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ABSTRACT

We propose a model for stellar binary systems consisting of a magnetic and a
non-magnetic white-dwarf pair which is powered principally by electrical energy. In
our model the luminosity is caused by resistive heating of the stellar atmospheres
due to induced currents driven within the binary. This process is reminiscent of the
Jupiter-Io system, but greatly increased in power because of the larger companion
and stronger magnetic field of the primary. Electrical power is an alternative stellar
luminosity source, following on from nuclear fusion and accretion. We find that this
source of heating is sufficient to account for the observed X-ray luminosity of the 9.5-
min binary RX J1914+24, and provides an explanation for its puzzling characteristics.

Key words: stars: binaries: close — stars: magnetic field — stars: individual:
RX J1914+24 — X-rays: stars

1 INTRODUCTION

It has been observed directly by the Hubble Space Telescope

that the movement of Io through Jupiter’s magnetic field
causes heating in the Jovian atmosphere (Clarke et al. 1996).
This is because a conducting body transversing a magnetic
field produces an induced electric field. When the circuit is
closed, a current will be set up, resulting in resistive dissipa-
tion. The Jupiter-Io system therefore operates as a unipolar
inductor (Paddington & Drake 1968; Goldreich & Lynden-
Bell 1969). Another potential cosmic unipolar inductor could
be a planet orbiting around a magnetic white dwarf (Li, Fer-
rario & Wickramasinghe 1998). These systems have a similar
configuration, with the differences being their orbital period
and separation, the masses and radii of the two components,
and the magnetic moment of the magnetic object.

We propose that binary stars consisting of a magnetic
and a non-magnetic white dwarf can also be cosmic unipo-
lar inductors (Fig. 1). Close binaries of this type can have
short periods and secondaries larger than planet-sized bod-
ies. Provided that the spin of the magnetic white dwarf and
the orbital rotation are not synchronised (so that the sec-
ondary is in motion relative to the magnetic field) and that
the density of the plasma between the white dwarfs is high
enough, unipolar induction will operate efficiently.

Gravitational waves carry away the orbital angular mo-
mentum efficiently from a short-period (<2 hr) binary sys-
tem but not the stellar spin momenta directly. In a mag-
netic and non-magnetic white-dwarf pair with only the non-
magnetic star tidally locked, the magnetic star will be spun

up retrogradely in the orbital rest frame as the binary or-
bit shrinks. Alternatively, the magnetic white dwarf could
be spun up by accretion in a previous epoch in which mass
transfer occurred, so that it has a spin faster than the orbital
rotation. Asynchronous rotation can therefore occur as long
as a stellar component is not tidally or otherwise locked.

The dissipative power of a white dwarf–planet pair with
an orbital period P = 10 hr is estimated to be ∼ 1029erg s−1

(Li, Ferrario & Wickramasinghe 1998). The output of a bi-
nary white-dwarf pair with a period of tens of minutes will
be significantly higher and should have detectable observa-
tional consequences.

In this paper, a simple model for a unipolar inductor
consisting of a magnetic and a non-magnetic white-dwarf
pair in a close orbit is presented. The basic features of
these binaries and their observational properties are dis-
cussed. We propose that the short-period soft X-ray source
RX J1914+24 (Cropper et al. 1998; Ramsay et al. 2000a) is
a candidate unipolar inductor consisting of a magnetic and
non-magnetic white-dwarf pair.

2 WHITE-DWARF PAIRS AS COSMIC

UNIPOLAR INDUCTORS

When a non-magnetic conductor of linear size R transvers-
ing a magnetic field ~B with a velocity ~v, the induced e.m.f.
across the conductor is Φ ∼ R| ~E|, where ~E = (~v × ~B)/c (c
is the speed of light). Thus, the corresponding e.m.f. across
a non-magnetic white dwarf in orbit with a magnetic white
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Figure 1. A schematic illustration of a unipolar inductor consist-
ing of a magnetic and non-magnetic white-dwarf pair in a close
binary orbit.

dwarf is

Φ ≈
2π

c

(

µ1R2

a2P

)

(1 − α)

=

(

µ1R2

c

)(

2π

P

)7/3

(1 − α)
[

GM1(1 + q)
]−2/3

, (1)

where G is the gravitational constant, q (≡ M2/M1) is the
ratio of the non-magnetic to the magnetic white dwarf mass,
R2 and R1 are the radii of the non-magnetic and the mag-
netic white dwarf respectively, µ1 is the magnetic moment of
the magnetic white dwarf. The degree of asynchronism α is
defined as the ratio of the spin angular speed of the magnetic
white dwarf ω1 to the orbital angular speed ωo (= 2π/P ).
(Here and elsewhere, we consider that the anti-clockwise di-
rection is positive.) We show in Figure 2 the induced e.m.f.
for different system parameters. The induced e.m.f. depends
strongly on the orbital period, the degree of spin-orbit syn-
chronism, and the mass (radius) of the non-magnetic white
dwarf. The dependence of the mass of the magnetic white
dwarf is weaker.

If the space between the white dwarfs is filled with
plasma, the induced e.m.f. will drive currents along the
magnetic field lines connecting the two white dwarfs. Be-
cause there is substantial resistance in the white-dwarf at-
mosphere, the white dwarfs act as the dissipative compo-
nents in this electrical circuit. The total electrical power
dissipation in the two white dwarfs is

W = I2(R1 + R2)

= Φ2/(R1 + R1) , (2)

where I is the total current, and R1 and R2 are the effec-
tive resistance of the magnetic and the non-magnetic white
dwarfs respectively. An object with a length L and an area
A has a resistance R = L/Aσ (where σ is conductivity).
Therefore, the ratio of the effective resistances of the white
dwarfs is

R1

R2
∼

(

σ2

σ1

)(

R2
2

fR2
1

)(

∆h1

∆h2

)

, (3)

Figure 2. The induced e.m.f. across the non-magnetic secondary
white dwarf as a function of orbital period for binaries with vari-
ous parameters. Solid lines a, b and c correspond to systems with
a primary magnetic white dwarf of 1.0 M⊙ with a spin 1 part
of 1000 deviated from synchronous rotation with the orbit. The
masses of the secondaries in these systems are 0.1, 0,5 and 1.0 M⊙

respectively. The dotted line corresponds to systems consisting
of a 0.1-M⊙ non-magnetic white dwarf, and a 0.7-M⊙ magnetic
white dwarf with 1 part of 1000 off spin-orbit synchronism; and
the dashed line corresponds to similar systems but with a 1.3-
M⊙ primary magnetic white dwarf. Systems with magnetic and
non-magnetic white-dwarf pairs of mass 1.0 and 0.5 M⊙ and spin-
orbital asynchronism of 1 part in 100 for the magnetic white dwarf
is represented by the dot-dashed line. The magnetic moments of
the systems are fixed to be 1032 G cm3.

where σ1 and σ2 are the conductivity of the magnetic and
the non-magnetic white dwarf respectively, ∆h1 and ∆h2 are
the thickness of the dissipative surface layers of the white
dwarfs, and f is the fractional effective area of the magnetic
poles (hot spots) on the surface of the magnetic white dwarf.
As f ≪ 1 (see Appendix A), the effective resistance of the
magnetic white dwarf is significantly larger than the non-
magnetic white dwarf.

As the currents pass through both white dwarfs, the
ratio of the power dissipation in the magnetic primary to
that of the non-magnetic secondary is W1/W2 = R1/R2.
Taking account of the geometry of the current loops, we
obtain

W1

W2
≈ β

(

σ2

σ1

)(

R2

∆R2

)[

G(M1 + M2)

R3
1

(

P

2π

)2]1/2

; (4)

R1 ≈
1

2σ1

(

H

∆d

)(

a

R1

)3/2
J (e)

R2
; (5)

R2 ≈
4

πσ2

(

∆R2

R2
2

)

(6)

(see Appendices A and B for details), where ∆R2 is the
thickness of the secondary’s atmosphere and β is a structure
factor of the order of unity. The factor J (e) depends of the
radii of the white dwarfs relative to the orbital separation.
Its value is of the order of unity for white-dwarf pairs with
orbital periods less than an hour.

The conductivity of plasma of an electron temperature
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Te is given by

σ = γ

(

25/2

π3/2

)

(kTe)
3/2

m
1/2
e Ze2 ln Λ

, (7)

(Spitzer & Härm 1953) where k is the Boltzmann constant,
Te is the electron temperature, me is the electron mass, e
is the electron charge, Z is the ion charge number, and ln Λ
is the Coulomb logarithm. The factor γ depends on the ion
charge number Z, which has values between 0.6 (Z = 1) and
1 (Z → ∞) (see Alfvén & Fälthammar 1963). For a white-
dwarf atmosphere with Te ∼ 105 K, the conductivity σ ∼
1013 − 1014 esu. Since the conductivities of the atmospheres
of white dwarfs are similar to each other, the majority of
the electrical power will be dissipated in small regions at the
footpoints of the current-carrying field lines on the surface
of the magnetic white dwarf.

3 ENERGY AND ANGULAR-MOMENTUM

CONSERVATION

3.1 Power dissipation

If the degree of spin-orbit asynchronism (1−α) is specified,
the total power dissipation of the binary can be calculated
directly using equations (1), (2), (4) and (5). We show in
Figure 3 the total power dissipation W as a function of the
orbital period P , for systems with different primary and sec-
ondary white-dwarf masses M1 and M2. The general trend
of the dependence of W on the system parameters is as
follows: (i) the power dissipation W is larger for larger de-
gree of spin-orbit asynchronism; (ii) W increases when P
decreases; (iii) the larger is the radius of the non-magnetic
white dwarf R2, the larger W will be; and (iv) W decreases
slightly when M1 increases. Moreover, provided that there
is a slight spin-orbit asynchronism (1 part in 1000 is suffi-
cient) and that the asynchronously rotating white dwarf has
a moderate magnetic moment (∼ 1032 G cm3), the electrical
power dissipation of the systems can reach the solar luminos-
ity L⊙ (3.9× 1033 erg s−1), when the orbital period is short

enough (<∼10 min). Clearly, the electrical power generated by
these close binaries is substantially larger than the expected
intrinsic luminosities of the white-dwarf components, which
is ≪ L⊙.

It is worth noting that most of the luminosity origi-
nates from the two hot spots near the magnetic poles at
the surface of the magnetic white-dwarf. If the footpoints
of the current-carrying fieldlines remain fixed with respect
to the secondary, as in the Jupiter-Io system (Clarke et
al. 1996), asynchronous rotation will not manifest itself in
orbital-period changes, but will possibly be visible through
changes in the spot latitudes if the dipole is not aligned with
the spin axis.

3.2 Spin-orbit coupling

The consequence of the energy dissipation is the creation of
a Lorentz torque, which tends to synchronise the spin of the
magnetic white dwarf with the spin of the non-magnetic
white dwarf, and hence with the orbital rotation. Thus,
through spin-orbit coupling, energy and angular momentum
can also be exchanged between orbit and the white dwarfs.

Figure 3. The total electrical power dissipation as a function of
orbital period. The degree of deviation from spin-orbit asynchro-
nism (1−α) is 1 part in 1000 in the top panel and 1 part in 100 in
the bottom panel. As in Fig. 2 the solid lines a, b and c correspond
to systems with a non-magnetic white-dwarf secondary of 0.1, 0.5
and 1.0 M⊙. The mass of the magnetic primary is 1.0 M⊙. The
dotted line corresponds to systems consisting of a 0.7-M⊙ mag-
netic white dwarf and a 0.1-M⊙ non-magnetic white dwarf, and
the dashed line corresponds to systems consisting of a 1.3-M⊙

magnetic white dwarf and a 0.1-M⊙ non-magnetic white dwarf.
The magnetic moment of the primary is fixed to be 1032 G cm3.

If the secondary white dwarf is tidally locked to the orbit, as
assumed in our model, the evolution of the spin of the mag-
netic primary white dwarf ω1, the orbital rotation ωo, and
the degree of synchronisation is governed by the equations:

ω̇1

ω1
=

W

α(1 − α)I1ω2
o

; (8)

ω̇o

ωo
=

1

g(ωo)

[

Ėex −
W

(1 − α)

]

; (9)

α̇

α
= −

1

g(ωo)

[

Ėex −
W

(1 − α)

(

1 +
g(ωo)

αI1ω2
o

)]

(10)

(see Appendices C, D and E), where

g(ωo) = −
1

3

[

q3

(1 + q)
G2M5

1 ω2
o

]1/3

c© 0000 RAS, MNRAS 000, 000–000



4 K. Wu et al.

Figure 4. The total electrical power dissipation (solid lines) and
the power of gravitation radiation emitted from the binary (dot-
ted lines) as a function of mass of the non-magnetic white dwarf.
The orbital period is fixed to be 9.5 min. Curves a, b, c and
d correspond to systems with a 0.5, 0.7, 1.0, and 1.3-M⊙ mag-
netic white dwarf. The magnetic moments of the white dwarfs
are 1032 G cm3. The spin of the magnetic white dwarf is 1 part
in 1000 deviated from synchronous rotation with the orbit, i.e.
(1 − α) = 0.001.

×

[

1 −
6

5
(1 + q)f(ωo)

]

. (11)

The term Ėex is the energy loss due to external process
(such as gravitational radiation). The factor f(ωo) can be
expressed in terms of orbital parameters, which is simply
(R2/a)2. Clearly, the spin-orbit evolution is jointly deter-
mined by the rate of energy loss due to gravitation radiation
Ėgr and the electrical power dissipation W .

For short-period binaries gravitational radiation is an
efficient process to extract energy from the binary orbit
(Paczńyski 1967; Faulkner 1971). As an illustration we show
in Figure 4 the electric power dissipation W and the rate
of energy loss from the orbit due to gravitation radiation
Ėgr for binaries with an orbital period < 10 min and spin-
orbital asynchronism of 1 part in 1000. The power loss due to
gravitational radiation is generally larger than the electrical
power dissipation, except for systems with a very low-mass
non-magnetic white dwarf.

As W ∝ (1−α)2 > 0 (from Equations 1 and 2), energy
is extracted from the spin of the magnetic white dwarf, if it
is a fast spinner α > 1 (Equation 9). When α < 1, energy is
injected to spin up the magnetic white dwarf. Because both
Ėgr and g(ωo) are negative, when energy is extracted from
the orbit to spin up the magnetic white dwarf, the orbit
shrinks and the orbital angular speed increases. For white-
dwarf pairs consisting of a 1.0-M⊙ magnetic primary and a
0.1-M⊙ secondary with a 10-min orbit and a spin-orbital
asynchronism of 1 part in 1000, the typical evolutionary
timescale for α is about 103 years. As the synchronisation
timescale due to unipolar induction is significantly shorter
than the timescale of the gravitational-radiation power loss,
which is about 106 years for these systems, these systems

are expected to be rare in comparison with ‘ordinary’ white-
dwarf pairs.

3.3 Effects of the induced magnetic field

In the unipolar-inductor model that we consider above, the
magnetic field generated by the currents between the white
dwarfs has been neglected. Because of this induced magnetic
field, the magnetic-field configuration is no longer dipolar as
for the assumed intrinsic field of the primary white dwarf.
As a result, the currents and the magnetic field lines are not
aligned, and there will an additional drag to the motion of
the secondary white dwarf. This plasma-inertia effect can be
non-negligible.

The importance of plasma-inertia effects in the Jupiter-
Io system was investigated by Drell, Foley & Ruderman
(1965) in the linear approximation and by Neubauer (1980)
using a more appropriate non-linear treatment. These stud-
ies showed that the non-alignment of the currents and mag-
netic field is associated with the Alfvén waves — called
Alfvén wings — standing in the frame of Io, causing dis-
sipation in the polar regions of Jupiter as well as in Io.

Here in this white-dwarf pair, the standing Alfvén waves
are in the frame of the non-magnetic secondary white dwarf.
The significance of the plasma-inertia effects can be ex-
pressed by the Alfvén Mach number

MA =
δv

vA
, (12)

where δv is velocity of secondary white dwarf related to the
magnetosphere of the primary magnetic white dwarf, given
by δv ∼ (1 − α)πa/P ≈ 109 (1 − α) cm s−1, and vA is the
Alfvén speed:

vA = 1.5 × 109

(

B

1 kG

)(

ne

1010cm−3

)−1/2

cm s−1 , (13)

(ne is the electron number density in the plasma). For the
parameters of our interest, MA ≪ 1 is generally satisfied,
and the plasma-inertia effects can be considered as a per-
turbation. The results that we have obtained are therefore
generally valid.

The large currents in the system can also cause signifi-
cant distortion of the magnetic field near the primary mag-
netic white dwarf. The geometry of the energy-dissipation
region and the electrical circuit of the system are therefore
not as simple as described in our idealised model. A particu-
lar issue is whether or not steady currents can be maintained
given the presence of a large ~j × ~B force, when the current
and the magnetic field are not aligned. This could eventually
lead to the breakdown of the circuit and quench the opera-
tion of the unipolar induction. Nevertheless, if the unipolar
induction does operate, in spite of the non-alignment of cur-
rent and field, the energy and angular-momentum budget
should be similar to that of the unipolar-inductor model
that we have presented above. (Detail investigation of the
effects due to severe field distortion is beyond the scope of
this paper, and will be left for future study.)
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4 RX J1914+24: A POSSIBLE UNIPOLAR

INDUCTOR?

We propose that the short-period binary system RX
J1914+24 is electrically powered. This system emits soft X-
rays which are modulated on a period of 9.5 min, and whose
folded light curve is that expected from emission originating
from one or two small spots. The optical/infra-red flux is
also modulated only on the 9.5-min period but maximum
light occurs ∼ 0.4 orbital cycles earlier than the soft X-rays
(Ramsay et al. 2000b).

It has been argued that the system is a magnetic
white dwarf-white dwarf binary, which is synchronised by
the strong magnetic interaction between the white dwarfs
(Cropper et al. 1998). An accretion scenario has been pro-
posed (Ramsay et al. 2000a), in which the optical flux is
due to irradiation by the accreting material, and which can
largely account for the observations. However, to explain
the lack of optical polarisation (Ramsay et al. 2000a), the
magnetic-field strength on the primary must either be too
high or too low to be detected in the optical/infra-red. Also,
a major concern is that the accretion model is unable to ex-
plain the observed lack of strong emission lines (Ramsay et
al. 2000b) which result from heating of the accretion stream
in mass-transfer systems.

If the secondary in RX J1914+24 fills its Roche lobe
(Cropper et al. 1998), M2 ≈ 0.1M⊙. A Roche-lobe-filling
star is more easily tidally locked into synchronous rotation
with the orbit. In the unipolar-inductor model proposed
above, the secondary is allowed to lie within its Roche lobe,
and so this mass is a lower limit. The mass of the primary
is, however, unconstrained. Based on ROSAT and ASCA

measurements and an estimated distance of 200-500 pc, the
deduced luminosity of RX J1914+24 is in the range 4×1033

to 1 × 1035 erg s−1 (Ramsay et al. 2000b). Provided that
the spin-orbit asynchronism of the magnetic white dwarf is
about 1 part in 1000 or larger, the resistive heating is suffi-
cient to power these luminosities (See Figures 3 and 4). From
Equation (4), the resistive dissipation power is estimated to
be ∼ 1031 − 1032 erg s−1 in the secondary’s atmosphere.
The result is less sensitive to other system parameters such
as the mass of the magnetic white dwarf. A comparison be-
tween the observed and predicted luminosities suggests that
the secondary is 0.15 M⊙, and thus close to filling its Roche
lobe and tidally locked.

The predicted area of each hotspot on the primary is
∼ 8 × 1014 cm2 (from Appendix A). If we use the observed
luminosity of 1034 erg s−1 (assuming a distance d = 300 pc),
we obtain a blackbody temperature of 50 eV, consistent with
the measured value of 55 eV from the ROSAT and ASCA

spectral fits (Ramsay et al. 2000b). This consistent area is
corroborating evidence that the underlying geometry of the
model is valid.

For a system with a 1.0-M⊙ primary, a 0.1-M⊙ sec-
ondary and an orbital period of 9.5 min, less than 1 percent
of the X-ray flux emitted from the hotspots primary is in-
tercepted by the secondary. In equilibrium, the intercepted
flux will be reradiated, resulting in an increase in the lumi-
nosity of the irradiated hemisphere of the secondary. The
additional luminosity arising from irradiation heating is es-
timated to be <

∼1032 erg s−1. Thus, the power of irradiative
heating of the secondary is similar to the power of electrical

heating. Given the fact that the two heating processes have
similar efficiency, one would not expect a large temperature
difference in the irradiated and the unirradiated hemisphere
of the secondary. This is consistent with the observation
that the amplitude of variation in the optical luminosity in
RX J1914+24 is small (Ramsay et al. 2000a). Moreover, as
the power of irradiative heating is of the same order of the
energy flux from below the atmosphere due to resistive heat-
ing, the presence of moderate heat conduction is sufficient
to maintain an approximate isothermal layer down to unit
optical depth. Because of the absence of an temperature in-
version layer, the secondary will not show emission lines in
its spectrum: this is consistent with the lack of prominent
emission lines in the optical spectrum (Ramsay et al. 2000b).

5 SUMMARY

We propose that short-period magnetic and non-magnetic
white-dwarf pairs with short orbital periods (∼ 10 min) are
efficient cosmic unipolar inductors. Provided that the spin
of the magnetic component and the orbit are not in perfect
synchronism, a large e.m.f. can be produced across the non-
magnetic white dwarf. The resistive dissipation in the white
dwarfs is sufficient to power luminosities significantly above
solar values; most power is dissipated at the hot spots on the
surface of the magnetic white dwarfs, which are footpoints
of the field lines connecting the two stars. Electrical power
is therefore an alternative luminosity source, following on
from nuclear fusion and accretion.

The X-ray source RX J1914+24 is a candidate unipolar
inductors consisting of a magnetic and non-magnetic white-
dwarf pair. The two small X-ray spots on the magnetic white
dwarf predicted by the unipolar-inductor model are compat-
ible with the X-ray light curve of RX J1914+24. The lumi-
nosity and temperature predicted by the model is also in
agreement with the observed values derived from fits to the
X-ray spectra. The model also explains the variation in the
optical/infra-red luminosity, and the detection of only a sin-
gle period. The variations in the long term X-ray intensity
can be attributed to variations in the current flow. The two
main inadequacies of the current accretion model (Ramsay
et al. 2000a) — the lack of any polarised flux and the lack
of any detectable line emission (Ramsay et al. 2000b) are
naturally explained.
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APPENDIX A: GEOMETRY OF THE HOT

SPOTS

Consider a system consisting of a magnetic and a non-
magnetic white dwarf in close orbit with a separation a.
The magnetic white dwarf has a dipolar field, with the fam-
ily of field lines given by r = C sin2θ, where C is a constant
labeling different field lines. Thus, the geometry of the pole
is determined by the field lines that connected the two white
dwarfs, and it is specified by the parameter ã and b̃, where

ã =
R1

2
sin θ∆φ

=

(

R3
1

a

)1/2

tan−1

(

R2

a

)

, (14)

b̃ =
R1

2
∆θ

=
R1

2

(

θ− − θ+
)

=
R1

2

{

sin−1

√

R1

a − R2
− sin−1

√

R1

a + R2

}

(15)

(see Figure 5, top and second panels).
If the radius of the stars R2 and R1 are significantly

smaller than the orbital separation a, then ã ≈ R2(R1/a)3/2

and b̃ ≈ (R2/2)(R1/a)3/2. It follows that b̃/ã is approxi-
mately 0.5 for a wide range of orbital parameters. Moreover,
the fractional area of the dissipative region on the white-
dwarf surface f < (ãb̃/R2

1) ≪ 1.

APPENDIX B: RESISTIVE DISSIPATION IN

THE TWO WHITE DWARFS

For the non-magnetic white dwarf, the conductivity of the
core σco is much larger than the conductivity of the atmo-
sphere σ2 (i.e. σco ≫ σ2), so that most resistivity dissipa-
tion occurs at the atmospheric layer (See Figure 5, bottom
panel). The rate of energy dissipation is therefore

W2 =

∫ R2

R2−∆R2

d3x
(

~J2 · ~E
)

=

∫ R2

R2−∆R2

d3x
1

σ2
| ~J2|

2 . (16)

θ+
θ−

a
2R

2

∆φ

H

b a

J
in

J
out

y

x

ξ

E

J

∆R2

Core

Atmosphere

Figure 5. (Top and second panels) The top and side elevation
views of the system showing how maximum height and width
of the hot spot (2b̃ and 2ã respectively) at the surface of the
magnetic white dwarf are determined. (Third penal) Schematic
illustration of the current sheets in the atmosphere of the mag-
netic primary white dwarf. At depth H below the white-dwarf,

collisions are efficient enough to allow the current to cross the
magnetic-field lines. Bottom panel) Schematic illustration of the
current flow in the non-magnetic secondary white dwarf.
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If the current density ~J is roughly homogeneous, then

W2 = 4πR2
2∆R2

J2
2

σ2

≈
4

π

I2

σ2R2

(

∆R2

R2

)

, (17)

where I = πR2
2J2 is the current flowing across the star.

For the magnetic white dwarf, the dissipation at each
polar spot is

W
(1)
1 =

∫

spot

d3x
(

~J1 · ~E
)

. (18)

It is not trivial to determine the functional form of the
current density ~J1(~x) at the pole. For simplicity, we follow
Li, Wickramasinghe and Ferrario (1998) and consider an
approximation that the current density is non-zero in two
arc-like regions. The thickness of the arc is ∆d, and the
length and width of the region are 2ã = R1 sin θ∆φ and
2b̃ = R1∆θ, where θ is the colatitude of the centre of the hot
spot. The current density is given by J1 = J1o sin ξ (Figure
5, third panel). We assume that at a depth H(≪ R1) the
Pendersen conductivity (see Alfvén & Fälthammar 1963)
becomes sufficient large to allow the current to cross the
field lines and close the circuits.

The current flowing through the spot is therefore

I =

∫

spot

dxdy J1

= J1o(4ã∆d)

∫ π/2

0

dξ Q1(ξ; e) , (19)

and the resistive dissipation is

W
(1)
1 =

J2
1o

σ1
(4ãH∆d)

∫ π/2

0

dξ Q2(ξ; e) . (20)

The function Qn is given by

Qn(ξ; e) = sinn ξ
√

1 − e2cos2 ξ , (21)

where e =
√

1 − (b̃/ã)2.
Using the expression for ã in Appendix A, we obtain

the rate of total dissipation at the magnetic white dwarf:

W1 = 2W
(1)
1

≈
1

2

I2

σ1

(

H

∆d

)(

a

R1

)3/2
J (e)

R2
, (22)

where

J (e) =

∫ π/2

0
dξ Q2(ξ; e)

[∫ π/2

0
dξ Q1(ξ; e)

]2

= π

{

1 −

∞
∑

n=1

[

(2n − 1)!!

(2n)!!

]2
e2n

(n + 1)(2n − 1)

}

×

[

√

1 − e2 +
1

e
sin−1 e

]−2

. (23)

The ratio of the dissipation rates at the two white dwarfs is
therefore

W1

W2
=

π

8
J (e)

(

σ2

σ1

)(

H

∆d

)(

R2

∆R2

)(

a

R1

)3/2

. (24)

The exact values of H and ∆d are uncertain. Li, Wickra-
masinghe & Ferrario (1998) argued that roughly H ∼ ∆d.
As σ2 ∼ σ1, πJ (e)/8 ∼ O(1) and (R2/∆R2)(a/R1)

3/2 ≫ 1,
most of the electric energy will be dissipated at the two hot
polar spots of the magnetic white dwarf.

APPENDIX C: ENERGY CONSERVATION

Consider a system with two gravitationally bound, rotating
objects, with moments of inertia I1 and I2, in circular motion
around each other. Let the angular speeds of their rotation
be ω1 and ω2 respectively. The total mechanical energy of
the system is

E =
1

2
I1ω

2
1 +

1

2
I2ω

2
2 + (T + V ) . (25)

T and V are the kinetic and potential energy of the orbit,
which are related by

T =
1

2
Ioω

2
o

=
1

2

GM2
1 q

a
(26)

= −
1

2
V ,

where the effective moment of inertia of the orbit Io =
M1a

2[q/(1 + q)] and the orbital angular speed ωo =
[GM1(1 + q)/a3]1/2.

If the spin of the second object is in perfect synchronism
with the orbit (i.e. ω2 = ωo), then

E =
1

2
I1ω

2
1 −

1

2

[

M1

(

q

1 + q

)

a2 −
2

5
M1qR

2
2

]

ω2
o

=
1

2
I1ω

2
1 −

1

2

GM2
1 q

a3

[

a2 −
2

5
(1 + q)R2

2

]

. (27)

(Here, we have assumed that the objects are spherical, so
that their moments of inertia is 2/5 of their mass times the
square of their radius.) It follows that

Ė = I1ω1ω̇1 −
1

2
GM2

1 q
d

dt

[

1

a
−

2

5
(1 + q)

R2
2

a3

]

= I1ω1ω̇1 +
1

2

GM2
1 q

a

[

1 −
6

5
(1 + q)

(

R2

a

)2](

ȧ

a

)

= I1ω1ω̇1 −
1

2
Ioω

2
o

[

1 −
6

5
(1 + q)f(ωo)

](

2

3

ω̇o

ωo

)

,(28)

where f(ωo) = {R3
2ω

2
o/[GM1(1+q)]}2/3 . If the second object

is close to filling its Roche-lobe, then R2 ≈ aλ[q/(1 + q)]1/3,
and

Ė ≈ I1ω1ω̇1 +
1

2
Ioω

2
o

[

1 −
6

5
λ2(1 + q)1/3q2/3

](

ȧ

a

)

, (29)

where λ = 0.462. Clearly, when q < 0.7, λ2(1 + q)1/3q2/3 <
5/6, and hence the square bracketed term is positive.
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APPENDIX D: WORK DONE BY THE

DISSIPATIVE TORQUE

The torque that accelerates/decelerates the spin of the ob-
ject 1 is

~τ ≡ I1
d

dt
~ω1 , (30)

and the torque that changes the spin of object 2 and the
orbital rotation is

~τex − ~τ = Io
d

dt
~ωo + I2

d

dt
~ω2 + ~ωo

d

dt
Io , (31)

where τex is an external torque.
From the definition of the synchronisation α ≡ ω1/ωo,

we have

α̇

α
=

ω̇1

ω1
−

ω̇o

ωo
. (32)

The perfect-synchronism condition for object 2 and the orbit
implies that

τex − τ = (Io + I2)ω̇o + ωoİo . (33)

Thus, the timescale for the change in the orbital angular
speed is

ω̇o

ωo
= K

[

τex

(Io + I2)ωo
−

(

αI1

Io + I2

)

α̇

α
−

İo

(Io + I2)

]

, (34)

and the timescale of spin evolution of object 1 is

ω̇1

ω1
= K

[

τex

(Io + I2)ωo
+

α̇

α
−

İo

(Io + I2)

]

, (35)

where K = [1+αI1/(Io+I2)]
−1. The first term in the square

of above expression is due to the synchronisation process, the
second term is the contribution of the external torque, and
the last term is caused by the readjustment of the orbital
separation.

The work done by the (dissipative) synchronisation
torque is

W = |~τ · (~ωo − ~ω1)|

= |I1ω̇1ωo(1 − α)|

=

∣

∣

∣

∣

I1ω
2
oα(1 − α)

[

α̇

α
+

ω̇o

ωo

]
∣

∣

∣

∣

. (36)

It is straightforward to show that the work done can also be
expressed as follows:

W =

∣

∣

∣

∣

I1ω
2
oα(1 − α)

[

1 +
αI1

Io + I2

]−1

×

[

τex

(Io + I2)ωo
+

α̇

α
−

İo

(Io + I2)

]∣

∣

∣

∣

. (37)

APPENDIX E: SPIN-ORBIT EVOLUTION

Suppose the energy loss is represented by a dissipative term
due to synchronisation torque Ėdiss and an additional term
Ėex (e.g. due to gravitational radiation). Then we have

Ėdiss − Ėex = I1ω1ω̇1 + g(ωo)

(

ω̇o

ωo

)

, (38)

where

g(ωo) = −
1

3

[

q3

(1 + q)
G2M5

1 ω2
o

]1/3

×

[

1 −
6

5
(1 + q)f(ωo)

]

. (39)

The functional form f(ωo) can be found in Appendix C. For
dissipative synchronisation torque proportional to (~ωo−~ω1),
we have

Ėdiss = −W

= −(1 − α)I1ωoω̇1 . (40)

It can be shown that the evolution of the spin of the mag-
netic white dwarf and the orbital rotation are determined
by the following equations:

ω̇o

ωo
=

1

g(ωo)

[

Ėex −
W

(1 − α)

]

; (41)

α̇

α
= −

1

g(ωo)

[

Ėex −
W

(1 − α)

(

1 +
g(ωo)

αI1ω2
o

)]

. (42)
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