NLLS approach, as it yielded lower estimation errors

n the degenerate cases ( unoptimized and LTE-only protocols; Fig. 3 ). Our
nterpretation is that the NLLS approach returns one out of the many so-
utions, whereas the ANN-based estimate tends to an average across the
any solutions. 

The 11-dimensional parameter space of the SMR model is difficult
o sample densely and thus presents a challenge when designing train-
ng datasets that are representative of the vast fitting landscape. In this
ork, we addressed this challenge by constructing training data based
n in vivo healthy brain data ( m brain ) and more naïve parameter vec-
ors randomly sampled from the entire model parameter space ( m unif ).
etworks trained exclusively with m brain vectors displayed the best ac-
uracy in terms of expected WM properties, but their domain of va-
idity is restricted to the relatively small space spanned by m brain solu-
ions. This raises questions about their generalizability, i.e. , their perfor-
ance in cases where atypical microscopic tissue structures are present

 Alexander et al., 2019 ). To find a good trade-off between accuracy and
eneralizability we optimized the fraction of in vivo -based training data
 f brain ). However, we expect that more work is needed to define a truly
ptimal strategy for network training. 
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Fig. 6. Training a neural network with an insufficient dataset may result in plausible maps but poor target-estimate correlations. (A) Experimental parameter maps 
obtained from fitting a RotInv SNN that was trained on unreasonably noisy data (SNR at S 0 in the [20, 40] range). The maps were obtained by deploying the network 
to rotationally invariant in vivo brain data. (B) Correlations between network-based parameter estimates and ground-truth parameter targets. The colour-coding and 
legends follow the same convention as Fig. 2 . 
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In this study, we focused on fully connected networks that follow the
esign of multilayer perceptrons (MLPs), a traditional ANN class that
s well-suited for regression problems ( Cybenko, 1989 ; Hornik et al.,
989 ). Alternatives or complements to the fully connected ANN archi-
ecture should also be explored in future works. Promising avenues in-
lude the use of dropout ( Gal and Ghahramani, 2016 ; Tanno et al., 2021 )
r deep ensemble strategies ( Lakshminarayanan et al., 2016 ; Qin et al.,
021 ) as a means to derive uncertainty metrics, the use of rolled-out net-
ork structures inspired by non-learning-based iterative fitting frame-
orks ( Ye, 2017 ), the use of auto-encoders ( Zucchelli et al., 2021 ), or

he use of denoising networks ( Fadnavis et al., 2020 ; Wang et al., 2019 )
o minimize the amount of noise present in the data that is supplied
o the function-fitting ANN. While fundamentally different network ar-
hitectures may considerably boost the performance of the ANN-based
tting approach, the modest differences found between the SNN and
NN designs suggests that simply increasing the width and/or depth of

he fully connected ANN architecture is not a promising avenue. Despite
he potential for improvement, we note that the plots in Fig. 2 constitute
n improvement over similar target-estimate correlation plots reported
n ( Reisert et al., 2017 ), where supervised learning based on polynomial
egressors was used to fit a three-compartment diffusion model, and are
quivalent to the correlation plots reported in more recent works on
earning-based fitting of diffusion ( Gyori et al., 2019 ; Palombo et al.,
020 ) and diffusion-relaxation MRI models ( Grussu et al., 2020 ). 

The fully connected ANNs we considered here are not invariant to
ample rotations. The input to the ANNs is a vector of E signal samples
easured at a pre-defined set of both directional ( 𝜃, 𝜙) and rotation-

lly invariant ( 𝜏E , b, b Δ) experimental points. The ordering in which
he E measurements are provided is kept fixed and samples with simi-
ar microstructural kernels K ( ̂𝒖 ⋅ �̂� ) but different orientations will result
n distinctive network input vectors. This places a burden on the train-
ng data generation, which has to span a sufficient set of possible tissue
rientations. Using the RotInv formulation renders the network invari-
nt to sample rotations, which considerably reduces the dimensional-
ty of the parameter space that has to be represented in training data.
10 
he higher training efficiency likely explains its slightly higher accu-
acy performance relative to the full SMR networks. Alternatives to the
otInv formulation presented in this study include a framework based
n a different set of rotationally invariant features of the dMRI signal
 Zucchelli et al., 2021 ) or fitting the full SMR model with equivariant
etwork architectures ( Cohen et al., 2018 ; Thomas et al., 2018 ). 

A potential limitation of the present study is the focus on a single
ulti-compartment model of tissue microstructure whose range of ap-
lication is mostly limited to WM and deep GM tissues. Applications
or cortical GM should therefore consider models tailored to the appro-
riate microstructure ( Palombo et al., 2020 ). Our decision to focus on
 single model follows from previous dMRI literature which has pre-
ented the “Standard Model ” of tissue microstructure – from which our
MR model descends – as an overarching signal model that encompasses
everal other WM models as particular cases ( Novikov et al., 2019 ). Fur-
hermore, the “Standard Model ” has been used to reveal general degen-
racy problems in microstructure parameter estimation ( Novikov et al.,
018 ). Given the generality of our model and the prevalence of de-
eneracies in advanced dMRI modelling, we expect the degradation of
erformance with less optimal protocols to also be found in alternative
ulti-compartment models or when using different learning-based fit-

ing algorithms ( e.g. : polynomial Reisert et al. 2017 or random forest
edjati-Gilani et al. 2017 , Palombo et al. 2020 regressors). However,

uture work is needed to fully characterize the general relationship be-
ween machine learning approaches and degenerate fitting landscapes. 

In conclusion, function fitting neural networks can be used to vastly
ccelerate parameter estimation with high-dimensional microstructural
RI models. The accuracy of ANN-based estimates was observed to

egrade less with sub-optimal protocols than traditional NLLS fitting.
owever, the performance of function fitting networks was still ob-

erved to primarily depend on the amount of information sampled by the
nderlying measurements, and we found no evidence that ANN-based
pproaches can offset the need for a rich set of data. Therefore, ma-
hine learning methodology in MRI microstructure modelling should
e matched with comprehensive data acquisition. This work presents a
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earning-based fitting framework, as well as tools for evaluating combi-
ations of networks and measurement protocols in terms of error met-
ics, estimate-target correlation plots, and sensitivity matrices. 
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