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Abstract 
 

The doctrine of affinity deserves to be recognised by historians of chemistry as 

the foundational basis of the discipline of chemistry as it was practiced in 

Britain during the 18th century.  It attained this status through its crucial 

structural role in the pedagogy of the discipline.  The importance of pedagogy 

and training in the practice of science is currently being reassessed by a number 

of historians, and my research contributes to this historiographical endeavour.  

My analysis of the variety of theories sheltered under the umbrella term ‘affinity 

theory’ has emphasised the role of pedagogy in influencing both the structure 

and the content of knowledge.  I have shown that there were wide ranging 

discrepancies between many of the components of individual affinity theories.  

Nevertheless, the scope of divergence was limited.  This underlying organisation 

resulted from the unifying hub of affinity theory, the logical common ground.  

This was the essence of the doctrine of affinity, encompassing the law of affinity 

and the conceptualisation of the table that brought together the relations 

described in the law.  The doctrine of affinity thus provided a disciplinary 

common ground between chemists, providing a mediating level of 

understanding and communication for all those who subscribed to the doctrine 

of affinity, in spite of their detailed differences.  
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1. ‘Manufacturing a Theory’: The Doctrine of Affinity in 
18th Century Chemistry 

1.1  Introduction 
Historiography of 18th century chemical affinity has not been characterised by 

consensus.  Historians have disagreed widely about the significance and role of 

affinity within 18th century chemistry and their controversies testify to a 

significant gap in our understanding of the subject.  A clue taking us to the heart 

of the puzzle can be found in the fact that while historians commonly refer to 

‘affinity theory’, philosophers of the time as often alluded to the ‘doctrine of 

affinity’.1 The word ‘doctrine’ might refer to a system or complex of theories, 

of laws, tenets or principles; it might even refer to a whole science. My research 

shows that affinity encompassed more than just a single theory; the primary 

sources point to a multiplicity of positions held.  Nevertheless, secondary 

literature has generally assumed a single theory model of affinity to be 

appropriate.  Historians have largely failed to explore this theoretical variety, 

and I suggest that it is this lack of appreciation of the theoretical diversity that is 

responsible for the lack of historiographical harmony.   

The word ‘doctrine’ offers further clues for the alert historian.  Etymology 

points towards a pedagogical, didactic link; to quote Samuel Johnson’s 

Dictionary (published 1755), it referred to “the principles or positions of any 

sect or master, that which is taught”.2 My study confirms the close links 

between affinity theories and chemical pedagogy.  Affinity theories came to 

prominence in Britain as pedagogical tools, were disseminated via a 

pedagogical pyramid and were subject to the vagaries that necessarily 

accompanied this type of context.  In this sense, they were indeed doctrinal.   

This study is intended to perform two distinct but related tasks.  The first is to 

explore in detail the variations and conformities prevailing amongst British 

affinity theories.  This is accomplished through a ‘decomposition’ of theories 

into their constituent components and a comparison of each component with 

others that performed similar functions.  This analysis also serves to highlight 

 
1 Elliot 1786, Lewis 1753, Alcock 1750. 
2 Johnson 2002, 142. 
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the predominantly tacit components that were consistent, that formed the logical 

common ground on which each individual theoretical edifice was built.  The 

second task, accomplished in a more diffuse fashion, is to explore in general 

terms the way in which chemists used their theories and the roles allocated to 

them, to try to elucidate what made these theories valuable as part of the 

chemistry of the 18th century.   This enables me to offer a more nuanced account 

of the use and development of the doctrine of affinity in Britain than has so far 

been available. 

1.2  Some Preliminary notes about Language 

1.2.1 ‘Affinity’ 
Etymological concerns have plagued chemical theories of affinity from their 

beginning.  Individuals made their own choice of term to adopt: affinity, 

rapports, attractions, elective attractions, and so on.  These decisions were, more 

often than not, based on negative associations; choices were made in preference 

to an alternative, disfavoured term rather than on the basis of inherent 

suitability.  The choice of term was often perceived as conferring unwelcome 

metaphysical associations: those who referred to attraction were revolting 

against the use of the word ‘affinity’ and its connotations, while those who 

preferred ‘affinity’ in turn objected to the ontological implications of 

‘attraction’.  Etienne François Geoffroy, who produced the first affinity table, 

adopted the term ‘rapports’, presumably in order to avoid any connotations at 

all,3 but this line was not pursued by anyone else.   

Historians have long been alert to this phenomenon and have tended to assume 

an identity of expression and philosophy.  In many cases this simple equation 

may well be appropriate, but in others it is somewhat facile.  Moreover, an over-

zealous focus on the choice of term over-emphasises the role of metaphysics in 

affinity theories.  My research shows that the doctrine of affinity was not tied to 

any particular matter theory, metaphysic or ontology.  Affinity theories 

explained and guided macroscopic chemical operations and it is on this level of 

functionality that my study is focused.  Whilst, like Geoffroy, I would wish to 

 
3 Duncan 1996, 111. 
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avoid giving rise to tacit assumptions, the use of the word ‘rapports’ would be 

inappropriate in a study of British chemistry, and the alternatives ‘attraction’ or 

‘elective attraction’ still resound with obvious metaphysical connotations.  

‘Affinity’, on the other hand, suffers less in today’s English language from such 

associations.  Accordingly, I have chosen to use the latter term, except when 

quoting from sources.  I must emphasise, however, that my use of ‘affinity’ is 

on a purely nominal basis.  I am fully aware that a number of my actors would 

not have described their theories so – although they would have recognised all 

the different terms as essentially signifying the differing tendencies of 

individual substances to combine together.  But for the sake of clarity and 

brevity, such a measure is necessary.  When speaking of an individual’s 

particular configuration of all their chosen components of affinity, I refer to 

their ‘affinity theory’. 

1.2.2 ‘Chemists’ 
Modern historiography teaches us to be uncomfortable with the use of the word 

‘chemist’ to describe many of those 18th century natural philosophers who 

practised or taught chemistry.  There is a general feeling that such usage is 

anachronistic as they would not have described themselves so.4 On the other 

hand, it is not always clear how they would have described themselves, whether 

as physicians, lecturers, chemical philosophers or natural philosophers.5 Many 

used the term ‘chemist’ somewhat pejoratively, referring to the ‘sooty 

empirics’, artisans who were socially, if not intellectually, beyond the pale.  On 

the other hand, Johnson defined a ‘chymist’ as “a professor of chymistry; a 

philosopher by fire.”6

As he also defined a ‘professor’ inter alia as “one who publickly practices or 

teaches an art”,7 to Johnson at least, most of my actors, public practitioners and 

teachers of chemistry as they were, would be quite reasonably described as 

‘chemists’.   

 
4 On anachronism see, Jardine 2000.  The canonical text is Skinner 1969. 
5 Joseph Black’s Will described him as “physician in Edinburgh and professor of Chemistry in the 
University of Edinburgh”  Black  1800. 
6 Johnson  2005 “Chymistry”, 129. 
7 Ibid, “Professor”, 455.2. 
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This is not to deny that there are undoubted historiographical difficulties with 

applying the term ‘chemist’ to many of my actors; these difficulties are fully 

admitted.  However, it is only limitedly anachronistic, as the term itself would 

have been familiar, whether or not they would have so described themselves.  

My actors were all content to state that the discipline they practiced and often 

taught was ‘chemistry’.  This term too is bound up with expectations and 

assumptions about disciplinary status and autonomy.  Although it was taught as 

an adjunct to a medical training, William Cullen’s lectures accorded chemistry 

the status of a distinct discipline, with its own history and practices.8 If 

disciplines are indeed “regimes of organized behaviour inculcated and 

appropriated in educational institutions”9 then it was through the efforts of 

Cullen and his successors that chemistry attained disciplinary status.    For this 

reason, as well as for the sake of simple readability, I have chosen to dub them 

‘chemists’.  This emphasises the fact that it is my actors’ chemical theories and 

beliefs that are the subject of my study, rather than their whole lives or works.  

Cullen, for example, could variously, and legitimately, be described as an 

apothecary, surgeon, physician, professor, philosophical chemist, and natural 

philosopher, as well as father, brother, rival, friend and colleague.  So far as this 

thesis is concerned with Cullen, it is solely with his adventures in the chemical 

realm.  The Cullen appearing in the following pages is Cullen the chemist, and 

Cullen the chemist alone.   The same applies to my other actors.  My chosen 

classification serves to emphasise this fact, as well as contributing substantially 

to the concision and intelligibility of what follows.   

1.3  The Historiography of Affinity 
It is something of a truism that there are as many different ways of ‘doing’ 

history as there are historians.  Similarly, it is probably unnecessary to point out 

that the context dictates (at least in part) the history presented.  The doctrine of 

affinity makes an appearance in almost every study of 18th century chemistry, 

whatever the focus, but it is rarely clear why it was so prevalent or what its role 

in the discipline actually was.  It has taken the lead role in several narrowly 

 
8 Christie 1994. 
9 Jardine 2000. 
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focused developmental studies, with a number of historians devoting themselves 

to ‘two handers’ exploring its nativity in particular.10 It has also taken 

supporting roles in more general topic research into such matters as chemical 

tables, Newtonian chemistry or the chemical revolution.  Finally, it has 

appeared in walk-on parts in even more general works on the history of 

chemistry.   

Each of these contexts imposes different limitations on the historiography, and 

in many cases these limitations have resulted in a distortion of the picture.  To 

begin with the last category, the ‘sweep of history’ approach has inevitable and 

well recognised shortcomings.   In the case of affinity theory, as one of the ‘two 

pillars’11 of 18th century chemistry it is rarely omitted from general histories of 

the discipline, but it is most usually represented by Geoffroy’s 1718 Mémoire 

alone, without regard for the array of theories that succeeded it.  It is unclear 

what role affinity took in chemistry, and why (or indeed if) it was perceived to 

be important.  Perhaps more importantly, the practical demands of such a 

panoramic view obscure detail and elide difference.  My research indicates that 

affinity theories demonstrated complex patterns of convention and divergence, 

but these patterns are, perhaps inevitably, imperceptible when seen through the 

wide-angle lens necessary to produce this type of history.  Most such 

commentary refers to an undifferentiated ‘affinity theory’; this is what I term 

the single theory model. 

That the single theory model is problematic is particularly apparent when we 

consider the fact that Geoffroy’s Mémoire is commonly adopted as the single 

theory of the model.  In general histories of chemistry, the 1718 paper appears 

as regularly as clockwork between Newton and Stahl and Lavoisier.12 But 

Geoffroy’s table, although the first, was by no means the only affinity table 

produced, and likewise his affinity theory was the first of many.  Although it 

was only in the latter half of the 18th century that affinity became truly 

 
10 Klein 1994, Klein 1995, Klein 1996, Holmes 1996. 
11 Eklund 1971, 96. 
12 See, for example, Partington 1989, Brock 1992, Levere 2001, all of which refer to the theory of affinity.  
The theory inevitably forms a far larger proportion of studies specifically devoted to 18th century 
chemistry. 
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ubiquitous, the historiography is clearly biased in the opposite direction: 

towards Geoffroy, and away from those later chemists who adopted and utilised 

the doctrine.   

The inaccuracy of this model has been appreciated by many historians, 

including Levere, who describes affinity as adopting “protean shapes” 

throughout its history:  

“It was flexible enough to be useful in the most varied contexts, 
but its precise meaning was far from universally agreed.”13 

Perrin too has noted the lack of consensus with regard to affinity.14 In spite of 

this appreciation of the problem, no solution has been proposed, and indeed it is 

questionable whether any solution is possible.  My work adopts a new mode of 

theory analysis to delineate the variety within the doctrine of affinity and to 

distinguish the common components that characterised affinity theories as a 

class.  This ‘logical common ground’, I would like to suggest, offers a new 

exemplar for describing in broad brushstrokes  the doctrine of affinity, and 

perhaps a new solution to the familiar dilemma of the panoramic view.   

Narrowing the historiographic focus complicates matters further.  Contributing 

to the problem is the fact that 18th century chemistry is so often seen as 

transitional, lacking a unified character of its own.  Falling as it does between 

two scientific revolutions, tales of Newtonian assimilation dominate studies of 

the first half of the century, while those of the latter half are concerned in the 

main with the great changes to come. These two paradigm shifts tend to be 

smeared like grease across the historical lens, resulting in a soft focus view of 

events that obscures detail and subordinates affinity to the overriding narrative.  

Hence the tendency to Newtonianise affinity evident in the works of Thackray, 

Cohen and Crosland,15 and a similar over-emphasis on a monolithic phlogiston 

theory in many of the more popular accounts of the chemical revolution.16 

Holmes has roundly criticised the historiography of affinity, arguing that a 

 
13 Levere 1971, 1. 
14 Perrin 1988, 60. 
15 Crosland 1959, Crosland 1963, Thackray 1995, Thackray  1970, Cohen 1964. 
16 Affinity is notably absent from  Hankins 1985 for reasons which are far from clear.    
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present-centred concentration on certain narrative themes has resulted in an 

unjustifiable emphasis on affinity to the detriment of more crucial aspects of 

18th century practice.17 He cites Crosland’s 1963 paper “The Development of 

Chemistry in the Eighteenth Century” as the first to demonstrate such an 

unwarranted emphasis, ascribing historical importance to affinity as a precursor 

to the ordered and predictive sciences of later periods.18 The theme of order 

emerging out of chaos through the quantifying of chemistry is indeed a popular 

one.19 The implication that chemistry was not a science until it was quantified 

overwhelms the historiography of affinity, leading historians to canter from 

Geoffroy to Berthollet without stopping for breath.20 But this results in little or 

no understanding of where affinity fitted into the practices of chemists.  How 

were the theories used, if indeed they were used at all?  Were affinity tables and 

theories useful, or simply decorative?   

Crosland’s 1963 paper also formulates an equation that has since become 

familiar, linking affinity and Newtonianism:   

"One might say that every chemist who spoke of chemical 
attraction was an atomist, since the theory of attraction 
presupposed elementary particles of matter between which the 
attraction took place."21 

Thus Crosland subordinates affinity to the Newtonian influence, implying that a 

particulate view of matter was essential to such a theory.  Schaffer has drawn 

attention to the fact that traditional historiography has taken as its basis the 

‘Newtonian’ unity of 18th century natural philosophy, arguing that this is in fact 

a “profoundly unhistorical” practice.22 He goes on: 

“Contrasting developments, … are pictured as so many 
deviations from a ‘Newtonian’ norm.”23 

17 Holmes 1989. 
18 Crosland 1963. 
19 Guerlac 1968 describes a historiographical trail from Newton to Dalton via affinity although Guerlac 
doubts Geoffroy’s Newtonian credentials. 
20 See e.g. Partington  1989, 322-325 which identifies Geoffroy’s affinity as directly precursory to 
Berthollet’s mass action, and the physical chemistry of the next century. 
21 Crosland 1963, 377. 
22 Schaffer 1980, 56. 
23 Ibid. 
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As Kuhn has made clear, the identification of a ‘Newtonian’ chemistry is itself 

problematic.  He argues that chemists resorted to a stratagem of inhering 

Newtonian forces in chemical substances, resulting in an ontology that was 

contrary to Newton’s own intentions:  

“Newton himself had denied the chemical specificity of the 
ultimate atoms which composed the mechanical universe.  But 
the eighteenth century Newtonian chemists … emphasized 
instead the attractive and repulsive forces which he had 
hypothesized to govern the interactions and accretions of the 
minima. In spite of Newton's explicit disclaimer, these forces 
were, in the eighteenth century, usually taken to be inherent in 
the material corpuscles whose behaviour they governed.  They 
became “occult” forces which determined the characteristic 
properties of the various chemical substances.”24 

These affinities, in the form of distinctively chemical “forces” differentiated 

substances from each other.  This is often interpreted by historians as the 

Newtonisation of chemistry, but Kuhn has rightly described it in terms that 

suggest instead the chemicalisation of Newton.   

More generally, the assumption that affinity was only associated with a 

particulate metaphysic is open to question, as Eklund has pointed out: 

“Although affinity theory has often been associated with 
corpuscular ideas, it need not be.  True, the idea of affinities or 
attractions between particles was occasionally used, but most 
eighteenth century discussions on affinity spoke simply of the 
attraction between substances or parts (components) of 
substances in a general, indeed, vague manner".25 

In fact Crosland seems to have revised his viewpoint more recently, arguing that 

there were alternative spectacles through which to view affinity: 

"Indeed one did not have to be an avowed Newtonian in order to 
accept a vaguer but probably more useful concept of affinity 
which meant simply that if a reaction AB + C = AC + B took 
place, this was an indication that the affinity of A for C was 
greater than that for B."26 

The purported link between affinity and Newtonianism is particularly prevalent 

 
24 Kuhn 1952, 35. 
25 Eklund 1971, 137. 
26 Crosland 1980, 397. 
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in those works which explore the history and development of matter theories.  

These works tend to regard the doctrine of affinity as subordinate to the 

ontologies that are their primary investigative concern.  Unfortunately they do 

not only make this assumption for themselves, but for the historical actors as 

well.  Reductionism is superposed on the past, as it were.   

Thackray’s Atoms and Powers sought to counter what he saw as the excessive 

bias of 19th century historiography against Newtonian influence; he saw his 

work as: 

“a recovery of the dominating influence of Newtonianism in all 
its forms”27 

However, the result of this approach has been a similarly unwarranted bias in 

favour of Newtonian influence.  Thackray’s study persists in the assumption 

that the use of affinity theory implied a Newtonian stance; as (according to him) 

the first table was a Newtonian artefact, so too must be all such tables and 

associated hypotheses.  This contention results in an overcompensation, the 

assertion that affinity was initially and remained throughout the century a 

Newtonian phenomenon, a clear example of an erroneous single theory model.  

Klein has criticised Thackray’s argument, and in particular his failure to prove 

his thesis by a detailed comparison of Geoffroy’s table with Newton’s Query.  

Her own meticulous research has demonstrated that Thackray’s thesis is 

empirically under-determined.28 I would add to this my own methodological 

criticism, that wherever Geoffroy’s own philosophical allegiances might have 

lain, they cannot be simply assigned to the doctrine of affinity wholesale.  While 

it is undoubtedly fair to say that many chemists would have perceived a link 

between Newton’s natural philosophy and affinity,29 any assertion that the 

association was fundamental to the doctrine is both unfounded and misleading.  

The variety of specific theories, practices and assumptions encompassed by the 

doctrine of affinity over its long life preclude any such facile judgements being 

made.    

 
27 Thackray 1970, 3. 
28 Klein 1995, 81. 
29 Indeed, Cullen was one of those who saw such a connection, although his preferred version of Newton’s 
ontology was aetherial.  See below for further detail. 
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The very variety and malleability of affinity theories, the feature which enabled 

their persistence into the 19th century, might thus have proved their 

historiographic downfall.  One or other affinity theory can be slotted into place 

in most of the favoured narratives, as indeed one or other matter theory can be 

incorporated into the doctrine.  Thackray’s single theory model leads him to 

label Geoffroy as a Newtonian, a label that has been challenged by both 

Schofield and Smeaton.30 Schofield argued that:   

"Geoffroy had not spoken of attraction.  The word he used was 
"rapports" and the context of his work was elementary and 
Stahlian, not mechanistic and Newtonian."31 

Thackray’s claims are not without precedent; Cohen also argued that Query 31 

provided the impetus for the 1718 paper.32 Klein has disposed of this argument 

too on empirical grounds but unfortunately, this type of historiography is self-

replicating, as can be seen from Lundgren’s recent discussion of quantification 

in 18th century chemistry.33 Lundgren refers unquestioningly throughout to 

affinity as a Newtonian development, and Geoffroy as a Newtonian chemist.34 

Thackray, Cohen and Schofield are keen to brand Geoffroy himself, and by 

extension, his table (note that Schofield replaced ‘Newtonian’ with ‘Stahlian’); 

to align the “seminally important”35 affinity with one or other of the systems 

available to chemists of the time.  But where Thackray argues that affinity was 

always and everywhere Newtonian, Schofield’s Mechanism and Materialism 

demonstrates an implicit grasp of the diverse nature of affinity.  He writes: 

“During much of the eighteenth century there were persistent 
attempts to relate affinities … to Newtonian forces of gravity, 
capillarity, or cohesion.  Many of the most distinguished 
European natural philosopher chemists … were active in these 
efforts, but many more decried even the term “attraction” and 
retained the Stahlian aversion to mechanical assumptions.  Most 
British chemists belonged to the latter group, agreeing with 
William Lewis that affinities were just those “laws of another 

 
30 Schofield  1970, Smeaton 1971. 
31 Schofield  1970, 216. 
32 Cohen 1964. 
33 Klein 1995, 81-82. 
34 Lundgren 1990. 
35 Thackray  1970, 90. 
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order” than mechanical which distinguished chemistry from the 
mechanical philosophy.”36 

Schofield accepts that the doctrine of affinity allowed for differing views of 

matter.  As his interests lie elsewhere, Schofield does not explore the divergence 

any further, but his work does make clear that affinity, like Newtonianism itself, 

was not a single theory, but allowed for some differences of opinion within the 

framework of its doctrine.  Nevertheless, Schofield’s work implies that the only 

basis for a taxonomic classification of affinity theories lies in their philosophies.    

This historiographical stance has been criticised by Christie and Golinski who 

have pointed out that: 

“much historical work seems to assume that matter theory is in 
some uncomplicated way fundamental to chemistry, serving as 
the ‘philosophical basis’ for the thoughts and actions of any self-
conscious chemist.  Our historiographical approach is obviously 
not in sympathy with this position.”37 

Nor, as my work shows, is mine.  My research has confirmed that this criticism 

is justified.  The strength of affinity theories lay in the fact that they were able to 

guide and assist the chemist whatever his ontological commitments.  While 

matter theories may not have been irrelevant to the way in which chemists 

understood their affinity theories, it is clear that the latter were intended to deal 

with the sensible macrophysical world that chemists inhabited and manipulated.  

My study approaches the doctrine of affinity from this point of view, and it 

results in a more accurate depiction of the role of affinity theories in the practice 

of chemistry than do those studies that seek to embed such theories in matter 

theoretical speculations.    

Narrowing the focus of the historian’s field of vision still further, we begin to 

find a focal distance at which the single theory model is appropriate.  Some 

historians have touched on the affinity theories of particular chemists as part of 

biographical investigations.38 Most notably Donovan, Golinski and Christie 

have all discussed Cullen’s affinity theory to some degree, while Sivin has 

 
36 Schofield  1970, 216. 
37 Christie and Golinski 1982, 246. 
38 See, for example, Donovan  1975 which briefly discusses Cullen’s affinity theory, and Crosland 1959 
which examines both Cullen and Black’s development of their affinity theories to include diagrams which 
Crosland sees as early ‘equations’. 
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examined that of William Lewis.39 In terms of unpublished works, Eklund, 

Scott and Crellin have also touched on the affinity theories of particular British 

chemists as subsidiary elements to their primary theses.40 A single theory 

model poses no significant problems when dealing with an individual’s theory 

of affinity in this way, as, for example in Klein’s excellent papers on the origins 

of Geoffroy’s table.41 Klein has carried out the most enlightening research on 

the development of Geoffroy’s affinity table, examining the traditional craft 

knowledge from which the relations included in the table originated and why 

Geoffroy chose the particular array of substances that he inserted in his columns 

and rows.42 Her analysis shows that Geoffroy’s table articulates a novel concept 

of the chemical compound as composed of homogeneous, ‘pure chemical 

substances’, not necessarily elemental, but sufficiently simple for recovery from 

combination.43 As I have already indicated, Klein argues strongly against the 

automatic coupling of the affinity table with the Newtonian research 

programme, stressing that while the experimental basis of the table was not 

new, the novelty lay instead in the abstraction from social and theoretical 

context to create new ideas of composition and combination.   These ideas of 

composition and combination were essential to the concept of affinity and to the 

affinity table, which can thus be seen as a marker of chemistry’s disciplinary 

development. 

As I mentioned above, Holmes44 argued that affinity tables should be seen as 

but one facet of the chemistry of salts which formed the chemical research 

programme of the Académie des Sciences in the first half of the 18th century.  

Like Klein, Holmes focused on Geoffroy’s theory alone, adopting the single 

theory model.  Nevertheless, controversy arose between Klein and Holmes 

concerning Geoffroy’s theory of affinity.  As Klein points out, the contents of 

Geoffroy’s table were not restricted to neutral salts, covering also various 

 
39 Golinski 1992, Christie 1993, Christie 1983, Donovan  1975, Donovan 1982, Sivin 1962. 
40 Crellin 1969, Scott 1979, Eklund 1971. 
41 Klein 1995, Klein 1996, Klein 1994. 
42 Klein 1996. 
43 Ibid, 268-274. 
44 Holmes 1989, Holmes 1996. 
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sulphides, alloys and amalgams.  Klein and Holmes differ too in their 

evaluations of the novelty of Geoffroy’s theory of affinity.  It is clear that even 

in arguments where the single theory model is not inappropriate, its adoption 

does not necessarily result in harmony between historians. Nevertheless, both 

Klein’s and Holmes’s analyses are percipient.  Although they differ in their 

details, there is an underlying correspondence as both essentially claim that the 

phenomena that Geoffroy tabulated were familiar, not to say commonplace, 

within his milieu.   

Latterly, Klein’s work has focused on the roles of ‘paper tools’ in chemistry 

(predominantly the formulae of Berzelius, but affinity tables too fall into this 

category).45 Her analysis emphasises the correspondences between affinity 

tables and the actual practice of chemistry, an emphasis that is timely.  Where 

she has led, others have quickly followed, and a number of more philosophical 

studies of the practices of visual representation epitomised in affinity tables 

have appeared in the past few years.46 This approach seems to put the problems 

of the single theory model of affinity into abeyance, and might be termed the 

‘no theory model’.  Lissa Roberts has adopted this model, arguing that the 

affinity table epitomised the pre-revolutionary state of chemistry as a practice 

that had yet to become a science.47 Roberts has studied the affinity tables of 

Geoffroy, Guyton and Bergman which, she argues, functioned as “a 

theoretically neutral accrual of matters of fact”.48 

Following this evaluation, that affinity tables were simply synoptic collections 

of chemical facts, she contrasts them with Lavoisier’s table of simple 

substances, and the table of chemical nomenclature which embodied: 

“highly specific categories based on processes, such as 
oxygenation, which spread out to organise the investigative 
understanding of nature through a set of predetermined research 
projects.”49 

45 Klein 2001a, Klein 2001b, Klein 2001. 
46 See e.g. Cohen 2004, Spector 2003b, Spector 2003a. 
47 Roberts 1991. 
48 Ibid, 131. 
49 Ibid, 102. 
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Roberts’s assessment depends for its accuracy on the evaluation of affinity 

tables as being ‘theoretically neutral’, and this point is far from proven.  

Moreover, theoretical neutrality must not be confused with lack of theory.  

Whilst I would agree with the ascription of neutrality, as my research shows, 

affinity tables were far from atheoretical.  The strength of affinity lay in its 

potential compatibility with a variety of ontologies and metaphysical systems 

while still providing a common ground on which chemists could meet.  Affinity 

tables may have purported to represent empirical facts without theoretical bias, 

but their creation, expansion, pedagogy and use, as I show below, were guided 

and determined by theoretical assumptions.  The conclusion that Roberts draws 

from her comparison of affinity tables with Lavoisier’s table of simple 

substances suggests that her tacit definition of theory is perhaps a little narrow. 

Lavoisier himself presented his tables as theoretically neutral, and it requires a 

deeper probe to draw out the level of implicit theory proposed by Roberts.50 

This narrative of discontinuity is difficult to accept as it seems to accord certain 

assumptions embedded in Lavoisier’s tables the status of theory, while similarly 

implicit assumptions inherent to the use and intentionality of affinity tables are 

denied the same status.    

Finally in my taxonomy of affinity historiography, I reach perhaps the most 

important works.  Affinity has taken the leading role in larger scale thematic 

studies by Duncan, Levere, Goupil, Tsukahara and more recently Kim.51 While 

Levere’s excellent work only picks up the story of affinity from 1800 onwards, 

his introductory chapter deals with earlier centuries.  His comments, brief 

though they are, are insightful, and clearly appreciative of the multiple-theory 

nature of affinity (see above) and it is perhaps to be wished that he had extended 

his chronological scale to cover the 18th century in detail.   

Tsukahara’s analysis of the introduction of western chemistry into Japan allots 

affinity a defining role in the teaching of chemistry in 19th century Japan.   My 

 
50 See Lavoisier  1965, 177 and Duncan 1970, 34 where Duncan argues that Lavoisier’s table of simple 
substances was in the same tradition as affinity tables, “avoiding the dilemma between the need to avoid 
speculation and the need to bring the facts of chemistry into order by producing an orderly system which 
emerges naturally from the facts themselves”. 
51 Duncan 1988, Duncan 1962, Duncan 1981, Duncan 1970, Duncan  1996, Levere  1971, Goupil  1991, 
Tsukahara 1993, Kim  2003. 
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study, although focused on 18th century Britain, similarly highlights the 

fundamental role of affinity in chemical pedagogy. 

The works of Duncan, Goupil and Kim cover a wider chronological span than 

the 18th century, in the case of Goupil tracing the origins of the concept of 

affinity back to the 16th century.  All three are concerned with tracing the 

conceptual development of the concept of affinity in Europe.   

Perhaps the most comprehensive study of affinity is provided by Duncan’s 1996 

work, which provides a detailed survey of affinity tables, discussing their 

prehistory and development across Europe over the 18th century and into the 

19th.52 He argues that affinity tables reflected changes in 18th century chemistry 

as tabulated synopses of empirical observations with little or no underlying 

theory, and that this theory-free status was their strength.53 As chemical 

discoveries mounted, so too did the empirical observations that could be 

tabulated.  His study concentrates on the science behind the affinity tables, the 

reasoning that led substances to be included or removed, the search for 

operational regularities.  The affinity table is, in his view, a passive reflector of 

assumptions from outside the domain of affinity.  This approach implies, of 

course, that a careful comparison of affinity tables will result in a progressive 

story of operational discovery and development in chemistry as a whole, and 

this is indeed what Duncan’s work offers.  This work can rightly be described as 

the bible of the researcher in affinity theory.  Duncan’s list of the affinity tables 

published is undoubtedly without equal, and his discussion of the specific 

differences between them is comprehensive.  Nevertheless, the simultaneous 

breadth and narrowness of focus of his study, discussing both the general 

developments in chemical theory and the specific additions and subtractions to 

individual affinity tables leaves many questions of utility, context and practice 

unanswered.  His assumption that affinity tables simply mirrored changes in the 

discipline leaves them somehow emasculated.  As I show below, affinity 

theories and their tables provided the foundations upon which a coherent 

discipline of chemistry was built in Britain.  They were both important and 

 
52 Duncan  1996. 
53 See also Duncan 1988, Duncan 1962, Duncan 1981, Duncan 1970. 
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useful, enabling and driving chemical practice through their associated theories.  

While Duncan’s treatment, in effectively denying the existence of any affinity 

theory avoids the trap of the single theory model, it also obscures such 

important factors as the role of pedagogy in establishing the doctrine of affinity 

as the basis of the discipline.     

I am not seeking to argue that such historians as Thackray, Roberts and Duncan 

are or were absolutely wrong in their assertions.  I do, however, share Schaffer’s 

view that any historical representation of a unified natural philosophy is a mis-

representation.54 Any attempt to label or class the doctrine of affinity as a 

whole ignores the fact that individual chemists devised their own distinct 

varieties of affinity theory.        

Most recently Mi Gyung Kim has discussed the role of affinity in French 

chemistry in detail, adopting a novel ‘genealogical’ historiography that has 

proved extremely successful.55 Her study affords a clear indication of the 

breadth of influence and omnipresence of the doctrine of affinity in 18th century 

French chemistry.  Kim draws out of key chemical texts the details of their 

authors’ discourse on what she calls the theory domains of composition and 

affinity.  She follows the articulation and formulation of the theory domains of 

affinity and composition in the early 18th century, their stabilization, fracture 

and rehabilitation.  Kim delineates how chemists structured their discourse, 

managing the three layers of philosophy, theory and practice, often implicitly, to 

stabilise each domain.  A picture emerges of a system rarely in equilibrium, 

with each layer compelling change in the others.  Her tactic of examining texts 

emanating from each chemist separately serves to highlight the differences 

between their views on affinity as well as their correspondences.  Her analysis 

demonstrates throughout an understanding of the necessity of adopting a 

multiple theory model of affinity.  This understanding permeates the structure of 

her work and her research tactics, and the multiple theory model is allowed to 

guide the structure of the work, rather than being subordinated to narrative 

concerns.   

 
54 Schaffer 1980, 70-71. 
55 Kim  2003. 
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One of the most notable facts about all these previous studies is that they have 

not dealt in detail with the British experience of affinity.  Kim’s survey 

admirably sets out the development of affinity theory in France, but apart from 

the inclusion of Richard Kirwan, (whose work was influential on French 

chemists), she does not venture across the English Channel.  Similarly, those 

studies that have dealt with Geoffroy’s formulation of his theory focused with 

the Parisian context in which it was produced.  Affinity theories of certain 

British chemists have been discussed by those historians investigating their lives 

and works,56 but no specific comparison has been made of the variety of British 

theories in circulation.  The particular reason for this neglect is not clear, 

although there has long been an undoubted bias in historiography of 18th century 

chemistry towards French chemistry, which, perhaps basking in the reflected 

glory of Lavoisier, seems to have been regarded as more exciting and rewarding 

of study.  Those chemical developments that originated in Britain (and in fact 

there were many) have tended to be viewed in contrast as anomalous, perhaps as 

lucky accidents.  I would suggest that the problem lies in the concentration upon 

such ‘developments’, rather than on the conditions that made them possible.   

Kuhn’s contrast between normal and revolutionary science, while useful, has 

perhaps served to concentrate historians’ minds on the ‘revolutions’ to the 

detriment of the ‘normal science’.  My study is intended to rectify this situation 

by exploring the details of hitherto neglected British affinity theories while at 

the same time setting out a new model for historical comparison that enables the 

diverse nature of the doctrine to be assimilated.  As I show below, the doctrine 

of affinity formed a crucial part of the norm of British chemistry, a norm that 

remained impervious to the more ‘revolutionary’ developments that ordinarily 

receive ‘top billing’ in the received view of 18th century chemistry.  Neither 

new airs nor new nomenclature deposed the doctrine of affinity which remained 

omnipresent in the teaching and the textbooks of the discipline from the 1750s 

well into the 19th century.  Indeed, for Thomas Thomson, writing in 1830, 

affinity still constituted “confessedly the basis of the science” in spite of the fact 

 
56 E.g. Scott  1979, Donovan  1975. 
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that “it had been almost completely overlooked by Lavoisier”.57 It is clear that 

affinity theories provided sufficient continuity to the discipline to enable 

avoidance of the complete disjunction that seems to be implied by Kuhnian 

historiography.  On the other hand, as my research shows, the doctrine of 

affinity was riddled with discontinuity and divergence.  My intention here is to 

try to unpack the variety of affinity theories to try to reach some understanding 

of this dichotomy.   

1.4  ‘Manufacturing’ a Theory: Methodology 
It is apparent from the foregoing that a new view of British affinity theories is 

required.   The failure of most prior historiography of affinity to tackle the 

variations within the doctrine requires correction.  From the initial stages of this 

research, the evidence confirmed Perrin’s view that affinity should not be 

regarded as a single monolithic theory.58 I have endeavoured to put forward a 

more accurate and practicable analysis, wherein each individual’s affinity 

theory is shown to consist of a complex bundle of assumptions and auxiliary 

theories, many of which provided rules for its practical use.   

Many of the prior historiographical difficulties have arisen from too great a 

concern with an overriding developmental story of one type or another.  Such 

narratives, concerned as they are with documenting and exploring changes in 

ideas can, of course, be helpful.  However, the doctrine of affinity has not been 

well served by such treatments.  Affinity theories are made to appear, as they do 

in Duncan’s work, as passive receptors (or reflectors) of invigorating ideas and 

discoveries from other areas of the science.  Alternatively, the focus on 

chronological change or genealogical relations between theories and ideas has 

(possibly inevitably) tended to emphasise flaws in theories, simply by the fact 

that they almost always invoke a meta-narrative of progress or decline.  Where a 

theory forms part of a progressive narrative, problems tend to be emphasised as 

the historian documents the additions and ‘improvements’ made to it during its 

useful life; stories of decline, by their very nature, stress defects.  Such 

approaches obscure the questions of how and why affinity theories were 

 
57 Thomson  1830, 157. 
58 Perrin 1988, 60. 
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adopted and used at all and these questions are important.  Time and effort were 

consumed by natural philosophers throughout Western Europe in formulating 

and refining their affinity theories, and as Duncan has admitted: 

“Eighteenth-century chemists thought that affinity or attraction 
was important; and even if the concept had eventually to be 
discarded, they used it a great deal in the course of thinking 
which did have successful results in other directions.”59 

Duncan’s focus on use here is perceptive.  British chemists were generally more 

concerned with using their affinity theories to accomplish their specific 

chemical aims, than with exploring the nature of affinity as a force or power.60 

Any attempt to understand their role must thus focus in detail on the contents of 

each theory, not as a stage in a process of theoretical evolution, but as a tool, 

manufactured in order to perform a function.  To this end my study has 

endeavoured to separate out the theoretical components of affinity theories in 

order to probe their intended practical and operational functions.   

I have examined texts produced by a number of British chemists active between 

1740 and 1800, extracting where possible details of each individual’s affinity 

theory.  My examination of these primary texts shows that each chemist 

formulated their own affinity theory, comprised of different theoretical 

components according to preference.  Many of these components were tacit 

knowledge, which poses certain obvious problems for the historian seeking to 

pin them down.61 Nevertheless, many of these components became explicit, 

and thus available for comparison in the pedagogical context.  In spite of their 

differences, I found that components proved to be comparable inter-

theoretically on criteria of intended function.  Apparently different components 

of individuals’ theories could thus be classed together into component-types that 

performed the same functional role within each theory.  The patterns of 

divergence within the doctrine are traced by comparing components within each 

component-type.     

My methodology is perhaps easier to explain with the use of an extended 

 
59 Duncan 1996, 224. 
60 Schofield 1970, 216. 
61 Polanyi 1962, Polanyi 1967. 



27 

metaphor.  A car, to take a simple example, is manufactured from many 

different components.  Similarly, a theory of affinity was manufactured from 

theoretical components.  Just as there are many different makes of car, so the 

doctrine of affinity consisted of an array of individual affinity theories 

manufactured by chemists.   

Examining the notion of components a bit more closely; in the case of motor 

manufacture most component-types offer a certain amount of choice to the 

manufacturer.  He can decide according to his own requirements what particular 

engine he will use, what sort of exhaust or gearbox, or what size wheels.  

Engines, for example, can be of different types or capacities, all offering 

advantages and disadvantages.  But all these components are nevertheless types 

of ‘engine’ - although they might work in different ways, they perform a similar 

function as part of the vehicle.  In the same way, for affinity, certain theoretical 

components can be classed together in types according to the function they 

performed in the specific context of their affinity theory.  An example might be 

types of theories of combination.  While an affinity theory may require a theory 

of combination as a component, the chemist had a certain freedom of choice as 

to which particular theory of combination he used.  It was always possible for a 

chemist to invent his own hypothesis just as some motor manufacturers will 

invent and manufacture their own components if none of those available are 

appropriate.  It is vital to realise here that while a theoretical component may 

have been needed for an affinity theory to be functional or useful, such a 

component need not have been precisely the same for all individuals.     

In spite of all this divergence, there was a strong degree of conformity amongst 

affinity theories.  My study has also sought to shed light on the bundle of 

theoretical components that formed this common ground.  Of course, in spite of 

the huge potential range of cars/theories of affinity that can be imagined, there 

is still something that tells us in each case that each individual production is still 

a car/theory of affinity.  In general, people are able to recognise a car whatever 

make or model it might be, although it might be difficult to explain precisely 

how they come to their recognition.  There will inevitably be discussions about 

those models that seem to be on the margins of any definition, such as the 

Reliant Robin (which lacks the conventional number of wheels, but is still a car) 
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or the BMW C1 (which has a roof, but would be classed as a motorbike).  

However, the majority of motor cars are easily identifiable as such.  Similarly, 

historians of chemistry, like their subjects, can recognise a theory of affinity 

when they come across it, although there may be particular theories that 

contradict convention in certain ways.  In order to try to record the conventions 

of affinity theories it is important to try to elucidate how we come to their 

recognition, without, so far as possible, resorting to neo-Platonist notions of 

ideal forms.  This leads to what I have called the ‘logical common ground’, as 

being the bundle of unvarying components common to all theories of affinity.   

Components of the logical common ground include the general law of affinities 

originally articulated by Geoffroy in 1718, and the rather more nebulous 

concept of the affinity table.  As Kim says:  

“In addition to its functions of summary description, prediction, 
and explanation, the table allowed dissent within a 
comprehensive framework.”62 

To map the framework of legitimate dissent is to delineate the various 

component-types, but to find the locus of consent is to reveal the common 

ground.  The coincident components of the logical common ground help to 

further define the “comprehensive framework” of permissible dissent and 

variation by imposing criteria for the array of functional components built 

thereon.  The logical common ground of affinity thus provided the identity 

between the assortment of theories held by chemists.  My foremost task 

throughout this research has been to chart this topology of convergence and 

dissent amongst affinity theories. 

My research also suggests that this phrase ‘common ground’ can also be used to 

describe the role played by the doctrine as a whole in helping to forge a 

coherent discipline of chemistry.  Influenced strongly by chemical pedagogy, 

affinity became accepted as forming the foundation of the discipline.  As each 

individual theory was based on the components of the logical common ground, 

the doctrine also provided a basis for communication and common 

understanding as a disciplinary common ground.  Rather like Galison’s ‘trading 
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zone’, the common subscription to affinity allowed the exchange of knowledge 

in spite of individuals’ differing theoretical formulations.63 The doctrine was 

available to individuals espousing incompatible metaphysical or philosophical 

systems, intelligible and of use to each, but not necessarily with the same 

interpretive scheme acting in each case.   

This role of affinity as the disciplinary common ground is most clearly evident 

in chapter 2 below.  Here, the focus is directed rather at the wider context in 

which each affinity theory is most clearly manifested than at the details of each 

such theory.  The original intention of this chapter was simply to provide a 

limited contextual and chronological background to the later chapters, which 

examine various components of individuals’ theories largely in abstraction.  

However, it became clear during my research that certain themes were emerging 

that warranted further elucidation.  A focus on these themes has enabled me to 

suggest answers to a number of important questions concerning the 

dissemination of affinity theories in Britain, as well as to offer a tentative 

explanation for the patterns of incompatibility amongst affinity theories.   

Setting out in brief what I take to be the key points of Geoffroy’s original 

presentation of his paper and affinity table and its initial reception in Britain, it 

offers a deliberately skeletal examination of the circumstances of the dispersion 

of affinity down a pedagogical pyramid headed by William Cullen.  This 

chapter offers some thoughts on how Cullen and successive chemical 

pedagogues seized hold of an inexact generalisation and forged a coherent and 

carefully delimited discipline.64 A pedagogical bias was clearly present from 

the start, the most explicit statements of the principles of individuals’ affinity 

theories appearing predominantly in pedagogical sources.  As these sources 

proved to be the most fertile ground for my study, they tend to outnumber other, 

non-didactic sources.  The pedagogical ubiquity of affinity was not a fact that 

escaped novice chemists in the 18th century either; in 1766 Charles Blagden, 

taking notes from Cullen’s chemistry lectures wrote: 

 
63 Galison 1997. 
64 I use the word inexact in reference to Polanyi’s early paper on the relations of chemistry to physics, 
Polanyi 1936. 
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“to explain the subsequent Experiments, a portion of a Table of 
Elective Attractions was fixed up; but this being in almost every 
book of Chy is not worth repeating here”65 

This in itself testifies to the status of these affinity theories as forming part of 

the norm of 18th century chemistry.  The retrieval of such a norm is, as Knight 

has argued, "... itself interesting and must be the primary task of the historian”.66 

An insufficient understanding of the normal state of affairs will inevitably 

impinge unfavourably on any historiographical judgment.   

Many of the outstanding questions about the diffusion of affinity theories in 

Britain can be best understood by a focus on the pedagogical context.  I have 

been able to offer suggestions as to why there was such a lengthy hiatus 

between Geoffroy’s initial paper and the British recovery of affinity, and why 

indeed the recovery occurred at all.   

Hannaway has stressed the importance of didactic writings in the development 

of chemistry as a science,67 and more recently Bensaude-Vincent and her 

colleagues concluded that in 19th century France “textbooks played an important 

role in discipline building and in creating theories.”68 My study shows that 

pedagogical activities, and specifically the use of affinity theories as 

pedagogical tools, contributed to the forging of a distinct discipline of chemistry 

in Britain.  Rather than concentrating solely on textbook sources I have also 

drawn on lecture notes taken down by students.  Although the circumstances of 

production of these sources are often far from clear, they offer indications of the 

reception of pedagogical endeavours, as well as of pedagogical intent.  I have 

also been able to distinguish a number of tacit assumptions that were adopted by 

chemists as part of the disciplinary common ground.   A common assumption of 

applicability and utility can be discerned, alongside a series of tacit boundaries 

that were projected from the logical common ground onto the discipline of 

chemistry.  These assumptions reinforced the demarcation of the discipline from 

its disreputable older brother, alchemy, and its rather bumptious cousin, natural 
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philosophy.  As Christie and Golinski have pointed out, “affinity theory, insofar 

as it really was a theory, was anti-reductionist and distinctively chemical.”69 

These assumptions are explored in more detail in chapter 5. 

There is a further set of components of affinity theories that I have labelled 

‘optional’ components.  This set of components I have deliberately excluded 

from my study, as they were largely irrelevant to the functionality of affinity 

theories.  These types of theoretical component were not necessary for 

theoretical and operational coherence, but were often included in explanations 

of an individual’s affinity theory in an attempt perhaps to enhance its 

philosophical status.  Extending my metaphor somewhat, once the manufacturer 

has built his basic car, any number of ‘options’ can be added: CD players, 

satellite navigation systems, heated front windscreens, headlamp wipers and so 

forth.  He can also paint it pink with blue spots, if that is what he likes.  None of 

these optional extras are necessary to the car for it to be a car, and to function as 

a car, but they complete the image, they make it more desirable to others and 

they may perform a function that the manufacturer considers important.  So far 

as affinity theories are concerned, metaphysical theories of matter fall into this 

class of components.  During the 18th century there were a number of possible 

components of this type available, none of which were essential to the 

comprehension of an affinity theory as a whole, but any of which could be 

‘bolted on’, so to speak.  The ultimate structure of matter was not accessible to 

18th century chemists; indeed many chemists set limits to ontological enquiry 

that upheld the demarcation of chemistry from other disciplines.  Such 

speculations were metaphysical rather than scientific, and it seems to me to be 

crucial that we should give 18th century chemists credit for knowing the 

difference.  This emphasises the importance of bearing in mind the intra-

theoretical context: however fundamental a particular type of theoretical 

component might seem to be in the realist vision of the universe, it may well be 

wholly discretionary when viewed from the context of a theory or doctrine that 

is not dependent on it. 

This is not to deny that optional components were influential upon an 
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individual’s affinity theory in an indirect sense.  The selection of one particular 

type of component would doubtless affect the choice of some other types of 

component.  Theoretical coherence would require consistency between certain 

components; this conformity is primarily responsible for many of the labels that 

have been pinned to theories of affinity by historians.  While it might be true 

that a particular affinity theory was composed of a sufficient number of 

Newtonian components to be labelled as wholly Newtonian, the multiple theory 

model requires the acknowledgment that other theories that could not be so 

labelled could, and indeed did, exist.  While those historians (both modern and 

18th century) who sought to plant affinity in the fertile ground of Newtonianism 

(for example) have sought to give it a metaphysical identity independent of 

individual usage, my research suggests that the reverse view is more 

appropriate; Newtonianism could be planted in the doctrine of affinity 

according to theoretical preference.     

This approach to questions of the operational and didactic value of affinity, and 

the utility of affinity tables is more successful than the more traditional 

historical approaches have been.  The initial consideration of the relationships 

between key British manufacturers of affinity theories in isolation from the 

details of such theories emphasises the pedagogical context as providing the 

primary framework for the dissemination and dispersal of affinity theories.  The 

following abstraction of the components of affinity theories from their 

chronological, and social contexts has enabled me to determine their points of 

comparison.  I would suggest that this ‘a-chronic’ (as it might be termed) 

approach indicates why particular components were included in affinity 

theories, what was important to the chemist manufacturing his affinity theory.  

In each case, components were found to be comparable on the grounds of their 

operational functionality, their practical utility.  This is why affinity theories 

were omnipresent, and why they persisted throughout the century; because they 

were intended, and believed to be useful.  Finally, the extraction and elucidation 

of the logical and disciplinary common grounds from the array of components 

of affinity theories reveals the role that affinity theories in all their infinite 

variety took in forging an autonomous discipline of chemistry. 
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1.5  The Plan 
Chapter 2 sets out the contextual background to the affinity theories that are 

decompounded in the following chapters.  I have throughout been extremely 

conscious that my thesis relies on an extremely artificial selection of actors and 

sources, the criteria for such selection being overwhelmingly pragmatic.  As is 

the case with any historiographical endeavour, I have necessarily been restricted 

by the sources that are extant, and I have of course selected from these those 

sources that deal to some extent with affinity.  To emphasise this artificiality, I 

have chosen to present this chapter in the guise of a theatrical production.  My 

cast list is necessarily limited, confined predominantly to those whose theories 

are dissected and decompounded in the following chapters and I would not wish 

to pretend that this is history ‘as it happened’.   

Chapters 3 and 4 set out some of the component-types discernable in affinity 

theories, offering examples of the variations to be found amongst components.   

The ‘functional component-types’ discussed in chapter 3 are common to all 

affinity theories.  This sets out the variety of components that ‘operationalised’ 

affinity theory and provides important information concerning the use of such 

theories.  These components differed in their intentions from those set out in 

Chapter 4 which began to be included rather later in the 18th century, in 

response to new discoveries in the field of heat..  These ‘supplementary 

component-types’ offer insights into what kinds of pressures prompted the 

introduction of new components into theories, as well as how such components 

were formulated.  The reader should perhaps be warned that these chapters are 

extremely long, in particular chapter 3.  In order to emphasise the distinction 

between the two groups of component types, each of these chapters, although 

rather long, need to retain their integrity.  The division into component types 

structures the lengthy discussion, but I believe that any division into shorter 

chapters would inevitably obscure the distinction.    

Chapter 5 focuses on the logical and disciplinary common grounds, setting out 

the bundle of components that I have found to be common to all affinity 

theories and the assumptions that, by consensus, linked the doctrine to the 

discipline.   

And so … on with the show! 
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2. Affinity: A True and Accurate History of the Science as 
practised by the Philosophers of the British Isles 

2.1  The Cast (in order of appearance) 
William Cullen (1710-1790) Probably the most influential teacher of 

chemistry of the 18th century.  Born in Scotland, educated as a surgeon, 

apothecary and physician, appointed lecturer in chemistry at Glasgow 

University in 1747.  In 1755 he moved to Edinburgh University, where he 

taught chemistry until 1766.1 Thomas Thomson called him “the true 

commencer of the study of scientific chemistry in Great Britain”.2 Appendix II 

gives some indication of the breadth of his influence. 

Etienne François Geoffroy (1672-1731)  Son of a Paris apothecary trained first 

as an apothecary and then as physician.  Elected FRS in 1698 on a visit to 

London and in 1700 nominated to the Académie Royale des Sciences in Paris.  

Appointed élève by Homberg and later associé chemiste.3 Presented 17 

chemical papers to the Académie between 1700 and 1731.4 He also worked at 

the Jardin Royal des Plantes and the College Royal where he was made 

Professeur en Medecine, Chirugie, Pharmacie et Botanique in 1709.  

Corresponded regularly with Hans Sloane and contributed to the Philosophical 

Transactions five times. 

Robert Boyle (1627-1691)  Wealthy natural philosopher of Oxford and 

London and Bond’s “excellent chemist and celebrated philosopher”.5 Founder 

Fellow of the Royal Society, his most well-known work was the Sceptical 

Chymist6 which set out arguments against the hypotheses of the four 

Aristotelian elements and three spagyric principles, propounding instead his 

 
1 Thomson 1859. 
2 Thomson 1830, 305.  Thomson was taught chemistry by Joseph Black, perhaps Cullen’s most noted 
student, and he is the beneficiary of Thomson’s most generous praise. 
3 Martin Lister, who met Geoffroy Senior commented "I must needs commend this Gentleman on his 
civility towards me, and for his care in Educating his son, who came over with Count Tallard, a most 
Hopeful and Learned young Man; whom our Society at Gresham College, at my request, honoured with 
admitting him Fellow, according to his Deserts”.  Martin Lister, A Journey to Paris, 242-243, quoted in 
Sturdy 1995. 
4 For a detailed account of Geoffroy’s life and career, see Sturdy 1995. 
5 Bond, 1753, 186. 
6 Boyle 1661. 
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“corpuscular philosophy”.7 Remembered for his physical work on air, he was 

also a practising chymist and throughout his copious works, he endeavoured to 

explain chemical phenomena in mechanical terms.8

Sir Isaac Newton (1642-1727) Natural philosopher, alchemist, FRS 1672, 

President of the Royal Society 1703-1727, Lucasian Professor of Mathematics 

at Cambridge, Member of Parliament and Master of the Mint.  Published 

Principia 1687,9 Opticks 1704,10 in the Queries of which he discussed chemical 

phenomena, using successive precipitation of metals to buttress his notion of 

interparticulate forces of attraction. 

John Mickelburgh (c.1692-1756) Third professor of chemistry at Cambridge 

University.  He took over his post in 1718 and it seems from notes of his 1726 

lectures still held at Cambridge that courses were given in at least five years.11 

The lectures were given for the benefit of anyone who wished to attend, and 

presumably could pay the fees.  The list of students for the 1726 course includes 

surgeons and apothecaries from Cambridge and the surrounding area as well as 

students of the various colleges. 

James Crawford (1682-1731) The first lecturer in chemistry at the University 

of Edinburgh, from 1713 to 1726.  Gave perhaps three or four courses in total.12 

Crawford spent five weeks in Leyden during 1707, and it is sometimes said that 

he was a student of Hermann Boerhaave, but this seems doubtful.13 

Peter Shaw (1694-1763) From the late 1720s to the 1740s, Shaw produced 

English translations of the works of Hermann Boerhaave, Francis Bacon, Robert 

Boyle, and Georg Stahl, published a posthumous edition of John Quincy’s 

 
7 One of the earliest statements of Boyle’s corpuscular philosophy was set out in his Origins of Forms and 
Qualities (1666-7) in Boyle 1999 Vol. 5. 
8 See also Newman and Principe 2002; Principe  1998. 
9 Newton 1995. 
10 Newton 1979. 
11 Haley 2002. 
12 There are two sets of lecture notes from Crawford’s lectures extant, one held by Edinburgh University 
taken by Alexander Monro, and a further set held by The Wellcome Trust taken by a student named John 
Fullerton, MS 2451. 
13 See Doyle  2004.  Doyle argues that historians have often mistakenly asserted that Crawford was one of 
Boerhaave’s students as he graduated in Leyden, but points out that the majority of his medical training 
was done elsewhere, and that five weeks would probably not allow him sufficient time to attend 
Boerhaave’s lectures. 
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Praelectiones Pharmaceuticae, and gave public lectures in chemistry.  Only 

elected to fellowship of the Royal Society in 1752 many years after his last 

chemical publication14 but after he had attained the heights of physician in 

ordinary to George II and George III. 

Pierre-Joseph Macquer (1718-1784) Born in France, he was a member of the 

Académie Royale des Sciences and published in 1749 Elemens de Chimie 

Theorique, and its sister volume, Elemens de Chimie Pratique in 1751.  Both 

works were translated into English and published in 1758 in a single volume. 

William Lewis (bap. 1708-1781) Son of a Richmond brewer, educated at 

Oxford and Cambridge, where he obtained his M.B.  Gave public lectures in 

chemistry in London from the late 1730s.15 Publications include a Course of 

Practical Chemistry and the New Dispensatory. Elected FRS in 1745, he 

published three papers on platina in the Philosophical Transactions16 for which 

he won the Copley Medal.  In 1759 Lewis published what is said to have 

contained “the first exposition in English of Stahl’s phlogiston theory”17 in his 

edition of the writings of Caspar Neumann.18 Consulted to the Society for the 

Improvement of Arts, Manufactures &c. 

George Fordyce (1736-1802).19 Born Aberdeen, learned chemistry as medical 

student from Cullen at Edinburgh.  Graduated MD in 1758,20 attended Leyden 

to study anatomy in 1759.21 Began lecturing in chemistry from his London 

home circa 1760.  From 1764 gave a lecture course in Materia Medica and in 

1770 became physician at St. Thomas’ Hospital. Harveian Orator at the Royal 

College of Physicians and Croonian Lecturer at the Royal Society.   

 
14 Where his election certificate asserts that he is “A Gentleman well versed in Philosophical, 
Mathematical, and other Branches of polite and usefull Literature, as appears by his many learned Works 
already published”.  Royal Society  1752. 
15Gibbs 1952, 124. 
16 Lewis 1754, Lewis 1757a, Lewis 1757b. 
17 Gibbs 1952, 130.  This is particularly interesting when it is borne in mind that Shaw published a 
translation of Stahl’s Collegium Jenense in 1730.  This was one of the few of Stahl’s works not to contain 
any reference to his phlogiston theory. 
18 Lewis  1759. 
19 Coley has produced the most comprehensive account of Fordyce’s life and works, and much of the 
biographical information on Fordyce is culled from his 2001 paper.  Coley 2001. 
20 Ibid, 402. 
21 Kelham 1968. 
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Torbern Bergman (1735-1784) Swedish chemist.  In 1775 published  

Disquisitio de Attractionibus Electivis.22 This was translated into English in 

1785 as A Dissertation on Elective Attractions. Corresponded from 1780 until 

his death with Kirwan, whose attempt to quantify affinities may have been 

inspired by sight of Bergman’s table.23 

John Elliot (1747-1787) Born in Somerset, apparently becoming first an 

apothecary, and then M.D.24 Settled in London, and began publishing in 1781 

with his Medical Pocket-Book which was republished in at least five London, 

three Dublin, and four American Editions, continuing long after his death.

Friendly with Kirwan, Joseph Priestley and Benjamin Franklin, he also 

contributed to the London Medical Journal.  There is little information available 

on Elliot’s life but there are numerous sources of the circumstances of his death 

in Newgate, in the aftermath of a trial for attempted murder.25 

Richard Kirwan, (1733-1812) Wealthy Irish ‘gentleman chemist’, schooled in 

France26 where he attended Rouelle’s lectures.27 Elected FRS 1780 and 

awarded the Copley Medal for three papers that set out his system for 

quantifying affinity.28 Published Elements of Mineralogy which was translated 

into French, German and Spanish, and the handbook of the chemical revolution, 

Essay on Phlogiston (although on the ‘losing’ side).  Founder member of the 

Chapter Coffee House Society which met from 1780 to 1787.  Council for 

Royal Irish Academy from 1787.   

William Higgins (1763-1825) Nephew of an established private lecturer in 

chemistry, Bryan Higgins.  Educated at Oxford, where he had been operator to 

 
22 Bergman 1775. 
23 Kirwan specifically mentioned Bergman in the paper that began his studies of affinity: Kirwan 1781. 
24 Partington and McKie have drawn attention to the fact that “a John Elliot attended the medical classes at 
the University of Edinburgh in 1766-1770 and another attended during 1773-1775.” See Partington and 
McKie 1960,  266.  Duncan notes that Elliot’s attempt to quantify affinity was similar to Black’s 
assignation of numbers to affinities, but it is unlikely he was a student of Black’s, as he speaks of having 
gleaned Black’s theory of heat from a set of notes of Black’s lectures borrowed from a friend who had 
attended them.   Duncan  1996, 198 and Elliot  1780, 122-123. 
25 For the full sad story, see Old Bailey News, Times, Jul 17, 1787,Times, Jul 24, 1787, Manning 1993. 
26 Scott 1979, 13.  Scott’s thesis is the most recent and comprehensive survey of Kirwan’s life and work. 
27 Kim 2003, 269. 
28 Kirwan 1781, Kirwan 1782, Kirwan 1783. 
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the Professor of Chemistry.  He left Oxford without a degree and seems to have 

spent some time assisting his uncle in London.29 Published his Comparative 

View of the Phlogistic and Antiphlogistic Theories in two editions.  Member of 

Royal Irish Academy 1794.  Friendly with Kirwan.30 

(and various supporting Natural Philosophers, Chemists, Apothecaries, 

Physicians and their Historians) 

2.2  Prologue: Pedagogical Experimentations and 
Philosophical Investigations 

The year is 1749, the place a lecture room at Glasgow University.  A gentleman 

in a large wig presides over a room of students of diverse ages and styles.31 The 

bewigged gentleman lectures to them on chemistry, interspersing his words with 

frequent demonstrations.  One such demonstration appears to be taking place as 

we watch: he carefully pours a red brown liquid onto a brownish solid 

substance, standing back as the mixture bubbles, and fumes rise into the air.  He 

draws the attention of the watching students to this phenomenon, explaining that 

the substances in the mixture are generating a sensible heat.  Once the agitation 

has died down, he shows the students the resulting matter, a solid substance 

known as saltpetre, a compound salt that he has produced from the combination 

of potash and an acid called aqua fortis.  The demonstration continues with the 

lecturer, William Cullen, taking this saltpetre, and carefully pouring another 

liquid, this time the acid oil of vitriol, over it.  Once again, the mixture 

effervesces, and more fumes are produced.  Cullen explains to the students what 

has occurred: 

“the Pot Ashes joins yet more readily with, or as we usually 
speak, is more strongly attracted by the Oil of Vitriol; so that if 
this be poured to Saltpetre the Pot Ashes or its fixed Part is 
joined with it and lets go the Aquafortis which therefore flys off 
according to its Volatile nature as we saw in our experiment.  I 
say this is an Instance of Pot Ashes attracting Oil of Vitriol more 

 
29 Wheeler and Partington 1960 Life, 4-5. 
30 It is difficult to ascertain when his friendship with Kirwan began, but it was evident by 1795 when 
Kirwan put forward a suggestion to the Dublin Society that they employ Higgins to arrange and supervise 
the Leskean cabinet of minerals.  See Wheeler and Partington  1960, 17.  Alternatively, Kirwan had been a 
customer of Bryan Higgins’s chemical supply business during his time in London.  See Kelham 1968, 110. 
31 Cullen’s chemistry lectures were open to all those who had an interest in the subject, and this apparently 
included many from outside the university, whose interests were often commercial. Golinski 1988, 5.  
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strongly than Aquafortis and this is what we call an elective 
attraction; & by the knowledge of such Elective Attractions many 
operations in chemistry are to be explained."32 

Thus did Cullen introduce his students to the actions of affinity (or, as Cullen 

preferred it, elective attraction) and its role in chemical combination and 

separation.  Almost 20 years later, in the final year of his chemistry lectures (by 

now at Edinburgh University), he drew on the same example.  Some terms 

changed; instead of saltpetre, he referred to nitre, and he substituted the term 

‘nitrous alkali’ for potash, this time mixed with ‘nitrous acid’, but the 

demonstration remained essentially the same.33 This demonstration gave his 

students (by now numbering over 140)34 a clear and powerful example of the 

action of chemical affinity in compounding heterogeneous substances, and of its 

associated power to separate compound substances.  

A change of scene: England, in the years between Cullen’s first chemistry 

lectures at Glasgow and his final lecture on the subject at Edinburgh.  A 

discussion takes place in the pages of the Philosophical Transactions 

concerning an apparent transmutation of metals.   

The art of obtaining copper from vitriol streams was familiar to metallurgical 

workers since Pliny’s time.35 They knew that if pieces of iron were placed in 

certain streams, often in areas where copper was mined, copper would be 

precipitated as the iron was apparently dissolved.  A Dr John Bond, picking up 

on earlier discussions in the Philosophical Transactions,36 attended at one such 

spring in Wicklow in Ireland, and carried out a number of experiments, 

reporting his results to the Society.  Bond explained in a letter that: 

“This water flows from a rich copper mine, and is of a sharp acid 
taste, and light-blue colour.  It is received and collected in pits, 
wherein iron bars are put, which, after lying in the water about 
three months, are intirely consumed, and at the bottom of the pits, 
a quantity of copper, greater than that of the iron is found, in the 

 
32 Cullen 1749, f. 17. 
33 E.g. Cullen 1766, lectures 17 and 18. 
34 Golinski  1992, 17. 
35 Partington 1948,  110. 
36 Henry 1752. 
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form of coarse sand.”37 

Bond carried out five experiments on the spring water, showing that the water 

contained an acid with copper dissolved in it.  His explanations, while making 

use of some of the language of Newtonian philosophy, owe much to Locke’s 

philosophy of active powers as well as the corpuscular philosophy of Robert 

Boyle.   

“From all these experiments it appears, that a mineral acid is the 
active quality in this water; which being diffused thro’ the copper 
ore, unites itself with that metal, and forms a vitriol, which is 
dissolved by the water, and remains suspended in it, till it meets 
with the iron in the pits, by which this acid is more strongly 
attracted than by the copper, therefore it quits the copper, 
corrodes the iron, and changes it into a vitriol, which is again 
dissolv’d, and carried off in the stream continually flowing from 
the pits; while the copper, deserted by the acid, falls, by its 
specific gravity, to the bottom of the pits.”38 

The apparent transmutation of iron into copper is explained in Bond’s letter as a 

neat swap of one substance for another.  His account follows a similar model to 

Cullen’s explanation of the decomposition of saltpetre, the model of the elective 

action of chemical affinity.  But where Cullen offered his demonstration as an 

example of the action of a single familiar cause (and went on to explain the 

theory), Bond seems to have been unable to do the same.  In comparison with 

Cullen’s lecture, Bond’s determined empiricism seems disingenuous.  He 

alternates between an inconsistent set of concepts of active qualities, the acid-

alkali dualism of the early 18th century French chemists and the animistic 

language of alchemy.  Inevitably, the Newtonian ‘attraction’ is also present in 

his rather confused conceptual package.  Later in his letter he asserts that: 

“the art of essaying, or separating metals from their ores, chiefly 
consists in evaporating an acid, which prevents the mutual 
attraction of the metallic particles: for when the acid is driven off 
by the violence of fire, the particles fall into their proper sphere 
of attraction, and assume a solid form.”39 

Newton’s influence is evident in the purported ‘spheres of attraction’, although 

 
37 Bond,1753, 182.  
38 Ibid, 186-187. 
39 Ibid, 187. 
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the attraction he mentions seems to be the cohesion of homogeneous particles 

rather than the elective attraction of affinity theory.  The image is mechanistic, 

the acid envisaged as interposing itself between the particles of metal.  Note that 

according to Bond, it is the role of the active acid to quit the copper as the 

passive partner rather than a mutual separation or a purely mechanical matter of 

forces.   

These examples illustrate the role of pedagogy in dispersing40 affinity theories 

throughout Britain.  Cullen used the model of a preferential separation and 

combination to demonstrate the workings of affinity, the theory of which 

formed a general principle of the discipline.  Although Bond, when presented 

with phenomena that followed the same model drew on similar ideas, his 

conceptualisation is vague.  Bond wrote his letter in the early 1750s, thirty years 

after Geoffroy had presented his affinity table to the Académie Royale des 

Sciences (and four years after Cullen’s first chemistry lectures) and yet he did 

not refer to affinity.  This perhaps testifies to the Royal Society’s relative lack of 

interest in chemistry during the first half of the century.  In contrast, Cullen’s 

inclusion of his affinity theory from his first lectures (which included a detailed 

exposition of Geoffroy’s table) implies that his role in the dissemination of 

chemical affinity through Britain was significant.  

2.3  Act 1: In Which a Frenchman builds a Table, and the 
Natural Philosophers of Britain Pay it no Heed 

In 1718 Geoffroy presented to the Académie Royale des Sciences his “Table 

des Differents Rapports Observés en Chimie entre Differentes Substances” 

together with an explanatory Mémoire.41 His paper inspired the Secretary of the 

Académie, Bernard le Bovier de Fontenelle to comment that “une Table 

Chimique est par elle-même un spectacle agréable à l’Esprit”.42 

The fact that some pairs of substances were more inclined to combine than 

 
40 I have chosen the word ‘dispersing’ in reference to David Kaiser’s work on the dispersion of Feynman 
diagrams through the realm of postwar physics.   I have found striking similarities between the patterns of 
dissemination noted by Kaiser and those evidenced in the transmission of affinity theories.  See Kaiser 
2005. 
41 Geoffroy 1719. 
42 Fontenelle 1719, 37. 
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others was a fundamental chemical axiom.   Geoffroy tabulated these relations, 

listing empirically based generalisations of this knowledge in a grid of sixteen 

columns (figure 1 on p. 93).  Each column was headed by a particular substance, 

and below this were listed other substances in order of their tendency to unite 

with it, from the most eager at the top to the most reluctant at the bottom.  

Geoffroy’s paper explained this and indicated in a very general way how the 

table had been created.  He suggested that  

“Par cette Table, ceux qui commencent à apprendre la Chimie se 
formeront en peu de temps une juste idée du rapport que les 
differentes substances ont les unes avec les autres, & les 
Chimistes y trouveront une methode aisée pour découvrir, ce qui 
se passe dans plusieurs de leurs operations difficiles à démêler, & 
ce qui doit resulter des melanges qu’ils sont de differents corps 
mixtes.”43 

He did not at any point offer a causal explanation of how or why these 

relationships between substances operated.  Instead, he proposed what he 

implied was a generalised ‘loi’ drawn from his observations: 

“Toutes les fois que deux substances qui ont quelque disposition 
à se joindre l’une avec l’autre, se trouvent unies ensemble ; s’il 
en survient une troisiéme qui ait plus de rapport avec l’une des 
deux, elle s’y unit en faisant lâcher prise à l’autre."44 

According to the law, if two substances were combined and a third substance 

introduced that had more rapport with one of the combined substances than that 

substance had with its partner, it would oust the substance with less rapport 

from the combination and combine in its stead with the other.  Knowledge of 

affinities could thus be used to manipulate matter, separating and combining 

different substances according to the chemist’s desire.   

Klein has shown that knowledge of these phenomena was habitually put to use 

in European metallurgical and apothecaries’ workshops, where many of the 

relations listed in Geoffroy’s table would presumably have been regarded as old 

news.45 One half of the table drew on techniques of salt synthesis and analysis, 

 
43 Geoffroy 1719,  203. 
44 Ibid. 
45 Klein 1996.  Also see Newman  2006 which has recently shown that many of the same phenomena were 
recognised by chymists in the 17th century as well, as the much earlier Geber. 
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while the other emanated from the extraction of metals from their ores.  Similar 

phenomena were also well known amongst the philosophical investigators of 

nature. 

Bond’s letter specifically cited Robert Boyle’s mention of the displacement of 

copper from solution in vitriol by iron as an instance of what he called 

‘sympathetic precipitation’ in his “Essay on Specific Medicines”.46 Boyle 

referred to a variety of similar chemical phenomena in an attempt to reconcile 

the notion of specific medicines with his corpuscular philosophy.  By citing as 

examples the particular associations of particular bodies, he showed that: 

“there may be precipitations, where, whatever may be supposed, 
it does not appear that there is any tumult or contrariety.”47 

The lack of apparent strife between the substances would ensure their suitability 

for use as medicines.  Boyle dealt more explicitly with metallic displacements in 

“Of the Mechanical Causes of Chemical Precipitation.”48 This set out a detailed 

mechanical explanation of a model of preferential combination that would have 

been recognized by Cullen and Bond.49 The exemplary displacement at the core 

of an affinity separation can be distinguished in his explanation that:  

“another way, whereby the dissolving particles of a menstruum 
may be rendered unfit to sustain the dissolved body, is to present 
them another, that they can more easily work on”.50 

He continued by giving an example of how the recognition of the relationships 

between the dissolved body, the menstruum and the precipitant was of practical 

importance to the practitioners of metallurgy: 

“that in these operations, the saline particles may really quit the 
dissolved body, and work upon the precipitant, may appear by 
the lately mentioned practice of refiners, where the aqua fortis, 
that forsakes the particles of the silver, falls a working upon the 

 
46 In fact, it seems that Bond’s quotation was not entirely correct, as the phrase apparently used by Boyle 
(so far as Birch’s 1744 edition and  Hunter’s most recent edition of the Works are  concerned) was “silent 
precipitation”.  Boyle 1999, 10, 380. 
47 Boyle 1744, IV, 308. 
48 Ibid, III, 635-642. 
49 Levere has argued that in spite of Boyle’s corpuscularian approach, “Boyle did give practical recognition 
to affinities … In explaining such phenomena, however, he remained within the limited and limiting frame 
of his natural philosophy”.  Levere 1971, 4. 
50Boyle 1744, III, 640. 
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copper-plates employed about the precipitation, and dissolves so 
much of them, as to acquire the greenish blue colour of a good 
solution of that metal.  And the copper we can easily again, 
without salts, obtain by precipitation out of that liquor with iron, 
and that too, remaining dissolved in its place, we can precipitate 
with the tasteless powder of another mineral.”51 

Here Boyle set out in prose form what would be recognisable to later chemists 

as a short column of an affinity table, similar to the list included by Newton in 

the 31st Query appended to his Opticks of 1706.  Boyle thus demonstrated his 

familiarity with the phenomena some 30 years before either Newton’s Query or 

Geoffroy’s Mémoire were published.   

Christie and Golinski have argued that Boyle’s works might be usefully viewed 

as posing the problem of how to apply a corpuscular mechanism to chemistry.52 

Boyle struggled to explain the preferential nature of these combinations and 

separations in terms of his corpuscular philosophy, having recourse (possibly in 

desperation) to a somewhat animistic idiom.  He spoke of “seducing them [the 

menstruums] to work on other bodies, and to forsake those they first 

dissolved”.53 The inconsistency of this language with the ideal of 

corpuscularian mechanics is an indication of the difficulties natural 

philosophers, including later Newtonians, had in dealing with chemical 

behaviour.  It was not a problem that Boyle was able to solve without recourse 

to mysterious, often anthropomorphic, affections.  The corpuscularian 

metaphysic did not furnish a language or conceptual structure that could explain 

the affinities of individual substances other than by vaguely invoking “the 

shape, bulk, solidity and other mechanical affections of its particles.”54 In 

mitigation though, Boyle was certainly not alone in his linguistic difficulties.  

Newton himself  spoke of: 

“a certain secret principle in nature by which liquors are sociable 
to some things & unsociable to others.”55 

51 Ibid. 
52 Christie and Golinski 1982, 245. 
53 Ibid. 
54 Boyle 1744, IV, 308. 
55 Newton 1678.  It is probably important to bear in mind that this was early in Newton’s thinking, and 
forms part of the famous ‘aether letter’.   
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Like Bond, chemists far into the 18th century found it impossible to explain 

affinity in terms that satisfied the ideals of scientific discourse. 

The issue of language was of some importance to Geoffroy and his 

contemporaries, and Duncan has explored its significance with regard to 

affinity.56 As he notes, Geoffroy went to some lengths to avoid an implied 

connection to any type of philosophical system.  Presumably aware of the 

difficulties inherent in explaining these phenomena in ontological terms, he 

tried to show that his generalised law could still be useful without drawing 

ontological implications.  Throughout his 1718 Mémoire he avoided the use of 

the more loaded terms of ‘affinity’ and ‘attraction’.  Instead, he referred only to 

‘rapports’, a word that can be loosely translated as ‘relationship’ but which 

seems to have been intended to be synonymous with ‘disposition à s’unir’.57 

The implication of this term, that substances chose whether or not to combine 

together according to ‘disposition’, might itself seem rather animistic, but it was 

intended simply to indicate a varying tendency to combine.   

It is interesting to note that in the Proces Verbaux of the Académie, where the 

paper was initially documented in manuscript, the change from the term 

‘affinité’ to ‘rapport’ is recorded.  Geoffroy began his reading of the paper on 

Saturday 27 August 1718, where the papers record that “M. Geoffroy a 

commencé à lirè un Ecris sur les differents degréz d’affinité des Matiéres 

Chimiquez”58 After a single blank sheet, the proceedings of the next meeting 

on Wednesday 31 August 1718 appear, and that “M. Geoffroy a achevé L’Ecris 

… Suivant”.  The full text of the paper follows, in a different hand, titled as in 

the printed version, and referring to ‘rapports’ rather than ‘affinité’.  

In spite of Geoffroy’s determinedly cautious terminology, by 1720 the Cartesian 

Fontenelle was speaking of ‘affinities’ even as Geoffroy was persisting in his 

references to ‘rapports’.59 In 1723, the anonymously published Nouveau Cours 

de Chymie of Senac referred to Geoffroy’s “Table des affinities des corps”.  

 
56 Duncan 1981, Duncan  1996, ch.3 & 4. 
57 Geoffroy 1719, 202. 
58 Académie Royale des Sciences 1962, T37, f 231v. 
59 Fontenelle 1722, 32. 
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According to Senac, Geoffroy’s table “a rendu plus de service à la Chymie 

qu’une infinite d’Auteurs par de volumes remplis de raisonnemens 

physiques.”60 Geoffroy’s own term ‘rapports’ was, it seems, only ever used by 

him, being displaced by other, more controversial terms in almost every case.    

Many historians have seen Geoffroy’s paper as stemming from the Newtonian 

natural philosophy sweeping Europe.  That Newton’s notion of attractive force 

influenced many later chemists’ affinity theories is undeniable; affinity lent 

itself too easily to an ontology of particles and attractive forces for it to be 

otherwise.  Three strands can be discerned in the historiography that ties 

Newton to affinity theory.  The first asserts that the idea of ordering affinities 

originated with Newton, and that Geoffroy merely rearranged Newton’s words 

and ideas in tabular form.  The second, in most cases deriving from the first, 

assumes that Geoffroy himself was a ‘Newtonian’.  A third assumption that any 

espousal of an affinity theory necessarily involved a commitment to a 

Newtonian ontology is also common.   

The first position is epitomised by those who claim that Query 31 incorporated 

the first articulation of an affinity theory.61 Thackray, for example, argued that:  

"Nor is it surprising that Newton's attempt to list the metals in the 
order of their attractive powers was to fascinate E.F. Geoffroy 
and lead, through the latter's table, to the host of late-eighteenth 
century attempts to quantify the forces of chemical affinity." 62 

Cohen adopted both the first and the second positions (which are clearly linked), 

asserting unequivocally that Geoffroy was a Newtonian and that his table 

reflected this orientation.63 Smeaton however challenged this second position, 

adducing evidence from Geoffroy’s materia medica lectures, posthumously 

published as Treatise of the Fossil, Vegetable and Animal Substances that are 

Made Use of in Physick,64 to assert equally unequivocally that Geoffroy was 

 
60 Senac  1723, lxvii. 
61 This Query appeared for the first time in the 1706 Latin edition of the Opticks.  It was translated into 
French in 1720 and first appeared in English in 1717. 
62 Thackray 1970, 34. 
63 Cohen 1964. 
64 Geoffroy 1736. 
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very far from being a “Newtonian Chemist”.65 

There is indeed little to support this particular origin myth.  As Guerlac and 

Klein have shown, and my glance at Boyle’s writings above has demonstrated, 

there were many potential sources of inspiration for Geoffroy’s table besides 

Newton’s Opticks:   

“Much, if not most, of the information in the table he could have 
drawn from the seventeenth-century chemical tradition, as indeed 
Newton himself had done in accumulating the chemical facts that 
he set forth in Query 31.”66 

So, in the face of this, why do historians insist on the Newtonian origin of 

affinity theory?  There is a recognised tendency for ideas to be deliberately 

linked to revered authorities in order to acquire prestige or validation.67 I would 

suggest that the ‘Newtonianisation’ of Geoffroy and his table is such a case.  

The third strand mentioned above seeks to extend this classification to all 

affinity theories.  It is unfair, however, to condemn modern historiography for 

the widespread assertion that Newton ‘invented’ affinity.  Many 18th century 

chemists asserted something remarkably similar.  John Warltire, a public 

lecturer in chemistry, stated unambiguously that: 

"The Plan of this Table was first given to the World by the 
illustrious Sir Isaac Newton, in his Optics, Quere 31st; and has 
received many Improvements from Stahl, Geofroy, the 
Edinburgh Chemists, and others.”68 

and even Cullen took care to assert Newton’s authority over the origin of 

affinity theories.69 It is tempting to attribute this trend to nationalistic feelings, 

to suggest that British chemists wanted to claim such a useful chemical theory 

for their own, but there is no evidence in favour of this argument.  Whatever the 

cause, it is clear that there is a strong tradition of ascribing the origin of affinity 

to Newton on the strength of the 31st Query.   As those temporally closer to 

 
65 Smeaton 1971. 
66 Guerlac 1968, 73. 
67 Kragh  1989, 111. 
68 Warltire  1769b, 25. 
69 See, for example, Cullen n.d. [1760?], in which Cullen asserts the role of Newton in the formulation of 
affinity. 
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Newton instituted this myth, so modern historians have accepted their 

assessment without demur, and the fiction has been propagated.   

It might assist here to expand somewhat on just how far from ‘theory’ Newton’s 

speculations actually were.  The lengthy Query 31 contains Newton’s 

speculations on matter and its attractions.  About midway, he turned to 

chemistry, suggesting that inter-particulate attractions might be responsible for 

the successive precipitations of metals from solution in acid: 

“And so when a Solution of Iron in Aqua Fortis dissolves the 
Lapis Calaminaris, and lets go the Iron, or a Solution of Copper 
dissolves Iron immersed in it and lets go the Copper, or a 
Solution of Silver dissolves Copper and lets go the Silver, or a 
Solution of Mercury in Aqua fortis being poured upon Iron, 
Copper, Tin, or Lead, dissolves the Metal and lets go the 
Mercury; does not this argue that the acid Particles of the Aqua 
fortis are attracted more strongly by the Lapis Calaminaris than 
by Iron, and more strongly by Iron than by copper, and more 
strongly by Copper than by Silver, and more strongly by Iron, 
Copper, Tin and Lead, than by Mercury?”70 

As we have seen, Boyle had published a similar ‘series’ of metallic 

precipitations some thirty years prior to this.  Newton’s series was not novel and 

it is clear that it was not set down as a general chemical theory.  He merely 

sought to use well known phenomena to support his  speculative matter theory.  

Looking back with hindsight, it might seem that he had set out in prose the 

equivalent of an affinity column showing the affinities of various metals for 

aqua fortis.  But at the time, these phenomena were merely offered up as 

evidence for Newton’s ontological hypothesis which also drew on meteorology, 

natural philosophy and geology for substantiation.   

Newton’s explanation of his affinity series can, however, be described as 

innovative.  Despite his corpuscular philosophy Boyle had been unable to 

explain the elective nature of affinity.  Newton was, it would seem, the first to 

suggest that an attractive force between particles accounted for series of 

precipitations.  But his explanation was, in truth, no more successful.  The 

notion of varying forces between particles explained no more than Boyle’s 

language of seduction and abandonment.  Newton’s suggestion that there were 

 
70 Newton 1979, 380-381. 



49 

attractive forces between corpuscles of different chemical substances displaced 

the causality, sliding a hypothetical stratum of measurement between 

phenomena and cause: this is not an explanation.  As René Thom states: 

“Descartes with his vortices, his hooked atoms, and the like 
explained everything and calculated nothing; Newton with the 
inverse square of gravitation, calculated everything and explained 
nothing.”71 

Newton’s example of generalisation without venturing into causality was, 

however, influential on later affinity theorists, as Duncan has pointed out.72 The 

definition offered of ‘force’ clearly influenced later chemists, who adopted a 

similar stratagem of defining ‘affinity’ as “a term … designed to express, not 

the cause, but the effect.”73 

The explicit references of the Query were not necessary for philosophers to 

consider whether the methodology that Newton had applied so successfully in 

his Principia might be similarly applicable to chemical phenomena.  The 

correlation of affinity with attractive force also implied regularity and 

consistency, as well as calculability.  Rather than pointing to the content of 

Query 31 which was neither factually novel nor causally enlightening, historians 

might do better to argue that it was Newtonianism as a methodology rather than 

as a metaphysic that might have served to inspire, if not Geoffroy, certainly later 

British chemists such as Cullen and Kirwan.   Those chemists who were later to 

point to Newton’s Query as the origin of affinity theory drew from it the 

implicit suggestion that affinity might one day provide a respectably 

mathematical basis for a truly scientific discipline.  The quantification of 

affinities would become one of the projects of the latter half of the century, the 

ultimate aim of affinity theories.       

The third strand of historiographical misunderstanding, resulting in the 

Newtonianisation of affinity theory, arises to a large extent out of the adherence 

of historians to a single theory model of affinity.  Such a model forces the 

historian into a rigid stance – if affinity is regarded as a construction of 

 
71 Thom  1975.  Quoted in  Cartwright  1983, 75. 
72 Duncan 1967, 154. 
73 Lewis  1765, 27. 
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Newton’s, affinity theory as a whole is assumed to be Newtonian.  A clear and 

distinct correlation is then assumed, such that where chemical affinity is 

discussed, it is under a Newtonian historiographical umbrella.  From the first 

historiographic strand we proceed to the third almost without pause for thought; 

if one affinity theorist avows a Newtonian allegiance, so must all affinity 

theories be founded on the same metaphysic.  This is an over-simplistic 

formula, which takes account neither of the pre-history of affinity nor of the 

pluralistic nature of the doctrine throughout the century. 

The historical record in fact points to a notable lack of interest of Newton and 

his circle in Geoffroy’s Mémoire either on its publication or during the thirty 

years afterwards.  Although Geoffroy produced the Mémoire during Newton’s 

lifetime, there is no evidence that Newton noticed it.  However, Newton’s lack 

of interest cannot be singled out as being exceptional.  In fact, he seems to have 

epitomised the response from the British natural philosophical establishment.   

As Geoffroy was himself an FRS and corresponded with Hans Sloane until his 

death,74 it might seem reasonable to expect to find some mention of his 

Mémoire in the papers of the Society.  A number of his communications were 

published in the pages of the Philosophical Transaction, but there is no mention 

of his Mémoire therein.  Neither here, nor in the Society’s Letter or Journal 

Books can any reference be found.75 Indeed, it is not until the work of Richard 

Kirwan in 1781 that there is any specific mention of affinity theory in the 

Philosophical Transactions.76 The Society undoubtedly received copies of the 

Mémoires of their Parisian counterpart, and as the Journal Books show, they 

often read the papers out at their regular meetings.77 Given Geoffroy’s close 

ties with the Royal Society, it seems strange that his table was not afforded a 

welcoming reception in Britain on its publication; or indeed that it was not 

afforded any reception at all.   

 
74 The Royal Society holds some of their correspondence, as do the British Library as part of the Sloane 
Collection. 
75 My researches into both the published and unpublished papers of the Royal Society have shown that 
although the Society did receive a letter from Geoffroy to Sloane in 1719 (Royal Society of London  1718-
1721), no discussion of Geoffroy’s paper or comment was noted.     
76 Kirwan 1781. 
77 See e.g. December 21st 1721, Royal Society of London  1718-1721. 
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Why then, was Geoffroy’s table so comprehensively ignored by the natural 

philosophers of Britain?  Duncan has suggested that  

“Geoffroy’s table was presumably less well known in Britain … 
and perhaps also the notion of affinity which was thought to be 
expressed in Geoffroy’s table (though he does not use the word 
himself) was still felt in Britain to be in some way contrary to the 
notion that chemical combination was due to attraction between 
particles.”78 

This comment is interesting in the light of the historiographical disputes 

mentioned above.  Surely the apparent adaptability of Geoffroy’s paper to the 

Newtonian world view (as demonstrated by both modern and contemporary 

historians) rather contradicts this argument.  It seems unlikely that philosophical 

or metaphysical prejudice lay behind what can only be described as the 

deafening silence from the establishment in response to Geoffroy’s paper.     

Philip George has examined the chemical papers published in the Philosophical 

Transactions and his statistics suggest that the output was far from negligible.79 

However, the classification of papers as chemical (George adopts the 

classification applied in contemporary abridgements of the Philosophical 

Transactions) does not mean that this rather mechanistic ‘chemistry’ bore much 

relationship to that appearing in the Mémoires of the Académie in France.  

French chemistry was concerned with principles and elements, and there was a 

thriving programme of analysis of plant substances through the burgeoning 

technique of solvent analysis.80 It should also be borne in mind that France had 

a centralised and professionalising infrastructure in which chemistry could be a 

means to achieve social standing.  As Holmes has argued, the Mémoires of the 

Académie “consolidated the literary genre of the scientific research paper”,81 

and Geoffroy’s Mémoire certainly appeared in this context.  It was conceived 

out of the investigatory impulse constitutional to the Académie Royale.      

In contrast, in Britain, the Royal Society, the only formally constituted body 

whose auspices might be said to cover chemistry, provided no structure on 

 
78Duncan 1996, 114.     
79 George 1952. 
80 Holmes 1971. 
81 Holmes and Levere 2000, 34. 
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which a philosopher could fashion a career.  The Society instead enshrined the 

spirit of the gentleman amateur, shunning the professionalizing spirit that 

characterized its French counterpart.  If a chemist in England were to hold high 

status, he would be unlikely to have acquired it solely through his chemical 

proficiency.82 The problem for the historian arises in part from the fact that in 

Britain there was little public forum for discussion of non mechanistic 

chemistry.  This does not of course mean that there was no such art practiced, or 

indeed that its practitioners did not find Geoffroy’s paper of interest.  

Unfortunately though, it does mean that there is little or no evidence on which 

the historian can draw to settle the matter.  The silence may well be merely the 

silence of history and it is perhaps rather superficial to insist that it reflects the 

silence of the 18th century actors.  

Bearing the historiographical difficulties outlined above in mind, I would 

nevertheless suggest another possible reason for the lack of response to 

Geoffroy’s Mémoire. Although it was presented in a research context, Geoffroy 

did not dwell in detail on theory, and the table was described simply as a 

synopsis of chemical phenomena.  These phenomena were familiar, as we have 

seen.  At first sight, perhaps Geoffroy’s table seemed little different from Boyle 

and Newton’s lists of displacements.  While it was historically innovative in that 

it was the first of its kind, it may not have been immediately seen as such by 

British natural philosophers.  Appearing in a ‘research’ context, it appeared out 

of place, neither fish nor flesh.  Presented as an aide memoire, perhaps it 

seemed just too familiar to be significant.  To recall the common proverb, 

perhaps this familiarity bred contempt.  Even in France, as Fontenelle extolled 

the utility of “une Table Chimique”, he looked past Geoffroy’s table, 

anticipating “une Table de Nombres ordonnés suivant certain rapports ou 

certaines proprietés”.83 Geoffroy’s table can only retrospectively be seen as 

pioneering: to its contemporaries it was simply an articulation of knowledge that 

 
82 While Golinski has argued (Golinski 1983)  that Peter Shaw attained high social status through his 
chemical publications, Shaw was exceptional, and in the end his eminence was a result of his position as 
physician to Monarchy rather than his chemical work.  Certainly it is true that chemistry formed many of 
the rungs on Shaw’s ladder to success, but it was always as an adjunct to the medical career to which the 
ladder led.   
83 Fontenelle 1719, 37. 
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had been common for some time. 

A comparison of the initial response to Geoffroy’s Mémoire with the response 

of theorists to the 1948 introduction of Feynman’s diagrams is also enlightening 

on this point.  As Kaiser has explained, Feynman’s initial audience was 

confused, asking: 

“in exasperation, what rules governed the diagrams’ use.  … 
Even some of Feynman’s closest friends and colleagues had 
difficulty following where his diagrams came from or how they 
were to be used.”84 

Like Feynman, Geoffroy did not provide instructions for the building or use of 

his table, presenting it as almost atheoretical.  Of course we have no access to 

the tacit knowledge available to Geoffroy’s contemporaries.  It may be that this 

incorporated many of the ‘rules’ that are apparently missing from the Mémoire.

I would suggest that the geographical and later, generational, separation of 

Geoffroy from the British chemists who might utilize his table would mitigate 

against such tacit knowledge being transferred with ease.     Perhaps the view of 

affinity tables as synoptic was taken through necessity rather than inclination.85 

Without rules for usage, without a clear understanding of the tacit theoretical 

assumptions lying behind the table, the immediate, and pragmatic tendency was 

to see them as a summary of familiar knowledge. 

It is possible, of course, that the real point of Geoffroy’s paper was not affinity 

at all.  Some years earlier he had reported a series of experiments which he 

interpreted as showing that a sulphur principle combined with vitriolic acid to 

form common sulphur and with metallic calces to form the more familiar 

metals.86 Bearing in mind that the former combination is specifically included 

in his affinity table, perhaps the 1718 Mémoire was in fact a piece of subtle 

propaganda intended to reinforce his views?  In a later paper that defended 

certain aspects of his table against criticism, he identified the sulphur principle 

with Stahl’s phlogiston.87 Here he expressly focused on its combination with 

 
84 Kaiser 2005, 45-6. 
85 Duncan 1970, 33. 
86 Geoffroy 1704, Geoffroy 1709. 
87 Geoffroy 1720, 29. 
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vitriolic acid as an instance of an affinity that was stronger than that of the acid 

for fixed alkali.  His paper reinforced his interpretation of his 1704 experiments 

even as he was purportedly clarifying his rapports.  These repeated references to 

his sulphur principle were embedded within papers that drew almost entirely on 

familiar, even unquestioned knowledge.  Both papers thus implied that his new 

ideas were not only accepted, they were beyond question.  This idea is, it must 

be admitted, purely speculative, although it usefully illustrates my point 

perhaps, that Geoffroy’s own intentions for his table were irrelevant to its 

subsequent history. 

Kaiser shows that it was via the pedagogical context that Feynman diagrams 

were eventually dispersed throughout the physical theoretical community.88 I

would argue that a broadly similar model of dispersion is evident with regard to 

affinity theories in 18th century Britain.  Although Geoffroy was Professor of 

Chemistry at the Jardin du Roi, it was not in this guise that he presented his 

table.  His Treatise refers neither to the table nor to affinities or rapports.89 

Nevertheless, he called it “une chose fort utile”, and carefully distinguished 

between its use for “ceux qui commencent à apprendre la Chimie” (i.e. its 

pedagogical function) and its use for “les Chimistes”.90 The table was to 

provide novices with a general survey of the relationships between substances.91 

For mature chemists it would enable them to discover the “mouvements cachés” 

when substances are mixed, and to predict the results of their mixtures.   

Cullen’s pedagogical endeavours retrieved affinity from obscurity and instituted 

a new conceptualisation in which the two uses suggested by Geoffroy 

coalesced.   The doctrine of affinity provided him with a didactic framework, 

structuring the teaching of the science as well as consolidating and assimilating 

innovation.  Once the table was taught as part of an affinity theory, and only 

then, did it become significant as part of British chemistry.  The affinity table 

and the law of affinity assumed a new status, forming the basis of a common 

ground between chemists as the foundation of otherwise diverse affinity 

 
88 Kaiser  2005. 
89 Geoffroy  1736. 
90 Geoffroy 1719, 203. 
91 Ibid. 
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theories.  It was through the pedagogical context that affinity became almost 

omnipresent in British chemistry.   

2.4  Act 2: In which a Pedagogical Tool is Constituted and it 
is Discovered to beget the Great and Distinguishing 
Principle of the Science 

The history of British affinity theories is throughout a tale with an 

overwhelmingly pedagogical theme correlative with the development of 

chemistry as an autonomous discipline.  Simões has argued that 

“A discipline is built, consolidated and demarcated from 
neighbouring disciplines through the research and teaching 
activities of its practitioners.  Especially in the very first steps of 
a young discipline, scientists are often involved in these two very 
different, and at times antagonistic, processes.”92 

My research suggests that in Britain affinity theories provided a structural 

framework which supported the new courses in chemistry that were being put 

together in the 18th century, as well as setting boundaries to the discipline.  

Eventually, through a ‘trickle down’ effect (Kaiser has dubbed the post-war 

version of this phenomenon the “postdoc cascade”),93 they not only shaped the 

teaching of chemistry, but the practice of the science.   

Chemistry teaching in Britain was limited early in the 18th century; Cambridge 

University founded a Chair in chemistry from 1702, but the occupants of the 

post seem to have taught sporadically for the first half century or so.94 Teaching 

in Oxford (which opened a chemistry laboratory as part of the new Ashmolean 

Museum in 1683) was unofficial when there was any at all and the situation 

seems to have remained pretty dire until as late as the 1780s.95 One of the few 

to have lectured in Oxford (at the Ashmolean), John Freind, published his 

Chymical Lectures in 1712.96 These were perhaps the most dedicated of 

Newtonian attempts to force the teaching of chemistry into the Newtonian 

mode.   

 
92 Simões 2004, 300. 
93 Kaiser  2005, 93-101. 
94 Archer and Haley  2006, ch 1-5. 
95 Golinski  1992 53-4. 
96 Freind  1712. 
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John Mickelburgh attempted a similar conflation a little later in the century.  

Mickelburgh’s chemistry courses were the first to be given in Cambridge after 

the publication of Geoffroy’s table and his lectures provide a further example of 

the deafening silence that characterized the British response for many years.  He 

followed Newton in attempting to explain chemical behaviour by reduction to 

particles and forces.  Much of his course was lifted directly from that of Freind 

whose methodology he praised unstintingly. 

The notion of attraction is present throughout Mickelburgh’s lectures, but it is a 

distinctively Newtonian or gravitational type of attraction; Mickelburgh 

fervently denied that it should be regarded as an occult quality “as the Lipsick 

philosophers do” just because the cause was not yet understood.  He referred the 

doubters to Newton: 

“whosoever hath a mind to furnish himself wth Instances of this 
kind may only consult the 31st Quere of Sr Isaac Newtons 
Opticks, page 350th of the English Edition.  ... how should this 
salt melt or run per deliquium if it did not attract to itself the 
watry particles wch float in the air in the form of vapours & why 
do not other Salts melt & run per deliquium but for want of such 
an attraction"97 

Mickelburgh's Newtonian chemistry related attraction predominantly to 

physical factors.  Sulphur, nitre and tartar were particularly mentioned as being 

possessed of a “considerable attractive force” which enabled them to “disunite 

& disjoyn the parts of hard & solid bodies.”98 In addition to the attractive force, 

he postulated a vis repellens that acted between the smallest particles and was 

augmented by the action of fire.  Much of the distinctively chemical behaviour 

of substances was ironed out, with explanations in terms of these two opposing 

forces.   

Christie and Golinski have compared Mickelburgh’s lectures with those of 

Freind, arguing that Mickelburgh, although following a Newtonian reductionist 

programme, still adhered to the chemical didactic tradition instituted by 

Libavius.99 His lectures provide useful evidence of how Newtonian chemistry 

 
97 Mickleburgh 1726. 
98 Ibid. 
99 Christie and Golinski 1982, 246. 
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was taught to students, although it is unclear how long Mickelburgh adhered to 

this model.  Following on from the 1726 set of fifteen lectures, there is another 

even shorter set of lectures apparently dated 1741.  These lectures reverted to an 

Aristotelian matter theory; while matter was still attractive or repellent, the 

language was less mathematical and notably more chemical.  The cause of this 

change can only be speculated upon, but by 1741 the heyday of Newtonian 

chemistry was passing.  By this time there were a number of lecturers operating 

outside the English universities.  They took a more distinctively chemical 

approach, emulating Boerhaave.  Some were private, their lectures open to any 

who could pay, and others were affiliated to one of the four Scottish 

universities.  One such, the first lecturer in chemistry at Edinburgh University, 

was James Crawford.   

Crawford, lecturing before Geoffroy’s paper was published, adopted a 

pragmatic attitude that seems closer in spirit to Geoffroy’s than to his more 

Newtonian contemporaries’.  He argued that: 

“ye partes of bodys by yr minuteness flying our senses, yr 
mechanicall pptys are unknown; qqontly yr can be but few of ye 
phenoa accounted for by mechanicall Laws: and our common 
mechanicall systems are nothing else but Phiphal Hypotheses, we 
only qclude, … figure, size and motion yt yy are pleased to 
assign ym, but whether yy really have ym or not, yy are utterly 
uncertain and can never be surely informed wtout a Revelarn”100 

Crawford was undoubtedly familiar with Query 31, as well as with Freind's 

reductionist Newtonian chemistry.  He was more than a little scathing:  

“… yet I despair of ye laws of attrac'n established by Kyle and 
Friend their ever being of any great use for explaining ye 
chymical phoea”.101 

Crawford, like Boyle before him, recognized “the problem of transdiction”102 

Whatever postulated systems or theories of matter a philosopher adopts, the 

linking of this to observed phenomena requires a leap of faith beyond the 

logically acceptable.  As he continued: 

 
100 Crawford 1713, f 3. 
101 Ibid. 
102 Guerlac 1968, 64. 
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“ye Caelesteal Bodys being at a vast distance, it's easy to 
compare yr motions wt ye law of attracn; but here every thing by 
it's minuteness being insensible, it's impossible, I think, by 
expermt to establish laws of attracn wc can be compared wt ye 
notions of ye particules of bodys”103 

Instead of dwelling on the rather bleak picture this presented for chemical 

philosophers, Crawford adopted a pragmatic methodology.   Like Boyle and 

Newton he demonstrated his familiarity with the displacement of metals from 

acids: 

“Fr instance, if you dissolve merc. in sp vitr. and cast a plate of 
copper into ye solution, ye merc is precipitated to ye bottom, ye 
copp is dissolved, into a blew <unknown symbol possibly 
signifying ‘tincture’>,104 if into ye <tincture?> you throw a piece 
of Iron, ye Copp falls, and ye Iron is dissolved and suspended, 
again if to this solution you join some of ye lapis calmaris ye iron 
falls and ye calarum is dyssolved and easily any alcobalt 
precipitates ye calarum."105 

Crawford taught that chemists should take a position midway between full 

metaphysical theory and total empiricism – generalisation and order being 

emphasised, as well as the use of analogy that was to prove essential to affinity 

theory: 

"When both mechanicall and physicall causes fail us, we must be 
qtent to deduce ye phoen from ye chymical causes by referring 
ym to ye like effect yt qstantly and regularly happeneth in a 
thousand chymical experiments.”106 

Crawford’s chemistry was epistemologically bounded by the search for 

“chymical causes”, from empirical generalization, rejecting causal speculation.  

He thus explained the precipitation series, on the grounds that each body was 

more or less easily dissolved by the acid, and those that were dissolved more 

easily would supplant the others.  Such an empirically justified explanation was 

sufficient: 

“I think it more ingenious to rest here, referring a dark case to a 

 
103 Crawford 1713, f 3. 
104 Several of the MSS I have examined utilised symbols for chemical substances.  For clarity, where these 
appear I have used the full textual description surrounded by ‘< >’.  
105 Ibid, f 3-4 
106 Ibid, f 3. 
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more known and familiar one, yn to vent a fictitious hypothesis 
about ye figure, size &c of ye partes of yse bodys or ye pores, 
and from yse supposed at pleasure w'out any proof, to pretend to 
solve ye pheoa, for it does not cure our ignorance to pretend 
knowledge yn we have none."107 

Thus Crawford drew his disciplinary boundaries.  His pragmatic empiricism 

contrasts with high-flown attempts to accommodate chemistry into a Newtonian 

scheme.  Similar boundaries were later embedded in the doctrine of affinity and 

these were projected onto the discipline. 

Chemistry in Britain was (happily) not confined to the activities of the Royal 

Society or the official teaching in the universities.  There were of course many 

working chemists, whether apothecaries, assayers, physicians or any of the other 

skilled occupations that involved the manipulation of matter.  These, in truth, 

were the artisans who might be more likely to describe themselves as 

‘chemists’.  In spite of the lack of a formalized, specifically chemical 

‘establishment’, there was also a thriving unofficial network of chemistry 

lecturers.108 Many of its luminaries were self-educated while others had learned 

chemistry as part of their medical training.  They contributed to the 

dissemination of chemistry through the performance of public lecture courses, 

and published their lectures and course syllabi.109 By the 1730s, in spite of the 

lack of any establishment encouragement, Geoffroy’s affinity table had begun to 

creep into this informal pedagogy.  Its first mention in a British publication was 

by the most prominent (and successful) lecturer in chemistry of the first half of 

the 18th century, Peter Shaw.   

Shaw‘s career illustrates the contrast between the social situation of the chemist 

within (or more accurately, without) the English scientific world when 

compared to France.  He promoted himself as an indispensable intermediary 

between the proponents of chemical knowledge, and the society physicians who 

were his patrons.110 As Golinski has noted, Shaw’s choices of works for 

translation and publication did not emphasise a predominantly Newtonian 

 
107 Ibid, f 4. 
108 For a general survey of ‘itinerant’ lecturers, see Gibbs 1960. 
109 For example, Saunders  n.d. [1766?], Martin 1743, Shaw n.d. [1733?], Warltire 1769a, Wilson 1771.   
110 Golinski 1983, 19-21. 
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stance.  Instead, they took for the most part what might be termed a ‘chemical’ 

position that followed the Baconian inductive method and emphasised a 

qualitative chemistry, often founded on systems of elements.111 His 

entrepreneurial role served to bring him to the attention of the establishment, 

and enabled him to achieve similar social heights, at which point his interest in 

chemistry apparently had served its purpose and he published no more.   

While still engaged in his role as public lecturer in chemistry, Shaw published a 

selection of headings for a proposed course in “philosophical chemistry”.  

Amongst the headings for this presumably theoretically biased course, he 

included: 

"III A View of the different RELATIONS, vulgarly call'd 
Sympathies and Antipathies, or Attractions and Repulses, 
observ'd betwixt different chemical Bodies; with the uses of this 
Doctrine in Philosophy and Chemistry.  See Boyle, Hook, 
Homberg, Newton, Stahl, and the Memoir of Geoffroy in the 
Works of the Royal Academy for the Year 1718." 112 

Whether a course was ever given along these lines we do not know.  Shaw did 

indeed give courses on chemistry for many years in London and later on in 

Scarborough, and he published the syllabus to one such course in 1733.  Under 

the heading ‘synthesis’ he stated: 

“it is proper to enquire what other Bodies there are which may be 
perfectly separated into different Parts by the way of Menstruum, 
Absorbent, or Precipitant; so as to leave the separated Matters 
unalter'd in their Natures; and fit to compose the original 
substance again.  This Enquiry depends upon finding out the 
secret Relations which exist betwixt particular Bodies; and these 
Relations can only be discover'd by particular Trials. * [* See M. 
Geoffroy's Paper to this purpose in the French Memoires].”113 

These are the first references to Geoffroy’s Mémoire in any British publication, 

some fifteen years after its initial presentation.  It cropped up again in Shaw’s 

1741 translation of Boerhaave’s New Method of Chemistry.114 Although 

 
111 Ibid, 24-26. 
112 Shaw and Hauksbee 1731, 41. 
113 Shaw  n.d. [1733?], 173-4. 
114 Shaw’s unofficial translation of the lectures (Boerhaave  1727) provided equally copious notes 
including references to some of the Memoires, but the latest reference is 1716. 
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Boerhaave’s work advised his readers to consult Geoffroy’s works, it did not 

comment specifically on the 1718 Mémoire. However, Shaw’s notes (often 

vastly out of proportion to the Boerhaavian part of the work – some pages allow 

Boerhaave the top line, while Shaw’s notes and updates occupy the remainder 

of the leaf) directed the reader to many useful chemical papers including 

Geoffroy’s 1718 paper.  He describes the table here as  

“a system or table of the mutual relations betwixt different 
substances in chemistry; which, if rightly understood, and carried 
on, might become a fundamental law for chemical operations, 
and guide the operator with success”.115 

It is clear that by the 1730s and into the 1740s Shaw, at least, was 

recommending Geoffroy’s affinity table.  He apparently viewed the table as a 

useful synoptic tool, albeit with the potential to provide a heuristic value, 

suggesting that it had the potential to form the basis of a “fundamental law” 

which could “guide the operator”.  The notion of discovering from the patterns 

of relations a law that could predict chemical behaviour must have been an 

attractive one, although Shaw apparently made no effort himself to deduce such 

a law and although he referred his audiences to Geoffroy’s table, he did not 

reprint it in any of his various publications.  

It was not until 1749, over thirty years after the original publication of 

Geoffroy’s paper, that Macquer published his Elemens de Chymie Theorique in 

France which included not only a reproduction of Geoffroy’s table, but also an 

entire chapter offering instructions for its use.  Macquer’s chemistry was 

notable for its consistency, making use of affinity theory throughout.  He 

asserted that: 

“Nous avons vu dans le cours de cet Ouvrage, que Presque tous 
les phénoménes qu présente la Chymie, sont fondés sur les 
affinities qu’ont ensemble les différentes substances, sur-tout 
celles qui sont les plus simples.”116 

He added to Geoffroy’s table, a set of six (seven in the English translation) rules 

or propositions relating to the action of affinity “quelle qu’en soit la cause”.  He 

 
115 Boerhaave 1741, 58. 
116 Macquer 1749, 256. 
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referred to these propositions as “vérités fondamentales”,117 according them an 

unusual value that perhaps proceeded from the fact that they allowed him to link 

his affinity to his phlogiston theory as well as to his Aristotelian matter theory.  

Macquer took a holistic view of his chemistry, and his affinity theory provided a 

crucial link between the observations of matter as it tended to be found in the 

laboratory: messy, complicated, and a long way from the perfectly pure ideal of 

the Aristotelian elements; and the a priori ontology that he believed lay behind 

these untidy observations.  Macquer’s affinity theory, it would appear, was 

designed to solve the problem of transdiction. 

Duncan has suggested that “the efficient cause of the revival of interest in 

affinity in the 1750s was probably the publication of Macquer’s Elemens”.118 

The work was undoubtedly influential; one of the few works that Cullen 

recommended to students, although with stern criticism of some aspects.119 

However, it was not until 1758 that the Elemens was translated into English by 

Andrew Reid, combined with its sister volume Elemens de Chymie Practique 

into a single publication.120 Certainly the first (French) edition of Macquer’s 

work would have been available to those British chemists who were prepared to 

obtain it, and it is likely that it played some role in the renewed interest in 

affinity that was to come.  However, the components of Macquer’s affinity 

theory differed in a number of important respects from those of more 

empirically inclined British chemists.  Although Macquer’s significance in 

disseminating affinity theory across Europe is not denied,121 British chemists 

did not accept his affinity theory without question.  Many would have learned of 

Geoffroy’s table from alternative sources: Shaw had been prescribing it to his 

audiences since the 1730s, while in Scotland Cullen had been teaching his 

students Geoffroy’s table for almost two years by the time the Elemens was 

published.   

 
117 Ibid, 22. 
118 Duncan  1996, 115. 
119 Cullen 1766, Lecture 10. 
120 Macquer  1758. 
121 For detailed discussion of Macquer’s role in the dissemination and propagation of affinity theory in 
France, see Kim  2003; Duncan 1996, Eklund 1971. 
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There are in fact two contenders for the first actual publication in Britain of an 

affinity table.  Dr Robert Poole, physician and writer, included Geoffroy’s table 

his Chymical Vade Mecum of 1748.122 A better authenticated  publication  

occurred in 1753, some years before the English edition of Macquer’s textbook, 

in Lewis’s New Dispensatory.

Both Gibbs and Golinski have noted similarities between the careers of Lewis 

and Shaw.  Lewis also gave public lectures in chemistry during the 1730s and 

40s, published methodized translations of the works of European chemists, and 

attained “a respected position as a research chemist”.123 His successful 

publications (or perhaps his personal preferences) did not, however, allow him 

to emulate Shaw and abandon chemistry.  He continued to consult, advising 

amongst others the fledgling Society for the Encouragement of Arts, 

Manufactures, and Commerce,124 and published until the 1760s.  He was, at his 

death, working on an adaptation of Hoffmann’s System of the Practice of 

Medicine.125 

It seems likely that Lewis became aware of Geoffroy’s table prior to 1748, 

when he published his proposals for printing his Commercium Philosophico-

Technicum. This was an ambitious project, a periodical publication to be 

published in six parts per annum, and “designed as an attempt to advance useful 

knowledge.”126 Lewis’s vision was of an empirical, pragmatically utilitarian 

chemistry, and the synoptic tabulation of knowledge formed an intrinsic part of 

his design.  The Proposals specifically set out his intention to include in the 

work a  

“table of the relations or affinity which different substances bear 
to one another; with an experimental account of its uses”.127 

122 Poole  1748.  The British Library’s copy of this volume is undated (and as a manuscript note on the 
flyleaf states, it is a “very scarce book”), although Moore  1918, 77 mentions that it was published in 1748. 
123 Golinski  1992, 60. 
124 Society for the Encouragement of Arts  n.d.a, ff 141-144, Society for the Encouragement of Arts  n.d.b.  
His investigations on Virginian potashes was published as Lewis 1767. 
125 Gibbs 1952, 148-149. 
126 Lewis  1748, frontispiece.  When the work finally appeared, this was amended to read “an attempt to 
improve Arts, Trades and Manufactures” (Lewis  1763, frontispiece).   
127 Lewis  1748, 18. 
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While this is a clear reference to Geoffroy’s table, it is far too early to have 

sprung from any sight of Macquer’s Elemens. Like Shaw, Lewis was obviously 

familiar with the table some time prior to the appearance of Macquer’s work.  It 

seems likely that, again like Shaw, it was included in his public lectures, but the 

historical record is silent on this.  Sadly, only the first few parts of Commercium 

Philosophico-Technicum were published in 1763 and, in spite of the fact that an 

extensive explanation of affinity appears in the preface, no table was 

included.128 However, as part of his report on the properties of platina that 

occupied almost half of the work, Lewis inserted fifteen separate columns, each 

of three substances, showing the affinities of this curious metal alongside 

explanations of how he discovered them.   

Lewis was, as Cullen claimed in his lectures129 responsible for the first 

publication of an English affinity table; an amended version of Geoffroy’s table, 

in the first edition of his New Dispensatory of 1753.  New editions of this work 

were published throughout the 18th century, and after Lewis’s death they 

continued to be produced “with amendments by gentlemen of the faculty at 

Edinburgh”.130 They were recommended by Cullen to his students,131 and were 

undoubtedly extremely influential in the medical world.  Indeed, Cullen 

commented that the New Dispensatory was “the only English work that does 

any credit to the country, or had made any improvement in the Materia 

Medica.”132 

In the first edition of the New Dispensatory, affinity is mentioned only in the 

introduction with specific reference to the reactions of marine acid.  Lewis 

commented that  

"the doctrine of the affinity of bodies is of very extensive use in 
the chemical pharmacy: many of the officinal processes are 

 
128 The discussion of affinity appears as part of Lewis’s explanation of the different types of  “active 
powers” of bodies, chemical and mechanical.  Lewis 1763, iv. 
129 The assertion apparently appears in  the MS Notes of Dr Cullen’s Lectures on Chemistry, made by Dr 
John White of Paisley (1754 ) held in City Library, Paisley.  Sivin 1962, 67. 
130 Lewis 1786. 
131 See  Cullen n.d. [1757/8], f 40. 
132 Cullen  1789, 51-52.   
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founded on it" 133 

Lewis slightly changed the form and content of Geoffroy’s table, using text 

rather than symbols, and setting out the orders of affinity in rows rather than 

columns.  Sivin has carefully compared Lewis’s table with Geoffroy’s, 

highlighting those columns and substances that Lewis removed or added.134 

Sivin’s analysis is unfortunately marred by his somewhat present-centred 

reference to affinity table columns as “displacement series”.  Thus he deplores 

Geoffroy’s failure to recognise the effects of mass action, and rather oddly 

accuses both him and Lewis of inconsistency in the columns for, respectively, 

iron and antimony, and nitrous and marine acids.135 Only Sivin’s 

misinterpretation of the columns as “displacement series” can explain this 

mistake.  It would appear that the theoretical assumptions required to enable the 

construal of affinity tables are counter-intuitive to those more versed in the 

chemistry of later centuries.   

In later editions of the New Dispensatory, Lewis made further amendments to 

his table, which by this time bore little resemblance to Geoffroy’s.  He also 

extended his discussion of chemical theory, and the table appeared within a 

newly introduced ‘Elements of Pharmacy’, which constituted about a third of 

the total work.  The table, now in the form of 19 textual lists, was included 

under a separate entry ‘affinity’ with a brief but clear explanation of how the 

table (but notably not affinity itself) worked.  Lewis shied away from causal 

explanation, remarking only that:  

“the power in bodies, on which these various transpositions and 
combinations depend, is called by the chemists affinity; a term, 
like the Newtonian attraction, designed to express, not the cause, 

 
133Lewis  1753, 10.  The word ‘officinal’ is defined by the OED as referring to a medicinal preparation 
“kept as a stock preparation by apothecaries or pharmacists (now rare); made to a standard prescribed in a 
pharmacopoeia or formulary, included in a pharmacopoeia.”  “officinal, a.”OED Online, Mar 2004, Oxford 
University Press.  10 Oct 2006 http://dictionary.oed.com/cgi/entry/00330510.
134 Sivin 1962. 
135 Geoffroy’s table included a column headed with iron, with regulus of antimony immediately below it, 
and copper, silver and lead below that.  The next column was headed by regulus of antimony, with iron 
immediately below it, and again copper, silver and lead below that.  There is nothing inconsistent about 
this.  Geoffroy was clearly showing that the strongest affinity lay between antimony and iron, and that this 
will lead to all other metals being removed from their union with either of these two metals.  Indeed, there 
would have been something wrong with Geoffroy’s table if these two columns had not borne this 
relationship to each other.   

http://dictionary.oed.com/cgi/entry/00330510
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but the effect"136 

Although he referred to ‘Newtonian attraction’ in the same breath as affinity, it 

is clear that he was not conflating the two.  The connection between the terms 

was in their reference to effect rather than cause.  This is the same pragmatic 

approach to causality we saw in Crawford’s lectures. 

As Sivin has argued, Lewis valued affinity tables for their pragmatic usefulness 

to practical chemists, in the service of pharmacy, or industry.137 Through 

Commercium he hoped to expand the use of chemistry to improve industrial 

processes and to extend knowledge of chemistry as a practical art.  As lecturer 

and writer of textbooks, his pedagogical focus, his desire to teach and inform is 

clear.  In publishing his affinity tables Lewis introduced chemists to affinity, 

while his pragmatic decision to set aside high level theory allowed these 

chemists to formulate their affinity theories almost anew.  His own theory as he 

set it out in his works included little that did not appear in Geoffroy’s original 

paper, although his table differed in both form and content.  Nevertheless, his 

adoption of the affinity table as a useful tool led to one striking addition that 

clarified the link between the methodized knowledge encapsulated therein and 

the practice of chemistry.  Geoffroy, in spite of a promise that he would publish 

details of the experiments on which his table was founded had never done so.138 

In Lewis’s examination of platina, he carefully formulated new columns for his 

tables, showing by example how such information could be ordered in terms of 

affinity.  In doing so, he filled in one of the lacunae of Geoffroy’s theory by 

setting out in detail the experiments from which he derived his columns, and 

thus clarifying the empirical basis for his affinities.     

Shaw and Lewis appear in this tale primarily as disseminators, introducing a 

new generation of chemists to Geoffroy’s table, endorsing it as useful and 

worthy of their attention.  Lewis’s influence on chemistry in Britain is not 

sufficiently appreciated by historians, although his near contemporaries 

recognised the value of his chemical works.  Throughout his teaching Cullen 

 
136 Lewis  1765, 35. 
137 Sivin 1962. 
138 Geoffroy 1719, 212. 
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referred his students to Lewis’s works, claiming in 1766 that “yet has there been 

no good chemist in England of yore except Dr Lewis who is perhaps at present 

the most considerable in Europe.”139 It was Cullen though who was to thrust the 

doctrine of affinity to the front of stage in British chemistry, by transforming it 

into a pedagogical tool that supported his complex and detailed lecture course.   

Cullen was described by Thomson as “the true commencer of the study of 

scientific chemistry in Great Britain”.140 He was extremely well regarded 

throughout his life by his ex-students (and in many cases their ex-students) who 

did much to propagate their reverence for their master through the wider world.  

Thomson reported: 

“The appearance of Dr. Cullen in the College of Edinburgh 
constitutes a memorable era in the progress of that celebrated 
school.  Hitherto chemistry being reckoned of little importance, 
had been attended by very few students; when Cullen began to 
lecture it became a favourite study, almost all the students 
flocking to hear him, and the chemical class becoming 
immediately more numerous than any other in the college, 
anatomy excepted.”141 

Thomson’s claim is well supported; we know that Cullen’s 1763/4 course 

attracted 145 students.142 The popularity of his lectures are attested to by the 

unusually large number of sets of lecture notes held in libraries across the 

country.  Lecture notes were routinely copied and sold to interested parties, 

often outside the student circle.  Thus both Donovan and Golinski have argued 

that in the context of the 18th century both Cullen’s and his former student 

Joseph Black’s ideas as expounded in their lectures had effectively been placed 

in the public domain.143 The diarist Sylas Neville, a medical student under 

Cullen, writes of the copying of lecture notes and of a thriving trade in the sale 

and purchase of reliable sets of notes.144 Likewise, the apothecary and natural 

philosopher John Elliot admitted to having been able to study a set of Black’s 

 
139 Cullen 1766, Lecture 8. 
140 Thomson  1830, 304. 
141 Ibid,  307. 
142 Golinski  1992, 17. 
143 Golinski  1992, 42-3 and Donovan  1975, 271. 
144 Neville  1950, 151. 
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lecture notes belonging to a friend, although he complained that he ‘only wished 

they had been more perfect’.145 

The extent of these archives allow the historian to make a fair account of his 

teaching146 and Cullen’s chemistry teaching has been investigated time and 

again by historians, although only Crosland has concentrated in detail on 

Cullen’s affinity theory.147 Most of the work done to date has been based on 

only a few manuscripts, held at the Royal College of Physicians Edinburgh, and 

there remains a great deal of information on Cullen’s affinity theory still to be 

elicited from manuscripts as yet unexamined.   

Although he was briefly apprenticed to a surgeon apothecary as early as 1727/8, 

it seems likely that Cullen acquired some of his chemical knowledge from one 

of the public lecturers in chemistry during a brief stay in London in the early 

1730s.  It has been suggested that he may have attended one of Shaw’s London 

courses, at which he might have learned of the utility of affinity.148 On the other 

hand, Lewis was also lecturing in London during the period that Cullen is 

known to have been there.  Cullen’s habit of referring throughout his chemistry 

teaching to Lewis’s works149 suggests that it is equally possible that Cullen 

attended Lewis’s lectures on chemistry.   

It is certainly apparent that Cullen included affinity as an important part of his 

chemistry course at Glasgow University from the very first.150 Cullen, like 

 
145 Elliot  1780, 122-3. 
146 The Wellcome Library in London holds at least four fairly complete sets of lectures, as well as a 
number of more fragmentary sets Cullen 1766, Cullen 1765, Cullen n.d. [1760s], Cullen 1760.  Glasgow 
University library holds a vast number of manuscripts, comprising Cullen’s own notes, as well as 
fragments of the lecture notes of students.  The number of MS held at Glasgow University Library is too 
great to list each MS individually.  Quotations from individual MS will be specified hereafter.  Edinburgh 
University library and the Royal College of Physicians in Edinburgh are two further repositories for the 
enormous number of Cullen papers still extant.  The fact that Cullen lectured in English rather than Latin 
confers the added benefit that most of the notes of his chemistry lectures are in that language.  Neville 
wrote: “I find that Dr. Cullen notwithstanding his present eminence had but a poor education and had not 
acquired much learning before he was 40 years old.  … Knowles heard that one J. Brown, a great Latinist, 
who writes many Theses for those who are not ashamed to bring out the composition of another as their 
own, assists Cullen in his Latin”. Neville 1950, 144.  Although Cullen lectured in English, examinations 
were still held in Latin, and Neville also testifies to the fact that in spite of Cullen’s alleged lack of facility 
with the language he was nevertheless sufficiently proficient to hear examinations without assistance. 
147 Crosland 1959. 
148 Donovan 1975, 31. 
149 Cullen 1766, Cullen n.d. [1760s?], Cullen n.d. [1757/8], Cullen n.d. [1760?]. 
150 Cullen  1748, ii. 
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Lewis, extended the practical range of Geoffroy’s table, producing new columns 

setting out the affinities of substances not previously included.  But where 

Lewis conceived of affinity as a utilitarian ordering or classification of 

empirically based facts, Cullen developed a complex theory, linking it explicitly 

to his observations of chemical practice.   He extended its theoretical range by 

the inclusion of new components covering such matters as complex affinities 

and the role of heat and it moulded and dictated much of his didactic strategy.   

Cullen taught that the chemist investigated the “particular properties of 

bodies”151 and the structuring role that he allocated to this theory is clear from 

his carefully worded definition: 

“the changes of the Qualities of Bodies, produced by Chy , are all 
of them produced by, Combination, or Separation.  The Office of 
Chy  is to induce new qualities on bodies, & take away old ones; 
& this, I say, it does by Combination & Separation.”152 

As we saw in the prologue, one of Cullen’s most important demonstrations, 

cropping up every year in the lecture notes, was the combination of aqua fortis 

and potash to form nitre, and the decomposition of this into its constituent aqua 

fortis and potash.  He went on to compare the properties of the acid, alkali and 

the neutral salt, showing that, contrary to what Macquer believed, the properties 

of the constituent substances were not carried through into the compound.  

Tables appear in the lecture notes showing that aqua fortis is volatile, while the 

alkali is fixed (solid) and nitre, the compound of these two, is also fixed.  Both 

the acid and the alkali are acrid, where the neutral salt is mild.  Qualities then, 

were not dependent upon the constituents of substances, but could be changed 

by combination or separation.  And both combination and separation were 

performed by the judicious exploitation of the affinities of substances. 

Cullen explained that combination was produced due to a natural tendency 

present in all bodies or substances to approach each other.  Separation too, was 

due to either the action of affinity (or elective attraction as he preferred to call 

it) or fire.  Fire was the traditional agent of chemists in the analysis of bodies, 

but while heat was still used cautiously in operations such as distillation to 

 
151 Cullen 1766, Lecture 9. 
152 Ibid, Lecture 19. 
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analyse compounds, it had been recognised that fire was a rather blunt 

instrument for many separations.  For Cullen, affinity was a more precise tool 

for separating bodies that were chemically combined, as he demonstrated with 

the decomposition of nitre.   

Cullen also classified the specific operations and processes in terms of his 

affinity theory.  In both analysis and synthesis, the primary tool of the chemist 

was the power apparently inherent in substances to combine together, but fire 

had a place in affinity theory too, promoting fusion or solution to enable the 

affinities to act.: 

“Combination depends upon Attraction, and this upon Fluidity, 
wch is employ’d in Solution or Fusion 

Separation depends upon Elective Attraction or the Action of 
Fire.”153 

Cullen’s theory included the rather mechanistic assumption that as the particles 

of bodies had to be close together to exercise their affinities, one or both 

substances in any operation must be fluid. In a fluid state, the particles of each 

substance could mingle and approach each other close enough for their natural 

attractions to act.  This necessary fluidity was adopted by the majority of 

chemists, although Nicholson later objected to its axiomatic status as having 

been too hastily adopted.154 ‘Fluid’, in this context, meant either in fusion, in 

solution, or in the form of an elastic fluid, or vapour.   Thus, Cullen’s affinity 

theory determined the specific operations to be carried out and he grouped 

chemical processes and operations under three headings accordingly.155 

Combination could be performed either by solution, fusion or exhalation (a term 

used for evaporation), and separation could similarly be performed by solution, 

fusion, or exhalation.  In all operations though, the agents of the chemist were 

affinity and fire.     

Guerlac claims that Cullen was the first to combine Newton’s “attractionist 

atomism with those chemical facts of affinity assembled and sifted by chemists 

 
153 Cullen n.d. [1760s], f 66. 
154 Nicholson 1795, I, 337. 
155 Cullen n.d. [1760s], f 66-67. 
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on the Continent.”156 It is certainly true that Cullen was the first to explicitly 

link something like a Newtonian notion of attraction with affinity.  However, as 

with Lewis, Cullen’s attraction “rather denotes a Force, than a Cause; & in this 

sense was used by Newton”.157 His affinity theory did not depend on any notion 

of action at a distance, and indeed his ontological preferences seem to have been 

an uncertain blend  of Boyleian corpuscularianism and Newtonian aetherial 

speculation.158 

For the purposes of most of Cullen’s chemistry lectures, causal speculation was 

set aside.  His motivation may have been as much based on social as on 

theoretical or pragmatic considerations.  Throughout the 18th century in Britain 

there was a strong impulse towards the use of knowledge for useful, improving 

purposes, for the general and individual good.  This was the drive that led to 

what historians call the agricultural and industrial revolutions, and it was 

particularly strong in Scotland.  There was a strongly utilitarian theme emerging 

in the philosophies of David Hume and Francis Hutcheson, both of whom were 

highly influential in the Scottish philosophical hothouse where the doctrine of 

affinity was given its new lease of life.159 

Moral philosophy sought to guide the acquisition and application of knowledge, 

and in Scotland a kind of utilitarian empiricism was advocated.  British natural 

philosophy had been distinguished from the time of Bacon by its strongly 

empirical tendency, and chemists in particular were less interested in 

formulating a great metaphysical theory that would explain everything, than 

with finding ways to order their vastly accumulating ‘matters of fact’ and to 

make their knowledge practically useful.160 The associated reluctance to ‘frame 

hypotheses’ (or at least to be perceived as so doing) was similarly a residue of 

the Baconian ideal espoused by so many of the philosophers of the previous 

 
156 Guerlac 1968, 81. 
157 Cullen 1766, Lecture 19. 
158 See Christie 1983 and Taylor  2006. 
159 Indeed Hutcheson’s Inquiry  of 1726 included the claim that “that Action is best, which procures the 
greatest Happiness for the greatest Numbers” some fifty years before Bentham adopted the notion for his 
utilitarianism.  See Hutcheson  1726, 177. 
160 Matters of fact loom large in Hume’s philosophy.  See in particular Hume 1931, 172.  For the 17th 
century origin of this concept, see Shapin and Schaffer  1985. 
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century.161 Hutcheson cautioned against “rash precipitate assenting”162 to 

authority, and this admonition was further rationalised in Hume’s sceptical 

philosophy.163 

From these points of view, affinity theories were philosophically appropriate.  

In harmony with the Scottish zeitgeist, they were empirically founded and 

offered a philosophically acceptable systematisation of chemical knowledge, 

while at the same time setting clear limits to enquiry.   

Cullen was engaged in fashioning a career, as had been Shaw before him.  As 

the first chemistry lecturer appointed by Glasgow University, his was one of 

only a few officially appointed positions.  It was undeniably in his interest to 

demarcate his discipline from other fields.  We know from the manoeuvring that 

took place over Cullen’s move to Edinburgh University, as well as his 

association with ‘improving’ patrons that he was an ambitious man.164 To 

preserve his status, it was important to keep his students’ minds on the objects 

and offices of chemistry.  Chemistry needed clear disciplinary boundaries to 

distinguish it from natural philosophy as well as to distinguish Cullen in his 

career.  He explained: 

“some of the moderns have endeavour’d to reduce Chemical 
Philosophy to Mechanical Principles, thus they are apt to 
confound Operations, reckoning many as Chemical wch properly 
belong to Mechanics.”165 

It is clear from all the extant sets of Cullen’s lectures that his affinity theory 

performed a vital role as a pedagogical tool.  It enabled the demarcation of 

chemistry and its methods from the mechanical philosophy. Here was a basis for 

the classification of operations as well as a way of explaining how substances 

combined together, and how the natural tendencies of matter could be 

manipulated to achieve the desired result.  Cullen added new components to his 

theory that introduced ‘double elective attractions’, dealing with the prediction 

 
161 Newton  1995,442. 
162 Hutcheson  1747, 64. 
163 Hume 1931. 
164 See Guthrie 1950, Christie 1976, Golinski 1988. 
165 Cullen n.d. [1760s], 79a, f 5. 
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and explanation of complex combinations.  These proved to be of great 

influence in the years to come.   

Throughout his chemistry teaching, Cullen marched his students through the 

columns of an affinity table, commenting on its contents.  In the earliest sets of 

notes dating from 1748-50, he used Geoffroy’s table.  In these lectures he also 

referred freely to the columns contained in Lewis’s tables, comparing them with 

Geoffroy’s, and where necessary correcting both.  There is also evidence that 

Cullen printed his own table for students from the late 1750s.166 A copy of a 

printed table of fifteen columns survives in the archives of the National Library 

of Wales, and it is possible that this was the table sold to students.167 Later 

lectures include a much enlarged and amended table of Cullen’s devising, which 

was apparently pinned up to be copied down by the students.  One such can be 

seen in figure 2 (see p. 94 below).168 

We have noted Charles Blagden’s blasé comment indicating that affinity tables 

routinely appeared in any publication on chemistry worthy of the name.  When 

Cullen began his lectures at Glasgow, no affinity table had been published in 

Britain.  By the final year of his chemistry lectures at Edinburgh, they were 

omnipresent.  By this time Cullen had been teaching affinity theory as a general 

principle of the discipline for eighteen years.  Many of his early students had 

themselves become lecturers, and they too taught their students to use affinity 

tables, and wrote the very textbooks that presented affinity to an even larger 

audience.  Cullen’s pedagogy was crucial to the dispersion of affinity theories 

throughout Britain, as can be seen from the plan of the pedagogical pyramid at 

Appendix II. 

Geoffroy’s passive recording of chemical behaviour should be contrasted with 

the later vision, instituted by Cullen, of the active chemist who manipulates the 

natural tendencies of matter.  Similarly, the status of affinity theories and the 

knowledge they offered changed.  Geoffroy and his contemporaries had long 

been familiar with the phenomena covered by his table while Cullen’s students 

 
166 Cullen 1759b. 
167 Cullen n.d. [1750s?].  This table includes a column for fixed air, which would date it around 1757-1759. 
168 Cullen 1765, MS 1921.  See also Cullen n.d. [1760s]. 
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were presented with his theory at the start of their induction into chemistry.  

Cullen taught his students right from the start that attraction and fire were the 

agents of the chemist.  All the various chemical processes involved these two 

agencies and chemical knowledge of particular substances consisted primarily 

of a knowledge of their affinities.  Students heard about the affinities of bodies, 

and learned to use an affinity table long before they saw the precipitations and 

displacements that gave rise to the table.  They approached this stage of the 

course with Cullen’s affinity theory firmly lodged in their minds, and a copy of 

his table grasped equally firmly in their hands.  Everything they learned from 

that point onwards about the particular substances was seen through affinity 

tinted spectacles.   

It was specifically Cullen’s marshalling of affinity theory in the service of his 

pedagogical role that led to this change in the status of affinity theories.  In 

setting affinity at the centre of his lectures as one of the general principles of 

chemistry, he assigned it a new explanatory and predictive role.  At the same 

time its a priori aspect gave it a new standing in the eyes of his students.  This 

in turn set in train a mode of explanation by affinity that would oblige affinity 

theories to account for more, to explain and predict more.    

Cullen’s students were making their presence felt in the scientific world by the 

1760s and 1770s: Black was teaching at Edinburgh, at the same time as George 

Fordyce was lecturing in London.  William Saunders, another of Cullen’s 

students, was also lecturing in London, while Charles Blagden, who seems to 

have attended chemistry lectures at Edinburgh given by both Cullen and 

Black169 was working with the chemist Henry Cavendish by the early 1780s.  

Other students of note include William Withering, James Lind,170 James 

Anderson and Will Falconer.171 Cullen’s emphasis on affinity was to be 

disseminated far outside his immediate sphere of influence through the activities 

of his students. 

From the late 1760s alternative organisations to the Royal Society had begun to 

 
169 The Wellcome Library for the History and Understanding of Medicine holds sets of lecture notes taken 
by Blagden for both Cullen’s 1766 lectures in chemistry and Black’s 1767 lectures. 
170 Lind’s notes of Cullen’s lectures are held by the British Library.  Cullen n.d. [1760?]. 
171 Falconer’s notes of Cullen’s lectures are held by the Wellcome Library, London. Cullen 1765. 
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spring up, in London and provincial towns. The most famous of these, the 

Birmingham based Lunar Society, had links to both Cullen and Black through 

Withering, James Watt, and James Keir.   In 1771 Keir published a translation 

of Macquer’s Dictionnaire de Chimie which was heavily littered with footnotes 

correcting (and in some cases refuting) Macquer’s assertions, particularly on 

affinity.  He also rectified Macquer’s failure to include an affinity table in his 

Dictionnaire, adding Geoffroy’s table as well as Gellert’s table of solutions.172 

It is unclear whether Keir learned his chemistry from Andrew Plummer, 

Cullen’s predecessor at Edinburgh University, or Cullen himself.173 Keir 

arrived at Edinburgh in 1754 and was still there when Cullen arrived to begin 

teaching chemistry in 1755.  Black was undoubtedly present in Edinburgh at the 

same time as Keir attended the university,174 and given Keir’s passion for 

chemistry, it would be strange if he had not met both Cullen and Black.  While 

the correspondence networks of organisations like the Lunar Society further 

disseminated chemical ideas beyond the realms of the universities, publications 

such as Keir’s translation also served to propagate a distinctively British type of 

affinity theory. 

My emphasis on the importance of affinity theories for 18th century chemistry 

might be deemed to be somewhat underdetermined on the evidence afforded by 

research publications.  The historian is in danger of being misled when she 

searches for evidence of the use of affinity in many of the usual sources, for in 

these sources, the details of affinity theory are rarely, if ever, alluded to.  

Similarly, in the correspondences of chemists, with each other and with the 

outside world, affinity is only referred to infrequently.  This dearth of overt 

discussion of affinity might suggest (and indeed has suggested to some 

historians) that affinity theory was not viewed by chemists as being of particular 

importance to their discipline.175 The doctrine of affinity may not have been 

explicitly mentioned in every discussion of chemical phenomena, but this does 

 
172 Macquer  1771, 2, 449-450. 
173 Moilliet and Smith 1967.  It is stated here that Keir was taught chemistry by Plummer and left 
Edinburgh in 1755, but the DNB states that Keir did not leave until 1757, which would leave ample time 
for him to attend Cullen’s lectures. 
174 Donovan  1975, 72-5. 
175 Melhado 1985. 
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not mean that it was unimportant.  On the contrary, as even the most cursory 

glance at chemical works of the time confirms, it was vital to any understanding 

of the practice of chemistry in the 18th century.  To borrow a phrase from Perrin, 

it was “taken for granted”.176 By the 1760s, the doctrine of affinity was 

enshrined as part of the norm of 18th century chemistry and a tool of the same 

status as the ubiquitous furnace.   

In spite of the regard in which Cullen was undoubtedly held, his students did not 

simply adopt their master’s theory wholesale.  This is particularly evident in 

Fordyce’s very individual theory.  Fordyce’s influence on his contemporaries, is 

often underestimated.  Coley describes him as: 

“a man of considerable intellect, wide learning and enormous 
energy, who made valuable contributions to medicine and 
science.”177 

Not the least of his contributions was his long career as a chemistry lecturer in 

London.  Coley tells us that: 

“for almost 30 years he lectured from 7am to 10am six days a 
week, devoting an hour to each subject.  Each course of 100 
lectures lasted four months and he repeated them three times a 
year.”178 

When Fordyce began his lecturing in the early 1760s, although chemistry was 

being taught at most of the universities in Scotland, in England there was much 

less formal provision for students interested in the chemical art.  John Hadley 

was lecturing at Cambridge in 1759, but his lectures would probably have been 

regarded as somewhat old fashioned, being based in part on Aristotelian matter 

theory.179 Fordyce’s heroic schedule and his apparent success, testify to the 

demand for chemistry teaching in England.  He was able to fashion an 

impressive career from his chemical and medical teaching and was clearly a 

man of parts; his Elements of Agriculture was copiously cited, as were his 

works on heat.  In 1787, Black wrote eagerly to James Lind and Thomas 

 
176 Perrin 1990, 266. 
177 Coley 2001, 396. 
178 Ibid, 398. 
179 Hadley 1759. 
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Beddoes asking for news of Fordyce’s experiments on the weight of heat.180 He 

taught chemistry to Jeremy Bentham and advised on the design of his 

panopticon181 and advised during Lunardi’s balloon ascent of 1784.182 He was a 

trustee of William Hunter’s estate,183 and a close friend to Mary 

Wollstonecraft.184 His interests were varied, ranging from agriculture to the 

effects of heat on the human body, but throughout his career Fordyce remained 

at heart the student of Cullen, regularly referring in his lectures to his greatness 

in the discipline and as a man.  As late as 1786, he told his students: 

“The first Dawn of Science in Chemistry was introduced into it 
by Dr Cullen & hardly any Improvement has been made in the 
Science since his time … the Science of Chemistry as far as it is 
render’d perfect is entirely owing to him.”185 

However, Fordyce was far from being an unthinking disciple.  Letters held at 

Glasgow University Library show that he was not averse to criticising his old 

master, and attempting to show him what he thought were better methods or 

theories, striking a precarious balance between deference and obstinacy.186 

Shortly after he had left Edinburgh, Fordyce developed his affinity theory into a 

lengthy paper which he sent to Cullen, and this forms the subject of most of the 

Glasgow letters.  The paper itself was presumed lost and has not previously 

been examined, but I have been able to ascertain that in fact it is still extant, but 

mis-identified.187 I have thus been able to examine Fordyce’s early affinity 

theory for the first time, and to read Cullen’s (unfavourable) comments with the 

benefit of the paper itself to hand.  Both these documents are examined in detail 

in the following chapters.   

 
180 Lind to Black [n.d.], Joseph Black Correspondence 1783-1990 and Black to Beddoes 24/11/1787, 
Joseph Black Correspondence 1780s  Fordyce’s joint experiments with Charles Blagden to discover the 
effects of heat on the human body were of sufficient interest to be reprinted in the second edition of the 
Encyclopaedia Britannica.  See Encyclopaedia Britannica 1778-1780, Heat, 3548.    
181 Bentham  1791, 308, 311-312.  There is a set of lecture notes on chemistry taken down by Bentham 
which bear unmistakeable marks of having been Fordyce’s lectures.  See Fordyce 1769 f.55 ff. 
182 Anon  1784, 3. 
183 Hutchinson  1799, I, 470. 
184 Godwin  1798, 72, 178. 
185 Fordyce 1786a, Lecture 1st . 
186 Fordyce 1759-1774. 
187 Fordyce  1759  Catalogued as “Account of Mr. Slake's paper to the chemists at Paris on compound 
Elective attractions. With notes appended by G. Fordyce.” 
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By 1765, Fordyce had apparently revised his theory, at least for pedagogical 

purposes, and the basis of the theory that was to be continually adjusted and 

amended throughout his career is contained in a set of lectures from that year 

also held by Glasgow University Library.188 Fordyce’s 1765 publication 

Elements of Agriculture also provides valuable information on his affinity 

theory at that time.189 This work included an explanation of his theory and its 

application to the problems of agriculture.   

Eklund has asserted that affinity formed the “second pillar” to 18th century 

chemistry, together with phlogiston.190 My examination of Cullen’s and 

Fordyce’s lectures casts this view into serious doubt. While Eklund rightly 

highlights the importance of affinity theories to chemistry (at least for the 

second half of the 18th century), my research suggests that he somewhat 

overstates the importance of phlogiston.  Phlogiston was rarely mentioned by 

either Cullen or Fordyce in their lectures, and it certainly does not seem to have 

performed the role suggested by Eklund.  Cullen, as I have shown elsewhere, 

developed a unique theory of heat and combustion which (almost as an aside) 

replaced the principlist phlogiston of Stahl with a compound of fixed air and 

acid; if anything, this theory might be characterised as anti-phlogistic.191 He 

still referred occasionally to phlogiston in his lectures, but students were always 

counselled to be cautious of this substance that had “never been got by itself”.192 

Fordyce too included phlogiston in his early lectures, but was extremely 

cautious about assigning it the status of an element,193 and he seems to have 

been quite prepared to give it up without a fight; by 1788 he was teaching 

phlogiston theory in tandem with oxygen theory.194 For both Cullen and 

Fordyce, it was their affinity theories that served to structure their science and 

 
188 Fordyce 1765.  Further sets of lectures are held by the Royal Society of Chemistry, by King’s College 
London and by the Royal College of Physicians in London.  Fordyce n.d. [1770s?], Fordyce 1786a, 
Fordyce 1786b, Fordyce 1788. 
189 Fordyce  1765. 
190 Eklund  1975, 96. 
191 Taylor  2006. 
192 Cullen 1765, MS 1920 f.72v. 
193 Fordyce 1786a. 
194 Fordyce 1788. 
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their lectures to students while their attitudes to phlogiston were at best 

ambivalent, and at worst sceptical.     

For Fordyce, affinity theory was absolutely central to chemistry and to any 

understanding of matter and its behaviour.  Like Cullen, he explicitly linked 

chemical operations or practices to affinity, arranging the first part of his 1765 

lectures by dividing the operations common in chemistry according to whether 

they provoked affinities to act through heat or solution.  His affinity theory was 

carefully formulated to correspond with the rest of his chemistry, and indeed it 

dictated much of it, whether in terms of the practical solutions advanced to 

chemical problems, or the details of his complex matter theory.  

Fordyce’s ontology was inextricably tied to his affinity theory.  He was quite 

specific in his assertions that affinities acted between particles of substances.  In 

chemical combination one particle of one substance united with one or more 

particles of another.  This interesting particulate ontology was combined in 

some unspecified way with an Aristotelian qualitative sensibility.  For Fordyce,  

“the properties of ye compound are very different from either of 
its Elements, altho' ye Elements exist essentialy (sic) tho' not 
formaly (sic) in ye compound."195 

Kelham claims that Fordyce’s ontology followed (chronologically) Bryan 

Higgins’s ‘atomic’ hypothesis that “one atom combined with one atom, and that 

at this point saturation occurred.”196 It is unclear when Higgins developed this 

idea, first published in 1775, but he had only obtained his MD in Leyden in 

1765.  Fordyce’s ‘atomic’ ideas were already present in the first edition of 

Elements of 1765, and in his 1765 lectures Fordyce taught that:  

“in ye chemical combinatn every Particle of one substance is 
united with yt of ye other”197 

Kelham cites Priestley to suggest that Higgins was taught by Cullen,198 and this 

 
195 Fordyce 1765, f 51. 
196 Kelham 1968, 114. 
197 Fordyce 1765, f 47. 
198 Priestley did not actually suggest that Higgins had been one of Cullen’s students, but that he had 
acquired a view of fixed air as being composed of common air and phlogiston from Cullen.  This was 
certainly not Cullen’s view in the late 1760s, but of course he may have changed his thinking later.  
Priestley 1775. 
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is undoubtedly possible, but I would suggest that given his age, his London base 

and the undoubted similarities between their matter theories, it is also possible 

that he was taught by Fordyce.  Fordyce’s sphere of influence, particularly 

given his prodigious lecturing programme, must have been wide, like that of his 

early mentor.  Fordyce’s career offers an example of how Cullen’s emphasis on 

affinity was dispersed down the pedagogical pyramid.  Even if Cullen’s own 

theory was not transmitted in toto, its crucial role as one of the general 

principles of chemistry was. 

2.5  Interlude: In Which a Swede builds a Bigger Table 
Disquisitio de Attractionibus Electivis,199 Torbern Bergman’s detailed study of 

elective attractions as (like Cullen) he called them, included affinity tables that 

stretched to 50 columns (in the 1783 edition of the table to 59 columns).  This 

table took an unprecedented step for printed affinity tables: it was divided into 

two halves, one for affinities acting “in the wet way” and the other for 

operations carried out “in the dry way”.200 This division derived from the 

apparent necessity for fluidity in one or both substances, but although it was 

often interpreted operationally (that is, showing affinities in solutions and in 

fusions) this was not Bergman’s intention.201 The “humid way” referred to a 

situation where: 

 “one of the substances, at least, is fluid in the heat of the 
atmosphere, or at least in a heat not much greater than that of the 
atmosphere”202 

rather than one necessarily involving solution.  The distinction is minor, but 

might well have proved important when comparing the affinities operating in 

amalgams, for instance.  Bergman also included diagrams that showed double 

elective attractions and were extremely similar to those that Cullen had 

introduced around 1757, dealing with combinations of four separate or two 

 
199 Bergman 1775. 
200 In fact, both  Black and Cullen had been in the habit of dividing their affinity tables similarly.  See 
Section 4.1.1 below. 
201 Nicholson 1795, 157 stated for example that “we may observe that water is concerned in all the 
operations which are called Humid; and beyond a doubt modifies all the effects of such bodies as are 
suspended in it.” 
202 Bergman 1783, 13. 
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compound substances.203 Black and Fordyce had also presented similar 

diagrams to their students as part of their chemistry lectures.   

Bergman, although not a British chemist, is an influential figure in my story 

through the 1785 English translation of his work which was widely 

disseminated amongst British chemists.  The 1775 version of his tables had been 

published in 1782 by Elliot.204 His extensive affinity table began to appear in 

many of the textbooks published in Britain,205 and replaced Geoffroy’s as the 

unofficial standard.  Duncan has suggested that his table, due to its sheer size, 

must have cast something of a dampener on the drive to produce new affinity 

tables.206 After 59 columns of affinities, how many more would be required?  

And as Bergman himself explained, a truly accurate version of his table would 

require “above 30,000 exact experiments, before it can be brought to any degree 

of perfection.”207 Duncan points to the fact that there were only a few attempts 

to better Bergman’s table, all by “stout-hearted Germans”.208 In fact, George 

Pearson, a former student of Black and lecturer in chemistry at the Royal 

College of Physicians,209 produced a yet larger “table of precipitations” based 

on Bergman’s but incorporating anti-phlogistic theory, represented by columns 

for oxygen and ‘calorific’.  This was included in his anonymous translation of 

the Chemical Nomenclature of Fourcroy et al.210 This table seems to have taken 

over from Bergman’s in the post-Lavoisier chemical world and was reprinted in 

chemical textbooks, ‘pocketbooks’, and dictionaries.211 Pearson coupled 

affinity theory to the new chemistry and, it would seem, British chemists were 

thankful.  Not all chemists were satisfied with the qualitative approach of 

traditional affinity tables and theories though.  The limitations, even of such 

tables as Bergman’s made it clear that a more precise measure of affinity was 

 
203 Crosland 1959. 
204 Elliot 1782. 
205 Including, for example, Elliot 1786 and Nicholson 1795. 
206 Bergman 1970, Introduction. 
207 Ibid, 70. 
208 Ibid, Introduction, xxxv. 
209 Coley 2003. 
210 Anon [George Pearson] 1799. 
211 E.g. Parkinson  1800, Nisbet  1805. 
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required.  The focus of many chemists moved to developing a system of 

mathematising affinities, of quantifying the attraction between substances.   

2.6  Act 3: Attempts by some Ingenious Chemists to Bring a 
Scientific Precision to the Pedagogical Tool that was 
Proving of such Great Utility  

Bergman’s (or perhaps Pearson’s) table marked the zenith of the development 

of qualitative affinity tables.  Bergman’s division of his table into the ‘wet and 

dry ways’, rather than increasing certainty of affinities, rather emphasised the 

uncertainty that chemists were beginning to recognise was inherent in affinity 

tables.  In spite of the apparent increases in accuracy of the new table, it still did 

not succeeded in enabling chemists to predict the results of more complex 

interactions.  A large proportion of double elective attractions were still only 

knowable a posteriori. Only a quantification of affinities would supply 

accuracy here.  Perhaps this is where we find further signs of Newtonian 

influence amongst affinity theorists, in the drive to carry forward the hitherto 

qualitative art of chemistry into the quantitative territory of a science.   Unlike 

the original push to incorporate affinity theory into chemistry, this urge to 

quantify was not pedagogically driven although it was built on a conviction that 

affinities held the key to the discipline that was instilled by pedagogy.  The 

actors in this part of the drama were what we might call research chemists, 

overtly interested in shaping new theory, in taking the qualitatively useful 

affinity theories and giving them a ‘grown up’ precision.   

There had been earlier attempts to assign numbers to affinities, although in most 

cases these were plucked out of the air for demonstrative purposes rather than 

predictive.  Black, for instance, had accompanied his lectures with diagrams that 

included such arbitrary quantities.212 Similarly, Fordyce had included 

conjectural figures in a 1759 letter to Cullen.213 There seem to have been two 

methodologies available to the quantifying chemist, the first theoretical and the 

second experimental.  It does not seem unreasonable for an enterprising 

theoretician to believe that algebra could represent the various relationships 

 
212 Black 1966 59-60. 
213 Fordyce 1759-1774. 
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between substances shown in affinity tables and from this it would be an easy 

step to assign numbers to the affinities represented.  Other chemists had 

recourse to experiment and measurement of affinities.  Although affinity itself 

was unobservable, its effects were not, and measurement of these effects, it was 

believed, could supply quantified affinities. 

John Elliot, apothecary and MD,214 was by nature it seems a theoretician; indeed 

his natural philosophy was often speculative in the extreme.   Another chemist 

who is relatively undiscussed by historians, he is unfortunately most known, 

because of the dramatic circumstances of his death in Newgate prison.  His lack 

of scientific fame is somewhat compounded by the fact that he is regularly 

confused with Sir John Eliot, who as Partington and McKie have pointed out 

“published nothing”.215 The English Short Title Catalogue in fact still connives 

at Sir John’s misappropriation of Elliot’s works and the historian is on many 

occasions forced to extend her search to both names.  This miasma of drama, 

claimed insanity and simple confusion has clouded the fact that Elliot’s 

chemical and scientific works, although limited in extent, are of great interest on 

their own account.    

Elliot, like Fordyce, was something of a polymath, publishing on chemistry, 

medicine, optics, physiology, mineral waters and astronomy.  He developed a 

complex theory of heat and combustion that anticipated Adair Crawford’s 

theory in certain respects, although unfortunately Elliot was unable to publish 

his ideas until after Crawford’s own had appeared in print.216 Elliot’s Elements 

sets out his affinity theory (although a portion is borrowed directly from 

Fordyce), with his own affinity table and Bergman’s first table of 1775.217 

Elliot’s table is itself worthy of special note, as it is the only published table to 

include the compounds formed by the various combinations shown.  This may 

reflect the uncertainties of substance identification and nomenclature of the 

‘revolutionary’ period, when identities that had been regarded as certain by 

 
214 Elliot’s working history is far from clear, but his works describe him first as “apothecary” and later as 
“MD”.  Partington and McKie 1960. 
215 Partington and McKie 1960. 
216 Elliot 1780.  See also Partington and McKie 1938, 350-354. 
217 Elliot 1782. 
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Cullen’s students had become subjects of frenzied debate.  Elliot also included 

Bergman’s diagrams of single and double elective attractions together with a 

single extra diagram of double elective attraction which assigned numbers to the 

affinities.  Elliot’s numbers combined in a balance of forces to show the result 

of the combination of compounds.  Duncan explains Elliot’s assignation of 

numbers as ‘trial and error’: 

“the figures were not found by experiment, but by assigning 
arbitrary numbers, as Black had done, for one reaction and 
adjusting them by trial and error to fit other reactions.”218 

Elliot’s quantification was a simple form of the ‘algebraic’, or theoretical 

approach, but he does not seem to have pursued it any further.  The second 

edition of his Elements incorporated a large fold out sheet setting out his friend 

Kirwan’s quantifications of affinity from experimental evidence.  It seems likely 

that Elliot, had he lived, would have pursued this route to quantification in 

preference to the theoretical one.  It is unfortunate that the undoubtedly 

fascinating story of Elliot’s life and death have overwhelmed interest in his 

work.  It is perhaps better to highlight a notice that appear in the Times which 

suggests that a far better focus for our attention is on Elliot’s work: 

“Thus has ended the life of a man whose enlightened mind was 
an honor to philosophy; and that it was tinged with frenzy is to be 
attributed to his unremitting ardour in abstruse learning.  – Dr. 
Priestly (sic), Dr. Franklin, and a number of the first characters of 
the age, honoured him with particular attention and esteem.”219 

Kirwan’s quantifying endeavours were more comprehensive than Elliot’s, and 

occupied him for much of his life.  His theory was first set out in papers 

delivered to the Royal Society from 1781-3,220 and thereafter amended in 

further papers published in the Transactions of the Royal Irish Academy.221 He 

developed a theory which assumed that the proportions with which acids and 

alkalis combine to form neutral salts indicated the strength of the affinities 

between them.   

 
218 Duncan  1996, 198. 
219 Times, Jul 24, 1787, 3. 
220 Kirwan 1781, Kirwan 1782, Kirwan 1783. 
221 Kirwan 1790. 
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His 1782 paper claimed that chemistry was founded on the doctrine of 

affinity222 and his Essay on Phlogiston similarly demonstrated the importance of 

affinity in his chemistry.  By the time he published the Essay, Kirwan already 

had a history of rehabilitating phlogiston.  His early papers had identified 

inflammable air as the elusive phlogiston and he had formulated a complex 

system to buttress the doctrine.223 The Essay drew on affinity theory to point 

out the inconsistencies of Lavoisier’s claims, pointing out that they did not 

accord with what he had presented as the affinities of the oxigenous principle.  

Affinity was here set forth in terms evoking Cullen’s ‘general principle’ or 

Macquer’s ‘fundamental truth’.  In this context affinities were regarded as 

axiomatic; if a theory contradicted the observed affinities, then the theory must 

be at fault.  So the argument went.   

The to-ing and fro-ing between Kirwan and the French chemists in the Essay on 

Phlogiston emphasise that this point of view was shared by both sides of the 

debate.  Some years later, Thomas Thomson wrote: 

“Though chemical affinity constitutes confessedly the basis of 
the science, it had been almost completely overlooked by 
Lavoisier, who had done nothing more on the subject than drawn 
up some tables of affinity, founded on very imperfect data.”224 

In fact, as Beretta has shown, Lavoisier’s avoidance of affinity theory is a 

fallacy.225 A memoir entitled “Vues Générales sur le Calorique” published in 

1805 by Madame Lavoisier together with other previously unpublished work 

shows that Lavoisier did consider affinity as of vital importance to his 

chemistry.226 In this memoir he unambiguously related affinity to universal 

gravitation, linking it to his caloric theory of heat.227 The details of his theory 

are beyond the scope of this thesis, but it is clear that affinity was considered, by 

 
222 Kirwan 1783, 34. 
223 Kirwan 1782. 
224 Thomson  1830, 157. 
225 Beretta 2001. 
226 Lavoisier  2004, I, 1-28. 
227 Briefly, the particles of caloric tended to separate particles of matter (molecules), while the force of 
attraction pulled them together.  The states of matter and its behaviour were a consequence of the balance 
of these two forces.  Thus, for Lavoisier the two “pillars” were presumably caloric and affinity: this would 
seem to cast some doubt on the true extent of Lavoisier’s ‘revolution’.  Ibid, 5-7. 
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Lavoisier as well as Kirwan, to form the basis of chemistry, with or without 

phlogiston. 

The French chemists saw Kirwan’s publication as an opportunity to set out in 

detail their claims, and rebuff the arguments of the phlogistonists point by point.  

In 1788 they republished the French translation of Kirwan’s work with their 

refutations of his arguments.  Finally, in 1789, Kirwan republished his original 

Essay, together with the English translation of the French refutations, and yet 

further rebuttals by Kirwan.  This very public row over a non-existent substance 

is unfortunately the work for which Kirwan is most remembered.  Kirwan’s 

reasons for his less public renunciation of phlogiston between March 1790 and 

January 1791 are unclear, although it is thought to be unlikely that the 

arguments of the French chemists were responsible.228 It is interesting to note 

that Kirwan’s works published after 1791 are not particularly different from 

those published before.  Aside from the absence of phlogiston, his chemistry 

changed little.  This in itself would seem to indicate that the row over phlogiston 

rather exaggerated the importance of the postulated substance in the chemistry 

of the combatants. 

Affinity remained Kirwan’s primary interest throughout his career.  In 1790 he 

read a paper to the Royal Irish Academy on the composition of salts that 

continued the work of ten years earlier presented to the Royal Society.229 In 

1797 he continued this theme with an extremely lengthy paper which again 

attempted to discover the proportions of ‘real’ acid, water and alkali in a 

number of salts.230 This was his last chemical paper.  Shortly after his death in 

1812, a contemporary wrote: 

“… through some fatality, attempting almost every subject, he 
did not thoroughly succeed in any.  Scarcely ever did he advocate 
a theory, which was not almost immediately discovered to be 
unfounded: he took great pains to refute authors who have never 
been read, and evinced his learning more than his judgement, in 
quoting others that will never be believed.”231 

228 Scott  1979, 259. 
229 Kirwan 1790. 
230 Kirwan 1800. 
231 Quoted in Scott  1979, 122. 
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This type of assessment has dogged Kirwan’s memory perhaps in consequence 

of his having been on the ‘losing side’ in the phlogiston debate.  Recent 

scholarship takes a more charitable view, as Kim has argued: 

“Though Kirwan usually emerges in the historiography of the 
Chemical Revolution as a loser who supported the phlogiston 
theory, his focus on the saturation capacity of acids and bases as 
the true measure of affinities opened a new frontier of analytic 
chemistry which developed into nineteenth-century 
stoichiometry.”232 

A new focus on Kirwan’s affinity theory, which occupied him intermittently for 

much of his scientific career, may serve to rehabilitate his reputation.  But in 

addition to his work on affinities, his role as a collector and disseminator of 

information on chemistry and chemical developments should be given due 

regard.  Throughout his life, Kirwan built up an enviable system of 

correspondents.  He occasionally visited Birmingham and corresponded with 

members of the Lunar Society, keeping its members abreast of developments in 

London and at the Royal Society.233 Scott claims that: 

“There are many indications that Kirwan kept up an immense 
correspondence with scientists in Europe; regrettably only a 
small fraction of it is known.”234 

We know that he corresponded at length with Bergman in Sweden as well as 

with Guyton de Morveau in France.235 

Kirwan’s influence on the Chapter Coffee House Society is clear from a perusal 

of the minute book.236 He missed only 20 meetings, and led the discussion on 

many occasions – and the subjects of discussion clearly reflected Kirwan’s 

chemical interests.  The topic of affinity arose regularly, and Kirwan’s affinity 

theory was often marshalled in support of his arguments.  The Society did not 

long survive Kirwan’s return to Ireland,237 but during its six year lifetime, its 

membership was a roll-call of the great and the good of British chemistry at this 

 
232 Kim  2003, 269. 
233 Scott  1979, 60. 
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236 Levere and Turner  2002. 
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period, including Priestley, Watt, Jean-Hyacinthe Magellan (himself the centre 

of a Europe-wide network of scientific communication), Nicholson and Keir.238 

Kirwan then, formed the ‘hub’ of a European-wide network of scientific 

correspondents.  With links to German, French and Swedish chemists he was 

well placed to keep in touch with the most recent developments in chemistry 

and natural philosophy.  His role as a disseminator can only be conjectured, but 

it seems likely that his correspondence linking geographically far flung chemists 

was of great importance.  In this role his affinity theory provided a discursive 

common ground that enabled the effective communication of scientific 

information between a variety of correspondents and acquaintances.  He was 

thus able to draw together various strands of chemistry for his own benefit.  His 

role, seen in this light, seems not so very different from that of Lavoisier 

himself.  In addition, he placed his laboratory at the disposal of young 

gentlemen who wished to familiarise themselves with chemistry.239 

Thus we can see in Kirwan’s career traces of a pattern that by now is clear: the 

partnership of affinity and pedagogy.  Those who were most particular in 

forming and developing affinity theory in Britain were also almost always 

involved in the teaching of chemistry.  Britain’s unstructured scientific world, 

with its private societies and private lecturers combined with chemistry’s 

peculiarly unsettled status led to a rather chaotic didactic landscape.  In spite of 

this outward chaos, however, affinity theories offered a common ground to 

novice chemists of immense pedagogical utility.  Such theories also provided a 

shared basis for communication amongst British chemists.  

Like Kirwan, William Higgins used his affinity theory as a weapon in the 

debates over the existence of phlogiston.  But Higgins’s theory was used to 

oppose Kirwan’s, in support of the affinities that Lavoisier claimed for oxygen.   

Higgins’s theory appears in a lengthy Kirwan-baiting tract, A Comparative View 

of the Phlogistic and Antiphlogistic Theories.240 published in 1789 in direct 

response to Kirwan’s Essay on Phlogiston. Surprisingly, Higgins’s later 

 
238 Watt, Keir and Priestley, all members of the Lunar Society of Birmingham, were honorary members. 
239 Scott  1979, 72. 
240 Higgins 1960. 
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successful career was in part the result of Kirwan’s sponsorship.  Perhaps this is 

a measure of the fact that disputes over phlogiston were of less importance to 

Kirwan than his Essay might lead us to believe.    

The Comparative View defended the claims of the antiphlogistians, marshalling 

both experimental evidence and theoretical support, in the form of a complex 

and ingenious affinity theory.  Higgins’s theory presupposed an early type of 

atomic theory, similar to those of his uncle Bryan and Fordyce.  He presented 

diagrams showing how each particle joined to form a ‘molicule’.241 The 

affinities were shown as lines between the atoms, similar to modern depictions 

of chemical bonds.  The figures were not experimentally determined, but were 

chosen to conform to the orders of affinity242 that Lavoisier had presented in a 

1782 Memoir.243 

Higgins seems to have been an impressive self-publicist, with a considerable 

ability to offend.  From a retrospective viewpoint, the ‘atomic theory’ set out in 

the Comparative View bore a close resemblance to Dalton’s atomic theory as it 

appeared in Thomson’s System of Chemistry of 1807.244 In the Comparative 

View the atomic theory was subordinated to Higgins’s affinity theory, which 

took centre stage, but in 1810 Humphry Davy suggested that Dalton’s theory 

plagiarised Higgins’s, and Higgins himself took up the cudgels in 1814.   

The details of the dispute are beyond the scope of this study, but it is 

undoubtedly true that Higgins’s polemic against phlogiston drew on an affinity 

theory that was itself closely tied to a particulate theory with a clear similarity to 

Dalton’s atomic theory.  On the other hand, other chemists had speculated along 

similar lines, including Cullen and Fordyce, as well as Higgins’s own uncle.  As 

chemists contemplated affinity and formulated their theories, it was a plausible 

direction for their thoughts to take.  Kirwan’s use of saturation proportions to 

determine the strengths of affinities can be seen to demonstrate a like concern 

for combining proportions and ratios.  Although most such speculations cannot 
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be regarded as fully fledged theorising, the Higgins/Dalton affair suggests that 

Dalton’s atomic theory might be better viewed in the light of these types of 

hypotheses in the tradition of affinity theories.  Indeed, Henry Guerlac has 

traced the development of Dalton’s theory through a series of affinity 

theorisers.245 The pluralist nature of the doctrine of affinity encouraged 

chemists to hypothesise freely without fear of compromising the affinity 

theories which were of such importance to their chemistry. 

2.7  Epilogue: The Pedagogical Pyramid: Those who can … 
As I have remarked, a pedagogical theme undoubtedly runs through this 

investigation of 18th century affinity theories.  When Geoffroy’s paper was first 

presented, chemistry in Britain was under something of a cloud.  The Royal 

Society were apparently not interested in chemical theories.  With little or no 

tradition of teaching chemistry in the universities, its teaching was sporadic, 

temporally and geographically, and in many cases it was outside any 

institutional context.  It is not surprising that it is extremely difficult for the 

historian to find evidence of contemporary responses to Geoffroy’s table.  

Those who might have favoured it had no public forum to discuss it, and this 

early in the century there was no established social or professional network in 

place to disseminate it.  For these reasons perhaps, Geoffroy’s seed fell on stony 

ground. 

Nevertheless, chemistry had to be taught: apothecaries provided an important 

service to the medical profession, and physicians also had an need for some 

familiarity with the substances they prescribed.  In Scotland, men of industry, 

prompted by new legislation on manufactures, were beginning to discover a 

need for greater understanding of chemistry.246 Entrepreneurial spirits 

abounded in Britain at this time; private lecturers like Shaw and Lewis 

 
245 Guerlac links Dalton’s work through Kirwan’s, Cullen’s, and other affinity theories to Newton.  He 
argues that chemical affinity offered the best opportunity to solve the problem of transdiction and it was 
through attempts to link the unobservable entities postulated with the observable behaviour of different 
substances that Dalton eventually arrived at his New System.  Guerlac 1968. 
246 Two Acts of 1727, the first for the better Regulation of the Linen and Hempen Manufactures in 
Scotland, and the second for Encouraging and promoting Fisheries and other Manufactures and 
Improvements in Scotland were crucial here.  The  latter Act resulted in the creation of the Board of 
Trustees for Manufactures, a body which paid both Cullen  and Black premiums for investigations into 
bleaching.  See Clow and Clow  1952, 165-177. 
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perceived the great potential utility of chemistry, and both turned it to their own 

advantage.  In their eyes, a synoptic table that summarised so much practical 

chemical knowledge could not fail but to be useful.  Thus it fell to the 

pedagogues, the presenters of lectures and the writers of textbooks to introduce 

Geoffroy’s table to British chemists.     

It has been noted that the periodic law and table first appeared in Mendeleev’s 

textbook Principles of Chemistry and that it was likely that it was the specific 

pedagogical demands of preparing a “general survey of chemistry” that 

prompted his discovery of the law.247 Bensaude-Vincent has argued that 

Mendeleev’s position as a teacher confronted him with questions unlikely to 

face other chemists: “How to summarize chemistry?  How to order the 

chapters?”248 

Chemists of the 18th century, before the rationalisation of chemical 

nomenclature, were in an even more confusing environment.  Those who began 

to teach the science in Britain had to formulate answers  to similar questions, 

and their affinity theories were manufactured to provide these answers.  The 

theories had to be manufactured, as Geoffroy’s 1718 paper had left a great deal 

unexplained.  It was pedagogical utility that led chemists like Shaw, Cullen and 

Lewis to drag affinity theory forward and to start filling in the gaps left by 

Geoffroy.   

Cullen’s role was the most crucial to the ‘revival’ of affinity through his 

recruitment of affinity theory as a pedagogical tool.  But for Cullen’s purposes, 

Geoffroy’s Mémoire alone was insufficient.  The table and the law were 

insufficient for affinity theories to be useful.  He added components to his 

theory, articulating tacit assumptions, and generally fitted it for a useful 

purpose.  As pedagogical tools affinity theories dictated the structure of courses, 

the explanations of observations, and guided the students in their operations.  

New tables were produced, and new components were formulated to account for 

new observations.  Newly discovered phenomena were explored and assimilated 

into affinity theories as new components.     

 
247 Bensaude-Vincent 1986, 3. 
248 Ibid. 
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I would interject a note of caution here, however.  I have examined those 

affinity theories that are set out explicitly, and these are only to be found in 

early textbooks or in lectures to novices.  As the modern chemist does not 

usually find it necessary to restate their understanding of chemical bonds in 

their research, so practising chemists of the 18th century were not in the habit of 

setting down their affinity theories in their notebooks.  I argue that they were 

fundamental to chemistry; that any definition of 18th century chemistry has to 

include some type of commitment to an affinity theory.  But at the same time, it 

must be conceded that they were so fundamental that they rarely appear in what 

might be termed ‘research’.  Rarely, though, is not never, and the presence of 

affinity in Lewis’s work on platina, and Cavendish’s on the composition of 

water and inflammable air,249 undoubtedly testifies to its significance, however 

veiled, in ‘research’ publications.  As pedagogues developed their affinity 

theories, and linked them closely to their teaching, affinity became embedded in 

British chemistry.  As Fordyce and Black learned from Cullen that affinity 

theory formed the basis of their discipline, so too would his other students, and 

their students ad infinitum. Affinity theories may have begun as pedagogical 

tools, but were eventually dispersed from the lecture halls to the laboratories. 

 

249 Cavendish  1784, 20-21. 
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Figure 1: Geoffroy’s 1718 Table as reprinted in Macquer, 1749.
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Figure 2: Affinity Table, Cullen 1765, MS1920, Wellcome Library, London
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3. “Tho’ all things Differ, All Agree”1 –Variety and 
Conformity within Functional Component-Types  

The previous chapter indicated how affinity theories, originally adopted as a 

pedagogical tool, were disseminated down the pedagogical pyramid until they 

became planted with deep roots in the discipline.  My research has also shown 

that although all the chemists who played a part in Acts 2 and 3 of the narrative 

held to some theory of affinity, their theories were not the same.    

This chapter is intended to show two things:  

(1)  the extent to which many affinity theories were at variance; and  

(2) that there was, nevertheless, an underlying correspondence, albeit 

unexpressed. 

Affinity theories can be broken down, decompounded like matter into their 

constituent components, and these components can in turn be compared in order 

to detect the correspondences and divergences between individual theories.  

This is my strategy in this chapter; thus accomplishing (1) above.  But if an 

inter-theoretical comparison of components is to result in any meaningful 

insight, the basis for such an examination must first be distinguished.  The 

detection of contrast is only valuable when based on an underlying familial 

relationship, a similarity behind the veneer of diversity.  There would be no 

point, for example, in carefully comparing the wisteria sinensis growing up the 

side of my house with the incumbent President of the United States.  Nothing 

useful could be achieved by such a comparison – it is highly unlikely that any 

point of similarity or relation could be found.  As an essential act preparatory to 

an inter-theoretical comparison of components we must therefore identify a 

frame of reference within which a family resemblance can be discerned.   

My research indicates that otherwise divergent components from different 

theories are nevertheless comparable by reference to the theoretical or 

conceptual function they were intended to perform.  I have therefore 

endeavoured to construct a component taxonomy based on these intra-theoretic 

functions, classing components into functionally similar ‘types’.  Individual 

 
1 Pope  1713, 1. 
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components played a functional role within their affinity theories, and these 

roles are the same or similar as those of other components in other theories, and 

define the type to which each one belongs.  Providing rules and instructions for 

the utilisation of affinity theories, these ‘functional’ types of component were 

vital to the operational validity of affinity theories.  The detection of this tacit 

kinship between otherwise disparate components offers a valuable glimpse of 

the hitherto unseen intentionality behind the doctrine of affinity.  Affinity 

theories were chemical tools, employed in pursuance of an operational goal and 

as such, like technical artefacts, they have a teleological aspect, dependent on 

human intentionality.2 The types into which I have classed the components of 

individual affinity theories are similarly closely linked to the assumed functions 

of the theories.  My taxonomic strategy highlights the correspondences that 

underlay the diversity of components of affinity theories; thus fulfilling the 

second intent of the chapter.  As the very differences are outlined, patterns of 

similarity are delineated.        

My examination emphasises the fact that certain component-types of affinity 

theories were unnecessary for such theories’ functional utility.  The line of 

demarcation between these ‘optional’ and ‘functional’ component-types is not 

always clearly defined, but nevertheless in broad terms they are distinguishable.  

The ontological or metaphysical commitments that historians have in the past 

regarded as so crucial to affinity theory were, operationally speaking, irrelevant.  

The relationship between the intended function(s) of the affinity theory as a 

whole, and the function of each individual component-type is crucial to this 

distinction.   Where the component-type does not contribute in any way to the 

application of the theory, it can be assigned an ‘optional’ status.  My discussion 

departs from historiographical tradition in disregarding these optional 

component-types.  Instead, the following chapter concentrates entirely on the 

functional component-types that emerged as affinity theories became 

pedagogical tools around the middle of the century.    

We have seen that Geoffroy offered a ‘law’ of affinity in his 1718 Mémoire:

“Every time that two substances which have some disposition to 

 
2 Kroes and Meijers 2006. 
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join with each other happen to be united together, if there 
supervenes a third which has more relationship [rapport] with 
one of the others, it unites with it and makes it release its hold on 
the other”3

However, there were other assumptions that needed to be made before 

Geoffroy’s ideas could be adopted and applied usefully.  Certain concepts were 

required to be ‘filled-in’ for affinity theories to be operationally intelligible.  

Many of these were tacit assumptions that had been made by Geoffroy in 

putting his paper together.  For example, Klein argues that Geoffroy’s original 

affinity table articulated a new conception of “chemical combination, 

compound, and reaction”.4 In this scheme, the chemical compound was made 

up of empirically “homogeneous chemical substances”, i.e. relatively stable 

substances which could be combined to create new substances, and recovered 

from these new substances without alteration.5 Klein’s analysis indicates three 

functional component-types that were necessary to affinity theories for their 

functional application.   

The first is a conception of substance identity.   This component-type 

encompasses epistemological conceptions as well as more empirical ontological 

analyses of the substances that most commonly featured in affinity tables.  

Following on from this is a further component-type of concepts of combination.  

This is closely linked to the former, and the interplay between the individual 

components of each component-type will be obvious.  The third component-

type necessary for the operational utility of affinity theories is a conception of 

order.  As substances are ordered in affinity tables, how is this order 

established?  And on what empirical basis?   

While Geoffroy’s ‘law’ might appear to answer these types of questions, in fact 

there was a theoretical lacuna between the law and the practical applications of 

affinity theories.  Geoffroy’s affinity table would be effectively useless without 

some conception of substance identity, of combination of substances and of the 

order of affinities.  Those who intended to utilise affinity theory in their 

 
3 Duncan  1996, 116. 
4 Klein 1996, 282. 
5 See also Klein 1995. 
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chemistry thus formulated components to answer these questions. This chapter 

examines in detail these components, classed into component-types, as 

articulated within a variety of affinity theories.   

3.1  Concepts of Substance Identity 
As Klein has recently pointed out,  

“what counted as a single substance, and the practical and 
epistemic methods of defining its boundaries are among the key 
historical-ontological questions we must ask if we wish to 
understand historical transformations of chemistry on a broader 
cultural scale.”6

Her own work has greatly contributed to answering these questions, beginning 

with her analysis of the substances represented in Geoffroy’s affinity table 

which, she argues, epitomised a new concept of the “pure chemical substance”.7

These could be either compounds or elements, but when combined together, 

they “must remain unaltered as substance-specific entities”.8 This concept may 

form one of the most basic and essential types of components of affinity.  

Inevitably, however, it is rarely specifically articulated.9

There are two layers of conceptualisation here.  Firstly, there are questions 

posed by the epistemology of the “homogeneous chemical substance”, whether 

compound or elemental.  Note the emphasis on homogeneity rather than 

simplicity.  Homogeneity implied a level of mixture beyond a mere mechanical 

mélange, but without insisting on simplicity or elemental status.  As Cullen 

explained to his students: 

“we have no Criterion by which we can know, whether we have 
hit on the truth in the Division of the Elements of Bodies; there 
certainly are Elementary Bodies, tho’ they cannot be number’d, 
nor do I think there is a necessity for it, as they have done no 
good, but rather misled the Chemists.”10 

The notion of ultimate simplicity was not only impossible to ascertain, but was 

 
6 Klein 2005, 114. 
7 Klein 1994, 168. 
8 Ibid, 170. 
9 Klein 1996, 269. 
10 Cullen n.d. [1760s], f 16-17. 
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believed to be a harmful concept.  Much better to simply concentrate on those 

substances that the chemist commonly encountered.  But what epistemic criteria 

could be applied to such substances?  Was homogeneity enough, or were 

admittedly homogeneous substances further classified as simple substances or 

more complex compounds?  The first sub-section below explores how far 

affinity theories relied on notions of simplicity or corresponded to abstract or 

operational concepts of elements and compounds.   

On a more practical level, there is the question of substance identity: how did a 

chemist know what a substance was, how did he label it?   It was vital that the 

chemist who was to use the table knew what ingredients were constitutive of 

what compound.  This is perhaps a difficulty that 21st century readers find it 

difficult to appreciate, possessing as we do a chemical nomenclature that clearly 

indicates the constitution of any compound substance.  The second section 

below explores the fashioning of identities for newly discovered species of 

matter, and the role of affinity theories in recognising and identifying such 

species through their chemical behaviour.  

3.1.1 Correspondences and Divergences: Elements, Principles and 
Affinity 

As Boyle’s determined critique indicates, metaphysical systems of elements and 

principles were traditionally crucial to chemical theory.11 And yet, by the end 

of the 18th century, Nicholson could write  

“the limits of art are not the limits of nature.  At present we hear 
little concerning elements.”12 

From the very first, affinity theories relegated such abstract notions to a much 

lower level of importance.  Geoffroy’s table included in its header row both 

admittedly compound and purportedly simple substances without distinction.13 

The criteria for their inclusion, Klein asserts, was their homogeneity and relative 

stability; the latter signified by the facility of being recoverable from 

combination, in reversible chemical operations.  This suggests that affinity 

 
11 Boyle 1661. See also Boas 1954. 
12 Nicholson  1795, 155. 
13 Klein 1995, 92-3. 
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theories were divorced from any hierarchy of complexity.  However, there was 

scope in affinity theory, indeed it might be called a requirement, for such a 

notion, and this section explores those components that endeavoured to clarify 

relations between the substances found in affinity tables and more traditional 

elemental concepts. 

In his earliest lectures on chemistry, Cullen initiated a strategy that was later 

adopted by many of the writers on chemistry throughout the century.  He began 

his lectures with a discussion of “the objects of chemistry”, which were 

specifically opposed to bodies only possessed of general mechanical 

properties.14 A similar distinction underlay that between constituent and 

integrant parts.  The first were the results of chemical division of bodies, and the 

second of mechanical division only.   This distinction (also made by Stahl, 

Shaw and Macquer)15 emphasised the disciplinary boundary between chemistry 

and natural philosophy by reference to their differing objects and practices.  

Chemistry was concerned with the production of particular properties in bodies 

by means of their combination and separation.   

In 1748 Cullen told his students: 

“… we should give an account of the Elements but the Real 
Elements not known because of their minuteness shewn above. 

…

Chemistry resolves Bodies into difft pts.  These have been 
supposed Elements but that doubtfull & we give them only as the 
Chemical Principles usefully known & now to be explained.”16 

Cullen at this time listed the chemical principles as salt, sulphur, mercury, earth, 

water, air and fire, but this seems to have been more a nod to convention than a 

core tenet of his chemistry.   His chemical principles were not supposed to be 

simple, as: 

“… no Chemical Resolution exhibits the most Simple Elements 

 
14 Cullen n.d. [1748/9].  In some years, Cullen included a series of lectures on the history of chemistry, 
which discussed the origins of chemistry, and its most well known practitioners up to his own time.  On 
Cullen’s historiography, see Christie 1994. 
15 Shaw  n.d. [1733?], .Macquer  1749, Stahl  1730. 
16 Cullen n.d. [1748/9?], Lecture IV. 
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of Bodies.  … Chemistry however is usefull in explaining the 
higher degrees of Composition.”17 

The aforementioned ‘chemical principles’ were only referred to again in his 

lectures as classes in his taxonomy of chemical bodies.18 In later courses, 

Cullen adopted a pedagogical stratagem of discouraging speculation on the 

metaphysical elements or principles: 

“Opinions concerning Elements shou’d not be regarded as they 
mislead the Student.  … our Business at present is only to know 
the meaning of the Classes already defined”19 

The classes had been amended early in his teaching career to salts, 

inflammables, metals, earths, waters and airs.20 Perhaps as a result of his 

avowed scepticism with regard to elements, in later years Cullen’s use of the 

word ‘principle’ developed to encompass a binary definition.  This 

distinguished his absolutely elemental ‘meta-principles’ from a more 

empirically justified conceptualisation.  The 1748 lectures explained this 

second, pragmatic definition: 

“In order to compose Cinnabar or Vermilion it is enough to know 
that Brimstone & Quicksilver are the proper Ingredients nor for 
this purpose does it much concern me whether the Brimstone & 
Quicksilver are Elementary Bodies or mixts.”21 

Thus, brimstone and quicksilver might or might not be meta-principles, but 

there was little doubt that they were the ‘ingredients’ of cinnabar.  It was with 

these pragmatic constitutive principles that Cullen wished his students to be 

concerned.  The contingent nature of this knowledge did not detract from its 

utility: 

“tho by Chemical Resolutions we do not arrive at the Real & 
most simple Elements of all Bodies yet it is usefull to know the 

 
17 Ibid, Lecture VI. 
18 Ibid. 
19 Cullen n.d. [1760s], MS/MSL/79a, f 29. 
20 Cullen’s taxonomy notably did not adopt the traditional tripartite classification of natural ‘kingdoms’.  In 
this he seems to have differed from most of his pedagogical contemporaries in Europe.  See Klein 2005, 
110-117. 
21 Cullen n.d. [1748/9?], Lecture IV. 
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principles of Compounds.”22 

We have two competing notions of ‘principle’ here, the absolute, meta-

principles, and the ‘principles of compounds’.  By the 1760s, he had adopted a 

third conceptualisation, and a different term, ‘chemical element’: 

“Bodies can however be divided into certain parts different fm 
each other, which may be called Chemical Elements or the 
smallest parts that Bodies can be resolved into by Art; …  We 
sometimes call the parts of Compounds Elements”.23 

Cullen’s ‘chemical elements’ were dependent on the state of the ‘Art’, and the 

degree to which it was possible to resolve bodies into different parts by 

chemical means.  Chemical elements were thus defined at least in part by the 

methods and practices of chemistry as a discipline.  This strong operational 

influence on the epistemological status of individual substances reinforced 

Cullen’s demarcation between chemistry and natural philosophy.  Cullen’s 

formulation implies that he did not distinguish between chemical elements and 

the more immediate ‘principles of compounds’, and yet they did not correspond 

with the substances that he included in his affinity table.  Like Geoffroy, he 

included substances in his tables that he knew to be composed of other bodies, 

(including sulphur, aqua regia and the metals).  It seems that his notion of 

chemical elements was rather intended to replace the traditional systems of 

elements than to classify the substances included in his affinity table.   

Lewis explained the difference between mechanical philosophy and chemistry 

by asserting that where the first “seems to consider bodies chiefly as being 

entire aggregates or masses; as being divisible into parts, each of the same 

general properties with the whole”,24 the second: 

“considers bodies as being composed of such a particular species 
of matter; … or consisting of dissimilar parts, which may be 
separated from one another, or transferred into other bodies.  The 
properties of this kind are not subject to any known mechanism, 
and seem to be governed by laws of another order.”25 

22 Ibid. 
23 Cullen n.d. [1760?], f 3-4. 
24 Lewis  1763, iv. 
25 Ibid. 
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This tallied with Cullen’s separation of the chemical from the mechanical 

domain.  Lewis, however, made no attempt to relate his distinction to any notion 

of elements or principles; chemistry was concerned with bodies as ‘species’ 

possessed of differing properties or qualities, or as made up of ‘dissimilar parts’ 

into which they could be separated by the operations of chemistry.  Lewis’s 

statement implied a hierarchy of simplicity, contrasting “particular species” of 

matter with those bodies that consisted of “dissimilar parts” which could be 

separated.  This was essentially the same analytic relation as Cullen’s implied 

hierarchy of simplicity, from cinnabar to brimstone and quicksilver, from one 

body to its ‘ingredients’.  It was an empirically ascertained status, a pragmatic 

assumption of relative simplicity that was unrelated to any abstract notion of 

principles or elements.   

To his conception of substances as distinct chemical ‘species’ Lewis added the 

notion of a “grand active power”,26 chemical affinity, which he specifically 

stated “obtains between bodies as being composed of parts, and as being of a 

different species of matter from one another”.27 Affinity was thus inextricably 

linked to the difference of chemical species.     

Some chemists worked backwards, drawing ontological conclusions from the 

apparent strength of affinities.  Hadley asserted, on what were certainly 

logically sound grounds, that those substances with the strongest affinities were 

simplest in nature: 

“The most distinguished and considerable affinities are those of 
the simplest bodies whence it follows that the least compounded 
bodies are with the greatest difficulty analyzed”28 

This assumption originated with Becher and Stahl, and was also adopted by 

both Boyle and Newton.29 It also appeared in Macquer’s list of fundamental 

truths of his affinity theory.  It is clearly an a priori assumption rather than an 

empirical law, as a logical extrapolation from the definition of simple 

substances.  This principle rests on the further assumption that the so-called 

 
26 Ibid. 
27 Ibid,  v. 
28 Hadley 1759 f 51. 
29 Duncan  1996, 184. 
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simple substances were no such thing, enshrining the common assumption 

amongst chemists that their most ‘simple’ substances were far from 

fundamental as a general law.   

A more complex definition of the substances that were the chemists’ concern 

was set out by Fordyce in his lectures of 1765.  He picked up Cullen’s notion of 

the chemical element, but rather than invoking a system of absolute meta-

principles, or elements, he contrasted it with an implicitly mechanical notion of 

Physical Elements: 

"Physical Elements are form'd of ye ultimate division possible, & 
are to be consider'd as indefinitely small; whereas Chemical 
Elements are form'd of ye ultimate division as yet made; & tho 
they may be in ymselves compounds, yet as we can't decompose 
ym, we consider them as simple elements.”30 

Thus Fordyce’s definition of chemical elements pre-empted Lavoisier’s 

historically lauded definition of simple substances as: 

“simple in the present state of our knowledge, and so far as 
chemical analysis has hitherto been able to show.”31 

He explained in more detail in 1786: 

“If I put a piece of Iron into a Solution of blue vitriol, I make 
another Division, viz into Copper which is on the surface of the 
Iron, & if the Division was complete the other Part would be 
vitriolic acid, which is colourless.  I therefore Divide the Solution 
of blue vitriol into Parts which are dissimilar in their particular 
Properties from the whole.  Copper is red, vitriolic acid is 
colourless, both together are blue.  This is a chemical division.  
Copper then & vitriolic acid are substances which form blue 
vitriol.  Whether the vitriolic acid be capable of Division into two 
Parts, or no, we do not know.  No person has divided it yet, but it 
does not follow from thence that it is not divisible any further.  
… we know nothing a priori in Chemistry, therefore we can 
judge of no Division but what has actually been made.  There are 
a number of substances which we cannot divide further but it 
does not follow from thence that they are not further divisible.  
The Substances which are as simple as we can make them we call 
chemical Elements.”32 

 
30 Fordyce 1765, f 37. 
31 Lavoisier 1965 177. 
32 Fordyce 1786a, Lecture 2. 
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Lewis’s conception, concerned only to distinguish substances from each other 

as different species, and making no claim concerning the absolute simplicity of 

substances, had been notably more cautiously empirical in tone than was 

Fordyce’s.  Fordyce’s harnessing of Cullen’s term ‘chemical element’ to his 

own much more positive conceptualisation reflects his rather daring attitude to 

hypotheses  – an attitude which can be detected in many of the components of 

his affinity theory.  Nevertheless, the type of pragmatism demonstrated by 

Fordyce and Lewis perhaps testifies to the power of the empirical ideal in 

chemistry.  As Lewis stated, affinity was a power that ‘obtained’ between 

different species of matter.  It was the difference of species that was essential 

here, not the simplicity of the matter. 

The set of chemical elements that Fordyce assumed were, of course, dependent 

on the current state of chemistry.  In 1786 he offered his students a list of 49 

substances divided into the same six classes used by Cullen.33 A substance was 

assumed to be elemental so long as it could not be analysed further by chemical 

means.  But the possibility must be faced that a substance previously believed to 

be a chemical element might in future days be discovered to be a compound 

substance.  As Nicholson explained: 

“Those substances which we have not hitherto been able to 
analyse, … are indeed considered as simple substances relative to 
the present state of our knowledge, but in no other respect; for a 
variety of experiments give us reason to hope that future 
enquiries may elucidate their nature and composition.”34 

Fordyce and Nicholson had before them an example of such a scenario, in 

Black’s discovery that the common alkalis, substances that had not previously 

been decomposed, were compound substances composed of pairs of very 

different constituents.35 Quick-lime, which had previously been thought to 

consist of the native calcareous earth combined with fiery particles (acquired 

during prolonged heating, and causing the causticity of quick-lime), was 

discovered to be the simpler substance of the two, with calcareous earth a 

 
33 Fordyce 1786b, f 22 
34 Nicholson  1795, 155. 
35 Black, 1910. 
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combination of quick-lime and fixed air.  The hierarchy of substances had been 

inverted.  Combinations involving such substances were thus more complex 

than had previously been believed.  Fordyce fully expected this type of 

discovery to happen again, and indeed Lavoisier’s work overturned a similar 

hierarchy of complexity.   

Such changing perceptions of the relations between substances might require 

the amendment of affinity tables, but they did not and would not undermine 

Fordyce’s affinity theory.  Whether or not a substance was perceived as 

elemental was irrelevant to affinity, as Fordyce clearly understood.  His works 

testify to a second conceptualisation of his chemical element that was 

operationally context-dependent, and corresponded to the behavioural 

classification implicit in the use of affinity tables.  Even substances known and 

agreed to be compound might still be regarded as elements in particular 

contexts.  Thus “A Compound may become an Element”.36 When an 

admittedly compound substance combined with a different substance (whether 

simple or compound), to make a third, even more complex substance, the first 

(compound) substance, was seen as an element of the third.  Certain substances, 

such as brimstone, were elements of compounds (e.g. cinnabar), but were 

themselves believed to be compounds or mixts (as brimstone was composed of 

vitriolic acid and phlogiston).  Although brimstone was not believed to be 

elemental, in its combination with mercury to produce cinnabar, it was acting as 

a chemical element.  Fordyce also presented this system, in reverse, as an 

explanation of the complex changes seen in such processes as fermentation.37 

Thus a hierarchy of more and less simple substances was proposed, an entirely 

relational ordering with no absolute basis.  Fordyce’s description of these 

‘operational elements’ reveals one of the (predominantly) tacit components of 

all affinity theories, a component forming part of the common ground discussed 

in chapter 5, but it is important here to note two points.  Firstly, that this 

conceptualisation was entirely separate from notions of ultimate or even 

contingent simplicity; and secondly, that although few chemists articulated the 

 
36 Fordyce  1765, 3. 
37 Fordyce 1786b, Lecture 15. 
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idea as Fordyce had, it was necessarily implicit in every affinity table.     

Fordyce used the term ‘element’ indiscriminately, to signify both the contingent 

chemical element and the operationally specific element.  Torbern Bergman was 

(admittedly rather later) much more comprehensible.  He explained: 

“Those elements, into which; by chemistry, a body may be 
resolved in the first instance, may be termed its proximate 
principles or elements; …  

By decomposing again each of those proximate principles of 
cinnabar, one may attain its remote principles … 

If the principles, into which a body has been thus resolved, are 
capable of no further resolution, they may be called primary, or 
ultimate principles or elements.”38 

Bergman’s ‘proximate principles/elements’ corresponded to Fordyce’s 

operational elements, while the ‘ultimate or primary principles/elements’ 

equated to the contingent ‘chemical elements’.39 Bergman’s hierarchy 

incorporated a conceptual link between the chemical and the operational 

elements.  However, in so doing he obscured the relation that was most 

important to affinity theorists, that between a body and its proximate principles 

(and vice versa).  His system was complicated by the fact that the layers of 

relative simplicity were not mutually exclusive; according to the particular 

circumstance, proximate principles could also be both remote principles and 

ultimate principles, while remote principles could also be ultimate principles.  

Where Fordyce’s system effectively distinguished the taxonomy of affinity 

tables from even contingent notions of absolute elements, Bergman’s apparently 

sought to conflate the two.   The common ground component that explained the 

substances appearing in affinity tables, tacitly present in all affinity theories, but 

only briefly exposed in Fordyce’s teaching, was thus veiled once more by 

Bergman, hidden behind a hierarchy of relative simplicity. 

Fordyce (and later, Bergman) expressly defined both contingently simple 

substances and the proximate ingredients of compound substances as 

 
38 Bergman  1783, 6-7. 
39 As Newman has recently shown, this distinction (and indeed the very same terms used by Bergman) 
drew on a long chymical tradition.  Newman 2006, 52. 
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‘elements’.  This elided definition served to justify the substances that appeared 

in affinity tables.  For Fordyce it was these operationally contextual ‘elements’ 

that appeared in affinity tables, as the substances that actually combined by the 

action of affinity.  He adopted a taxonomy based on his affinity theory that 

further classed substances as either menstrua or solvends, according to their 

roles in each chemical combination.  This bifurcation (discussed in more detail 

under section 3.2.1 below) provided a classification system that would assist in 

the assimilation of new discoveries into his theory.  Interestingly, although 

Elliot appropriated Fordyce’s operational elements (quoting directly from his 

Elements of Agriculture, with acknowledgement) for his own work, he carefully 

left out this further layer of classification.40 

It should be noted here that these contingent systems of ‘elements’ were not the 

only approach taken by chemists.  Bryan Higgins, for example, lectured that 

there were seven “primary distinct elements of matter, viz. Earth, Water, Alkali, 

Acid, Air, Phlogiston, Light” which attracted and repelled each other in a 

complicated system.  Higgins claimed that some familiar substances, like 

caustic volatile alkali, were absolutely elementary.  Perhaps unsurprisingly, he 

also included a lecture in which 

“the incompetency and errors of the tables of elective attractions 
demonstrated; and comprehensive tables commenced, in which 
the blanks are to be filled up as fast as experiment will 
authorise.”41 

By the late 1780s, Fordyce’s attitude towards affinity tables was also somewhat 

jaundiced.  This was in part a consequence of the shifting status of substances 

from elements to compounds as substances like water, the archetypal element, 

were decomposed, and metals were assigned simple status.   While none of this 

affected his theory, he could hardly deny that it cast a shadow of doubt over 

most affinity tables thus far produced.    He explained: 

“A great number of substances which we consider simply 
chemical Elements are really & in fact Compounds. So that when 
we are performing a simple elective attraction as we suppose, it 
frequently is not a simple elective attraction but a compound one.  

 
40 Elliot 1782, 103-4. 
41 Higgins 1775, 29-30. 
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This makes great derangement of great Difficulty in forming 
Tables of elective attraction; for the same substances do not 
combine together by compound elective attractions as we should 
expect from simple elective attractions”42 

In such scenarios, numerous affinities competed together in ways that were 

imperfectly understood.  Affinity tables were intended to show the actions of 

single affinities and as so many substances had now been shown to be 

compound, the tables that had been produced on that basis were likely to be 

incorrect.  More importantly, it made the production of new affinity tables, 

always a complex process, a tangled maze of competing affinities.   

Fordyce perceived the problem to be temporary, the result of deficient 

knowledge of substances and their relations rather than anomalies within his 

affinity theory.  The idea of affinity tables was relatively impervious to changes 

in the absolute ontological status of particular substances, as the matrix allowed 

the easy inclusion of chemical elements whatever their realist status.  As 

knowledge grew about the composition of individual substances, so the tables of 

affinity could be amended, bringing them closer to perfection.     

We can see evidence of some of the difficulties that Fordyce mentioned in 

Bergman’s affinity tables.  Substances such as aqua regia, a mixture of nitrous 

and marine acids, appeared in Bergman’s tables of 1775 and 1785, alongside 

various substances which were presumed to be combinations of simpler 

substances with phlogiston.  Bergman’s tables reflected both the phlogisticated 

nature of the chemistry of the late 18th century, and the operational basis of his 

table.  As he believed that metals dissolved in acids lost their phlogiston (to the 

acids), the successive displacements were of the calx rather than the metal itself.  

While his 1775 table had listed metals in the columns beneath the acids, the 

1785 version listed the calces.  As he argued: 

“That these substances are attracted and dissolved by acids, is 
known even to beginners; but let it be remembered that they are 
not, as was supposed, taken up entire, and in their complete form 
by menstrua: for some particles of the acid carry off the 
superfluous phlogiston, while others dissolve the calcined metal.  
Since therefore they exist in the menstruum mutilated, and in a 

 
42 Fordyce 1786a. 
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great measure deprived of one of their principles, the condition 
under which the process may be referred to single attractions, 
does not exist.”43 

For Bergman, as for Fordyce, it was essential that affinity tables set out the 

results of single affinities only, and he amended his table to ensure that this 

criterion was rigorously observed.   Thus the distinction between single and 

double affinities, initially set out in Cullen’s lectures, served to reinforce the 

epistemological criteria for the ‘operational element’.   As it was metal calces 

rather than metals that combined with the acid menstrua, so it was metal calces 

that should appear in affinity tables.  On the other hand, as sulphur combined in 

the dry way with metals entire rather than their calces, so it was these, 

compound, substances that appeared in the appropriate column of Bergman’s 

tables.  Bergman’s table thus adopted behavioural criteria for inclusion that 

conformed closely to Fordyce’s ‘operational element’, although with an 

additional level of distinction beyond those Fordyce specified, between the ‘wet 

way’ and the ‘dry way’.  Which substances were deemed to be acting as 

chemical elements in particular combinations depended not only on which 

substances combined together, but also on the type of operation that combined 

them.   

Cullen, Fordyce and Bergman all spent time formulating their own affinity 

tables.  They were all keenly aware of the difficulties arising where more than 

three affinities were in competition.  Cullen though, had the luxury of feeling 

relatively confident of his ‘chemical elements’, as yet untroubled by the 

multitude of new airs that boiled up from the late 1760s.  In contrast, for 

Fordyce and Bergman, these discoveries emphasised that they were standing on 

slippery ground.  It became increasingly clear that affinity tables must be 

rigorous in depicting only single affinities, and that the substances that appeared 

in their columns must be those that actually combined or were separated out.  

Hence perhaps Fordyce’s decision to offer his students in 1786 an affinity table 

of only seven (extremely generalised) columns.44 Where Fordyce argued that 

accurate affinity tables must await greater knowledge of substances, Bergman 

 
43 Bergman 1970, 82-3. 
44 Fordyce 1786b, facing f 49. 
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apparently believed that greater rigour in depicting the combinations and 

separations of matter in affinity tables would produce the accuracy desired.   

We have seen in this section, a variety of attempts to bring the theory of 

chemistry closer to its practice.  Chemists formulated pragmatic 

conceptualisations of chemical elements and compounds based on the methods 

and practices of the art.  As we have seen, Lavoisier’s definition of simple 

substances contingent on the state of the art had a long history.  These 

contingent chemical elements can be roughly discerned in Cullen’s lectures, 

overlapping with more traditional notions of elements and principles.  As they 

were based on the limits of chemical analysis, they were distinctively chemical, 

bound to chemical methodology and practices.  While a substantial overlap 

undoubtedly existed between this set of contingent or analytical elements and 

the substances that chemists commonly encountered in their affinity tables, 

there was also a notable disjunction.  No single level or scale of complexity 

corresponded to that contained in the affinity tables, and any taxonomical 

structure that described the contents of affinity tables would seem to have been 

based on something other than a hierarchy of simplicity.  We have seen here a 

glimpse of one of the components of the common ground in Fordyce’s 

operational notion of elements.  Those substances that combined (without their 

own decomposition) to produce a new substance were the elements of that new 

substance, and these were the substances that appeared in the tables.  It was that 

simple.  These elements were distinctly based on affinity theory.  They were 

dependent entirely on the operational context in which they appeared rather than 

on a single distinct ontological level of analysis.  This second sense, I suggest, 

originated from the routine employment of affinity tables, and tacitly provided 

the criteria for the inclusion of substances in such tables.   

Affinity theories encouraged a shift of emphasis onto the dynamics of chemical 

operations and the behaviour of substances, rather than their ultimate 

composition.45 From the new dynamic viewpoint, compound substances could 

be characterised as simple or elemental within the bounds of particular 

 
45 Kim has discussed the opposition in French chemistry during the 18th century  between compositional 
‘principlist’ chemistry and affinity chemistry at length.  See Kim 2003. 
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operations in which they behaved as such.  Substances that were undoubtedly 

compound from a realist point of view, could thus be regarded as elements 

within the context of a particular operation (‘operational elements’).  In the 

chemistry of the 18th century, notions of simplicity and combination were fluid, 

determined largely by context.   

Bergman’s and Fordyce’s concerns to ensure that their affinity tables reflected 

the behaviour of substances accurately indicates the importance of the chemist’s 

facility of recognising substances and where necessary classifying them.  If a 

substance was incorrectly identified, as Fordyce pointed out, the affinity theory 

would be founded on error.  The specific identification of each individual 

substance that appeared in affinity tables was thus crucial to their practical 

utility.  The next section explores components that set out some of the rules for 

such identification. 

3.1.2 Identity and Recognition: The Specific Character of the Chemical 
Substance 

The Nobel prize winning chemist, Roald Hoffmann, calls identity “the central 

problem” of chemistry.  He explains: 

“The very first question a chemist asks when faced with a sample 
of anything new under the sun – some dust brought back at 
fantastic expense from the surface of the moon, an impure 
narcotic off the street, an elixir extracted from a thousand 
cockroach glands – is always the same: “What do I have?”46 

In the 18th century, as now, identity was the crux of chemistry.  A chemical 

understanding of a body was founded on the correct identification of its 

constituent substances.  This section explores the concepts used by chemists to 

assist with the processes of identification and recognition of particular 

substances.  I begin by looking at the establishment of a substance’s identity, its 

chemical character.  Next, I explore the process of recognition and identification 

of familiar substances, and finally I shall draw attention to some conceptual 

difficulties resulting from the use of affinities in the process of identification.   

For the 21st century chemist the identification of a new substance is made 

simpler by the existence of a standardised set of elements that set a  boundary to 

 
46 Hoffmann 1995, 7. 
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reduction and form, according to that old cliché, the ‘building blocks’ of matter.  

As we saw in the previous section, a clearly defined set of elemental substances, 

and the confidence that such an explanatory resource must inspire, was not 

available to 18th century chemists who were (to continue the metaphor) still 

trying to extract the material for their bricks from the ground.  Nevertheless, the 

ability to identify certain key substances, whether elemental or not, was still 

essential to both the chemistry of familiar bodies and for investigations into new 

and unknown materials.  18th century chemists were reliant for identification on 

a combination of macroscopic physical properties and a knowledge of the 

affinities that offered a glimpse  of the microscopic world. 

Bergman argued that criteria for recognition and identification of substances 

were essential in ascertaining what actually happened in chemical combinations.  

As he said: 

“Here the knowledge of the form, taste, solubility, tendency to 
effloresce, and other properties, even those which, in other 
respects, appear of no consequence, of the substances, is of great 
use in enabling us to judge safely and readily, whether any, and 
what decomposition has taken place.”47 

Bergman made his statement in the section of his Dissertation on Elective 

Attractions where he explained how he had interpreted the experiments on 

which he had based his enormous affinity table.  His ability to recognise and 

name the substances emerging from a mixture was crucial to this endeavour.  It 

is surely no coincidence that Bergman was one of the earliest chemists to 

attempt to produce a new nomenclature for chemistry that would accurately 

reflect the composition of substances.48 

Klein argues that  

 “Eighteenth-century chemists formulated new chemical 
conceptions for the identification and classification of chemical 
substances in place of the old ones derived from natural history.  
In contrast to traditional natural history, the identification of 
natural bodies within chemistry was done by intervening in the 

 
47 Bergman 1970, 66. 
48 Crosland 1962, 142-152. 
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constitution of natural bodies with chemical tools.”49 

Individual substances were identified and classified by their chemical 

behaviour, through chemical intervention.  Lewis set out a list of properties that 

differentiated one chemical species from another: 

“dissoluble, liquefiable, vitrescible, combustible, fermentable, 
&c. impregnated with colour, smell, taste, &c.”50 

Distinctions were drawn between substances based on their properties.  Looking 

at Lewis’s list, we see two different types of properties.  He distinguished 

something similar to Locke’s sensible qualities which produce an effect/change 

on the observer (Lewis’s ‘impregnated’ properties).  The other type of property 

conforms broadly to Locke’s powers: the power to produce observable changes 

either on themselves or on other substances.  The power of burning, 

combustibility, the power of dissolution, and the power of fermenting; these, as 

well as more sensible properties, distinguished the different species of matter.     

It was important that more than just a few properties were examined in any 

attempt to identify a substance.  In a discussion that took place during a 1785 

meeting of the Chapter Coffee House philosophical society, Thomas Cooper 

described an unusual appearance of sulphur during a chemical process, to which 

Kirwan responded: 

“Mr Kirwan is of opinion that the floating matter is not Sulphur, 
and recommended the examination of it to Mr Cooper.  Mr C. 
confesses that he formed his conclusion only from the feel & 
appearance without attending either to the smell or burning it.”51 

Cooper did not manage to procure the mysterious substance again to examine it, 

and so it remained an anomaly.52 

Lewis’s experiments on platina, concerned as they were to find out its 

properties, offer a useful example of the establishment of a character for an 

 
49 Klein 1996, 281. 
50 Lewis 1763. 
51 Levere and Turner 2002, 102. 
52 Ibid, 110. 
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unknown substance.53 Lewis published six papers in the Philosophical 

Transactions in three tranches in 1754 and 1757 in which he set out his studies 

of the “white metallic substance said to be found in the gold mines of the 

Spanish West-Indies”54 Platina was at this time a new substance, its properties 

being little known and Lewis’s investigation provided the most considerable 

account of its behaviour yet available.   

Initially, Lewis described the Platina in the state in which he had received it, 

intermingled with earthy matter, gold and mercury.  He deduced that it had 

probably been contaminated with mercury during the process of extracting the 

gold from the ore, but the major proportion of the mixture was  

“white, shining grains, of seemingly smooth surfaces, irregular 
figures, generally planes with the edges rounded off. … the 
grains … are the true platina.”55 

Lewis classed the new substance as a metal without difficulty.  His New 

Dispensatory indicates that the criteria for metals were based initially on 

physical characteristics.  He cited specifically their “peculiar bright aspect, 

perfect opacity and great weight”56 and explained that when metals were heated 

with access to air, they were slowly converted “with different degrees of 

facility, into a powdery or friable substance, called calx, destitute of the metallic 

aspect, and much lighter, in proportion to its bulk, than the metal itself.”57 

Finally, he asserted that all metallic substances dissolve in acids, although some 

only in particular acids.  Only this last taxonomical criterion refers to 

affinities.58 Lewis assessed the malleability, specific gravity, and fusibility of 

the ‘grains’ of platina.  When attempting, fruitlessly, to force it into fusion, he 

tried every method of promoting fusion that was available to him, including the 

 
53 Eklund has argued that Lewis’s investigation of platina epitomises the new technique of operational 
identification, that is the development of operational techniques allowing substances to be identified by 
their relationship to other substances.  Eklund 1971  See also Kirwan 1786 which followed a very similar 
pattern. 
54 Lewis 1754. 
55 Ibid, 638. 
56 Lewis  1768, 23. 
57 Ibid, 24. 
58 Although for many later chemists, the penultimate characteristic, the calcination of metals, could be 
explained by reference to the affinities of phlogiston for various metals and for atmospheric air. 
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addition of plaster of Paris, which was used to enable the fusion of “the most 

difficultly-fusible metallic body hitherto known, forg’d iron”.59 He tried 

reducing the platina with nitre, “which reduces all the known metallic bodies, 

except gold and silver”60 and with sulphur, again without success.   

Many of these experiments suggested that platina was analogous with gold.   

Like gold, the platina would only dissolve in Aqua Regia, and on the addition of 

various salts and metals, a variety of precipitates were produced.  This quickly 

observed kinship between platina and gold formed a starting point for Lewis’s 

experiments, and he tailored his investigations accordingly.  For example: 

“As fix’d alcaline salts enable sulphur to dissolve gold; platina 
was expos’d to the fire with a mixture of sulphur and alcali, 
called hepar sulphuris …”.61 

Lewis’s intuition was justified – like gold, the bulk of the platina was dissolved 

by the hepar sulphuris.  There is a clear strategy here to compare the unknown 

with the known, both in physical properties and in their conjunction with other 

substances.  It is the latter type of comparison that predominates in Lewis’s 

investigations.   Conjunction of different species of matter held a particular 

resonance for Lewis, as it was in such circumstances that affinities became 

evident.  Affinity, for Lewis, was necessarily the result of the interaction of two 

different substances.  In 1763 he explained that if gypsum (itself composed of 

vitriolic acid and quicklime) was mixed with charcoal, and heat applied,  

“a strong chemical affinity begins to take place: the acid quits the 
lime, and unites with the inflammable principle of the coal, 
forming therewith another new compound, common 
brimstone.”62 

Lewis saw affinity as a power that arose between two different species of 

matter, rather than a power or property that was inherent in each particular 

species.  On this view, affinities were properties of particular conjunctions 

rather than of individual substances.  In his examination of platina, he was 

 
59 Lewis 1754, 644. 
60 Ibid. 
61 Ibid, 645. 
62 Lewis 1763, vi. 
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concerned to compare conjunctions rather than to seek absolute powers:   

“it is propos’d to examine the effect of acid spirits, simple and 
compound, applied after various manners; in order to determine 
not only its relation or habitus to them, but likewise its less 
obvious agreement or disagreement with the metallic bodies, 
whose history is more known.”63 

He compared the results of most of his experiments with what might be 

expected of gold in a similar experiment.  Thus new substances were compared 

with other, more familiar materials with recognised and well understood 

properties.64 

Lewis showed that gold and platina could be mixed without any physical means 

of detection.  Colour, ductility and specific gravity were unimpaired, and as the 

behaviour of platina in conjunction with other substances was so similar to that 

of gold, many of the standard chemical tests for the purity of gold were feared 

to be ineffectual.  Platina and gold were so similar, both physically and 

chemically, that there were doubts as to whether they were truly different 

chemical species. Lewis was keen to show that although platina resembled gold 

to a large degree, it nevertheless did not contain gold, and that the usual tests for 

gold remained effective, even in the presence of a large amount of platina.  

Confident identification of the new metal only became feasible after the 

publication of an investigation such as Lewis’s.  As he explained,  

“… platina is not, as some believe, gold naturally debased by the 
admixture of some other metallic body, but a metal of a peculiar 
kind, essentially different from all the others.  Before the 
discriminating characters of platina were discovered, such a 
notion was highly plausible, and direct experiment seemed to 
confirm it”.65 

The persistent comparison of platina with gold must have reflected commercial 

concerns as well as Lewis’s scientific intuition, as platina was still considered a 

 
63 Lewis 1754, 646. 
64 Jon Eklund has noted that Lewis lists his experiments in an order that seems unlikely, and that his 
ordering of the experiments mixing platina with acids is most likely a decision related to style.  See Eklund  
1971, 117 fn..  Lewis’s concern for the style of his paper is interesting when we note that he did not offer 
specific affinity triplets in his papers given to the Royal Society, although they were included in his later 
Commercicum Philosophico-Technicum (see below).  Perhaps Lewis felt that the Royal Society were not 
concerned with affinity tables and that their inclusion would be inappropriate. 
65 Lewis 1757b, 165. 
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worthless contaminant of gold.  In 1766 Cullen told his students that: 

“All the sources of it are shut up by the Spaniards, because it was 
used in such a notorious manner for adulterating their <gold>; 
but as the late labours of the most eminent chymists of Europe 
have found out the method of discovering such debasement & of 
separating the platina from the <gold>, we hope the sources will 
be again opened, that further observations may be made on this 
curious substance.”66 

Cullen was possibly referring to Lewis’s 1754 paper here, as it included four 

methods for detecting the presence of platina in combination with gold.  The 

first relied on the fact that an amalgam of a platina/gold mixture would separate 

the platina, which did not unite with the mercury.  Thus the affinity of mercury 

for platina was weaker than its affinity for gold.  The second method depended 

on the fact that gold could be precipitated from aqua regia while a similar 

precipitation of platina was incomplete, and the presence of the platina tinged 

the solution yellow.  The third method was more effective in separating the two 

substances; inflammable liquors were added to a solution of the mixture which 

precipitated the gold, while the platina remained in solution.  The final method 

suggested by Lewis was the addition of green vitriol, which precipitated gold 

from solution, but not the platina.67 

Lewis established that the affinities of platina were different from gold.  It 

displaced gold from particular combinations, and in other combinations where 

gold remained combined, platina was displaced.  These concrete differences in 

affinity showed that platina was a single homogeneous chemical species entirely 

distinct from gold.  It was also affinity that provided the methods for 

distinguishing and separating the two metals most assuredly.  It was the 

behaviour of matter that gave away its secrets, setting different chemical species 

apart from each other.    

Affinity thus offered a solution to the problem of transdiction.  Observable 

physical qualities could not be imposed on the microscopic world; particles of 

gold, for example, were not imagined to be in themselves yellow, shiny and 

malleable.  But the affinities of gold were observable and could, chemists 

 
66 Cullen 1766, Lecture 89. 
67 Lewis 1754, 656. 
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believed, be extrapolated to the microscopic world.  Such extrapolation was not 

crucial for the coherence of affinity theory, although it was an entirely rational 

step.  A combination of Humean scepticism and the activities of charlatan 

alchemists had perhaps served to destroy chemistry’s faith in identification by 

physical characteristics.  Affinities were observable and, by their very nature, 

comparative, and thus were particularly suited to describing the identities of 

new matters.   

Almost contemporaneous with Lewis’s work on Platina was Black’s 1756 paper 

“Experiments Upon Magnesia Alba, Quick-Lime, and other Alcaline 

Substances”68 drawn from his 1754 MD Dissertation.  This reported Black’s 

investigations into an earth, magnesia alba, and its comparison with other 

chemically similar substances.  Black reported various experiments in which he 

combined magnesia with the various acids to produce what he called neutral 

salts.69 One of the complicating factors in any discussion of earths at this time 

was that calcareous earths were seen as a whole class of substances, widely 

varying in origin and appearance (Black listed lime-stone, marble, chalk, spars 

and marbles and animal shells).  These substances were all “converted into a 

perfect quick-lime”70 on exposure to strong fire or heat.  Magnesia physically 

resembled the calcareous earths, but was shown in Black’s experiments to 

produce noticeably different compounds with acids.  In spite of its physical 

resemblance, Black argued from these differences in chemical behaviour that 

magnesia could not be classed as a calcareous earth.  He set about establishing 

its positive character through a series of experiments designed to determine its 

affinities and behaviour.  Magnesia was compared with the calcareous earths, 

and alkaline salts, all substances which it resembled in particular ways.  Like the 

calcareous earths, it seemed to produce a quick-lime upon strong heating, and 

like the more familiar quick-lime this was caustic and combined with acids 

without effervescing.  Like the alkaline earths it could ‘sweeten’, or make mild, 

 
68 Black 1910. 
69 Ibid,  10.  Purists, Cullen amongst them, would probably not have called a compound of an earth and an 
acid a neutral salt, reserving this status solely for those combinations of acids and alkalis.  Black’s decision 
may have reflected his observations of the behavioural similarities between the traditional fixed and 
volatile alkalis and the calcareous and absorbent earths. 
70 Ibid. 
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the caustic quick-lime.  Black’s observations on magnesia led him to re-

examine the familiar alkaline salts, comparing their behaviour with that of 

magnesia and calcareous earths.    

Black’s paper, like Lewis’s was based on analogies drawn between known and 

unknown substances. These were tested by experiment, clarifying the chemical 

similarities and differences.  His eventual conclusions have been thoroughly 

discussed by historians,71 and there is no need for me to repeat their work.  His 

paper ended with two short affinity columns, the first amending the column 

already present in most tables for acids, showing their various affinities to the 

three alkali substances that he examined.  The second was an entirely new 

column for his newly identified substance, fixed air.72 While engaged in 

determining the chemical properties of magnesia alba, Black had postulated the 

existence of this ‘elastic fluid’73 that combined with the earths and changed their 

properties.  What is often ignored in discussions of Black’s work is the fact that, 

neither in his MD dissertation nor in his 1755 paper did he show any interest in 

collecting the fixed air.  In 1754 he had described to Cullen an amusing 

phenomenon that he had observed, when chalk and vitriolic acid were 

combined: 

“the strong effervescence produced an air or vapour, which, 
flowing out at the top of the glass, extinguished a candle that 
stood close to it; and a piece of burning paper, immersed in it, 
was put out as effectually as it if had been dipped in water”74 

In spite of this chance observation, as Donovan has noted, Black was 

uninterested in the properties of fixed air in its free state.75 By the end of his 

paper, however, he had succeeded in establishing a chemical character for fixed 

air just as he had for magnesia.  He was able to argue convincingly that fixed air 

existed and differed from normal atmospheric air, being possessed of a set of 

ascertainable affinities which dictated its chemical behaviour.  Black apparently 

transferred it from one substance to another, e.g. from fixed alkali to quicklime, 

 
71 E.g. Cranston 1950, Donovan  1975, Donovan 1976, Golinski  1992, Read 1950. 
72 Black, 1910, 46. 
73 Or possibly ‘an exceedingly subtile powder’ Black 1910, 30. 
74 Quoted in Donovan 1975, 201. 
75 Donovan 1975, 200. 
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but it was only ever moved from one combination to another.  When he 

measured the quantity of air expelled from an alkali dissolved in acid, the 

weight was ascertained by weighing the apparatus together with the acid and 

alkali both before and after the operation.  The character of this substance was 

composed of its affinities, its combinations and the chemical effects of these 

combinations.  A substance that had not been seen (strictly speaking), touched 

or tasted, was deemed to be a distinct chemical species on the basis of its effect 

on the properties of more tangible substances in combination.  The affinities of 

this almost (in positivist terms) unobserved entity were determined and set 

down as lawful relations.   

At this stage in its existence, fixed air was strikingly similar to phlogiston, as a 

substance that was recognized only through its relations to and effect on other 

substances.  As with phlogiston, the presence of fixed air was indicated by 

particular properties in the compound substance.  Fixed air differed from 

phlogiston in that it could be indirectly ‘observed’ escaping from combination 

in the form of effervescence, and of course it would later be collected using 

Priestley’s pneumatic apparatus.  But when in combination, as it was in most of 

Black’s investigations, its presence or absence was signified by the chemical 

behaviour of the compound substances, according to its determined affinities.   

Lewis and Black’s analyses indicate that as chemical behaviour resulted from 

affinities, so the characters of substances as chemists knew them were, in part, 

identified with their affinities.  New substances were characterised by their 

combinations and their behaviour.  Familiar substances were also recognised by 

their affinities.  Thus an unknown commentator on a 1765 set of Cullen’s 

lectures disposed of his suggestion that all inflammable substances contained a 

phlogiston composed of fixed air and vitriolic acid with the comment: 

“they can’t be mephitic air and acid because we know ye yd do 
not unite”76 

Certain standard tests began to be used, with standard reagents, such as the 

limewater test for fixed air which was based on Black’s characterization of 

fixed air.  Fordyce’s tables in his Elements of Agriculture explicitly identified 

 
76 Cullen 1765, MS 1920, f 75r. 
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properties with affinities.  His table of the salts found in soils is divided into 

three columns, showing the names and synonyms of each salt, their origin, 

whether natural or artificial, and “Their PROPERTIES”.  For vitriolic acid, this 

column read: 

“It unites with 
 
1st, Fixt vegetable Alkali, forming vitriolated Tartar. 
2d, Fixt Fossile Alkali, forming true Glauber’s Salts. 
3d, Iron, forming Green Vitriol. 
4th, Copper, forming  blue Vitriol. 
…
It attracts Alkali’s and Earths, stronger than any other Acid.”77 

By the latter part of the 18th century, most airs were regarded as easily 

identifiable by their affinities.  Fordyce gave his students characteristic 

combinations to identify ‘gas’ (fixed air), inflammable air, and nitrous air.  

Phlogisticated air remained problematic as it “cannot be ascertain’d.”78 

In an earlier paper, Fordyce had advocated the use of affinities in identifying a 

mixture of unknown metals.  He suggested that if the mixture be dissolved in 

acid, 

“we may try to make a precipitation with the metal which is 
lowest but one in the order of elective attractions, and so proceed 
to the next above it, until we come to the highest; and by this 
means we shall obtain all the metals in the mass.79”

As this use of the recognised ability of metals to unite with acids indicates, 

classifications too were often based on affinities.  Robert Dossie’s taxonomy 

(discussed further below in 3.3.1) was contingent upon his affinities, and his 

orders of affinity were in turn contingent (to some degree at least) on his 

taxonomy.80 Dossie unusually classified silver, copper and iron as alkalis 

rather than metals.  This is explained by the fact that his taxonomy, classing 

substances into genera and species,  was itself based on demonstrable affinities.  

As he argued: 

 
77 Fordyce 1765,  19. 
78 Fordyce 1786a, Lecture 88. 
79 Fordyce 1780, 36. 
80 Dossie 1759. 
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“a similar agreement is found, in a great number of bodies, that 
vary much in their general nature, and have nothing in common 
but such attractions: and this agreement, with respect to the 
object of their attractions, constitutes them nevertheless of one 
genus, considered with relation to their menstrual nature.”81 

It became more common for acids to be recognised as such by the fact that they 

combined with alkalis, and vice versa.  Nicholson explained: 

“Acids were formerly distinguished by the popular criterion of 
taste which is peculiar to them, … Modern discoveries have, 
however, exhibited acids, in which the leading properties are too 
obscure to be of any great utility in determining their nature 
when unknown; and it is only from the general assemblage of 
properties that they can be distinguished.”82 

Out of the five criteria he listed to distinguish acidity, three were based on 

affinities.  In 1786, Kirwan classed sulphur as a (mild) acid, due to its ability to 

unite with  

“alkalies, calcareous and ponderous earths, and most metals, as a 
weak acid might; and except a manifest solubility in water (a 
property which some other concrete acids also possess in a very 
weak degree) it exhibits every character of acidity”.83 

Even the strength of this theoretical acidity was measurable by its affinities.  

Sulphur must be an extremely weak acid, as “it decomposes only acetous, and 

not marine baro-selenite, and is separable from alkalies and earths by all other 

acids”.84 ‘Strong’ acids were those which were high up in affinity columns, 

while those towards the lower ends were ‘weak’.   

Kirwan recategorized sulphur on the basis of its similar affinities to those of a 

recognised class of substances.  But the distinction between individual and class 

was not always clear.  For the chemists of the late 18th century, a consensus over 

the identification of ‘phlogisticated air’ remained unattainable.  According to 

Fordyce, the problem was that any vapour of a greater specific gravity than 

respirable air was described as such.85 This, of course, is a physical criterion, 

 
81 Ibid, 15. 
82 Nicholson  1795, 2. 
83 Kirwan 1786, 146. 
84 Ibid, 146-7. 
85 Fordyce 1786a, Lecture 88. 
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and Fordyce recognised that it referred rather to a group of substances than one 

unique species of matter.  Affinities could be ascertained for individual 

substances and then generalised across a class where there was clear repetition 

(witness the columns in most affinity tables for ‘acids in general’),86 but 

generalisation could not be assumed a priori. In the case of the variety of 

substances named ‘phlogisticated air’, there was not that much similarity 

amongst their affinities.  Substances could be classed together on the basis of 

similar affinities, but similar affinities could not be assumed amongst substances 

that were classed together on alternative grounds.  The characteristic group of 

affinities that would distinguish ‘phlogisticated air’ could not be determined 

until the substance itself was distinguished sufficiently for these to be 

discovered.     

This highlights a conceptual problem with these methods of substance 

identification.  The relative affinities between substances shown in affinity 

tables were based on assumptions of substance identities.  And yet, as I have 

shown, in many cases identification was in turn founded on affinities.  So, while 

a substance was recognised by its affinities, its affinities had presumably been 

discovered on an assumption of identification.  Anderson has drawn attention to 

this complex set of relations in the work of Macquer where 

“Analysis, principle, and affinity work only as a complex, each 
term defining and justifying, or serving as the reference for, the 
others”87 

Anderson argues that Macquer’s way out of his circular argument was his 

categorisation of tables of affinities as matters of fact.  For most chemists, the 

distinction between qualities and identity was elided.  Spector has noted that  

"For chemists, the names/symbols contained in affinity tables 
were assumed to stand in for the thing observed without the 
philosophical implication that judgment intervened.  In actuality, 
… what are perceived are not the isolated chemical entities 
themselves but the experimentally observed qualities of the 
chemicals."88 

86 E.g. Geoffroy 1719. 
87 Anderson 1984, 61. 
88 Spector 2003b, 222-223. 
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In many cases where a chemical operation had produced a doubtful result, 

chemists were forced by the vicious circle in which they were placed to adopt a 

hierarchy of characteristics.  Other tacit assumptions and observations were 

brought into play.  Earlier in the 18th century, the forms in which metals 

appeared were rarely critical to their identification.  In Lewis’s examinations of 

platina, the addition of a large amount of mercury to a solution of platina in 

aqua regia eventually resulted in the precipitation of the platina “in the form of a 

dark brownish powder”.89 Although platina was a new substance, Lewis was 

unconcerned at its apparent change of form.  The brownish powder was 

unhesitatingly identified as platina.  Lewis drew on a fairly limited assortment 

of chemical elements.  Changes in form were commonplace amongst his 

constituents, and for the most part seem to have been disregarded.  Airs did not 

feature in Lewis’s battery of substances.  Powders or earths were simply 

regarded as calces, which were deemed to be the metal under a different, 

accidental form.  In this case, he knew that the only ingredients in the mixt were 

mercury, platina and aqua regia.  Thus, he assumed, only mercury, platina or 

aqua regia could emerge.  This assumption exemplifies the unarticulated 

assumption that matter was conserved, that certain substances were stable in 

most circumstances as pragmatic chemical elements.   

Bergman’s table, as we have seen, attempted to accommodate the type of 

anomaly that Lewis had glossed over.  Between Lewis in the 1750s and 

Bergman in the 1770s it seems chemists became more rigorous in their 

expectations of chemical explanation.  It was no longer sufficient to recognise 

that a substance was mercury, but in a different form; it was now necessary to 

explain how the mercury had come to be in this different ‘form’.  Phlogiston 

theory, as incorporated by Bergman and others into affinity tables, performed 

this function.  The displacements of metals from acids required a strict 

accounting.  Nevertheless, Lewis’s identification of his “brownish” powder 

serves to remind us of the important fact that chemists were not operating in a 

historical vacuum.  Their predecessors had recognised at least six metals, and 

certain other substances since beyond written memory.  The array of substances 

 
89 Lewis 1754, 658. 
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which the chemists of previous centuries had known were recognised in a great 

variety of forms through, for the most part, their sensible qualities.  

Identification of these substances was part of chemical heritage, and this 

provided a route out of the dilemma between affinity and identity.  In the same 

way as the unvarying volume of gaseous substances was to provide an access 

point into the relative mass of non-gaseous substances in the 19th century, the 

recognition of long familiar substances provided a foundation on which to build 

the identities of less familiar ones.  In some ways affinity theories hung on the 

identification of these historically more-than-familiar substances.  Where even 

these traditional marks failed, as in the case of Fordyce’s ‘phlogisticated air’, 

determination of affinities was impossible, and identification remained doubtful 

on any ground.   

3.2  Concepts of Combination 
It will be immediately apparent that conceptions of substance identity will 

impinge on conceptions of combination.  This component can be divided into 

three according to the different types of question that might be asked about 

combination.  The first is epistemological: how does the chemist know whether 

substances are combined or not, and are there different types of combination?  

Clearly, any answer to this question will be linked to the components discussed 

in Section 3.1.1 above.  Accordingly I have not dwelled on this at length.  The 

second is concerned with the products of combination: what happens to the 

affinities and properties of substances once they are combined?  And the third 

focuses on the mechanics of chemical combination: how does combination 

work?  How do more complex substances combine together?     

3.2.1 Complexity: The Epistemology of Combination 
As both Bergman and Fordyce made clear, any interpretation of chemical 

operations required the ability to decide whether the substances employed were 

acting as elements, in which case the model of single affinity was appropriate, 

or as complex substances, when double or compound affinities would be acting.  

We have seen that the problem of whether a substance was complex or simple 

in an absolute sense was believed to be insoluble.  Although most chemists, like 

Cullen, paid lip-service to some metaphysical system of elements, few would 
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have attempted to claim that their ‘chemical elements’ were in reality truly 

simple.  Cullen disposed with some scorn of Stahl’s classes of mixt, compound, 

decompound and superdecompound as: 

“these terms useless, as the Degree of Composition not known”90 

The key point here, as we have seen from Fordyce’s operational elements and 

Bergman’s proximate principles, is the notion of relative degrees of 

composition.   Cullen and his contemporaries were convinced that the 

apparently simple substances that they manipulated in their operations were far 

from such in metaphysical or absolute terms.  Nevertheless, they were able to 

draw upon their observations to determine the relative complexity or simplicity 

of substances.   

We have seen that there were two subtly differing pragmatic notions of 

simplicity in circulation; the ‘chemical elements’ that had so far remained 

impervious to the chemist’s art, and ‘operational elements’ which acted as such 

in clearly defined operational circumstances.  An array of substances able to 

behave as elements formed the basis for much of 18th century chemistry.  These 

acids, alkalis, metals, and earths were often compounded together to form 

neutral, metallic, or earthy salts, hepars and other mineral substances.   

Knowledge of which elements combined to produce which compound 

substances was crucial to any affinity theory.  Cullen talked his students through 

a table showing the combinations of the acids and alkalis, advising them to learn 

it by heart.91 Lewis published a more comprehensive table that covered earthy 

salts as well as neutral.92 These tables told chemists how to use their affinity 

theories to analyse compound substances as well as to recombine them to 

produce the desired body.  They helped to counter the difficulties inherent in 

chemistry’s disorganised ancestral nomenclature. They also provided a matrix 

for further investigation and discovery; Lewis’s printed table showed for the 

combinations of magnesia “purging salts, not distinguished by any particular 

 
90 Cullen n.d. [1748/9?], Lecture IV. 
91 Cullen 1766, Lectures 44 and 45. 
92 Lewis  1765, 458. 
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name”.93 Such unidentified substances required chemical identities and names.  

Nicholson’s Dictionary included a series of tables of combinations covering 21 

pages that is notable in part for the number of empty cells showing how many 

identities remained to be fashioned for these compound substances.   They also 

included the combinations of more complex substances (acting as operational 

elements) to produce “compounds consisting in general of more than two 

Principles”.94 

It might seem obvious that when two substances were combined together that 

the resulting substance would be complex, and could be legitimately regarded as 

so.  But the discoveries of the second half of the century meant that there were 

very few operations that could be regarded so straightforwardly.  The use of fire 

and heat to promote union and the fact that acids were always combined to 

some degree with water, meant that there were very few combinations that 

could be performed by the simple mixture of two, and only two, substances.  In 

the majority of the examples we have already seen, the water that was 

invariably present was regarded as a passive agent of solution.  Complicating 

matters further, very few substances were easily obtained in a pure state, and 

many operations performed a dual role of separation and combination through 

the action of affinities.95 

“It sometimes happens that to separate all the Constituent parts of 
Bodies we are obliged to make use of mixts wc indeed separate 
the parts of the Body but make a new Combination betwixt each 
of its two Principles & these of the Body we cannot separate.”96 

This difficulty was to become increasingly apparent throughout the century, 

particularly with the discovery of the range of new ‘airs’.  This brought into 

play a whole class of substances that had previously been believed to be a single 

passive substance.  To illustrate; if, for example an unfamiliar substance AB is 

combined with a substance believed to be simple, C, the results could be either 

AC and B, BC and A or in exceptional circumstances, ABC.  If either A or B 

 
93 Ibid. 
94 Nicholson  1795, 1076-1093. 
95 A glance at Chapters I-VI of Clow and Clow 1952 emphasises the difficulties chemists faced in 
acquiring certain of their ‘chemical elements’ in a relatively pure state.   
96 Cullen 1757, f 40. 
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are familiar to the chemist, then some light is shed on the constitution of AB.  If, 

on the other hand, C is not as simple as previously believed, but is composed of 

DE, then the results of the operation could be highly misleading.  Lewis’s 

experiment combining mercury, aqua fortis and platina (section 3.1.2 above) 

would have been explained by Kirwan as involving not three operational 

elements, but anything up to eight.97 Elliot highlighted a further complication in 

a letter to Kirwan (published in the Philosophical Transactions) which showed 

that the use of different menstrua led to amended affinities:  

“in the moist way the affinities take place differently, according 
as water, or spirit of wine, is used.  Perhaps a like difference 
would be found on using other liquids, each of which would 
probably afford a different table: for much depends on the 
attraction which the ingredients themselves have to the liquid 
employed”.98 

The multiplication of chemical entities, and the doubts cast on customary 

assumptions about the passivity of menstrua and substances traditionally 

regarded as simple sat uneasily with the notion of simple affinity.   

The law of affinity implied that only two substances combined together at once 

and that all compound substances could be divided into two, simpler substances, 

and in some cases these (or just one of them) could be further divided into two.  

As Klein has noted, on this view each cell in Geoffroy’s table stood for a 

complex substance.99 It was clear that vitriolic acid combined with phlogiston, 

sulphur with fixed alkali, and mercury with gold.  Geoffroy presumably 

assumed that his audience, experienced chemists as they were, would 

understand the relations between the compound substances that were only 

tacitly included in his table.   

Much later, Elliot’s affinity table of sixteen columns articulated the details of 

combinations that Geoffroy had left out.100 His table included for each column 

a parallel list of the substances formed by each combination.  Elliot’s table thus 

 
97 Kirwan would have enumerated (prior to his rather reluctant acceptance of the anti-phlogistic system) 
mercury calx, phlogiston, platina calx, muriatic acid, nitrous acid, and water, which in turn could have 
been composed of inflammable air (or phlogiston combined with matter of fire) and dephlogisticated air.  
98 Elliot 1786, 158. 
99 Klein 1995. 
100 Elliot 1782, 105 
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showed explicitly that vitriolic acid combined with phlogiston to form sulphur 

and sulphur in turn combined with fixed alcali to form hepar sulphuris.  

According to both Elliot’s table and (albeit implicitly) Geoffroy’s, hepar 

sulphuris could be decomposed initially into sulphur and fixed alcali, and the 

sulphur could then be analysed further into vitriolic acid and phlogiston.  This 

testifies to a structured hierarchy of bodies increasing in complexity stepwise – 

reminiscent of Stahl’s ontological hierarchy of principles.  Bergman’s and 

Fordyce’s ‘orders’ of elements suggest a similar understanding.   

Fordyce taught his students that no more than two substances were able to 

combine at any one time.  He inserted a caveat though, that this only applied to 

the more ‘perfect’ combinations.  In his view the division between chemical 

combination and mechanical mixture was indistinct to the point of futility: 

 “No man would doubt a man being an animal or a cabbage being 
a vegetable; but when we consider sponges & some other 
substances it is difficult to say whether they are animals or 
vegetables.  So in some combinations, there are some so nearly 
mechanical, that we can hardly say whether they be mechanical 
diffusions or chemical combinations.  In such kind of chemical 
Combinations sometimes the Menstruum will combine with two 
Solvends at a time; but it does not happen in those Combinations 
which are very perfect.  Moreover it may happen that two 
substances may have an equal attraction to Menstruum & neither 
one nor the other separate from one another.”101 

Fordyce’s insistence on binary combination seems to have been a late addition 

to his affinity theory as a footnote was added to the fourth edition of Elements of 

Agriculture that had not been present in earlier editions: 

"It can be conceived that three particles, each of a different 
species of matter, may unite together, so as to form one 
compound Particle; but there is no given example of this in 
Chemistry, but when a compound contains three elements, two 
combine  and form a Menstruum for the third."102 

Weisberg and Wood have drawn attention to Priestley’s use of the word 

‘confusion’ for this type of combination or mixture.103 This notion was further 

 
101 Fordyce 1786a, Lecture 8th.
102 Fordyce  1789, 8. 
103 Weisberg and Wood 2004, 701. 
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extended by John Anderson, controversial professor of natural philosophy at 

Glasgow,104 who wrote to Cullen in 1766 enclosing a portion of a textbook 

dealing with elective attractions, with a request for comments and corrections.  

Anderson included amongst the propositions of his affinity theory: 

 “If the third Substance attracts both of the compounding 
substances equally or, if it attracts one of them as much as that 
one attracts the other, then no Decomposition will follow, but a 
compound will be formed consisting of three Principles.”105 

Anderson thus distinguished two separate scenarios:  

where a third substance C has equal affinity to combined substances A and B 

(i.e. CA = CB); and  

where that third substance C has an equal affinity to A as A’s affinity to B 

(CA=AB).   

In either of these cases, according to Anderson, a compound of all three 

substances would be produced.  This contrasts with Fordyce’s theory which 

simply stated that the newly introduced substance in such a scenario would have 

no power to separate the already combined substances.   

The idea that three substances could combine in certain circumstances formed 

an important component of many chemists’ affinity theories.  As Nicholson 

claimed: 

“it often happens, that bodies which have no tendency to unite 
are made to combine together by means of a third, which is 
called the Medium.”106 

Soap offered an example of this type of combination by the aid of an 

intermediate substance where water and oil combined through the action of the 

alkali.  This could still be explained by Fordyce’s binary theory, by dividing the 

combination into two stages.  This implies a mechanism for combination that 

will be discussed further below. 

Contemporaneous with Fordyce, Kirwan also suggested that in certain situations 

 
104 Oxford Dictionary of National Biography 2004, s.v. “Anderson, John (1726–1796)” . 
105 Anderson 1766. 
106 Nicholson 1795, 157. 
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“triple or quadruple salts” might be produced.  Specifically, he argued that 

neutral salts had a power of uniting to certain other substances “without 

suffering any, or but a very small, decomposition”.107 The results of this type of 

combination he described as ‘anomalies’ with regard to his system of quantified 

affinities (see section 3.3.3 below) which required further investigation.108 

Anderson’s and Fordyce’s qualitative affinity theories, proceeding from 

empirical evidence to hypothetical assumption, allowed them to formulate their 

theories in response to their observations.  Kirwan on the other hand, with a 

carefully worked out quantitative theory a priori, was clearly reluctant to admit 

that his quantitatively determined affinities were incorrect, in spite of the fact 

that they conflicted with observation.    

As Fordyce’s theory indicated, it was not always easy to distinguish 

combination from other forms of mixture.  Cullen offered an apparently simple 

formula:  chemical combination, or ‘proper mixture’109 as he called it, always 

resulted in a homogeneous substance whose properties were different from 

those of its constituents.  He distinguished between mechanical solution, 

chemical solution, and proper mixture.  Mechanical solution was an 

impermanent diffusion which required the prior mechanical division of the solid 

body into particles, while chemical solution was permanent, and the solvend 

was divided as part of the process.  In chemical solution, both the solvend and 

the menstruum retained their particular properties or qualities.  As Cullen 

explained: 

“A Solution of common salt in Water is not a proper mixture; 
because …, it still retains its peculiar properties nor is a solution 
of alkali in water, for the same reason; but if it be combined with 
acid, … a proper mixture ensues; & this may be distinguished 
from Chl solution, by the loss which each of the combined 
Bodies suffers of its peculiar Qualities.”110 

107 Kirwan 1783, 43. 
108 Kirwan did promise that his next paper would in fact examine some of these anomalies, but it does not 
seem that he ever completed this work.  See Kirwan 1783, 43 fn. 
109 This use of the term ‘mixture’ to signify combination was regarded by Nicholson at the end of the 
century as somewhat old fashioned.  By this time it was used to describe only  mechanical ‘aggregation’. 
Nicholson  1795, 505. 
110 Cullen 1766, Lecture 25. 
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The question of whether Cullen considered affinities to be responsible for 

solution is a complex one.  In Geoffroy’s affinity table, column 16 showed the 

displacement of neutral salts from solution in water by spirit of wine.  In 

comparison, Cullen’s table included two columns for water, showing 

comparative affinities of various alkalis and spirit of wine.  Cullen routinely 

taught that the action of affinities always resulted in new properties.  Thus it 

would seem that only where affinities were acting did ‘proper mixture’ take 

place.  Nevertheless, his table included cases where the requisite change in 

properties did not occur.  There is no indication that he ever resolved this 

inconsistency; perhaps he did not consider it to be of any moment. 

Fordyce also used the example of common salt dissolved in water, but he drew 

rather different conclusions.  He divided types of union into mechanical mixture 

and chemical combination although, as we have seen, he does seem to have 

envisaged some type of continuum between the two extremes.  In his scheme, a 

solution of salt in water counted as chemical combination.  He turned Cullen’s 

argument around, claiming that: 

“if you make a solution of Salt in water, we are apt to say that the 
Salt gives the Taste to the water; but it does not.  Salt is as insipid 
as water. If you apply dry Salt to the Tongue provided the 
Tongue likewise be perfectly dry so that no Part of the Salt shall 
be dissolved in water, it has no taste.  The Taste which is 
acquired is the Taste of the Compound & not the Taste of either 
of the Elements.”111 

For both Fordyce and Cullen the distinguishing factor in proper mixture or 

chemical combination lay in the loss of the properties of the constituents in 

combination.  Although they agreed on the criteria, Fordyce saw solution as 

combination, while Cullen did not.  Cullen’s position, although at first sight 

anomalous, was in fact quite consistent with his affinity theory.  As, of course, 

was Fordyce’s.  Their divergence was in their comparison of the properties of 

salt before and after combination, and their contradiction perhaps typifies the 

difficulties that must arise when taking such a subjective property as sapidity 

into account.  

 
111 Fordyce 1786a, Lecture 5. 
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Nicholson was even more categorical than Fordyce, stating that solution was 

“the perfect union of a fluid substance with any other body.”112 He 

distinguished between combination and mixture, and solution was a fluid 

instance of the former.  The latter, in contrast, “the union of bodies in a gross 

way”113 involved no action of affinity.   

In his mineralogical study, Kirwan specified four “principal marks of Chymical 

Union”114 These were a high specific gravity (higher than the specific gravity 

of the heaviest ingredient), transparency (although not in all cases), 

crystallization and “a more difficult solubility”115 (relative, that is, to the 

solubility of other earths).  These rather vague marks were apparently intended 

to assist in ascertaining whether an earth was one of the five simple earths 

enumerated in Kirwan’s taxonomy, or one of the innumerable possible 

compound earths.    In practice, one has to doubt their utility as requiring some 

knowledge of the constituent bodies as comparators; this would presumably 

have made their use doubtful as naïve indicators.   

Kirwan elaborated on the familiar ‘loss of properties’ method for distinguishing 

chemical union with regard to salts.  It was crucial to his quantification of 

affinities that the precise point at which the affinities between two constituents 

were satisfied was marked.  Thus he drew attention to the phenomenon of 

saturation.  Nicholson enumerated two slightly different senses in which the 

term was used, the first solely in the context of solution, where a solid substance 

is added to a fluid until saturated, and the second in the context of combination 

where the loss of properties was crucial.116 Cullen had earlier used these two 

senses to emphasise the distinction between solution and mixture: 

“the Saturations of Solutions & Mixtures are different.  In the 
former we regard only the Solvend, when the greatest Quty of 
Water dissolves a certain Proportion of Salt, until it be saturated 
therewith; but greater Quantities of one Salt than of another are 
requisite for this Purpose; & if more be added after the Water is 

 
112 Nicholson  1795, 852. 
113 Ibid, 155. 
114 Kirwan  1784,  16. 
115 Ibid, 17. 
116 Nicholson  1795, 799-800. 
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saturated, it falls down to the bottom in its natural form.  … But 
in the Saturation of Mixtures several different Phenomena are 
observed.  A just proportion must be observed between both the 
Menstruum & Solvend, in order to produce the tertium quid, the 
something whose properties differ from those of both, which 
characterizes the Mixture.”117 

Kirwan’s account of saturation was intended to be understood only in the 

second sense, in the context of combination.  He distinguished between 

saturation and neutralization; the latter accorded with Cullen’s account of 

saturation in mixture and was the indicator of satisfied affinities: 

“a body is said to be saturated with another, when it is so 
intimately combined with that other as to lose some peculiar 
characteristic property, which it possesses when free from that 
other … if both bodies are saturated, the compound is said to be 
neutralized.”118 

Concern to clarify the different status of various kinds of combinations and 

mixtures seems to have become more urgent alongside the pedagogical 

propagation of affinity theories.  This is not to say that the differences between 

solution and combination were not noted prior to affinity theory, but I would 

argue that the prevalence of the doctrine of affinity provided a context in which 

the distinction became more crucial.  The question of whether affinities were 

responsible for solution was important – if they were, then in most operations 

there were even more affinities competing than had been thought.  In particular, 

the role of water in any of the operations that took place in “the humid way” 

which exhibited what Bergman called “free attractions” (see 4.1.1 below) would 

need to be reassessed.119 If, on the other hand, solution was not a result of 

chemical affinities, it perhaps required some explanation and theory of its own.  

3.2.2 Modification: Combination as an Agent of Change 
As the previous section has indicated, chemical combination was predominantly 

characterised by a change in properties.  This much seems to have been agreed 

by a majority of British chemists, although there were discrepancies over which 

specific situations resulted in combination and which did not.  But it remained 

 
117 Cullen 1766, Lecture 26. 
118 Kirwan 1783,  39. 
119 Bergman  1970, 16. 



136 

unclear how the properties were changed.  Were they modified or ‘tempered’ or 

was the compound body possessed of entirely new properties?  For those 

chemists who identified substances by their observable properties, could these 

be similarly used to indicate their constituents?   

In what is often labelled the most influential and significant chemistry textbook 

of the 18th century (prior to the publication of Lavoisier’s Traité), Macquer 

included amongst the ‘fundamental truths’ of his affinity theory: 

“quand les substances s’unissent ensemble, elles perdent une 
partie de leurs propriétés, & que les composes qui resultant de 
leur union participent des propriétés de ces substances qui leur 
servent de principes.”120 

This position has been called ‘principlist’ (or alternatively ‘principalist’) and Mi 

Gyung Kim has shown its prevalence amongst French chemists throughout the 

18th century.121 For British chemists though, Macquer’s proposition was never 

compelling.  When Macquer reiterated his claim in his 1766 Dictionnaire de 

Chimie as part of the article on Affinité, the English translator James Keir 

included a condemnatory footnote:122 

“The rule mentioned in the text is so far from being general, that 
perhaps the reverse of it may be considered as a general rule; and 
a change of properties, and a production of new properties, may 
be considered as criterions, by which compound bodies, 
chemically combined, may be distinguished from bodies formed 
merely by mixture or apposition of integrant parts; in which latter 
compound bodies, the properties are intermediate betwixt the 
properties of the several component parts, and no new properties 
are produced.”123 

Keir’s footnote suggests three possible positions on the relationship between 

properties of constituents and resulting compound.  At opposite extremes were 

 
120 Macquer  1749, 22. 
121 Kim  2003. 
122 Although Keir was clearly content to translate and even amend Macquer’s affinity theory, he was 
equally prepared, it seems, to jettison it when necessary.  His daughter, in her posthumous edition of his 
life and letters,  proudly reported that Keir’s successful business producing alkali in large quantities relied 
upon a reaction that contradicted the expectations of affinity theory.  See Moilliet  1768, 75-6.  Also, 
Hudson and Pugh 1985, Moilliet and Smith 1967.  Keir never publicised his process, and it is not clear 
whether he was able to accommodate his process within his affinity theory, or whether it prompted a 
rejection of the theory as a whole.   
123 Footnote(s), Keir, in  Macquer  1771, 25. 
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the stances that (a) the properties of the constituents were directly carried 

forward into the compound, or (b) that they bore no relation to the properties of 

the compound.  The medium position (c) was that in some way the opposing 

properties of the constituents tempered each other, and the properties of the 

compound were intermediate to those of the constituents.  Macquer clearly held 

to the first, and Keir, in the case of what Cullen would have called proper 

mixtures, preferred the second interpretation.  Keir’s theory also left room for 

Cullen’s chemical solutions, stating that under these circumstances, the last 

position was appropriate    

Cullen’s stance, so far as chemical combination was concerned, was 

predominantly position (b).  We saw his demonstration of the separation of 

nitrous acid from nitre by elective attraction in chapter 2.  His comparison of the 

properties of constituents and compound showed that their properties were 

unrelated.  I have been unable to find a British chemist of the 18th century who 

explicitly adopted Macquer’s position (a).  Perhaps they were more dedicated to 

giving priority to their empirical observations than their French counterparts, 

most of whom seem to have accepted Macquer’s propositions without 

question.124 The situation is not, however, without complications.  Fordyce in 

1765 declared without caveat that: 

“The properties of the Compound do not depend on the 
Properties of the Elements.”125 

There is a distinction to be made between difference and dependence.  

Macquer’s stance (a), it must be remembered postulated that the properties of 

the ingredients were carried into the compound.  Fordyce’s statement 

purportedly falls under standpoint (b), but it intimates the existence of a further 

position.  The most familiar form of phlogiston theory, after all, hinted at a form 

of principalism, in that those substances that were found to be inflammable were 

argued to contain phlogiston.  There were, however, two ways of viewing this 

assumption: the first the most dogmatic Macquerian type of principalism, 

(position (a) above).  The second was a compromise position that would 

 
124 Duncan  1996, 194. 
125 Fordyce  1765, 3. 
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probably have been acceptable to Cullen, and indeed to many British chemists.  

According to this position (d), the properties of compound substances could be 

argued to depend on their ingredients, but in a somewhat less direct sense.    

Black’s work on fixed air accords to some extent with both  positions (c) and 

(d).  Its presence in combination apparently ‘sweetened’ the causticity of 

alkalis,126 although the property of ‘sweetness’ was not ascribed to the 

substance itself.  Under position (c), the fixed air might be assumed to ‘temper’ 

the causticity of the caustic alkalis.  Black argued that when native alkalis were 

heated, driving off their fixed air, 

“the remarkable acrimony which we perceive in them after this 
process, was not supposed to proceed from any additional matter 
received from the fire, but seemed to be an essential property of 
the pure earth, depending upon an attraction for those several 
substances which it then became capable of corroding or 
dissolving; which attraction had been insensible as long as the air 
adhered to the earth, but discovered itself upon the separation.”127 

Black’s explanation suggests that he subscribed to position (c), that the simpler, 

‘pure’ alkalis were naturally caustic, possessed of strong affinities, but that their 

combination with fixed air tempered or even smothered these affinities.  The 

concept of saturation seems to be important in this explanation, suggesting an 

idea of affinities that were occupied, or used up by the combination with fixed 

air, and consequently revived by its release.  As Black continued: 

“Commonly, when we join two bodies together, their acrimony 
or attraction for other substances becomes immediately either 
less perceivable, or entirely insensible … A neutral salt, which is 
composed of an acid and alkali, does not possess the acrimony of 
its constituent parts.  … the attraction both of the acid and alkali 
for these several substances, seems to be suspended till they are 
again separated from one another.”128 

The notion that each substance’s affinities are ‘suspended’ in combination, and 

that this prevents them acting would thus explain the sweetening of alkalis 

combined with fixed air.  Causticity was often regarded as the potential for 

strong chemical activity, similar to acidity but opposed in nature.  As with 

 
126 Black 1910. 
127 Ibid, 22-23. 
128 Ibid, 23. 
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acidity, this very activity was the consequence of strong affinities.  As a 

substance was saturated, and its affinities were satisfied, so its activity 

inevitably decreased.  The identification of chemical properties with affinities 

was made explicit by this type of explanation, where combination modified or 

tempered the affinities of a substance, and with it the chemical properties.   

Black’s explanation is heavily biased towards the theoretical.  Taking a purely 

phenomenological view, the addition of fixed air to a caustic substance did 

apparently confer the property of ‘mildness’.  This position clearly 

approximates position (d) above, and Black seems to have regarded it as a sort 

of shorthand for the more theoretical explanation above.  He explained that: 

“Crude lime was therefore considered as a peculiar acrid earth, 
rendered mild by its union with fixed air”129 

This property of ‘mildness’ only arose when fixed air was combined with 

caustic alkalis or earths.  As I have indicated, when Black first postulated the 

existence of fixed air, its presence in combination was indicated primarily by 

the property it apparently conferred.  This property could be transferred from 

substance to substance as the fixed air was transferred by virtue of its affinities.     

Similarly, phlogiston was seen as conferring the property of inflammability by 

its presence in compound substances, but was not necessarily thought of as 

inflammable itself.  While phlogiston continued to have “never been got by 

itself”,130 its own properties would be mysterious, a matter for conjecture.  

Where early Stahlians, among them Geoffroy,131 had defined phlogiston as the 

substance released on inflammation, later phlogistonists like Fordyce were more 

specific.  For Fordyce, lecturing only a year before the Méthode de 

Nomenclature Chimique was published in France, the interaction between 

phlogiston and the air was crucial to any account of combustion.  It had been 

assumed that phlogiston was present in any substance that would deflagrate with 

nitre.  However, neither gold nor silver would deflagrate with nitre, implying 

that neither contained phlogiston.  But there were other signifiers to be 

 
129 Ibid. 
130 Cullen 1765, MS 1920, f 72v. 
131 Kim  2003; Smeaton 1971. 
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considered.  Fordyce explained: 

“We have reason also for believing that phlogiston is contained 
in gold and silver, for if we dissolve them in an acid & apply 
another metal to them Copper for example to a solution of silver, 
the Copper will unite with the acid & precipitate the silver in its 
metallic form without extricating any inflammable air wch 
copper does if dissolved in an acid alone, so that it is probable 
phlogiston is contain’d in silver & gold, though they are not 
capable of deflagrating with Nitre; so that phlogiston may be 
contain’d in bodies that are not inflammable.”132 

Kirwan’s decision to specifically identify inflammable air with phlogiston 

confused chemistry.133 Substances that were not normally regarded as 

inflammable were nevertheless found to contain this phlogiston.  The original 

raison d’etre of phlogiston had thus been prised from its chemical identity.  

Where the inflammability of a substance had originally indicated that phlogiston 

was present, phlogiston was now shown to exist in substances that were known 

or believed not to be inflammable.  To confuse matters further, it was highly 

debatable under traditional Stahlian theory whether phlogiston itself could be 

inflammable.  When combustion took place, the phlogiston was released into 

the atmosphere, eventually saturating the air so that it could absorb no more, 

and combustion would cease.  The light and heat given off during combustion 

was evidence of the release of phlogiston, but did not necessarily imply that the 

phlogiston itself was burning.  Kirwan’s identification of phlogiston with a 

substance that was itself inflammable both contradicted traditional Stahlian 

understanding, and gave limited support to the principlist viewpoint.  

Nevertheless, it was clear that even if phlogiston was inflammable, it did not 

confer a similar inflammability on its compounds.    

In defiance of Macquer, British chemists had typically accepted by this point 

that the properties of compound substances were in general not the same as the 

properties of the ingredients.  Further, where early Stahlians had claimed 

position (d), the new identity of phlogiston denied even this sop to principlist 

ambitions.  On the other hand, the principlist chemist’s loss was the empirical 

 
132 Fordyce 1786b, Lecture 45. 
133 Although Cavendish 1766, 145 had implied such an identification, it was not until Kirwan 1782 that 
such an identification was made explicit.  Cavendish  1784, 140 states that in fact Cavendish believed that 
inflammable air was “phlogisticated water”. 
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chemist’s gain.  Phlogiston had gained an observable as well as a material 

existence to add to its series of demonstrable affinities.   

In Fordyce’s 1786 lectures, he set out the properties of phlogiston for his 

students.  Rather than mentioning the taste, colour, specific gravity, or other 

physical marks of phlogiston, he presented a series of affinities.  Thus,  

“Phlogiston decomposes almost all the neutral Salts, attracting 
the Acids stronger than the alk. It unites therefore with the Acid 
& detaches the alk.  It has no Effect as far as we know on oils, or 
Alkali, or Sulphur.  …  It unites with the Calces of the Metals 
and gives them their Metallic Form.  It seems rather tho’ to be 
inflammable Air that unites with the Metallic Calces & gives 
them their metallic Form, than pure Phlogiston.”134 

Clearly reluctant to identify inflammable air directly with phlogiston, Fordyce 

apparently believed it was a combination of phlogiston and something else.  

Stahlian tradition had held phlogiston responsible for metallic form but, for 

Fordyce, this was no longer the role of the pure phlogiston, but rather a property 

of inflammable air.  Nevertheless, the semi-principlist position held: the 

metallic form was consequential upon the combination of a particular substance 

with the metal calx.  In the same way as the addition of heat induced fluidity in 

solid bodies, the addition of phlogiston or inflammable air induced metallicity 

and the addition of fixed air to earths conferred mildness.  So, while Macquer’s 

position (a) above was almost universally agreed to be erroneous, many British 

chemists seem to have tacitly adopted position (d), albeit sometimes as a 

phenomenological shorthand for (c), which allowed that certain specific 

properties of compound substances could be generalised as being dependent in 

some unspecified way on their constituents.   

3.2.3 Mechanism: How does Combination take place? 
Geoffroy’s 1718 paper covered only what were later called simple affinities; 

either combinations of two substances or displacements of one substance in 

combination by another.  He did not discuss how affinities might behave when 

two compound substances were mixed together, and indeed there is little 

evidence that this was contemplated until some time in the middle of the 18th 

134 Fordyce 1786a, Lecture 41. 
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century.  Geoffroy’s table implicitly posed the question of how combination 

affected affinities; were the affinities of blue vitriol simply a direct product of 

those of copper and vitriol, or was it possessed of its own unique affinities?  

Geoffroy’s paper was contradictory.  The ‘law’ of affinities hung upon the 

former assumption, but we have seen that certain of the substances included in 

Geoffroy’s affinity table were thought to be compound.  Section 1 of this 

chapter explored the notions of chemical elements and contextually contingent 

operational elements which coexisted in some affinity theories and formed part 

of attempts to understand complex combination.  Such notions implied that 

affinity columns would be required for those compound substances, sulphur for 

example, that were able to act as elements in combining with other substances.  

On the other hand, when complex substances were mixed together a tidy 

synthesis was rare, most often resulting in a jumble of decompositions and 

recompositions that were almost impossible to untangle. 

Cullen seems to have been the first chemist to systematise what he called 

‘double elective attractions’, although it is unclear precisely when he formulated 

his ideas.  Cullen applied this term to operations where two compound 

substances were mixed together, and the constituent substances of each 

separated under the influence of the competing affinities, and united instead 

with one of the constituent substances of the other.  The earliest example of 

Cullen’s system appears in a set of lecture notes of 1756-7.135 He contrived 

diagrams which set out how the multiple affinities present in mixtures of 

complex substances determined the results of the mixture, an example of which 

is: 

“ {Spt Salis A B Aq Fortis 
Corrosive Sublimate { 
 {Mercury C D Silver”136 

This shows what happens when corrosive sublimate (itself composed of spirit of 

salt and mercury) is mixed with a solution of silver in aqua fortis.  According to 

Geoffroy’s table, the affinity of aqua fortis for mercury is stronger than its 

 
135 Crosland cites an MS at Aberdeen University which has been dated 1756/7.  See Crosland 1959 and 
Wightman 1955, Wightman 1956. 
136 Cullen 1757, f 40.  Crosland has explained in detail Cullen’s use of these diagrams, which were subject 
to subtle evolution during his teaching career.  See Crosland 1959. 
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affinity for the silver with which it is initially combined.  Similarly, the affinity 

of the spirit of salt for silver is stronger than its affinity for mercury.  The 

substances are depicted as originally combined either side of the page, and the 

arrows show the affinities which are strongest in this particular combination. 

Cullen asserted that there were four possible types of double elective attraction 

as set out in figure 3 (p. 185 below).  He formulated a general rule covering 

such operations, (not discussed by Crosland) which is most clearly set out in a 

draft letter to Fordyce in 1759:  

“when on each side or in each mixt there is a substance that by 
itself would decompose the opposite mixt the Attraction between 
these substances in the opposite mixts must always be greater 
than the sum of the attractions on each side”.137 

In such situations, the substances would decompose and recombine afresh, and 

the results could be predicted by recourse to an affinity table.  Cullen’s third 

instance showed the decomposition of vitriolated tartar without the addition of 

heat.  The combined attractions of  the nitrous acid for the fixed alkali and the 

silver for the vitriolic acid were sufficiently powerful to overcome the affinity 

between the vitriolic acid and the fixed alkali, the very strongest affinity 

depicted in Geoffroy’s table.138 While in the other cases the results of such 

double combinations could be predicted, in such cases as this, they could only 

be ascertained by experiment. 

Although the earliest set of extant lecture notes that includes Cullen’s cross 

diagrams is dated 1757, it seems likely that he was using them some years 

earlier.  A set of notes of Hadley’s chemistry lectures dated 1758 includes 

similar diagrams of “double decompositions” and “double unions”, although 

without any explanation or discussion.139 As the diagrams do not appear in 

Hadley’s own notes of his lectures, their presence in his student’s notes is 

perhaps a further indication of the vitality of the ‘black market’ in chemistry 

lecture notes.   

 
137 Cullen 1759a. 
138 This was one solution to the problem set by Stahl of decomposing vitriolated tartar ‘in the palm of one’s 
hand’.  Further discussed in Chapter 4 below.  
139 Crellin 1969, 182-184. 
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The idea of complex combinations soon became both commonplace and 

influential.  It proved useful in explaining why some combinations (or 

separations) could be helped along by the presence of other substances.  

Occasionally, however, where a double affinity was cited, this was not a double 

elective attraction.  In 1787, William Austin sought to synthesis volatile alkali 

from light inflammable air and phlogisticated air.140 The two airs simply would 

not combine on their own, but:  

“if phlogisticated and light inflammable air be presented to each 
other at the instant of their separation from solid or liquid 
substances, and before their particles have receded from each 
other, they readily combine and generate volatile alkali.”141 

Austin offered a number of examples, including the mixture of water and iron 

filings in the presence of phlogisticated air.  In this operation the water was 

decomposed faster by the actions of two separate affinities, each acting on one 

of its elements, but only the water was decomposed.142 Austin called this a 

double attraction, but it would probably not have been recognised by Cullen as a 

double elective attraction.  This was really a case of two single affinities in 

action at the same time; double affinities, but not double elections.  Similarly, 

Maehle shows how Will Falconer, another of Cullen’s students, introduced a 

solution of salt of tartar impregnated with fixed air as a cure for urinary calculi, 

explaining its action as resulting from a “double attraction”.  Falconer’s choice 

of term suggests that he too was aware of the fine distinction.143 

Black adopted Cullen’s diagrams, but also produced his own which used a 

system of circles divided in half.144 These diagrams seem to have been used by 

Black from around the 1770s, although it seems they did not have the same 

pedagogical power of Cullen’s ‘dart’ diagrams which developed a life of their 

own, to the extent of apparently being adapted by Bergman and included in his 

influential Dissertation. Josiah Wedgwood also had an idea of using coloured 

circular diagrams to show “Chemical affinities, compositions, decompositions 

 
140 Austin 1788. 
141 Ibid, 380.  
142 Ibid, 383. 
143 Maehle  1999, 93-105.   
144 Crosland 1959. 
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and recompositions etc. visible”.145 

Kirwan used the distinction between single affinities and double affinities to 

draw conclusions about the relative affinities between substances.  Knowing 

that a solution of silver in nitrous acid added to a mixture of fixed alkali and 

common salt, produced luna cornea (a combination of silver and muriatic acid), 

he argued: 

“if the nitrous acid had a greater affinity to the free alkali than to 
the silver, it is evident, that the decomposition would be wrought 
by the free alkali, and then the silver would be precipitated pure, 
and not in the state of horn silver”146 

A diagram (similar to Cullen’s) helps to explain his reasoning: 


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If the fixed alkali that was mixed with the common salt (i.e. ‘free’) had a 

stronger affinity to nitrous acid than did silver, it would have decomposed the 

combination between the silver and the nitrous acid (often known as lunar nitre) 

by single affinity, precipitating pure silver.  The common salt would not have 

been decomposed.  As the silver was precipitated in the form of luna cornea, a

double affinity must have been required to decompose the lunar nitre.  In this 

case, the diagram would look like this: 
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Kirwan’s claim that the affinity between nitrous acid and silver was greater than 

that between the fixed alkali and the nitrous acid contradicted many of the 

 
145 Wedgwood, 1779.   See Lowengard 2002. 
146 Kirwan 1783, 54. 
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affinity tables produced up to this point, from Geoffroy’s to Bergman’s.   He 

also claimed that the muriatic acid had a greater affinity to silver than the 

nitrous acid had to fixed alkali.  This too requires some explanation: 


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As we know that the double decomposition took place, (c) + (d) must be greater 

than (a) + (b).  But we also know that (d) is less than (a).   On this basis then, 

(c), the affinity between the muriatic acid and silver must be greater than (d).   

Kirwan used his notion of the mechanism of combinations to clarify doubts 

about the orders of his affinities.  That this experiment was carried out to justify 

his laboriously quantified affinities does not detract from the importance of the 

mechanism itself.  Cullen’s system of double affinities was followed carefully, 

and although Kirwan did not offer the diagrammatic rationale that I have used, 

similar assumptions presumably underpinned his thinking.  Kirwan’s 

interpretation of his experiment  assumed, like many other chemists, that only 

two substances could combine at a time and that where a single affinity was 

insufficient to decompose a compound, another carefully chosen compound 

might be successful by double affinity.  His use of competing double and single 

affinities in the same mixture of substances was innovative.  This experiment 

was reported in a paper delivered to the Royal Society in which he expounded 

his new system of quantified affinities and explained a peculiar anomaly in his 

quantification.   While his mechanism gave countenance to his quantifying 

system, it was a circular process and his system of quantification (discussed 

below), in its turn conferred authority on his mechanism. 

Cullen’s double elective attractions offered a way of systematising more 

complex affinities, together with a useful general rule.  But his theory still 

assumed that only one substance could combine with one other and was thus not 

designed to deal with more complicated scenarios.  Fordyce’s theory took 
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Cullen’s system and extended it to cover every possible eventuality.   

Cullen’s theory did not require any statement of an underlying ontology, 

considering such speculation, as we have seen, positively unhelpful.  His 

students were instead taught how double elective attractions worked in terms of 

the macroscopic world.  This, after all, was the only world that was truly 

relevant to the practice of chemistry.  Fordyce was more content to overtly link 

his particulate ontology to his affinity theory.  Although many historians have 

assumed that affinity theories always entailed a particulate ontology, it is rare 

that any British chemist was as unequivocal as Fordyce.  Fordyce’s particles 

were peculiarly chemical, being particles of different bodies, each possessed of 

its particular affinities; and as they combined they retained their chemical 

identity, although adopting a new “Sphere of Mechanical Action”.  In his 1765 

Elements of Agriculture he provided diagrams to show how combination of 

particles worked (figure 4 on p. 186).147 It seems likely that in this case, 

ontology was driven primarily by chemistry, and by his affinity theory in 

particular.  This led to some interesting ideas.  He opined, for example, that  

“One of the smallest integral particles of one body, may unite 
with only one of the smallest integral parts of another body so as 
to form a compound that will have an equal number of particles 
of each of its Elements; or one particle of one body may unite 
with two particles of another body, so that there would be only 
half the quantity of one that there was of the other.”148 

Another set of lecture notes, also dated 1786, includes a footnote: 

“We can easily conceive (therefore ‘tis possible) that one of the 
smallest integrant parts of one body may unite with 2 of the 
smallest integrant Parts of another Body so as to form a compd.  
The Proportions of the number of ye smallest Integt Particles of 
one Body together yth ye smallest Integt Parts of another yt may 
unite, so as to form ye smallest integt Part we cannot well 
determine.”149 

Fordyce’s theory seems to have been that when substances combined together, 

whatever the proportions of integrant particles that combined to form one 

 
147 Fordyce  1765, Notes to plate 3rd.
148 Fordyce 1786b, f 71. 
149 Fordyce 1786a, Note 6, lecture 5. 
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particle of the compound, they could only combine in this proportion in one 

stage.  Were we in the business of whiggish precursor-spotting (which of course 

we are not) this might suggest an early law of definite proportions.  In general, 

presumably for the sake of simplicity, and for the lack of any evidence to the 

contrary, Fordyce’s lectures assumed a 1:1 proportion.  He did, however, 

envisage more complex combinations in different stages.  Thus, two elements 

combined together to form a new compound substance.  In Fordyce’s scheme 

the resultant compound could itself become an element in a further 

combination: 

“a compound may unite with one of its Elements so as to form a 
different Compound: as for example Mercury unites with 
Muriatic Acid so as to form Corrosive sublimate, & corrosive 
sublimate is capable of combining with the Solvend (mercury) so 
as to form Calomel; so that altho’ Muriatic acid appears to 
combine in two proportions with Mercury yet it does not.”150 

His affinity theory thus included a carefully worked out mechanism of 

combination, envisaging specific substances as composed of particular ratios of 

particles in combination.  Under his scheme: 

“Vitriolic acid may unite with phlogiston in one proportion so as 
to form volatile vitriolic acid, but if it is united with a greater 
quantity of phlogiston it forms sulphur.”151 

Sadly Fordyce did not expand any further on his system.  It is clear that in a 

single stage of any chemical operation he envisaged combination only in one 

proportion (whatever that proportion might be).  However, his compound 

substance could in turn behave as an element and combine with more of one of 

its elements to produce a further compound with the same elements, but in 

different proportions.     

Saunders envisaged a different kind of mechanism.  Referring specifically to the 

different substances produced by the combinations of vitriolic acid and 

phlogiston, Saunders’s chemistry syllabus states that where ordinary 

combination produced ‘volatile acid of sulphur’, when the vitriolic acid 

 
150 Fordyce 1786b, f 73. 
151 Ibid. 
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combined “more intimately” with phlogiston, sulphur was produced.152 

Fordyce, remember, specified that a two stage process, increasing the proportion 

of phlogiston in combination, produced sulphur.  Saunders apparently believed 

that the phlogiston was combined in a different way in volatile vitriolic acid and 

sulphur.   “More intimately” is not the same as “in greater proportion” and its 

seems likely that the difference in the observable physical characters of the two 

substances might have prompted Saunders’s choice.  Volatile vitriolic acid is, 

unsurprisingly, volatile and spirituous, while sulphur is unquestionably solid.  

These differing states of aggregation of the substances produced by the union of 

phlogiston and vitriolic acid perhaps led to a belief that the particles of the 

volatile substance were more loosely held together than those in the solid.   

Fordyce’s and Saunders’s affinity theories both offered explanations for the two 

different substances apparently produced from combinations of vitriolic acid 

and phlogiston.  We can learn two useful things from the a comparison of their 

components:   

Firstly, the fact that both set forth their explanations in terms of their affinity 

theories suggests that these had become important explanatory tools in their 

chemistry.  As both were former students of Cullen, perhaps this should not be a 

surprise.  As Cullen’s students were trained and taught to use affinity theory, so 

it became their natural reaction to explain new phenomena in terms of 

affinity.153 Thus my first point indicates a similarity of attitude.   

Secondly, both explanations shed light on their ideas of the physical mechanism 

by which affinities operated, they emphasise that a clear difference lay between 

their imagined mechanisms.  This is an example of Cullen’s students 

formulating their own components to fill in the lacunae in their affinity theories.  

Fordyce and Saunders added their own theoretical components to flesh out the 

mechanisms of their affinity theories, to try to accommodate anomalies that 

Cullen’s teaching had not covered.  

In this comparison between explanations of a single phenomenon we see clear 

evidence of the paradox of similarity and difference that characterised the 

 
152 Saunders  n.d. [1766?], 2.     
153 On the importance of training to scientific explanation, see Galison and Assmus 1989. 
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doctrine of affinity, as well as an illustration of the limitations of pedagogical 

influence.   

The components set out in this section have emphasised the importance of 

Cullen’s teaching in fleshing out Geoffroy’s affinity theory to allow its 

application to complex combinations.  Cullen’s pedagogical endeavours began 

the attempts to clarify the doubtful parts of the doctrine of affinity.  At the same 

time though, they have similarly emphasised that even Cullen’s theory was 

incomplete.  Sometimes such incompleteness was deliberate, a result of his 

pedagogical strategy, while sometimes it was an accident of history.  Sometimes 

it may have simply been the result of poor note taking.  However they arose, in 

the face of these lacunae Cullen’s students and other affinity theorists 

formulated new components or amended old ones in accordance with their 

observations.    

3.3  Concepts of Order 
The previous two sections examined components of affinity theories that dealt 

with substances and the effects of affinity on them.  The following discussion is 

in contrast more concerned with the affinities themselves, the powers that 

obtained between  the objects of chemistry.   

The production and use of affinity tables and indeed affinity theories as a whole, 

hung upon a conception of order.  Initially, affinities were only susceptible to a 

relational ordering, as they were apparently not subject to any method of 

measurement.   For later chemists, accurate measurement of affinities became a 

desideratum, prompted by their desire to predict the results of more complex 

combinations.   Towards the end of the century, Nicholson listed what he 

perceived to be the most likely bases for future accurate measurement or 

ordering of affinities: 

“The time required to effect any change of combination, the 
correspondent change of temperature, of specific gravity, of 
consistency, fluidity, or elasticity, and the relative quantities of 
principles required to produce the most perfect saturation”154 

This gives just a hint of the variety of empirical evidence that could be invoked 

 
154 Nicholson  1795, 164. 
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to justify the ordering of affinities.  As the action of affinities produced change, 

so any or all of these changes could be seen to signify the strength of the affinity 

in operation.  The first sub-section examines methods and techniques of 

ordering affinities.  In the absence of any clarification by Geoffroy, a variety of 

methods were adopted for ascertaining and comparing the relative strength of 

affinities.  Such components were urgently required, both for the future 

expansion and extension of affinity tables, and for the correct understanding of 

those that had already been created. 

The other two sub-sections are case studies of new components formulated by 

Fordyce and Kirwan that were intended to solve the most significant problem of 

the doctrine; the universal comparability of all affinities.  Both offered different 

solutions, Fordyce by the deduction of new general rules governing compound 

affinities, and Kirwan through his experimental quantification of affinities.  

These case studies emphasise the continuing importance of affinity in chemistry 

and offer evidence of the prevailing expectation that improvements to the 

discipline would come from improvements to affinity theories.  They also 

illustrate by their very disparity the methodological and conceptual differences 

that lay between affinity theories in spite of their similarities.  

3.3.1 Relativity: The Methodology of Order 
Geoffroy’s law generalised the behaviour of different substances when mixed 

together.  The affinity table brought all these observed relations together and 

ordered them.  The law thus implied how the ‘rapports’ compared in the affinity 

table were ordered.  If substance C be added to a compound substance AB, if 

the rapport of C for either A or B is greater than that between A and B then it 

would unite with the chosen partner, the other would be expelled from 

combination and either BC or AC would be formed.  For each experiment, there 

were three possible results: 

AB + C = AC + B 

AB + C = BC + A 

AB + C = AB + C 

For each such experiment, two sets of triplet relations could be produced, 

intepreting it in two possible ways.     So, for example, AB + C = AC + B 
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showed: 

A C

C A

B B

although it did not provide any method of ascertaining the relative affinities of 

A and C for B – more experiments would be required for that.  Bergman’s 

Dissertation included a section explaining how he determined the affinities 

shown in his huge table from a careful examination of displacement reactions.  

His system required a disconcerting number of experiments to be carried out.  

As he explained: 

“Let us suppose only a series of five terms, a, b, c, d, and e, to be 
examined with respect to A, twenty different experiments are 
requisite, of which each involves several others: a series of ten 
terms requires ninety experiments”.155 

Geoffroy had promised in his original paper156 to publish the experiments on 

which his table was founded, but the promised explication never appeared, and 

this left the details of how the rapports had been established unknown.  Six of 

the columns in his affinity table were triplets, which suggests that his 

experiments were broadly along the lines set out above.  Nevertheless, most of 

his columns compared the affinities of more than three substances, and his 

methods for pulling his assumed triplets together were unknown.  Lacking 

experimental and methodological information, the orders set out in Geoffroy’s 

columns became the subject of disagreements.  In his own notes for his earliest 

lectures, Cullen complained: 

“It is a pity Geoffroy has not given the Expts as I am sometimes 
at a loss.”157 

Cullen cited the “possible fallacy of the experiments” as a potential cause of the 

 
155 Bergman  1970, 68. 
156 Geoffroy 1719,  212. 
157 Cullen n.d. [1749-56?] Although this fragment is undated, it is likely that it dated from between 1749 
and 1756.  It is in Cullen’s own hand and appears to be a set of notes for his own use when lecturing.  He 
was still presenting his students with Geoffroy’s table, and there is no mention of double elective 
attractions.  We know that he was presenting his students with his own affinity table by 1757.  See Cullen 
n.d. [1757/8].    
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table being “erroneous and defective”.158 The most immediate problem faced 

by the chemist wishing to extend his table was methodological.  Which 

processes and operations would show affinities most clearly?  For Lewis, 

writing in 1753, affinity was closely linked to precipitation. There were two 

models of precipitation reaction:  

"one, where the substance superadded unites with the 
menstruum, and occasions that before dissolved to be thrown 
down; the other, in which it unites with the dissolved body, and 
falls along with it to the bottom."159 

Before the orders of precipitation could be delineated in the tables, they had first 

to be established.  Lewis took up this challenge in his investigation of the 

properties of platina, where he endeavoured to determine the affinities of the 

new metal.160 As part of his investigations he carefully noted the results of 

adding other metals to a solution of platina in aqua regia.  This was not a 

Newtonian demonstration of successive displacements, but rather five separate 

tests in which zinc, iron, copper, and mercury precipitated the platina from its 

solution, and gold did not.  Each test indicated the relative affinities of aqua 

regia to the two metals.  The quotation above hints here at another layer of 

classification that usefully limited the interpretation of precipitations.  Lewis’s 

combined bodies (AB) were divided into menstruum and ‘dissolved body’, and 

while the substance C might be able to take the place of either in combination, 

in fact very few substances could behave as both menstruum and solvend in any 

single context.  If, for example, A was an acid, and B were an alkali, if C were 

another alkali, although it might be able to replace B in this combination, by its 

very nature it would not be able to replace A.  So, in fact there would only be a 

single intepretative triplet to be gleaned from this operation, showing the 

affinities of B and C for A.   Although another triplet could be offered showing 

the relative affinities of A and B for C, as both B and C were alkalis, this would 

fulfil no useful purpose. 

Dossie adopted a similar taxonomic complication to the idea of displacement as 

 
158 Cullen 1765, MS 1921. 
159 Lewis  1753, xxii. 
160 Lewis 1754, Lewis 1757a, Lewis 1757b. 
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an indication of affinity.161 He asserted (in rather tortuous terms) that: 

“When any two bodies of a different genus are combined, and a 
third of the same genus with either of them is added under the 
circumstances proper for their commenstruation, such third will 
not for the most part commenstruate with them, so as to become 
an additional element to the compound; but if it be of a superior 
or higher degree of attraction than that in the compound which is 
of its own genus, it will commenstruate with the other of the 
different genus from itself, notwithstanding the state of 
combination in which this was before with that of its own.”162 

Dossie’s affinity theory thus implied that, when forming a column of an affinity 

table, all the substances below the header row must be of the same genus (and a 

different genus from the header substance).  As an example of this he recounted 

the familiar (although expanded) series of precipitations from spirit of nitre, 

listing silver, copper, iron, chalk, volatile alkaline salt and fixt alkaline salt, 

explaining that: 

“This is an example with regard to the alkaline bodies.”163 

The affinities of substances were, in Dossie’s theory, fixed in the specific 

context of their classification.  His further division of substances into species 

allowed him to assert, for example that: 

“oil of vitriol … is of the highest order of attraction in the series 
of the acid genus”.164 

Dossie’s affinity table was therefore a list or series of the orders of affinity of 

acids “with respect to each other in relation to alkalies”165 and of “alkaline salts, 

earths and metals with respect to each other in relation to acids”.166 

Lewis also carried out experiments showing how platina behaved in 

combination with various other metals.  Thus he claimed that: 

 
161 Dossie 1759.  Some care should be taken in the use of the word ‘affinity’ in reference to Dossie’s 
textbook, as he retained the more ancient usage wherein affinity denoted similarity,  Thus, his taxonomy of 
genera and species was dependent upon the affinity of substances “or sameness of qualities”. 
162 “Commenstruation” was a word coined by Dossie to signify “this power in bodies, of combining with 
each other in consequence of their specific attractions.”  Dossie 1759, 8. 
163 Dossie 1759,  18. 
164 Ibid, 27. 
165 Ibid, 275. 
166 Ibid. 
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“Mercury is supposed to have a greater affinity with lead than 
any other metallic body, gold and silver excepted.  In this 
experiment, it had a greater affinity for platina than lead, since it 
retained most of the platina, after the lead, which was in much 
larger proportion, had been thrown out.”167 

This particular experiment, which had mixed lead and platina together and then 

added the mixture to heated quicksilver accorded with the model of single 

affinity.  In the publication of his investigations into platina as part of the 

Commercicum Philosophico-Technicum, Lewis presented its affinities in 

columnar form.  Rather than a single long column of affinities, he offered 

fifteen separate sets of triplets, drawn from his 1754 experiments.  Thus, for the 

experiment with lead and mercury, the triplet was as follows: 

“Mercury: 
Platina: 
Lead.”168 

In the case of combinations of metals (which could produce either alloys or 

amalgams) the menstruum/solvend distinction was meaningless, so another 

possible interpretation of the experiment might have formed part of a new 

affinity column for platina: 

Platina 

Mercury 

Lead 

Lewis never proceeded beyond his series of triplet affinity columns for platina, 

perhaps because the number of operations required to produce a single coherent 

column was more than he was prepared to carry out.  His triplets were 

nevertheless adopted by chemists with alacrity, although no one seems to have 

attempted to turn them into a single column.  Warltire simply added Lewis’s 

triplets to Geoffroy’s table as separate individual columns.169 Saunders also 

added Lewis’s triplets to the table he offered in his Syllabus.170 

167 Lewis 1754, 677. 
168 Ibid, 377. 
169 Warltire 1769b. 
170 Saunders  n.d. [1766?]. 
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Lewis’s affinity theory included an interesting distinction between the ‘strength’ 

of an acid and its affinities.  While the order of the strength of substances seems 

to have corresponded with the order of affinity to a certain extent, Lewis 

pointed out that this was by no means a universal parallel: 

"The vitriolic is the strongest of all the acids ... The nitrous acid 
is next in strength to the vitriolic.  ... It is remarkable of this 
[marine] acid, that though so much weaker than the two 
foregoing as to be easily expelled by either from alcaline salts 
and earths, it nevertheless dislodges them from metallic 
substances; with which it has a much greater AFFINITY than any 
other acid."171 

The ‘weakness’ of marine acid, as shown by its relative inactivity in comparison 

with the other acids, was proven by its  displacement from combinations, but 

nevertheless it still had so great an affinity with metals as to displace the 

‘stronger’ acids from combination with them.  Fordyce drew on similar 

phenomena to argue that readiness to unite was not a measure of affinity: 

“The strongest attractions do not always take place most readily.  
Nitrous Acid unites with Mercury readily; Muriatic Acid unites 
with it with great Difficulty yet the Muriat: Acid attracts Merc 
stronger than ye Nitrous Acid.”172 

This neat contrast between the fact that marine acid was only with difficulty 

able to dissolve metals (and thus to combine with them) and its ability to 

displace the other ‘stronger’ acids from combination with metals, was also cited 

towards the end of the century by Nicholson.  In 1777 Wenzel, a German 

chemist, had attempted to assign numerical values to affinities on the 

assumption that the affinity between two substances was inversely proportional 

to the time taken for one to dissolve the other.173 Nicholson disparaged this 

attempt to measure strength of affinity by speed of combination, explaining:  

“Yet from the true test of superior affinity, namely, the 
decomposing of compounds already formed, the attraction of the 
marine acid, slow as its effects are, often proves stronger than 
that of the nitrous, from which it separates many metallic 

 
171 Lewis 1753, 10. 
172 Fordyce 1786a, Lecture 9. 
173 Wenzel 1777.  See also Duncan  1996. 
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basis.”174 

Displacement reactions along these lines were for many the accepted method for 

ascertaining relative affinities.  Nevertheless, strength of affinity was often 

thought to be manifested in other properties that were more observable, if not 

more measurable.   

Elliot linked the change in certain sensible properties on combination with the 

strength of affinity.  He explained that oil of vitriol and fixed vegetable alkali 

had the strongest tastes of all their classes.  But in combination, as vitriolated 

tartar, both substances lost all almost all their taste.  He argued that the loss of 

taste was proportional to the strength of affinity between them: 

“if the substance has no attractive force remaining, it can have no 
taste.”175 

It does not seem likely that Elliot formed his orders of affinities on the basis of 

changes in taste of the constituents; his hypothesis emanated from his 

ontological commitments, although it was presented as an empirical 

generalisation.  The gradual loss of taste as affinities grew stronger was related 

to the ‘activity’ of the substance, its ability to affect others by means of affinity.  

Similar assumptions seem to underlie Kirwan’s claim, emanating from his 

phlogiston theory, that colour was linked to strength of affinity.176 Both Elliot’s 

and Kirwan’s components also hint at some kind of notion of ‘satisfying’ 

affinities, of some form of saturation.   

A further position is evident in a 1784 letter from Watt to De Luc, published in 

the Philosophical Transactions. This suggests that Watt’s notion of affinity 

incorporated the much older notion of kinship between elements: 

“It appears to me very probable, that fixed air contains a greater 
quantity of phlogiston than phlogisticated air does, because it has 
a greater specific gravity, and because it has more affinity with 

 
174 Nicholson  1795, 161. 
175 Elliot  1782, 107-108.  Elliot’s familiarity with the taste of so many substances serves to confirm the 
conjectures of historians that his ‘insanity’ towards the end of his life was most likely to have been a 
consequence of his close contact with dangerous substances.  See, for example Manning 1993, Partington 
and McKie 1960. 
176 Scheele  1780. 
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water.”177 

The greater affinity of fixed air with water was caused by the possession of a 

larger proportion of their common constituent, phlogiston.  This type of 

assumption would have been regarded as old fashioned in Watt’s time, and 

indeed was one of the reasons why Cullen rejected the word ‘affinity’ in favour 

of elective attraction.  Watt, it should be remembered, was an instrument maker, 

and perhaps an auto-didact in the matter of his chemistry.  Macquer had 

included in his affinity theory a statement that: 

“it may be laid down as a general rule that all similar substances 
have an Affinity with each other, and are consequently disposed 
to unite; as water with water, earth with earth, &c.”178 

For most British chemists, this was a proposition to be ignored, but Watt’s use 

of similar reasoning reminds us that much of his chemistry was probably 

learned from such textbooks as Macquer’s.   

Aside from the classic model of displacement of substances, the guide to 

strength of affinity most commonly recruited by the chemist was the heat 

required to separate combined substances.  In 1749 Cullen claimed in a lecture 

that: 

"The union of Aquafortis & Pot Ashes in Saltpetre is so strong, 
that if the Saltpetre is put into a crucible and kept from 
immediate contact with the Coals, it will bear a great force of fire 
without having its parts disjoined."179 

Again Cullen refers to his most important demonstration, the combination of 

aqua fortis and pot ash to make saltpetre.  He suggested that the affinity between 

these two bodies might be judged by the amount of heat which the compound 

would resist without decomposition.  Although Cullen differentiated between 

the attraction which caused bodies to unite, and elective attraction, which 

caused them to separate, he did assert that both were instances of the same 

“general power”.  As the same force was responsible for both the combination 

and the adhesion, it was undoubtedly feasible that the ‘force of fire’ required to 

 
177 Watt 1784. 
178 Macquer  1764, 12. 
179 Cullen 1749, f 17. 
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separate two combined bodies would be at least proportional to the force of 

attraction required to hold them together.  Although Cullen seems to have used 

displacements as a starting point for his expanded affinity tables, in extremis he 

was clearly prepared to turn to more equivocal evidence offered by operations 

to separate by fire.  This was a common enough strategem as can be seen from 

Elliot’s Elements which explained, with regard to the metallic and earthy salts,  

“From most of the two latter kinds, the acids may be expelled by 
heat.  But in those with alcaline bases this does not happen, or 
not so easily, by reason that their principles are held together by 
stronger attractions”180 

Many British chemists similarly assumed that the more heat required for a 

separation, the stronger the attraction.  Black suggested that fixed air combined 

with magnesia  

“with considerable force, since a strong fire is necessary to 
separate it … and the strongest is not sufficient to expel it 
entirely from fixed alkalis”181 

There is an interesting difference between the concepts of affinities determined 

by displacement and affinities determined by fire.  While the first can only 

afford a relative measurement, the latter is, potentially at least, a measurable 

property.  The first asserts no more than that the affinity AB is greater or less 

than the affinity BC, but the second is capable of assigning a quantity 

(presumably of heat required) to the affinity AB, and of quantifying the 

difference between the affinities AB and BC.   

The notion of ordering affinity tables based on how difficult it was to separate 

substances in combination emanated from the ‘law’ of affinity.  It also offered 

the desideratum of quantifiable affinities based on physical measurements, 

rather than the relative affinities of the qualitative displacement reactions.  This 

in turn would solve the most intractable problem of the doctrine: how to use 

tables to predict the results of the more elaborate combinations.   

 
180 Elliot 1782, 22. 
181 Black 1910, 22. 
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3.3.2 George Fordyce’s “On Compound Elective Attractions” 
Nicholson in 1795 was painfully conscious of the limitations of tables of single 

affinities.  They were useful, and encompassed a great deal of important 

chemical information, but  

“it must be remarked … that these results merely indicate that the 
powers are greater or less than each other; but how much greater 
or less is not determined, either absolutely or relatively.”182 

He took a gloomy view of the possibility of using affinity tables to predict 

complex reactions: 

“a table of simple attractions can be of no use to determine the 
effects of double elective attraction, unless the absolute power of 
the attractions be expressed by number instead of their order 
merely.”183 

But Nicholson was writing in 1795, with the benefit of a great deal of 

experience, and in the midst of a degree of theoretical disorder, if not a 

revolution.  Some 36 years earlier the youthful Fordyce composed an optimistic 

attempt to place what he called ‘compound affinities’ on an a priori basis.  

Fordyce, presumably encouraged by Cullen’s generalisation of all potential 

combinations of four substances down to only four different cases, attempted to 

discover rules that would enable him to predict the results of combinations of 

complex substances from an affinity table.  That his attempt was unsuccessful is 

irrelevant; what is of interest is firstly, the fact that he made it at all, and 

secondly, the way in which he tried to emulate Cullen’s methodology. The first 

emphasises once more the foundational status of affinity in chemistry, as well as 

the expectation, presumably derived from Cullen’s teaching, that the best 

possible opportunities for the improvement of the discipline lay in a better 

understanding of affinity.  The second offers a useful example of the potential 

for misunderstanding and misconception in the gap between pedagogue and 

student. 

In 1759, Fordyce, having just left Edinburgh, was in London, waiting to travel 

to Leyden to study anatomy.  Some of this time was spent drafting a paper “On 
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Compound Elective Attractions” to be sent to the Royal Society.  Before he 

presented it however, he sent a copy of it to Cullen, asking for his opinion.184 

The paper, together with the series of letters that ensued set out Fordyce’s 

proposed system in alarming detail.185 

Fordyce began his paper with diagrams showing double elective attractions.  

These were similar diagrams to those taught by Cullen (see figure 3 p. 185), 

although in a different order.  A full transcript of the paper appears at Appendix 

I.   

Fordyce adopted a rather cryptic notations to his diagrams, labelling the four 

substances 1m, 2m, 1s and 2s.  These labels are a consequence of his division of 

all substances to be combined into menstrua and solvends.  This division 

appears to be Fordyce’s own innovation.  Wherever it came from, Fordyce 

clung to it throughout his career, later including it in his own chemistry 

lectures.186 It bore some resemblance to Dossie’s genera although Fordyce’s 

classification was, like his operationally specific elements, peculiar to each 

individual operation, where Dossie’s emanated from an overall taxonomy of the 

substances.  It did allow him to argue  that one menstruum was ‘stronger’ than 

the other, according to their position in the affinity table, and similarly with the 

solvends. 

To take his first instance (a mixture of nitrous and vitriolic acids with vegetable 

fixed alkali and silver), in Geoffroy’s column for metallic substances the acid of 

vitriol appeared higher than nitrous acid, so it was the ‘strongest’ of the two.  In 

the column for fixed alkalis, it appeared higher than nitrous acid, so again it was 

strongest.  Thus Fordyce categorised the vitriolic acid as 1m (signifying the 

strongest menstruum) and the nitrous as 2m (signifying the weakest).  In a 

similar comparison of the columns for vitriolic acid and nitrous acid, the 

vegetable fixt alkali appears in both as the ‘strongest’ solvend, so it was given 

the label 1s and the silver 2s.  The second instance worked in a similar fashion. 

 
184 Fordyce 1759-1774, September 21, 1759. 
185 Fordyce’s draft paper itself has never previously been mentioned by historians, presumably having been 
believed to be lost.  I have, however, located it, also in the archives of the Glasgow University Library, and 
what follows is the first detailed examination of Fordyce’s system to be carried out. Fordyce  1759. 
186 See e.g. Fordyce 1786a, Fordyce 1765. 
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In the third and fourth instances, the notation was rather more complicated.  

Taking the fourth as an example: examining Geoffroy’s column for muriatic 

acid, silver appeared above mercury, so silver on this account should be labelled 

1s.  But in the column for nitrous acid, mercury appears above silver, so it too 

had a right to the label 1s.  From the metallic substances column it appeared that 

the muriatic acid is the strongest of the two menstrua, so it was labelled 1m and 

the nitrous 2m.  The silver was thus the strongest solvend so far as the strongest 

menstruum was concerned and was labelled 1s to 1m.  Likewise, the mercury, 

the strongest solvend to the weakest menstruum, was labelled 1s to 2m.  

Both instances were, according to Fordyce, cases where “one menstruum 

attracts the one solvend strongest and the other menstruum the other”.187 

Fordyce generalised further, comparing the affinities between the substances 

using his generalised labels, opposing the affinities tending to separate and 

recombine the substances with the affinities favouring the status quo.  His rather 

tortuous reasoning can be seen in full in Appendix I.  It led him to draw the 

conclusions:  

“as these powers can’t be defined by numbers a priori we can 
never say whether the first or second instance will take place.  In 
the third instance and likewise the fourth …  the stronger powers 
being on one side this attraction must always take place which is 
confirmed by all the experiments yet made … therefore we may 
conclude a priori & posteriori that the 3rd & 4th instances always 
take place Q.E.D.”188 

Like Cullen, Fordyce claimed that two of the four generalised instances were 

predictable from the affinity table, while the other two, his instances 1 and 2, 

were not.     

In the case of instance 1, the equation was balanced as follows: 

1m→ 1s + 2m→ 2s in favour of the status quo  

against  

1m → 2s + 2m→ 1s in favour of change. 

 
187 Fordyce 1759 f 4. 
188 Ibid, f 5-7. 
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The strongest affinity added to the weakest affinity was opposed to the two 

middle affinities.  This type of comparison was later used by Kirwan in his 

attempt to set forth a methodology for predicting complex affinities.  Without 

being able to define the affinities numerically, Fordyce was unable to work out 

a priori whether the chemical change would take place.  This was the same 

dilemma later recognised by Nicholson. 

In order to solve this problem, Fordyce drew on his own experimental evidence 

(a grand total of nine different cases were listed) to argue that in all cases, the 

sum of the medium affinities was greater than the sum of the strongest and 

weakest affinities.189 From this he drew a corollary: 

“The difference between the strongest menstruum attraction to 
the strongest solvend and the same menstruum attraction to the 
weakest solvend is less than the difference betwixt the weakest 
menstruum attraction to the strongest solvend and the same 
menstruum’s attraction to the weakest solvend.”190 

Something very odd happens to Fordyce’s pseudo-algebra during a quite 

excruciating set of comparisons which attempts to prove this statement.191 He 

apparently believed that he had shown that the difference between affinities got 

larger towards the lower end of the scale.  Affinity tables, as Weininger has 

pointed out, are topologically one-dimensional.   

“Each column is to be read vertically and independently of the 
others.  There is no coherent horizontal reading of the table.”192 

Fordyce’s paper illustrates the fact that, to achieve full predictive power, the 

differences between affinities, envisaged perhaps as the difference between cells 

in a column, needed to be known.  The table needed, in effect, to develop a 

second dimension.  Fordyce was tentatively trying to achieve this two 

dimensionality by finding a way of reading the table horizontally or at least in 

 
189 He did specify that this was only true when dealing with acids and their solvends “for there are some 
cases in which acids are not the menstruums where 1m → 1s is greater alone than 1m → 2s + 2m → 1s”.  
See Fordyce 1759 note 1. 
190 Fordyce 1759, f 9. 
191 At the stage where he ‘subtracts’ 1m+2s from his equation – there is no way (that I am familiar with) 
that this can be done.  He seems to have some trouble differentiating between his affinities (shown in the 
form a → b) with a simple statement of relative strength, which is what his labels are.  The two types of 
item cannot be added or subtracted as they are entirely different concepts.   
192 Weininger 1998, 6. 
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finding some cross-columnar relation between the spaces between the 

substances.  Underlying this endeavour was a conviction (discussed more fully 

in the next chapter) that affinities existed in discrete quanta.    

Glasgow University Library hold two drafts by Cullen of letters to Fordyce in 

response to his projected paper.  Fordyce in turn responded twice to Cullen’s 

objections.  The arguments between the two become more repetitive and 

progressively more opaque.  For considerations of space (and sanity) I consider 

here only Cullen’s draft initial response to Fordyce’s paper.  It is clear from 

certain crossed out statements on one draft that Cullen found the paper 

frustrating.  He said: 

“After studying it with all the attention possible I must tell you 
that I do not understand it.  I must say so of it as a whole and I 
could mention many particulars that must be unintelligible to 
every body … it is very difficult to be understood.”193 

In response, he set out the way he dealt with the matter in his lectures.  He 

pointed out that his four generalised cases were the same as Fordyce’s (although 

his instances 3 and 4 were Fordyce’s 1 and 2) and here outlined his general law.  

He then set out the latest version of his own diagrams, which no longer took the 

form of the dart diagrams he was using in 1757.194 He described them instead 

in terms which emphasised the attractions that he supposed to exist between the 

different substances: 

“Let there be two Rods Intersecting one another and moveable on 
a common axis in the point of Intersection.  At the extremities of 
each let there be placed substances that have an attraction for 
each of the substances on the extremities immediately contiguous 
to them & let the attractions be expressed by the letters w, x, y, z 
…

<nitrous ac>  <silver> <nitrous ac.>  <silver> 

 w    w 

 y z y z

x x

<fixed alk>  <muriatic ac> <mercury>  <muriatic ac> 

 
193 Cullen 1759a, f 1. 
194 Discussed in Crosland 1959. 
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y>x & z>w by table   y>x & z>w by table 
Ergo y+z>x+w   Ergo y+z>x+w”195 

These new diagrams allowed Cullen to produce relational formulae similar to 

those attempted by Fordyce, but undoubtedly simpler.  His intention was to 

distinguish predictable combinations.  In the case of Fordyce’s second instance 

(see Appendix I), Cullen argued that his general rule applied and the substances 

would be separated and recombined.  However, as he said, “this instance is 

always convertible with Instance 1st which happens to be stronger”.196 Thus: 

“Instance 2 however takes place always when the general 
conditions of opposite attractions being given there is however 
no attraction between the two others as in the case of soap & the 
mixts that decompose it.”197 

He offered another scenario in which the second instance would take place, 

when the two separated substances are volatile or made volatile by heat, in 

which case they would escape from the mixture without combining.  This still 

left as problematic the situation epitomised in Fordyce’s Instance 1, in which 

the result of the balance between the affinities could not be predicted from the 

affinity table.  Although in most cases like this, as Fordyce claimed, the 

decomposition did occur, the results could still only be known a posteriori, as 

Cullen explained: 

“This last we judge to be the case from a general experience but 
that it must be so a priori I cannot, nor have you I think at all 
explained demonstrated.”198  

Fordyce’s attempt to prove his corollary using his algebraic reasoning also got 

short shrift as Cullen pointed out that the assumption of a difference between 

affinities of a did not assist him in evaluating the magnitude of a. Finally, he 

exhorted: 

“If you still think your essay worthy of the public I must beg of 
you to have the composition mended in every part.  I would have 
you set out with the use & importance of the doctrine of Elective 
Attractions the state of it hitherto & a clear enunciation of what 

 
195 Cullen 1759a, f 3. 
196 Ibid, f4. 
197 Ibid. 
198 Ibid, f 5. 
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you further propose in your Essay.  … At best it is an abstract 
consideration that few are willing to enter into & there are at the 
same time so very few chemists that at best you are to expect few 
readers & in the present state of your Essay none at all.  I would 
also have you support the dryness of the subject by a number of 
facts & if possible new ones.  This is the appearance I would 
wish you to make & depend upon it it will be the most 
successfull.”199 

An interesting comparison can be made between this exchange and Fordyce’s 

1765 lectures in which he included a new kind of diagram that suggests that his 

theory now consisted of a mixture of his 1759 ideas, and Cullen’s, taken from 

his response.  He explained it as follows: 

“We then form a Diagram by drawg two Lines to intersect each 
other in ye middle, & write ye Menstruums at ye ends of one of 
ye lines, & ye solvends at ye other; we then draw shorter Lines at 
ye ends of these former so as to interset ym nearly at right angles.  
We are next to consult a Table of Elective Attractions & examine 
ye difft degrees of attractn wch these Elemts bear to each other; 
we begin for example with ye vitriolic acid & examine whether 
its attractn is strongest to ye fix'd alkali or to ye mercury, we find 
it has most to ye alkali; we therefore write stronger on one of ye 
cross line next ye alkali, weaker on that wch is next to Mercury.  
… In this manner we proceed till we have completed our 
Diagram”200 

Fordyce’s diagram looks like this; adapting Cullen’s cross diagrams as set out in 

his 1759 letter, he continued to pursue his line of comparing each and every 

affinity that might be supposed to exist in the mixture: 

“

Stronger   Stronger 
Vitriolic Acid   Fixed Alkali 
 
Weaker     Weaker 
 

Stronger     Stronger 
 
Mercury    Nitrous Acid 
 Weaker  Weaker 
 

199 Ibid, f 7. 
200 Fordyce 1765, f 61. 
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Vitriolic Acid unites with ye mercury formg Turpeth Mineral 

Nitrous Acid unites with ye fixed fossil alkali formg Cubic 
Nitre”.201 

Cullen’s earlier criticisms of Fordyce’s ideas had been (probably rightly) harsh, 

but Fordyce did not give up on the idea of a generalised rule that would enable 

the prediction of all compound affinities.   It is interesting to note here that 

although Fordyce happily appropriated Cullen’s cross diagrams, amended for 

his own purposes, Cullen’s ‘law’ of compound affinities made no appearance in 

Fordyce’s teaching.  Instead, he offered his own general law, that where the two 

weaker affinities coincide, then that axis of reaction would never occur.  This 

conformed with the original corollary of 1759, and applied to all the four 

instances that Fordyce had presented there.  Thus by 1765 he was able to 

generalise the previous four instances to just a single one, accompanied by his 

new rule.   

For both Cullen and Fordyce, affinity theory formed a useful and important part 

of chemistry, and a technique for applying the table to more complex cases was 

an important part of their theories.  It was apparent that in many cases such 

affinities were underdetermined by the theory.  While the affinity table could be 

used to predict the results of certain combinations of complex substances, its 

one-dimensional form limited its application; and both Fordyce and Cullen 

appreciated the need to rectify this.  One of Fordyce’s 1760 letters in response 

to Cullen’s criticism appears to be the first instance yet known of the conjectural 

(as Duncan calls it) allotment of numbers to signify the relative strength of 

affinities.  The figures were selected to reflect the empirically justified relations 

between affinities, but as they were intended to exhibit a single set of relations 

there was no implication that these were the ‘measure’ of affinities.  In his letter 

to Cullen he offered three sets of conjectural figures applicable to a particular 

combination of substances under the increasing application of heat (see 4.1.1 

below).  This type of conjectural quantification of affinities became more 

familiar towards the latter end of the century, with both Fourcroy and Guyton de 

 
201 Ibid, f 60. 
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Morveau in France producing figures for a range of affinities.202 These 

chemists assigned notional numbers to affinities on the basis of the series set out 

in the affinity tables.  They were not, properly speaking, quantifications, but it 

was hoped that they would provide a priori indications of the results of complex 

operations.  Crosland has suggested that Black was responsible for the first use 

of numbers to denote relative affinities (contradicting Wheeler and Partington, 

who had given the honour to Elliot).203 But the MS that contains Black’s single 

use of figures postdates Fordyce’s usage by a full ten years and therefore it 

seems that the laurels are due to Fordyce.    

Fordyce clearly believed that quantification of affinities was fervently to be 

desired, and that it would benefit the status of chemistry itself.  He explained his 

thinking in another letter to Cullen: 

“I think it would be of use to introduce sometimes mathematical 
reasoning into chymistry where it will admit of it as by that 
means some curious propositions might be found out and it 
would give it more of the air of a science.”204 

However, neither he nor Cullen seem to have pursued the idea of empirically 

justified quantification, or even a full system of conjectural quantification.  

Instead, they both envisaged further inductive generalisation to elicit a law (or 

laws) of comparison between the affinities in the table, imposing relationships 

between columns, and perhaps between vertical cells within a column.  

Fordyce’s nine experiments that he marshalled to prove his contentions were 

judged by Cullen to be insufficient, but not inappropriate, and Cullen suggested 

that such an induction (presumably on a larger scale) might eventually prove to 

be of use.  Sadly there is no evidence to tell us what Cullen might have thought 

of Fordyce’s 1765 rule, but as it made no appearance in Fordyce’s lectures of 

the 1780s it was presumably proved to be as underdetermined as his original 

theory. 

Over twenty years after the exchange of letters set out here, a new relation 

between experiment and affinity theory was set forth.  In contrast to Fordyce’s 

 
202 Duncan  1996, 198-9. 
203 Crosland 1959, 83. 
204 Fordyce 1759-1774, letter 3. 
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purely theoretical algebra and his equally theoretical conjectural quantification 

of affinities this attempted to experimentally measure affinities.  Although 

affinities were not observable, their effects were, and this endeavour hung on 

the identification of an observable measure that could reasonably be assumed to 

be proportional to the affinities acting. 

3.3.3 Quantification: Richard Kirwan’s Saturation Proportions 
In his 1766 course, Cullen pointed out a contradiction between saturation 

proportions and affinity.  During a lecture on volatile vitriolic acid, he explained 

that: 

“The volatile goes further in saturating alkalis than the fixed; for 
the fumes of a pound of burning sulphur, applied to a cloth 
impregnated with alkali, as in the case mentioned above, will 
convert more of this alkali into a neutral than will 16 ounces of 
the fixed [vitriolic acid].  It has a very weak adhesion, less than 
any acid, to alkalis; therefore may be dislodged by either of the 
four we have mentioned:”205 

There was no correlation between the saturation quantity of an alkali by an acid 

and the strength of affinity.  Less volatile vitriolic acid was required to saturate 

the alkali than vitriolic acid.  But the fact that the volatile acid could be 

‘dislodged’ by either vitriolic (fixed), nitrous, muriatic or vegetable acids 

showed that its affinity was weaker.  Cullen’s observation exhibits an 

interesting attitude to quantity and measurement.  He compared the very vague 

amount of volatile vitriolic acid (the result of burning a pound of sulphur) 

required to combine with an (unmentioned) amount of alkali with the quantity 

of alkali that united with 16 ounces (another pound) of vitriolic acid.  This 

rather ad hoc measurement typifies the difference between observation and 

experiment.  While Cullen did quote some measurments, his language, mixing 

figures with relations, suggests that this is a phenomenon he has noticed in the 

course of performing other operations rather than experiments carried out 

specifically in order to ascertain the quantities of each acid and alkali that 

combine together.  Such a lack of interest in quantification perhaps places 

Cullen very firmly in his time, indicating the limitations of his chemistry.  On 

 
205Cullen 1766, Lecture 51. 
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the other hand of course, we must remember the pedagogical context – 

statements of exact quantities would probably be both inappropriate and 

unnecessary in a lecture environment.  Cullen’s discipline was primarily 

qualitative; the chemist manipulated the natural inclinations of bodies to 

produce new substances with particular properties or qualities.  From this 

perspective, perhaps there was no clear use for measurement. 

In contrast, Kirwan pursued the idea of saturation proportions as an indicator of 

affinity through much of his life.  In 1782, he was awarded the Copley Medal by 

the Royal Society for his work on the potential for measurement of affinities 

through the comparison of saturation quantities.  Three papers were published in 

the Philosophical Transactions from 1781-3 setting out his experiments and 

calculations,206 and he continued to experiment and amend his figures for many 

years.207 His work has been seen by some historians as an essential move 

towards Richter’s law of reciprocal proportions, and eventually to Daltonian 

atomism.208 However, the details of his theorising have so far been 

neglected.209 

Although by his third paper Kirwan was using saturation proportions as 

measures of affinities, this was not his original intent.  This had been to measure 

the specific gravities of two substances and compare them with the specific 

gravity of their compound.  He found that in most cases there was a difference 

between the specific gravity expected of the compound substance (being the 

sum of the specific gravities of the ingredients) which he called the 

‘mathematical specific gravity’, and the specific gravity of the compound as 

found by ‘actual experiment’.210 Often, he argued, the specific gravity of the 

compound “is greater without any diminution of the lighter ingredient”.211 He 

went on to assert that: 

“This increase of density must then arise from a closer union of 

 
206 Kirwan 1781, Kirwan 1782, Kirwan 1783. 
207 Kirwan 1790. 
208 E.g. Kim  2003, Bergman  1970, Introduction and Guerlac 1968. 
209 Althugh, Scott  1979 does explore his work in some depth. 
210 Kirwan 1781, 8. 
211 Ibid, 8-9. 
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the component parts to each other than either had separately with 
its own integrant parts; and this more intimate union must 
proceed from the attraction or affinity of these parts to each 
other.”212 

The idea that one of the actions of affinity was to increase the density of the 

compound substance was itself not particularly novel.  In 1765 the same notion 

had formed an important part of Cullen’s speculative theory of heat, fire and 

phlogiston.213 Cullen had produced tables showing the combinations of 

substances that produced heat and cold.214 From these he argued that heat was 

produced only in cases of ‘proper mixture’ when substances combined by the 

action of affinity and their total bulk was reduced (in Cullen’s terms, a 

condensation).     

Kirwan was later to argue that this same ‘condensation’, the difference between 

the mathematical specific gravity and the actual, experimentally determined 

specific gravity might provide a measure of affinity.  There is no indication in 

Cullen’s account of his hypothesis that he considered measurement of affinity as 

potentially viable.  Even in his explanation of the generation of heat in chemical 

combination, Cullen appeared uninterested in attempting to measure the 

temperatures of the mixtures, or to quantify the amount of heat produced.  We 

have already had cause to note this qualitative bias to Cullen’s philosophy, and 

this confirms it further. 

Kirwan’s friend Elliot also gave some thought to the relationship between the 

density of substances, combined and uncombined, and their affinities.  In his 

1780 Philosophical Observations he argued that in a combination of oil of 

vitriol and water: 

“the phlogiston of the water will therefore be laid hold of by the 
acid, and that still retaining the water, a close and intimate 
connection, or strong attraction, or cohesion will take place 
between the particles of the acid and those of the water, so that 
they will be drawn into lesser dimensions.”215 

212 Ibid, 9. 
213 Cullen 1765, MS 1920.  See Taylor 2006. 
214 Some of his observations were published in Cullen 1756. 
215 Elliot  1780, 142. 
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The lack of quantified justification for Elliot’s assertion suggests that it was, for 

him, a matter of simple logic.  For Kirwan too, the assumption seems to have 

been intuitive.  He began his experiments on combination expecting that 

measurement of the ‘condensation’ of the ingredients being combined would 

provide a measure of the affinity between them.  Kirwan believed that from 

Priestley’s discovery of ‘marine acid air’ he would be able to ascertain the 

quantity of pure acid present in spirit of salt of any specific gravity.   From this, 

he hoped to discover the quantity of such pure or ‘real’ acid contained in any of 

the common acids, and thus the amount combining in any salt.  His hypothesis 

depended on an assumption that: 

“the same quantity of all the acids was requisite for the saturation 
of a given quantity of fixed alkali; for if such given quantity of 
fixed alkali might be saturated by a smaller quantity of one acid 
than of another, the conclusion fell to the ground.”216 

Kirwan’s first few experiments ascertained the specific gravity of the ‘pure’ 

marine acid when combined with various quantities of water.  He proceeded to 

work out the correct quantities and specific gravities of spirit of salt that would 

saturate a known amount of vegetable fixed alkali.217 With a little further 

calculation he was able assign proportions to the quantities of acid, fixed alkali 

and water in 100 gr of the resulting salt.  Assuming that this amount of alkali 

would be saturated by a similar quantity of ‘real acid’, he applied these figures 

to combinations of alkali with nitrous acid and vitriolic acid.  After all these 

experiments and calculations, he concluded firstly that: 

“fixed vegetable alkalies take up an equal quantity of the three 
mineral acids, and probably of all pure acids … it should 
therefore seem, that alkalies have a certain determinate capacity 
of uniting to acids, that is, to a given weight of acids; and that 
this capacity is equally satiated by that given weight of any pure 
acid indiscriminately.  This weight is about 2.35 of the weight of 

 
216Kirwan 1781, 10. 
217 Kirwan’s explanations of how he came to his figures is confusing, apparently relying on an assumption 
that the difference between the specific gravities of the mixture and the heavier ingredient was equivalent 
to the volume of that ingredient, and similarly that the difference between the specific gravities of the 
lighter ingredient and the mixture was equivalent to the volume of that ingredient.  The accuracy of his 
mathematics being nevertheless irrelevant for this study, I have assumed that he, at least, knew what he 
was doing. 
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the vegetable alkali.”218 

This conclusion is not entirely surprising when it is borne in mind that it was a 

fundamental assumption of Kirwan’s calculations that the same amount of alkali 

united with the same amount of ‘pure’ acid whichever particular acid was being 

used.  Nicholson later cited this tautological assumption as one of the 

methodological problems that he perceived in Kirwan’s theory.219 

He produced tables comparing the mathematical specific gravity of his dilute 

acids with their actual specific gravities.  By subtracting the former from the 

latter, he produced a figure for ‘accrued specific gravity’, i.e. the increase in 

density of the dilute acid due to the affinity between the pure acid and the water 

from which he derived figures for the affinities of the acid for the water and the 

water for the acid.  This data led him to claim that: 

“the attraction, …of that part which is in the smallest quantity to 
that which is in the greater, is at its maximum when the accrued 
density is at its minimum, but not reciprocally; and hence the 
point of saturation is probably the maximum of density and the 
minimum of sensible attraction of one of the parts.”220 

It would seem that Kirwan had some speculative notions about how affinities 

were operating in the dilute acids, and these influenced the way he drew up the 

columns for affinities in each table.  He apparently believed that the affinities 

between acid and water were not quantitatively reciprocal, but that the 

substance in excess at any one dilution had less affinity for the other substance.  

Some notion of a relationship between proportional quantity and affinity was 

clearly present in Kirwan’s thinking at this point.   He concluded the first paper 

by asserting: 

“Hence no decomposition operated by means of a substance that 
has a greater affinity with one part of a compound than with the 
other, and than these parts have to each other, can be complete, 
unless the minimum affinity of this third substance be greater 
than the maximum affinity of the parts already united.  Hence few 
decompositions are complete without a double affinity 

 
218 Kirwan 1781, 33. 
219 Nicholson  1795, 163. 
220 Kirwan 1781, 33-34.   Kirwan’s argument here is confusing as his statement does not seem to 
accurately represent the data in his table for nitrous acid.  Nor is it clear where the figures that he included 
in his tables for the affinities between the acid and the water actually came from. 



174 

intervenes; and hence the last portion of the separated substance 
adheres so obstinately to that to which it was first united, as all 
chemists have observed.”221 

Assuming that at this point Kirwan was still pursuing his idea that affinity was 

proportional to the accrued density of the combined substances, he seems to 

have been saying that as there was a maximum density, there was a maximum 

affinity.  If a third substance be added, with sufficient attraction for the acid, 

say, to combine with it, as the acid was removed from combination with the 

water, and the proportion remaining in combination with the water decreased, 

the affinity between the acid and the water would increase to a point where 

eventually the decomposition would stop, reaching a sort of equilibrium of 

affinities.  This probably reflects his observations that when separating 

combined substances by affinity, the operation rarely proceeded to completion.     

Kirwan only produced tables showing the the affinities of nitrous and vitriolic 

acids for water using this method.  He stated at the start of the first paper that he 

had been ‘undeceived’ about the relationship between accrued density and 

affinity.222 It is unclear at what point he decided that his idea was erroneous; 

perhaps it was the results of these tables that had led to his rejection of the idea.  

He claimed in his third paper that he had been led “unexpectedly”223 to his new 

theory of the relationship between affinities and proportions.  The rhetoric of 

gentlemanly natural philosophy is here intruding on Kirwan’s tale – he 

presented his new laws as a truly empirical discovery, his experiments having 

discredited his own assumptions about affinity.  Presumably, his new 

discoveries should thus be regarded as correspondingly more valuable to the 

scientific community.  In any event, he moved apparently seamlessly into his 

new method of quantifying affinities on the basis of the proportion of each 

substance in combination.  This adopted the same practical methodology as he 

had been using throughout to ascertain the proportions of water and acid in 

acids of various specific gravities. 

Kirwan’s second paper, read to the Royal Society nearly a year and a half after 

 
221 Kirwan 1781, 34. 
222 Kirwan 1781, 9. 
223 ibid, 38. 
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his first, followed similar methods to ascertain the combining proportions of the 

common alkalis with pure acids.224 It also set out at some length Kirwan’s 

conjectures concerning phlogiston, including his assertion that phlogiston in its 

free and uncombined state was in fact inflammable air.225 As this paper was 

primarily concerned to rebut the anti-phlogistic claims of Lavoisier, there is no 

reference to affinities, and I shall therefore not discuss its contents here. 

The third paper, read to the Royal Society later that same year, was concerned 

with the quantification of affinities through the comparison of the proportions of 

substances uniting in combination.226 Following the same procedures, Kirwan 

calculated the quantities of the various acids that would combine with each of 

the metals (including iron, copper, tin, lead, silver, gold (in aqua regia alone), 

mercury, zinc, bismuth, nickel, cobalt, regulus of antimony and regulus of 

arsenic).  He pointed out the practical uses that were likely to accrue from a 

more precise knowledge of the combining proportions of metals and alkalis and 

acids in this way and continued: 

“the end which of late I had principally in view, was to ascertain 
and measure the degrees of affinity or attraction that subsist 
betwixt the mineral acids, and the various bases with which they 
may be combined, a subject of the greatest importance, as it is 
upon this foundation that chymistry, considered as a science, 
must finally rest.”227 

Like Fordyce, Kirwan saw affinity theories as the basis for the discipline, but he 

admitted that problematic anomalies were coming to light.  He echoed Bergman 

in proposing that these exceptions should be closely investigated, and that rules 

should be laid down that made allowances for “the action of these antagonist 

powers”.228 His quantified affinity theory was intended to solve these very 

problems.   

Kirwan emphasised the difference between the law of simple affinity, operating 

between three substances in competition, and more complex cases like double 

 
224 Kirwan 1782. 
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226 Kirwan 1783. 
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decompositions.  The latter, he asserted in a familiar lament, operated in many 

cases that seemed to be single attractions.229 He offered an example: 

“vitriolic acid unites to a mild fixed alkali, and expels the fixed 
air from it, yet it does not necessarily follow, that the vitriolic 
acid attracts, or is attracted, by the alkali more strongly then the 
aerial acid; for though there appears here only a single 
decomposition, yet in reality a sort of double decomposition 
takes place, the vitriolic acid giving out its fire to the aerial, while 
the aerial resigns the alkali to the vitriolic; … therefore, to 
ascertain the quantity and force in this matter, it is necessary to 
ascertain the quantity and force of each of the attractive powers, 
and denote it by numbers.”230 

As Fordyce had perceived, a method of predicting the results of complexes of 

competing affinities would assist with such difficulties, but such a method was 

as yet a desideratum.  Kirwan’s introduction of ‘fire’ into these combinations 

will be discussed further in the next chapter, but it is apparent from his example 

that one of the powers that disturbed the rules of affinity was the power of fire 

(and perhaps its affinities) to complicate any chemical operation.  He argued 

that a resolution of this problem would lie with the quantification of affinities.  

He acknowledged the efforts of Guyton and Wenzel in this direction, but 

pointed out that Guyton’s method could not be “generalized”.  Kirwan 

anticipated Nicholson’s criticism of Wenzel’s method, pointing out that his 

results contradicted certain “well known” affinities: 

“Tin and regulus of antimony are most rapidly attacked by this 
acid [spirit of nitre], lead and copper much more slowly; yet it is 
well known, that its affinity to lead is much stronger than its 
affinity to tin, and its affinity to copper greater than to regulus of 
antimony.”231 

The “well known” affinities in this case were the affinities of the metals to spirit 

of nitre (by this time, something of an old chestnut) based on displacements.  

Kirwan resorted to similar tactics in his pro-phlogistic arguments, where he 

contrasted the affinities implied by Lavoisier’s theory with the latter’s affinities 

 
229 Ibid, 36. 
230 Ibid. 
231 Ibid, 37. 



177 

of oxygen.232 However, in this case Kirwan was on rather slippery ground.  

When Fordyce had sent his paper on compound affinities to Cullen, he included 

a new column for nitrous acid which Cullen incorporated into his own affinity 

table.233 This column, which Fordyce claimed was based on his own 

experiments, assigned a greater affinity to tin than to lead, and a greater affinity 

to antimony than to copper.234 It is true that Cullen was not entirely happy with 

the column (although he included it in his affinity table, he retained his original 

column and modified Fordyce’s), but even in the modified version, antimony 

appears above copper, and the affinities of tin and lead for nitrous acid are 

adjudged to be equal.  Fordyce’s affinity table thus flatly contradicted Kirwan’s 

statement.  This discrepancy illustrates the general uncertainties that dogged the 

ordering of affinities, and that Kirwan’s “well known” affinities were less 

certain than his rhetoric implied.   

Kirwan’s attack on Wenzel was not entirely consistent.  According to his first 

paper, the eighteen days required for marine acid air to be absorbed by the water 

had led him to suspect that “the attraction between them was not very 

considerable.”235 Having refuted Wenzel’s assumption that the time taken for 

dissolution reflected the strength of the affinity at work, it appears that Kirwan 

made similar assumptions.  Inconsistency is, of course, no crime, but it does 

serve to demonstrate that many of the components that made up each 

individual’s theory were the result of intuitive assumptions that explained 

empirical observations.   

The key to Kirwan’s theory were his new laws of affinity: 

“First, That the quantity of real acid, necessary to saturate a given 
weight of each basis, is inversely as the affinity of each basis to 
such acid. 

Secondly, That the quantity of each basis, requisite to saturate a 
given quantity of each acid, is directly as the affinity of such acid 

 
232 Kirwan  1968, 44. 
233 Fordyce  1759  The column is included with this MS as a neatly cut out strip of paper showing the 
affinities of nitrous acid. 
234 Fordyce 1759-1774  Fordyce gives no details of the experiments he carried out when formulating this 
column. 
235 Kirwan 1781,12. 
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to each basis.”236 

These two laws were intended to fit two different experimental scenarios, the 

first when the comparison was between quantities of acid and the quantity of 

base remained constant, and the second when the quantity of base varied while 

the quantity of acid was constant.  Kirwan was a man who habitually thought in 

ratios, about relationships and proportions, rather than absolute quantities, and 

this facility enabled him to convert affinities into apparently quantified and 

quantifiable ratios. His two laws can also be expressed as two proportional 

equations, thus: 

basistoacidaffinity
acidQuantity
basisQuantity

acidtobasisaffinitybasisQuantity
acidQuantity

≈

≈

.2

1.1

It is clear that in fact the two affinities, base to acid and vice versa, would be the 

same.  However, Kirwan’s separation of the affinities in his laws suggests that 

the distinction was important to him.  It perhaps implies that he envisaged the 

affinity as arising in consequence of the acid’s activity rather than that of the 

base.  His two laws entailed an asymmetry between acid and base: assuming a 

fixed amount of base, the more acid required for saturation, the less the affinity 

of the base for the acid; on the other hand, assuming a fixed amount of acid the 

more base required for saturation, the greater the affinity of the acid for the 

base.  In even more general terms, more acid meant less affinity, and more base, 

more affinity.  The acid is implicitly characterised as more active or aggressive 

than the base.   There is a suggestion that if the acid had a great affinity for a 

base, it had a greater capacity to ‘imbibe’ it.  Kirwan was particularly interested 

in ideas of differing capacities of bodies, most commonly for heat or fire, and 

perhaps this influenced his thoughts on the relationship of combining 

proportions to affinities.  One of Nicholson’s biting criticisms of Kirwan’s 

theory was of his unexplained decision to embed this apparently arbitrary 

inequality therein: 

“the fundamental assertion, that the attraction of an acid to its 
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basis is proportionate to the quantity it demands for saturation, is 
so far from being founded upon any argument, that it is evidently 
nugatory.  The attraction of an acid to its basis cannot but be the 
same as that of the basis to the acid; because action and re-action 
are equal.”237 

As Nicholson pointed out, if the relation of the ratios to the affinities were 

reversed, so too would be the affinities.  Kirwan presumably chose the 

particular combination that he did because it provided a closer fit with the ‘well 

known’ relations of affinities as shown in conventional affinity tables.  

Later in the 1783 paper, Kirwan expanded his quantitative rules, restating his 

conclusion drawn from his earlier investigations into specific gravity that: 

“If an acid be united to less of any basis than is requisite for its 
saturation, its affinity to the deficient part of its basis is as the 
ratio which that deficient part bears to the whole of what the acid 
can saturate.”238 

As a particular quantity of an acid’s affinity for a basis is satisfied by the 

addition of more and more basis, so its affinity for the remainder of the basis 

necessary for its saturation would decrease.  At the same time, however “its 

affinity to the retained part is as its whole affinity”239 This notion too is 

familiar, although in a less mathematically formal statement, from Kirwan’s 

notes to Scheele’s Chemical Observations.240 As phlogiston was removed from 

combination with nitrous acid, changing nitrous air into nitrous vapour, the 

smaller proportion of phlogiston remaining was attracted more strongly by the 

acid.241 Quantitative proportion was clearly inextricable from affinity in 

Kirwan’s theory.  A similar component appeared in William Keir’s dissertation, 

De Attractione Chemica citing one of Geoffroy’s experiments that showed that 

heat could extract only three ounces of vitriolic acid from five pounds of Alum 

although much more was known to be present.242 Kirwan did not offer any 

information on the source of his convictions, although it seems to have been a 

 
237 Nicholson  1795, 164. 
238 Kirwan 1783, 39. 
239 Ibid, 40. 
240 Scheele 1780. 
241 Ibid, 211. 
242 Duncan 1967, 152 



180 

phenomenon, as he said in his first paper, that “all chemists have observed”.   

Kirwan intended his empirically determined figures for affinity to be applied to 

complex mixtures of substances.  Like Fordyce, he opposed those affinities that 

would tend to resist decomposition which he called quiescent affinities, to those 

that would promote decomposition, which he called divellent affinities. So, to 

take his own example: 

“if the solutions of tartar vitriolate and nitrous selenite be mixed, 
a double decomposition will take place, a true selenite and nitre 
being the result of such mixture. 

Quiescent Affinities Divellent Affinities 

Vitriolic Acid to 
Fixed veget alkali 

215 Vitriolic acid to 
calcareous earth 

110 

Nitrous acid to 
calcareous earth 

96 Nitrous acid to 
vegetable alkali 

215

Sum of the 
Quiescent Affinities

311 Sum of the 
Divellent 

325

Hence a double decomposition must necessarily happen.”243 

Cullen’s cross diagrams were no longer needed in this system; they were 

replaced with simple mathematical comparisons.  More emphasis was placed on 

the quantified affinities of each body in a mixture than on the dynamics of 

chemical combination.  Although each set of affinities competed in a single 

stage, there was still scope for two stage processes.  Acknowledging an apparent 

inconsistency, where the quiescent affinities were 233 and the divellent merely 

223 and yet decomposition had taken place, Kirwan argued firstly that he had 

been unable to replicate the anomalous experiment himself, and secondly that: 

“if it does succeed at all, the decomposition must arise from a 
large excess of acid in the alum, which acted upon and 
decomposed the common salt.”244 

The excess of acid in the alum would act alone, by single elective affinity, to 
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decompose the common salt, in a process with a similar mechanism to that set 

out in section 3.2.3 above. 

Kirwan continued his work on affinities in his Elements of Mineralogy.245 Here, 

practical difficulties impinged on his work.  As he complained, 

“we are … obliged to have recourse to the dry way, which is 
much more imperfect: for as they are all reduced by fire to a state 
of liquidity, they differ but little in specific gravity, and can 
difficultly be examined while in fusion, when cold they are all 
found so mixed that it is not possible to judge of their affinities 
by the way of preference and exclusion”246 

He therefore proposed to assess the affinities between earths 

“as we do of that of water to salts, by the greater or the lesser 
quantity which one of them considered as a menstruum, can take 
up of another or what proportion of the one determines the fusion 
of another”247 

In this way, Kirwan was able to produce a small affinity table showing the 

affinities between the different types of earth.  In this case his table was of the 

traditional, qualitative type, with five columns showing the affinities of lime, 

magnesia, argil, silex and calx of iron.  Much of his data was gleaned from the 

experiments of others (he quoted particularly the proportions observed by the 

German chemist Achard) and the resulting mixture of proportional 

measurements was probably insufficiently consistent to provide quantified 

affinities. 

In spite of his receipt of the Copley Medal for his three papers, Kirwan’s figures 

for affinities were not received with immediate acclaim.  They were included in 

the second edition of Elliot’s Elements and Fourcroy too apparently accepted 

them, including Kirwan’s law in his 1800 list of ten laws of affinity.248 Pearson 

also included them in his Translation of the Table of Chemical Nomenclature249 

alongside more conventional affinity tables.  Pearson admitted that the tables 
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did “not exhibit numerically, as was once supposed, the precise forces of 

chemical attractions” but argued nevertheless that they were of great assistance 

in his pedagogical efforts:   

“I have long found these tables of such utility in both teaching 
and investigating the composition of substances, as to make me 
deeply lament that similar determinations had not been obtained 
of the chemical attractions of a much greater number of 
substances.”250 

These examples were not followed by many.  Fordyce was positively scathing 

in his lectures on the subject of Kirwan’s notion of real acid, calling it a ‘vulgar 

prejudice’.251 James Keir doubted many of the premises on which Kirwan 

based his reasoning, writing to Priestley in 1788: 

“You will find … my strictures on Mr KIRWAN’s investigation 
of the quantity and density of real acid in acid liquors, which, I 
think, is founded on false principles, but from which he has 
drawn numberless conclusions, and others have also reasoned 
from them as admitted truths, and consequently abundance of 
false reasoning introduced.”252 

Nicholson, as we have seen, preferred to include Guyton’s  conjectural 

numerical affinities in his Dictionary.253 He did explain Kirwan’s reasoning at 

length in the entry for Attraction, but it seems to have been included mainly in 

order that it might be refuted point by point. Nevertheless, he seems to have 

remained hopeful that with greater methodological care and experimental 

corroboration, future endeavours along similar lines might well meet with 

greater success: 

“it might perhaps have appeared unnecessary to enter into any 
discussion of … [Kirwan’s] attempt … if it did not seem highly 
probable that the numerical expressions of the powers of 
chemical attraction, whenever they shall be obtained, will be 
derived from some method dependent on the general facts he 
then undertook to explain.”254 

250 Ibid, 122. 
251 Fordyce 1788, Vol 2, Lecture 36th, November 24th, 1788. 
252 Moilliet 1768, 83. 
253 Nicholson 1795. 
254 Ibid, 164. 
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Kirwan’s notion of ascertaining combining proportions was apparently of 

interest to many, but his hypothesis that these figures could be used to quantify 

affinities was less convincing.255 Not all his efforts were ignored, however.  

James Parkinson’s Chemical Pocket-Book of 1800 adopted Kirwan’s suggestion 

that the ordinary qualitative affinity tables might be more accurately labelled as 

‘tables of precipitations’.  Kirwan had specifically advocated such a change in 

conceptualisation,256 arguing that, particularly in the case of the affinities of 

acids to metals: 

“the common tables, which postpone metallic substances to all 
others, are in reality just; they only require a different 
denomination, being in fact tables of precipitation rather than of 
affinity, as far as they relate to metallic substances, expressing by 
their order, what metallic substances precipitate others from the 
different acids.”257 

Parkinson also adopted Kirwan’s terminology of quiescent and divellent 

affinities, but he did not, however, choose to include Kirwan’s quantified 

affinities in his work, preferring instead Pearson’s lengthy “table of 

precipitations”.258 

3.4  Conclusion: Diversity and Affinity 
This chapter has illustrated the surprising lack of consistency amongst affinity 

theories.  But at the same time it has shown that a broad structure can be 

discerned amongst this diversity.  Components were formulated in order to 

answer questions about how to utilise affinity theories.  The classification of the 

miscellany of components into component-types illustrates that in spite of the 

differences between them, there was a tacit similarity of intent.  Theories are, as 

any good historian of science knows, artificial constructs, artefacts of human 

ingenuity, and as such humanity is (in theory at least!) inextricable from 

hypothesis.  The various components I have set down here were linked by the 

 
255 Duncan  1996,  209-210. 
256 Kirwan’s suggestion may have been partly prompted by a sight of Gellert’s Chemical Metallurgy which 
was translated anonymously into English in 1776.  See Gellert  1776. This included “A Table which shews 
how different bodies dissolve one another” (185) which looked like the conventional tables of affinity, but 
with the substances that were dissolved with most difficulty at the top of each column directly beneath the 
header substance, and those that dissolved with ease at the bottom.   
257 Kirwan 1783, 53. 
258 Parkinson 1800, 217-229. 
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commonality of purpose shared by their creators.   

I have endeavoured also to trace within the pattern of diversity some of the links 

and connections of pedagogy.  It is evident that while some components and 

even what might be called sub-components were passed whole and entire from 

pedagogue to student, other components were replaced by the student according 

to preference.  Different students retained different components, and where they 

rejected Cullen’s components, they did not always replace them with the same 

alternative.  Cullen’s students did not just unquestioningly adopt his theory 

wholesale; neither did they always follow his advice.  Fordyce, in particular, 

seems to have adopted a magpie attitude, picking and choosing components and 

techniques from his master while at the same time ensuring that his original 

thoughts remain firmly embedded in his theory.  The pedagogical pyramid thus 

reveals its own pattern of adoption and rejection. 

Perhaps the most obvious point of similarity that has became evident through 

this chapter is the foundational status of affinity theories.  They were believed to 

be important, and known to be useful.  There was a widespread expectation that 

the future of chemistry would be founded on an improved understanding of 

affinities.  This is a theme that is pursued further in the next chapter, which 

examines the ‘supplementary’ component types that were formulated to deal 

with a very particular set of problems, the effects of heat on affinities. 
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1. <marine acid> <vitriolic acid> 
 

<mercury> <silver> 
 

2. <marine acid> <nitrous acid> 
 

<fixed alkali>  <silver> 
 

3 <vitriolic acid> <nitrous acid> 
 

<fixed alkali> <silver>  
 

4 <vitriolic acid> <marine acid> 
 

<earth of alum> <silver> 
 

Figure 3: Diagrams of Double Elective Attraction from Cullen 1766, Lecture 23 
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Figure 4: Diagrams of Chemical Combinations, Fordyce 1765, Plate 3rd 
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4. Heat: Work in Progress 

This chapter explores another class of component-types.  These were only 

gradually included in theories, prompted by a variety of factors, from a concern 

to preserve the utility of affinity theories, to developments that were, initially at 

least, external to the doctrine of affinity and, in many cases, outside chemistry 

itself.   

Where the previous chapter drew predominantly on pedagogical sources, most 

of the components set out below are culled from advanced sources such as the 

pages of the Philosophical Transactions, private research papers, or polemical 

publications.  These components, responses to new empirical and theoretical 

information, assumed the doctrine of affinity to be foundational to chemistry.  

In particular consequence of the pedagogical use to which affinity theories were 

put in Britain, new explanations were set forth in terms of the doctrine of 

affinity.1 Affinity theories thus began to reflect and reinforce the invisible 

boundaries around the discipline.    Examples of these ‘supplementary’ 

component-types can be found if we consider the place of heat in 18th century 

natural philosophy.  

Geoffroy had not included any component dealing with heat in his 1718 affinity 

theory.  Nevertheless, it had long been appreciated that heat affected chemical 

combination; indeed, the traditional agent of the chemist was fire.  Nicknames 

like ‘philosophers by fire’, ‘sooty empirics’, even ‘puffers’,2 emphasised their 

near-permanent station beside the furnace.3 Operations like distillation and 

sublimation had been used for centuries to ‘resolve’ complex substances into 

their principles or constituents.  In his efforts to separate and extract active 

‘essences’ from complex natural bodies, fire, the “grand agent in the resolution 

of bodies”,4 was the chemist’s friend.   

I have already noted that Cullen’s chemistry relied on the agencies of affinity 

 
1 On the crucial relation between training and scientific practice, see Galison and Assmus 1989. 
2 Read  1995, 79. 
3 A recent work covering the ‘history of chemistry from alchemy to the atomic age’ was titled “Creations 
of Fire”, presumably in homage to the earliest methods of chemistry.  Cobb and Goldwhite  2001. 
4 Lewis  1753, 7. 
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and fire, but the continuing importance of heat to the practice of chemistry in 

the 18th century is also evident from the variety of furnaces available.  Lewis 

listed five common types (the open fire, sand furnace, melting furnace, still, and 

athanor)5 each designed to produce a particular range of temperatures.  Cullen 

devoted four of his 1766 lectures to different types of furnace6 and Black 

developed one to his own design.7 The main method of controlling the intensity 

of heat was the choice of furnace employed, although this was being refined by 

technological improvements and theoretical advances.  Lewis assimilated notes 

from Boerhaave’s lectures in his Course of Practical Chemistry which 

converted ‘degrees of fire’ measured in numbers of coals of charcoal or the 

colour of the furnace into degrees of Fahrenheit’s thermometer.8 Nevertheless, 

imprecise phrases such as sand heat, red heat and melting fire, many of which 

were still in use at the end of the century, are indicative of just how blunt an 

instrument fire was.   

Traditionally, heat could ‘raise’ substances, separating the volatile from the 

fixed, as in distillation and sublimation.  This physical effect of expansion was 

well understood and was closely tied into affinity theory.  I have already 

mentioned that Cullen insisted that for combination to take place one or both 

substances must be fluid, and some variant of this claim was included as a 

component of most affinity theories.  This necessary fluidity was achieved by 

solution or fusion; the former often, and the latter always, requiring the 

application of heat.  Thus recalcitrant substances that were reluctant to combine 

when cold could be induced to unite by the addition of heat.  But by the 1760s it 

was becoming widely acknowledged that the presence or absence of heat also 

disrupted the way in which affinities acted.  In chemical operations the addition 

(or removal) of heat seemed to change the affinities of bodies, and this in turn 

modified the outcome of combinations.  The effects of heat on mixtures were 

predictable only through long experience, and subject to no known universal 

law.  As Nicholson noted, 

 
5 Ibid, 12. 
6 Cullen 1766, Lectures 40-43. 
7 One of Black’s furnaces cost Joseph Priestley £3 13s 6d. Anderson 2005, 36. 
8 Lewis  1746, 5-6. 
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“the variations of temperature, … tend greatly to disturb the 
effects of elective attraction.  These causes render it difficult to 
point out an example of simple elective attraction, which may in 
strictness be reckoned as such.”9

Although these effects were bewildering, chemists seem to have been generally 

sanguine about the possibilities of rationalising them.  Indeed Nicholson airily 

predicted that: 

“doubtless, by separating their parts, it will not be difficult to 
explain the effect of heat upon the change produced in bodies by 
their elective attractions.”10 

In spite of his optimism, Nicholson seems to have eschewed any attempt to 

systematise the chemical effects of heat.  There were, however, a few 

venturesome philosophers who did attempt to generalise and clarify these 

phenomena.  They tried to preserve the status of their affinity theories as useful 

tools by adding new components that might enable them to predict the results of 

the conjunctions of heat and affinities.   

Even if heat was not applied by the chemist, certain operations were apparently 

capable of producing perceptible heat or cold, e.g. the slaking of quicklime in 

water, which produced a great deal of heat.11 Newton had speculated that this 

phenomenon was due to the speed with which the particles of each substance 

approached each other in consequence of their mutual attraction.12 With 

Black’s work on specific and latent heats13 a material view of heat became 

predominant in natural philosophy.14 Where such a material heat was 

postulated, it was often considered as a constituent of chemical combinations, 

capable of expulsion like any other substance.  Black and Irvine’s doctrines 

were often seen as endorsing the material ontology as heat capacities could be 

seen as the tendencies of heat to combine with ordinary matter.  Perhaps heat’s 

 
9 Nicholson 1795, 158. 
10 Nicholson 1792, 75. 
11 This particular instance of the generation of heat was a common interest for chemists of both the 17th and 
18th centuries, discussed and explained in various ways by Boyle, Hales, Lemery, Boerhaave amongst 
others.  See Dyck  1967, chapters II and IV. 
12 Newton 1979, 377-378. 
13 On the history of specific and latent heats, see Scott 1981, Dyck  1967, Fox  1971, McKie and Heathcote  
1935. 
14 Fox 1971, 19-20, McKie and Heathcote 1935, 137. 
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own affinities were responsible for its inclusion or expulsion from 

combinations?   

The effects of heat needed to be examined, rationalised and codified, to be 

brought under control as affinities had been.  Then chemists would be truly in 

control of matter.  Rules were formulated attempting to codify the various roles 

of heat as part of chemical practice.  Many of these rules were specifically 

designed for inclusion in affinity theories, as new ‘supplemental’ components.   

The unpredictable effects of heat threatened the doctrine of affinity by casting 

doubt on the consistency of affinities and it was thus vital for the continuation 

of the doctrine that these effects be brought to order.   

It appears that the weight of the anomalies that were mounting between theories 

of heat and affinity prompted chemists to place an even greater reliance on the 

latter.  Theories were extended on the assumption that they were a solid 

foundation even as the phenomena of heat eroded that very assumption.   The 

following examples of new components and component-types illustrate how 

affinity theories increased in both explanatory power and heuristic scope.   The 

addition of these components to affinity theories reflected the disciplinary 

development of chemistry, and the growing opinion that heat was a chemical 

problem. 

I do not here intend to retread ground that has been thoroughly trodden by 

others,15 but to pick out only those ideas on heat of particular relevance to 

affinity theories.  I begin by unpacking some of the components that attempted 

to rationalise the paradoxical effects of heat in apparently promoting both 

combination and separation.  This highlights the preservative efforts made to 

ensure that affinity theories were able to account for these inconvenient 

anomalies.  The second section sets out some of the ways in which chemists 

tried to account for the chemical generation of heat or cold with their affinity 

theories.  The third examines ideas that a material heat might perhaps be 

possessed of its own set of affinities.  The latter two sections demonstrate how 

new ideas on heat were drawn into affinity theories to the extent that such ideas 

were influenced in their turn by their role in such affinity theories.  In particular 

 
15 See particularly Dyck  1967, Fox  1971, Gregory 1950, McKie and Heathcote  1935. 
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they illustrate how such ideas were dispersed from the pedagogical context to 

the research context, and back again, and the concomitant effects of such 

translations. 

4.1  The Paradox of Heat: Promoting Combination and 
Separation 

Traditional operations like distillation, evaporation, sublimation, even 

crystallisation, all employed heat to separate mixed or combined substances.  

Mechanical philosophers had conceptualised these separations as being due to 

their differing volatilities.  Chemical and pharmaceutical works listed the orders 

in which different substances would ‘come over’ in a distillation.16 However, it 

was unclear how far these ‘analysed’ substances had been present in the original 

substance.17 By the late 17th century, doubt was setting in.  Boyle had 

emphasised the uncertainty inherent in the use of fire as an instrument of 

separation,18 and in 1753 Lewis warned: 

“… by the action of a burning heat, the principles of vegetables 
are not barely separated, but altered, transposed, and combined 
into new forms.”19 

While there was little doubt that fire often did assist in the separation of 

substances, it also promoted chemical union.  In such operations the jumble of 

resolutions and combinations taking place was far from clear.  Even as Lewis 

was writing, Cullen was teaching his students that there was a second, more 

precise, agent available to the chemist to assist with combination and separation.  

As Cullen’s two agents of chemistry, affinity and heat were inextricable from 

the discipline, although heat, it seems, had become the junior partner of the 

enterprise.20 Affinities could be manipulated in order to separate or combine 

substances, and were subject to rules, and to coherent generalisation.  But the 

role of heat remained problematic.  Cullen explained: 

 
16 See, for example, Coxe 1674, and Boyle 1693. 
17 On the French transition from a tradition of separation by destructive distillation to solvent analysis, see 
Holmes 1971.   
18 Boyle 1661, 48-75. 
19 Lewis 1753,  9. 
20 As Taylor 2006 makes clear. 
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“The power of Heat may probably increase the Power of 
Attraction between bodies that are separate & lessen the 
attraction between those that are combined.  We may hence see 
how dangerous it is to draw general Principles till experiments 
have been made on all the different bodies in all their different 
Circumstances.”21 

Sometimes heat separated substances, while at others it encouraged 

combination; it seemed that experience was the only true guide.  Cullen 

advocated caution, but made no attempt to generalise these powers and similarly 

Lewis made no attempt to rationalise the effects of heat. For some of their 

successors, though, it seems that this position became untenable.   

As the doctrine of affinity became more firmly entrenched as the foundation of 

chemistry, “confessedly the basis of the science”,22 the need to protect it became 

pressing.  New components were formulated that attempted to deal with the 

contradictory phenomena that threatened the doctrine.  In a sense they were ad

hoc hypotheses, added to protect the hard core of affinity theory.  Assuming 

such an identification suggests that for many chemists, affinity had assumed the 

status of a research programme.  Whether or not the Lakatosian model is 

appropriate here does not form part of my argument, but it does perhaps offer us 

a useful lens through which to view these ‘supplementary’ components.  

4.1.1 Destroyer of Affinity 
By the 18th century, it was becoming clear that it was preferable to avoid the use 

of heat in chemical operations where possible.  Heat was not only unreliable and 

inconsistent in its effects, but it was difficult to manipulate with safety, and the 

furnace was an expensive devourer of fuel. Geoffroy’s second paper on affinity 

had drawn attention to a question posed by Stahl to Neumann: how to separate 

vitriolic acid from fixed alkali (combined as vitriolated tartar) in the palm of the 

hand (that is, in a heat no more than that of the human body).23 Leaving aside 

the doubtful wisdom of performing chemical operations using one’s hand as 

crucible, this demonstrates the utility of affinity theories in suggesting new, 

safer and perhaps cheaper ways to perform operations traditionally requiring 

 
21 Cullen 1765. 
22 Thomson  1830, 157. 
23 Geoffroy 1720, 28. 
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heat.  The affinity between vitriolic acid and fixed alkali was believed to be 

amongst the strongest known, so no separation could be envisaged by the 

addition of a third substance.  The application of heat appeared to be the only 

option.  Geoffroy solved the riddle by proposing a number of different 

operations, all of which were based on the action of affinity.24 The strong 

affinity between vitriolic acid and Geoffroy’s sulphur principle (phlogiston) was 

sufficient, he claimed, to expel the fixed alkali from its combination without the 

need for heat.   

Separation by fire was thus contrasted with separation by affinity.  But there 

was no theoretical contradiction here.  Affinities only had the power to separate 

by preferential combination.  Few chemists would cavil at the assumption that 

heat reduced or destroyed affinities.  This was an obvious conclusion to draw 

from the observation that fire apparently separated combined substances.  

Accordingly, little effort was expended on components that formalised this 

particular effect of heat.  Fordyce’s theory provides a rare exception, and it is on 

his efforts to quantify the destruction of affinities by heat that this section 

concentrates. 

Fordyce’s philosophical investigations included a considerable number of 

experiments on the effects of heat.  In one paper, investigating an apparent loss 

of weight in heated or melted bodies, he speculated: 

“heat certainly diminishes the attractions of cohesion, chemistry, 
magnetism and electricity; if it should also turn out, that it also 
diminishes the attraction of gravitation, I should not hesitate to 
consider heat as the quality of diminution of attraction, which 
would in that case account for all its effects.”25 

Fordyce did not doubt the potential importance of his investigations, although 

his paper did not reach any conclusion about whether heat did in fact diminish 

gravitational attraction.  His notion that ‘diminution of attraction’ might offer a 

‘universal mark’ of heat, was not pursued any further publicly, although in 1786 

 
24 Geoffroy’s solutions in fact departed somewhat from the criteria of Stahl’s original problem, in failing to 
actually separate out vitriolic acid and fixed alkali, one or both of which required to be united with another 
substance in consequence of the elective attraction which would divide them.  The solution was also given 
in a letter from Stahl’s son to Boulduc.  See Partington, 1970, 2, 704. 
25 Fordyce 1785, 364. 
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he informed his students unambiguously that “heat diminishes and destroys all 

attractions”.26 Perhaps the most important implication of this rule was that: 

“We may separate two Substances then by destroying the 
attraction between them by means of Heat.”27 

Referring to the destruction of affinities by heat, Fordyce was keen to ensure 

that this was not confused with the use of heat to separate mechanically mixed 

substances: 

“It is not merely that one is volatile & the other fix’d, because 
they would not separate if they be chemically combined from that 
Cause; but the attraction must be destroy’d between them.”28 

The conjunction between heat and affinity occupied Fordyce’s mind throughout 

his career.  In his unpublished paper on compound elective attractions (see 3.3.2 

above and Appendix 1) he included a short discussion on how the addition of 

heat might be incorporated into his algebraic scheme.  To recap, Fordyce had 

shown (to his satisfaction, at least) that in cases where it was not immediately 

clear which way a double affinity would act, the weight of affinities would 

favour the sum of the medium affinities, rather than the sum of the strongest and 

the weakest.  There was, however, an important caveat; this reasoning was 

sound in “a moderate degree of heat”29 but: 

“on the other hand in a very great degree of heat and by 
distillation the other combination may often if not always 
happen”30 

This was explained by the fact that the same degree of heat varied particular 

affinities to differing degrees.  Warltire too noted this phenomenon, although he 

had  no notion how it might be generalised.31 Bergman’s affinity table offered 

one solution, famously differentiating between affinities subsisting with and 

without the application of heat.32 It has rarely been appreciated by historians 

 
26 Fordyce 1786a, 9th Lecture. 
27 Ibid. 
28 Ibid. 
29 Fordyce  1759, f 8. 
30 Ibid. 
31 Warltire  1769b, 25. 
32 Bergman  1970. 
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that Bergman’s division of his table into two halves was preceded by similar 

divisions in a number of pedagogical tables.  A set of Cullen’s lectures dating 

from 1757/8 include an affinity table divided into two halves, one “of fluids and 

solids” and the other “of fusion fluxed metals”.33 Black too divided his table 

into “Metals with respect to one another”, “Relation Bodies have to water” and 

“elective attractions in consequence of heat”, and similarly divided his diagrams 

of double elective attractions.34 A syllabus produced in 1770 by Benjamin 

Rush, one of Black’s students who had carried his influence to the United States 

of America,35 shows that he too adopted this division in his own lectures.  

Bergman’s innovation followed a clear pedagogical trend. 

Bergman stated that he considered the “genuine” or “free attractions” to be 

those “which take place when bodies are left to themselves”, that is, without 

heat.36 But while his table showed that the orders of affinities changed when 

heat was applied, it still covered only single affinities.  The old problem, the 

one-dimensionality of affinity tables, meant that changes could not be compared 

across columns, and complex mixtures remained impenetrable.     

The youthful Fordyce seems to have been optimistic that his new system of 

compound affinities could accommodate the effects of heat.  His algebraic 

explanation implied that he envisaged the diminution as taking place from one 

set level of affinity to another similarly set level.  The addition of heat meant 

that: 

“1m → 1s be diminished to 2m → 1s as we suppose, 1m → 2s
will be likewise diminished to 2m → 2s and consequently in 
greater proportion than 1m → 1s.”37 

As the sum of the two medium affinities (2m → 1s and 1m → 2s) was greater 

than that of the strongest and weakest (1m → 1s and 2m → 2s),  the difference 

between the strongest and the medium affinities would, Fordyce assumed, be 

 
33 Cullen 1757, f 98. 
34 Black  1966, 162-164.  See Duncan 1996, 129. 
35 From 1799 Rush lectured in Philadelphia – “the first professor of chemistry in America.” Partington  
1989, 94. 
36 Bergman  1970, 16. 
37 Fordyce  1759 Note f 2. 
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less than that between the medium and the weakest.  He assumed that heat 

reduced the strongest affinity to the level of the medium when cold, while the 

latter were reduced to the level of the weakest.  Hence his claim that the heat 

would reduce the medium affinities far more than the strongest.   

As it seems that even Cullen found this confusing, Fordyce clarified his thinking 

in a letter.38 He assigned numbers to the affinities between four substances, 

vitriolic acid, nitrous acid, fixt alkali and calcareous earth.  The affinity of the 

vitriolic acid to the fixt alkali he supposed to be 20, to the calcareous earth 16, 

the affinity of the nitrous acid to the fixt alkali was similarly 16, and from these 

figures he assigned a figure for the affinity between the nitrous acid and the 

calcareous earth of 11.39 According to his theory, the vitriolic acid would 

normally unite with the calcareous earth, and the nitrous acid to the fixt alkali 

(the two medium affinities).  However: 

“by heat the vitriolic acids attraction to the fixt Alkali be 
diminished to 16 then its attraction to the calcareous earth must 
be 11 (because it is reduced to the state of the nitrous acid in 
cold).  The Nitrous acids attraction to the fixt alkali must now be 
likewise 11 … and the Nitrous acids attraction to the Calcareous 
earth less than 6, suppose 5 reduce them again and they will 
stand 

Vitriolic acids  → fixt Alkali  11 
 → Calcareous earth  5 
Nitrous acids → fixt Alkali  5 
 → Calcareous Earth  0”40 

There were only a small number of affinities available in this system (five, 

including the state where no affinity subsisted at all), and at each stage each one 

dropped to the level below.  As more heat was applied, this diminution of 

affinities increased stepwise and would eventually lead, in “a very great heat” to 

a reversal of the expected result.   

By Fordyce’s reasoning, affinity was discontinuous, reducing in set quanta as 

heat was applied.  His “very great heat” corresponded to two stages of such 

 
38 Fordyce 1759-1774, undated letter [1759]. 
39 He assigned this figure on the basis of his rule that the medium affinities must be stronger than the sum 
of the strongest and the weakest.  Thus this last affinity must be less than 12.  
40 Fordyce 1759-1774 [1759], f 3. (my emphasis). 
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reduction, upon which the affinity of the vitriolic acid for the fixt alkali would 

outweigh the sum of the two medium affinities, and the combinations would 

change accordingly.  Fordyce triumphantly reported that his reasoning was 

proved correct by experiment.  When the four substances were mixed without 

heat, they combined as his theory predicted.  But on distilling this mixture, the 

fixed alkali united with the vitriolic acid.  The nitrous acid and calcareous earth 

had no affinity when hot (as his figures had shown), so the earth was 

precipitated and the nitrous acid distilled off.41 

Fordyce’s quantum theory of heat and affinity thus endeavoured to explain the 

phenomenon of reversible affinities.  He persisted with similar ideas throughout 

his pedagogical career although by 1788 they had been slightly amended.  As 

before, he adopted conjectural figures for affinities of the type recently 

propounded by both Fourcroy and Guyton.42 He used these figures to explain 

the different results of combining calx muriata (muriatic acid and lime) and 

mild volatile alkali (ammonia and gas) in the cold and with heat (figure 5, p. 

246).   In the cold, the affinities dictated that a double decomposition would 

produce chalk and sal ammoniac and, as before, the heat reversed the 

combinations.  This time, the reduction in affinity due to the addition of heat 

was a flat rate reduction of an apparently arbitrary 12, applied to all the 

competing affinities alike.43 this was presumably an a posteriori quantification 

on the basis of his observations.  This time, the heat was assumed to affect all 

the affinities to the same degree. 

Most of Fordyce’s contemporaries included a component in their affinity 

theories stating that the application of heat destroyed or reduced affinities.  

Some adopted elaborate explanations, but only Fordyce, so far as I am aware, 

made any attempt to quantify (however vaguely) just how much effect the 

application of heat had.   It is impossible to know whether he regarded his 

conjectural figures as anything more than a pedagogical tool, although the fact 

 
41 Ibid, f 4. 
42 See Morveau  1786, Affinité,  Fourcroy  1788, II, 308-324.  Fourcroy’s figures bear no resemblance to 
Fordyce’s.  Fordyce did adopt the same figure as Guyton for the highest affinity, but all the others differ 
slightly.  It seems likely that he was making use of his own conjectural figures.  In his 1788 lectures, a 
parenthetical note refers to a table, possibly of numerical affinities, but this is missing. 
43 Fordyce 1788 Lecture 46th, 8th December 1788. 
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that he included similar figures in his 1759 paper would suggest that he 

considered this method to be the most appropriate of those then available.  His 

formulation held out the hopeful possibility that the effects of heat and 

temperature on affinities might be subject to a tidy mathematical formulation.  

Such a possibility would, however, be dependent upon the successful 

quantification of what Bergman had called ‘free affinities’, and perhaps this is 

why this line of enquiry was not pursued any further, either by Fordyce or by 

his students. 

For most, the opposition of heat to affinities was unproblematic on its own; The 

expansion of bodies by heat was a physical phenomenon, and although it might 

overlap with certain operations involving affinities, it did not confound the 

theory.  For practical purposes, a better understanding of the extent to which 

heat changed affinities was a desideratum, but this was at least partially fulfilled 

by Bergman’s affinity table. There was no pressing need for the formulation of 

components to explain how or why heat could destroy affinities.  This was not, 

however, the case with those effects of heat that apparently encouraged or 

promoted combination.  

4.1.2 Increasing Affinity 
Nicholson concurred with Fordyce’s deduction that heat reduced all attractions, 

including chemical attractions, adding, however, that: 

“though its operation in producing the fluid state is so favourable 
to combination, as to render the observation of this last effect 
difficult.”44 

Most chemists assumed that heat acted to promote separation, but it was also 

undeniable that it also acted to promote combination, as, for example, when heat 

was required before some metals could dissolve in acids.  That heat acted in 

such a contradictory fashion, both destroying affinities and encouraging them, 

made affinity theories seem somewhat precarious. 

My examination of various attempts to rationalise the ability of heat to 

apparently advance chemical combination highlights two main strands of 

thought:  

 
44 Nicholson 1795, 381. 
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For many, as for Nicholson, the action of heat physically rarefied substances, 

putting them into a state more adapted for affinities to act.  The perspective 

could be inverted - some argued that heat removed obstructions that prevented 

the affinities acting freely.  These views were effectively two sides of the same 

coin; the application of heat was not seen as increasing affinities (much as 

Bergman had not regarded it as reducing them), but rather as allowing them to 

act freely.    

Others believed that the application of heat changed the very mode of 

combination in some way.  As we shall see, this view was often adopted by 

those who subscribed to the doctrines of specific and latent heat.     

This is not a mutually exclusive classification; these strands were often 

intermingled.  Nevertheless, they do enable me to impose some order over the 

rather haphazard components that endeavoured to rationalise this effect of heat.  

This section explores these two themes in the order mentioned above.  The 

examples cited demonstrate surprising similarities and discrepancies entirely 

independent of the two main themes.  They indicate how new and complex 

components were added to affinity theories and how new tools, such as the 

doctrines of specific and latent heat, were embraced and manipulated to assist in 

the endeavour.   

Natural philosophers had long recognised that the application of heat rarefied 

homogeneous substances, expanding them and changing their physical form.  

While this phenomenon could be harnessed to separate mixed substances, the 

state of aggregation of substances was agreed by most chemists to be of vital 

importance to the operation of affinities.  In this way, the two powers of heat to 

assist with combination and separation could be reconciled as manifestations of 

a single power.   

Cullen was perhaps the first to explicitly introduce the state of aggregation as a 

factor into affinity theory.  He insisted that for the affinity between two 

substances to act, their particles needed to be able to mingle closely, to be 

contiguous.  This was only possible if one or both substances were in a fluid 

state.  He offered an example that Austin (3.2.3 above) would  recognise:  

“I take a small quantity of Alkali & Crude sal ammoniac each 
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being first well dried these two substances are quite inodorous & 
remain so when mixed till by addition of a little water the salt is 
dissolved & emits a strong volatile fume.”45 

Fluidity, for Cullen, could be attained either at atmospheric temperature, by 

solution, or with the addition of heat.46 Accordingly, Cullen classified all the 

chemical operations under the headers of fusion and solution.  In later years, he 

became aware of a third state in which affinities could act, that of the ‘elastic 

fluid’.  By 1766, all of the chemical operations introduced by Cullen to his 

students were classed as solution, fusion or exhalation.47 ‘Solution’ covered 

the processes of fermentation, precipitation, digestion, maceration, circulation, 

putrefaction and deliquescence; ‘Fusion’ covered congelation, eliquation, 

vitrification and de-calcination; and ‘Exhalation’ included calcination, 

cementation, evaporation, crystallisation and distillation.48 

The role of heat in many chemical operations was thus to induce fluidity (or 

elasticity, although this was only paid lip-service by Cullen) on one or both of 

the substances to be combined, in order for their affinities to act.  Lewis offered 

a particularly interesting example of this phenomenon: 

“if steel heated to whiteness, be taken out of the furnace, and 
applied to a roll of sulphur; the sulphur, instantly liquefying, 
occasions the steel to melt with it; hence the chalybs cum 
sulphure of the shops.”49 

In this case, the sulphur and steel, both solid, would not combine if simply 

placed in juxtaposition.  But when the sulphur was melted by the heat of the 

steel (such heat being insufficient to melt the steel itself), its affinity for the steel 

was enabled to act, thus dissolving the steel as a solvend. 

Kirwan also adopted Cullen’s specification that bodies must be at their loosest 

degree of aggregation in order to allow affinities to act, claiming that: 

“bodies, which refuse to unite to each other chymically when 

 
45 Cullen 1757, f 37.  The ‘strong volatile fume’ was the volatile alkali that would have been released as 
the fixed alkali combined with the marine acid. 
46 Ibid, f 38. 
47 Cullen 1766, Lecture 24. 
48 Ibid, Lectures 24-39. 
49 Lewis  1753, 30. 
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they are most minutely divided, as when both are in a vaporous 
or aerial state, or when both are in a liquid state, may be judged, 
in the first case, to have none; or in the second case, to have at 
best a very small affinity to each other.”50 

For Kirwan, the easiest way to encourage substances to combine was to ensure 

that one or both of them were in their elastic state. In contrast, Austin explained 

his failure to synthesise volatile alkali from inflammable and phlogisticated airs 

by reference to their gaseous state: 

 “when they are not in an aëriform state their attraction to each 
other is greater, on account of the proximity of their parts; it is 
then superior to their attraction to fire, and therefore they 
combine; but when their particles have receded from each other, 
as in the aëriform state, their attraction to each other is so 
diminished by the distance of their parts, and keeps them in a 
separate state.”51 

From Austin’s point of view then, fluidity provided the optimum conditions for 

combination; particles of gases did not intermingle close enough for their 

affinities to act.  Fordyce, lecturing in 1786, added an apparently teleological 

dimension to Cullen’s law of fluidity, asserting that: 

“Substances will not act on one another in a solid form, excepting 
after they have united they become fluid.  Two solids that are 
capable of forming a fluid compound will unite.  Substances will 
act on one another in the form of vapour.”52 

Nicholson’s Dictionary includes a fuller explanation of this phenomenon that 

drew on a mechanical view of matter.  In the case of two solids, the affinities 

could only act where the particles of the two actually came into close contact.  If 

the freezing point of the compound produced by the two substances was lower 

than the temperature at which the operation was carried out, “the fluid particles 

being at liberty to arrange themselves according to the law of their attractions, 

the process will go on”. 53 This unusual phenomenon thus formed an exception 

to Cullen’s rule that fluidity was necessary in one or both bodies to be 

combined.     

 
50 Kirwan 1783, 35. 
51 Austin 1788, 382. 
52 Fordyce 1786a. 
53 Nicholson  1795, 136. 
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In 1782, Kirwan explained that the reason that phlogiston (in its aerial form as 

inflammable air) and respirable air required heat to induce them to unite was 

due to the comparative densities of the two substances.   The affinity between 

these two airs was believed to be strong, although at low heats they were 

capable of remaining in close conjunction for a long period of time without 

uniting at all.  Watt (borrowing from Priestley) claimed the airs required to be 

“set in motion by external heat” before they would combine.54 According to 

Kirwan’s theory though, without heat, there was little difference between the 

densities of the two airs, and thus insufficient “points of contact”55 between the 

two to enable the affinities to act.56 The problem was not that two airs were too 

rarefied for their affinity to take effect; it was that their densities were too 

similar.  Heat rarefied the respirable air more than it did the inflammable air, 

allowing the particles to mingle more intimately.57 In combustion or other 

processes in which the inflammable air/phlogiston emerged from combination 

in what he called its ‘nascent state’ the two substances combined with ease.  

This notion, and even the phrase, ‘nascent state’, originated with Priestley,58 and 

was adopted by Watt as well as Kirwan to describe substances that lacked their 

full complement of specific fire. When the phlogiston was in this state there was 

clearly sufficient difference between its density and that of the respirable air to 

enable them to combine.  

The components set out above endeavoured to explain how the application of 

heat promoted the action of affinities by changing the physical state of bodies.  

Some conceptualised this effect differently, arguing that the heat removed 

obstructions to the affinities, enabling them to act with more ease.   Fordyce’s 

1788 lectures postulated an ‘obstruction’ that acted in the same way as air 

resistance ‘obstructed’ gravitational attraction.  As air resistance prevented a 

feather and a guinea falling to earth at the same rate, so too the hypothetical 

 
54 Watt 1784, 335. 
55 Kirwan 1782, 201. 
56 Kirwan’s ideas here sit a little oddly with his assertion cited above that aeriform substances that would 
not combine were unable to combine at all. 
57 Ibid. 
58 Priestley  1781 2, 77 and 112-128. 
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‘obstruction’ reduced the effects of certain affinities.59 He explained: 

“heat removes some obstruction which prevents chemical 
attraction taking place but what that obstruction is we don’t know 
most probable it is viscidity or the attraction of cohesion.”60 

Fordyce made a clear distinction between the ease of combination and strength 

of affinity.  In some cases, even where there was a strong affinity between 

substances, external circumstances could prevent these affinities from acting.  

The distinction was emphasised by an experiment, although this took place 

without the application of heat.  Fordyce showed that when muriatic acid was 

mixed with mercury, no combination took place, but if nitrous acid was then 

added, the mercury was dissolved.  Once dissolved, the mercury combined with 

the muriatic acid.  Therefore the mercury’s affinity for muriatic acid was 

stronger than for nitrous acid “although the nitrous acid unites more readily.”61 

Fordyce’s affinity theory retained a consistency that many of his 

contemporaries’ theories lacked, with regard to heat at least. For him there was 

no paradox.  While heat destroyed affinities, it augmented their ‘readiness to 

unite’.  Nicholson claimed that the term ‘avidity’ was in “common use among 

chemists” as denoting “that modification of the attractive powers which 

conduces most to their speedy exertion.”62 The word ‘avidity’ certainly crops 

up in some chemical works, most commonly in Bergman’s Dissertation,

although I have found none that assign it a particular sense distinct from the 

action of affinity, and indeed some apparently equate the two.63 Nevertheless, 

Nicholson’s attempt to coin a particular term for the ease of union suggests that 

the distinction was routinely drawn, with the concomitant effect of refining and 

clarifying notions of affinity. 

A slightly different point of view is evident in the theory of William Higgins, 

 
59 Fordyce 1788, Lecture 12th, October 21st 1788. 
60 Ibid. 
61 Ibid.  This demonstration is perhaps derived from a comment included in Macquer’s Dictionary as an 
illustration of the distinction between ease of combination and strength of union that “Mercury … unites 
much more easily with nitrous acid than with the marine, but yet it adheres much more strongly to the 
latter than to the former.”  Macquer  1771, Affinity, 24. 
62 Nicholson  1795, 188-189.   
63 E.g. Keir  1789, 108, Bergman  1970, 108. 
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for whom heat was able to compensate for weak affinities, suggesting that he 

viewed the effects of each as similar in kind.   He speculated on the difference 

between the products of the combustion of light inflammable air and 

dephlogisticated air when ignited by electric spark as opposed to more 

“languid” combustion.  Priestley had asserted that these two airs invariably 

combined to produce nitrous acid.  Higgins agreed that he too had produced 

nitrous acid when the airs were inflamed by electric spark, but that when he 

burned the inflammable air slowly in an atmosphere of dephlogisticated air, no 

such acid was produced.  He explained that: 

“the intense heat produced … by the general and instantaneous 
inflammation of both airs, together with that of the electric spark, 
promotes an union between a portion of the dephlogisticated air 
and the phlogistic, which is always present in the purest 
respirable air.  Whereas the languid combustion in the former 
experiment is insufficient to cause such an union.”64 

In the first case intense heat was sufficient to promote a naturally rather weak 

affinity.  In the second operation, the heat involved was far less intense, and was 

insufficient to compensate for this weaker affinity.     

There were other situations where substances formed different compounds when 

combined at different temperatures that were not susceptible to a similar 

explanation.  In these cases the heat applied had apparently resulted in a 

different mode of combination.  Macquer claimed that there were different 

modes of union between mercury and sulphur: 

“If these two substances be only rubbed together in a gentle heat, 
or even without any heat, they will contract an union, tho’ but an 
incomplete one.  This combination takes the form of a black 
powder, which has procured it the name of Aethiops Mineral.

If a more intimate and perfect union be desired, this compound 
must be exposed to a stronger heat; and then a red ponderous 
substance will be sublimed, appearing like a mass of shining 
needles: this is the combination desired, and is called Cinabar.”65 

There is a hint of Fordyce’s distinction between ease of combination and 

 
64 Higgins 1960, 6-7.  Page numbers refer to the page numbers of the reprinted Comparative View, that is 
Higgins’s original page numbering rather than to the page numbers of the “William Higgins” part of the 
book. 
65 Macquer  1764, 82. 



205 

strength of affinity here.  But the distinction between ‘incomplete’ and ‘perfect’ 

modes of combination also recalls Cullen’s between solution and proper 

mixture.  Mercury, as the only metal fluid at normal temperatures, was 

traditionally a special case in chemistry.  It might perhaps be supposed to be 

capable of solution as well as chemical combination (“more intimate and perfect 

union”), the latter requiring the application of heat.   

Elliot adopted a subtly different explanation of the formation of cinnabar and 

aethiops mineral in a list of exceptional cases to his affinity theory.  To create 

cinnabar, he specified, the sulphur and mercury “must be raised in vapour”.66 

Elliot thus explained the binary combination by reference to the state of 

aggregation rather than the heat applied.  Clearly the one was contingent upon 

the other, but the terms of Elliot’s explanation imply that it was the state of the 

constituents that was the proximate cause of the two different modes of 

combination. 

The question of how different substances could be produced from the same 

constituents became more urgent during the debates that exercised chemists’ 

minds so considerably towards the end of the century.  By this time there was a 

new explanatory tool available which many chemists seized with alacrity.  

During the last quarter of the century, two alternative theories of heat capacity 

and latent heat circulated in Britain: Black’s theory, which distinguished 

between heat capacity (or specific heat) and the latent heat produced or 

absorbed on change of state, and the theory of William Irvine.  Irvine, formerly 

one of Black’s students and his eventual successor at Glasgow, postulated that 

change of state was correlated with a change in heat capacity.  As heat was 

absorbed by a substance, its heat capacity increased, this process being 

“synchronous, … neither cause nor effect of each other”.67 Kirwan, thought to 

have been the author of the first table of specific heats68 (in Magellan’s Essai  

sur la Nouvelle Théorie du Feu Élémentaire, et de la Chaleur des Corps69) and 

 
66 Elliot  1786, 120. 
67 William Irvine Jr, quoted in Dyck  1967, 186. 
68 McKie and Heathcote  1935, 43, 109. 
69 Magellan  1780. 
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to have first coined the term,70 had early assimilated the notion into his affinity 

theory, and refined the component still further.71 

I referred above to Kirwan’s 1782 explanation of the fact that heat was required 

to initiate combination between inflammable and respirable airs.  Kirwan’s 

theory, as we have already seen, required each substance to have different 

densities so that they could mix sufficiently to combine.  Either heat could be 

added to the system to create the necessary disparity in density or: 

 “when they do unite, it is because one of them has not its whole 
quantity of specific fire.”72 

Cavendish’s synthesis of water from inflammable and dephlogisticated air 

prompted Kirwan to subtly revise his thinking.  In 1784 he claimed that while 

water was formed when these airs were exposed to a red heat, in a lesser heat 

they combined to form fixed air.73 He explained that phlogiston had a stronger 

affinity to dephlogisticated air than to any other substance and that when they 

united by inflammation this was “in circumstances the most favourable to the 

closest and most intimate union”.74 These favourable circumstances included 

the fact that “both, in the act of inflammation, are rarefied to the highest 

degree”75 and that 

“both give out their specific fire, the great obstacle to their union, 
it being by the inflammation converted into sensible heat.”76 

For Kirwan, the quantity of specific fire possessed by substances made a great 

difference to their combinations.  Substances in possession of either more or 

less than their appropriate quantity of specific fire, behaved almost as if they 

were different substances.  Whether they were free, combined or in their nascent 

 
70 Scott 1981.   
71 Crawford  1779. 
72 Kirwan  1968, 43. Kirwan used the phrase ‘specific heat’ in two quite different senses.  While in the one 
sense he was clearly referring to the capacity for heat of different substances as compared with each other 
or with water, in another, looser sense, he referred simply to all the heat that was apparently held within a 
substance in consequence of this capacity.  The ‘specific fire’ he refers to in the quotation above is 
intended for the latter sense. 
73 Kirwan 1784, 167-8. 
74 Ibid, 167. 
75 Ibid. 
76 Ibid. 
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state affected their chemical combinations.  In addition, when a combination 

would result in a reduction in bulk (usually, but not always, on change of state), 

their excess of specific fire was an obstacle to their union.  He had cited this 

notion in 1782 as an additional reason why inflammable airs only united 

“difficultly and slowly” without heat.77 According to his (rather confusing) 

thinking, to effect the ‘closest and most intimate’ combination as water, 

rarefaction of both substances and the expulsion of their specific fire was 

essential.  Of course the rarefaction would involve the addition of more specific 

fire, presumably increasing the impediment, but Kirwan seems to have 

envisaged a two stage process.  The rarefaction of the airs was necessary to 

increase the affinity between them sufficient to overcome the ‘great obstacle’ of 

the specific fire that they must lose in combination.   

As before, he observed that fixed air was produced from respirable air and 

inflammable air in “common cases of combustion” when the latter was 

emerging from a compound state at the moment of combination.  In this state it 

lacked the appropriate quantity of specific fire, and   

“being denser and less divided, unites less intimately with the 
dephlogisticated part of common air, consequently expels less of 
its specific fire, and therefore forms less dense compounds, viz.
fixed and phlogisticated airs.”78 

There are two points here.  Firstly, the phlogiston/inflammable air in its  nascent 

state, unites ‘less intimately’ with the dephlogisticated air.  Secondly, in 

consequence of this different mode of combination, it gives out less specific 

fire, and forms a less dense compound.   

Kirwan’s early idea that a difference was necessary between the densities of the 

two airs for their successful combination had apparently been discarded by 

1784.  By this time the marked disparity between the densities of the two 

substances was responsible for a ‘less intimate’ union.  This was prompted by a 

crucial change in the empirical information from which he drew his argument.  

Where he had previously based his theory on the apparent failure of the two airs 

to combine when both were rarefied, Cavendish’s experiments had indicated 

 
77 Kirwan 1782,  201. 
78 Kirwan 1784, 167. 
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that they combined to produce water. By 1784, the primary difference between 

the combination which produced fixed air, and the combination of the same 

substances that produced water lay in the amount of heat present in the 

constituent substances, as a proportion of their heat capacities.  This version of 

Kirwan’s affinity theory thus distinguished between substances in their free, 

combined and nascent states.  This was perhaps the most advanced expression 

of the long held belief amongst chemists that physical state of aggregation 

influenced the operation of chemical affinities.   

This section concludes with an examination of William Higgins’ attempt to 

accommodate the effects of heat into his complex affinity theory.  Higgins’s 

efforts, while recalling a number of the components cited above, give another 

example of an attempt to quantify the effects of heat.  His theory was articulated 

in the context of his defence of the anti-phlogistic doctrine.  One of Kirwan’s 

specific objections to Lavoisier’s column showing the affinities of the oxygen 

principle79 was that as charcoal appeared above the ‘inflammable principle’ in 

the column, charcoal should decompose water:  

“at least in a boiling heat, which is full sufficient to communicate 
as much specific heat to the inflammable part of water as is 
necessary to its aerial form : yet water has not yet been 
decomposed in that manner; whereas water and iron will produce 
inflammable air in the temperature of the atmosphere, though 
iron has in his system less affinity to the oxigenous principle”80 

Kirwan’s invocation of heat here is something of a red herring; perhaps he was 

trying to dispose of any objection that heat distorted affinities from the outset.   

But Higgins responded by introducing a further influencing factor.  He argued 

that although charcoal might appear to have little “aggregate attraction” 

(defined as “that power which solid or less condensed bodies have of 

counteracting chemical union”),81 being easily broken up, this was due to its 

hollow texture.  Once pulverised into powder, the particles of charcoal cohered 

with a greater force than might be expected, but in addition to this 

 
79 Lavoisier 1785, 535. 
80 Kirwan  1968, 44. 
81 Higgins 1960, 16. 
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“I think the ultimate particles of charcoal are surrounded with 
some repelling fluid, which defends them from the action of air 
and water; and the same may be said with respect to spirit of 
wine, ether, and oil: for they all have greater affinity to 
dephlogisticated air than phosphorus, which combines with it in 
the common temperature of the atmosphere.”82 

The mysterious fluid introduced in this rather ad hoc component of Higgins’ 

theory obstructed the action of affinity, recalling once more the distinction 

between affinity and Nicholson’s ‘avidity’.  He offered further examples: 

“Pure calcareous earth, perfectly dried, will not attract marine 
acid air; and yet water, to which it has less affinity, will condense 
it, and enable it to unite to this.  Light inflammable air and 
dephlogisticated air will not combine in their ordinary state but 
by the help of the fire, either the electric, or a common spark; yet 
they both will unite very readily when one or both are partially 
condensed.”83 

Higgins’s point that partial ‘condensation’ through combination was often 

required for affinities to act to their full capacity sounds similar to the nascent 

state of his phlogistonist antagonist.  He also suggested that heat capacity might 

be involved, arguing that the attraction of fire to matter counteracted the 

affinities between other substances (thus, like Fordyce, explaining the power of 

heat to separate), but also speculated that some other power also interfered.   

Higgins’s theory provided for a power that counteracted affinity, in the 

“aggregate attraction” within solid and (presumably) liquid bodies.  Higgins was 

convinced that this power acted against affinity so that affinities of solid 

substances were restricted or tempered.  Where Cullen’s theory cited  the 

inability of particles to approach sufficiently closely as the cause of the 

restriction, Higgins postulated an oppositional power.  Like Kirwan’s quiescent 

affinities, the aggregate attraction might be seen as the affinity of a substance 

for itself.   

 “let us suppose charcoal to attract dephlogisticated air with the 
force of ten, and contrary powers, which I shall call the aggregate 
attraction, to resist this with the force of eleven.  Let us likewise 
suppose iron to attract dephlogisticated air with the force of 

 
82 Ibid, 12. 
83 Ibid. 
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seven, and its aggregate attraction to counteract this with the 
force of six and seven-eights.  It would require greater heat to 
unite the two former than the two latter, though they have by far 
the greater affinity to one another.  But when once the scale is 
cast in favour of the former, the rapidity of their union ought to 
be greater than that of the latter; which is really the case.”84 

Thus heat promoted affinity simply by overcoming the aggregate attraction.  

Higgins’ equations setting off the relative strengths of attractions against each 

other recall Fordyce’s explanations of how the application of heat could reverse 

a complex reaction.  While in Fordyce’s system the heat was subtracted from 

the affinities, Higgins only subtracted it from the aggregate attractions, thus 

retaining a distinction between the effects of heat and affinity.  Unusually, he 

saw the strength of the affinity between charcoal and dephlogisticated air as 

evidenced by the speed with which the combination took place once the 

obstacle to their union had been overcome.  Higgins did not specify that the fire 

had to actually change the physical state of the substances to fully overcome the 

aggregation attraction.  It does not seem that this was his intention, as he made 

no attempt to link it to the idea of latent heat.  He did briefly speculate that ‘heat 

capacity’ might be connected with the phenomena, but did not pursue this 

notion any further.    

Most of the problems highlighted by Higgins were the result of a certain 

confusion about which phenomena were most appropriately taken to exhibit the 

true affinities of substances.  Anomalies arose out of attempts to factor in both 

heat and state of aggregation.  The amount of heat required to institute a process 

was sometimes taken to indicate affinity, but this was not a reliable indicator of 

the order of affinities.  Higgins believed that the correct indications of affinity 

should be clarified, distinguishing ease of combination from affinity: 

“the attractive forces of bodies are not to be estimated by the 
facility of compounding, but rather by the difficulty of 
decompounding them again.”85 

Unfortunately, his own theory was far from consistent in this ‘ordering’ 

component, as can be seen from his apparent belief that speed of combination 

 
84 Ibid, 16-17. 
85 Ibid, 16. 



211 

was also indicative of strength of affinity.  

This comparison of a range of efforts to account for the apparently paradoxical 

effects of heat has demonstrated once more the variety to be found amongst the 

components of affinity theories.  Nevertheless, certain features did recur in 

somewhat disparate contexts.  For example, both  Fordyce and Higgins 

attempted to quantify the effects of heat on affinities, although each adopted a 

rather different stance.  It is also clear that most chemists tried to protect their 

theories by demarcating the physical effects of heat from the chemical effects of 

affinity.  This last is perhaps one facet of a general trend that sought to refine 

the understanding of affinity beyond the ‘tendency to combine’ of Geoffroy.  As 

is common in such endeavours to define the unknown, it seems to have 

progressed primarily along negative lines, by setting out those phenomena that 

were not admitted to be evidence of the ‘free affinities’.   

What becomes strikingly clear from the components cited above is the rather 

precarious nature of a large proportion of them.  This is nowhere more apparent 

than in Kirwan’s rapid reformulation of his ideas of how the physical state of 

matter affected combination when confronted by Cavendish’s synthesis of 

water.  Many of the new components were similarly formulated to deal 

specifically with new experimental observations, and sometimes these were 

built on shaky foundations.   Most chemists were reluctant to allow doubt to be 

cast on their affinity theories.  This would certainly seem to be a case of 

Lakatosian theory preservation in action.  Much of the energy expended by the 

various theorists, although resulting in quite varied components, was expended 

in a common cause, the preservation of the doctrine of affinity against 

falsification by the anomalies that beset it.   

4.2  Chemical Generation of Heat and Cold 
Where the previous section explored components that were formulated for the 

most part in a spirit of theory preservation, this section demonstrates the 

encroachment of affinity theory into the traditionally physical domain of heat.  

These components testify to a growing confidence in the doctrine of affinity, a 

belief in its supremacy in the hierarchy of causality.   

The phenomena of chemically generated heat had been familiar for centuries.  
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Mixtures of acids and alkalis generated heat, as did quick-lime and water.  

Attempts to comprehend how heat (and cold) could be generated in this way 

occasioned perhaps the most intimate and complex conjunction of affinity 

theories with heat theories.    

The question of whether heat consisted of matter or motion remained open 

throughout the 18th century, and although the material view was in the 

ascendant by the end of the century, few were inclined to commit themselves 

wholeheartedly.86 Dyck provides a useful classification of heat theories into the 

dynamic, the material and the “dynamic-fire particle”.87 All three kinds of 

ontology were invoked to explain the chemical generation of heat.  I have 

adopted Dyck’s classification as an organising principle for this section.  I first 

set out components that drew on a vibratory theory of heat, then those that 

assumed an material heat whose oscillations caused the sensation of heat 

(Dyck’s “dynamic fire particle”) and finally the components that relied on a 

material view of heat.  Although the dynamic theories tend to be more prevalent 

during the first half of the century, while the material view dominated towards 

the end, it will be noted that this section does not describe a neat chronological 

trend.  The advent of the doctrines of latent and specific heat in the second half 

of the century were taken by many chemists (but not all) to confirm the material 

nature of heat.  As neither Black nor Irvine published their ideas, they were 

initially disseminated in a pedagogical context.  For the majority of those 

chemists who adopted a material view of heat the Irvinist view of specific heat, 

as disseminated by Crawford, provided a lead.  This section highlights the 

difficulties inherent in translation from pedagogical to research contexts and 

back again.    

4.2.1 Dynamic Heat 
The production of sensible heat when certain substances were mixed together 

had been explained in terms of vibrations consequent upon chemical attractions 

long before Geoffroy’s paper conferred law-like status on affinities.   

Mechanical philosophers had explained the production of heat in chemical 

 
86 E.g. Nicholson 1795, 381. 
87 Dyck  1967, 8. 
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operations by referring to mysterious powers that obtained between the particles 

of different substances.  When substances were mixed together, they were 

assumed to be mechanically attacking each other, tearing into each other with 

great force, in some cases modifying their particulate figures, and setting up the 

vibration that was sensible heat.88 This was a mechanical understanding of heat, 

applied in the context of a largely mechanical understanding of matter.  The 

cause of the conflict was the postulated attraction (or sometimes repulsion) 

between two qualitatively different substances.  Something similar to this theory 

was adopted by Isaac Milner, Jacksonian Professor of Natural Philosophy at 

Cambridge University.  Milner carefully considered the three prevailing 

versions of heat (which conform neatly to Dyck’s classification), eventually 

settling upon a dynamic theory: 

“ Heat  consists in a vibrating motion of the parts of bodies, and 
Fire is a body heated so hot as to emit light copiously.”89 

For Milner, an “intestine motion” amongst the particles of substances was 

responsible for the sensation of heat.90 He also attempted to use his dynamic 

theory to explain Black’s doctrine of latent heat as a consequence of the 

rearrangements of the particles of bodies on change of state.   

Black himself, famous for propounding the doctrines of specific and latent heat 

that so many regarded as evidence for a material heat91 might perhaps be 

expected to have adopted the material view himself.  In fact, he seems to have 

been extremely cautious when it came to his pedagogy.  In 1767 he taught his 

students: 

“The heat that is produced in Slacking lime may be owing to the 
sudden transition of the water from a fluid to a Solid State; It 
may happen like many oyr Mixtures, from the Bodys uniting so 
greedily together.”92 

Black offered two possible explanations of the phenomenon; the first, referring 

 
88 Ibid, 13-39. 
89 Milner  1784, f 23v-24r.  See also Coleby 1954, 244-245. 
90 Ibid, f 27r. 
91 Encyclopaedia Britannica  1778-1780, 3, Heat, 3559. 
92 Black  1966, 64. 
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to the transition from fluid to solid, suggested physical contraction of matter, 

and perhaps implied the release of latent heat.  The alternative suggestion 

evoked a similar image to Milner’s of substances uniting ferociously together, 

with the heat presumably produced by something similar to friction.   Black 

gave no indication of which explanation he preferred.  

Although Black did not publish his work on heat, the anonymous Enquiry into 

the General Effects of Heat and Mixture,93 believed to be taken from his 

chemistry lectures, did include his ideas to some extent.  The first part, 

constituting the majority of the work, dealt with the changes effected by heat on 

matter in general.  The new doctrines were only brought to bear on the physical 

effects of heat while inflammability was referred to a fairly traditional version 

of phlogiston theory.  The second part, covering the “Theory of Mixture” 

referred only briefly to the heat produced as a result of mixture.  Aside from an 

early distinction between the “quantity of heat”94 present in a particular 

substance and the intensity of heat measured by the thermometer, in this part of 

the Enquiry heat was described in dynamic terms drawn directly from Newton.   

So far as pedagogy was concerned, it does not seem that Black considered his 

new concepts as being explicitly relevant for chemistry.       

The theories of specific and latent heat did not, then, entail a material ontology 

of heat.  For the most part, those who held to a dynamic view found Irvine’s 

theory to be more congenial.  Milner scolded those chemists (like Cavendish) 

who spoke of latent heat, but refused to commit themselves to a material view: 

“several speak in this way of the existence of heat in a latent 
state, & of its emersion again into a sensible state, who yet do not 
chuse to affirm openly that heat is Matter.  … they intrench 
themselves in cautious expressions. 

… In a word, heat must either be matter, or it must depend upon 
a certain disposition of matter; and I think the notion of a latent 
disposition of matter is hardly intelligible.”95 

The three chemists discussed in this section who specifically denied the 

 
93 Anon [Joseph Black?]  1770. 
94 Ibid, 21. 
95 Milner  1784, f 97. 
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existence of a material heat, Cavendish, Milner and Fordyce, all held slightly 

different points of view.  Fordyce rather glossed over the chemical production 

of heat in his lectures: 

“… there is generally either Heat or Cold takes place in 
Chymical combination, as for instance uniting Oil of Vitriol & 
Water together it produced heat. … Now when heat or Cold is 
produced it is always a Chymical combination; for no heat or 
cold is produced in Mechanical Mixture.”96 

Other than noting that the production of heat (or cold) might be taken as a sign 

of chemical combination, Fordyce made no further attempt to generalise.  His 

attitude might best be described as agnostic, reluctant to subscribe to either a 

material or a vibratory view of heat.  Nicholson took a similar view: 

“since effects are proportioned to their causes, we may speak of 
the quantities of heat in bodies, without deciding whether they be 
quantities of motion or quantities of matter; the relation of those 
quantities to each other, and not their peculiar nature, being the 
chief object of our research.”97 

On the other hand, Fordyce’s agnosticism was apparently rather more strict in 

the pedagogical context than in a research environment.  In a paper read to the 

Royal Society only a year later, he concluded from an examination of the effect 

of heat on different substances painted with black paint, that heat was a ‘quality’ 

(although he remained cautious about definitely ascribing it to vibration) rather 

than a substance.98 

The pedagogical context, it would seem, required a greater degree of certainty 

than did the Philosophical Transactions. Perhaps these pedagogical decisions 

also reflected the disciplinary identity that was being forged in chemistry.  The 

chemical generation of heat blurred the lines between mechanical and chemical 

effects, and any in-depth discussion of it in the lecture hall might have served to 

similarly blur the disciplinary boundaries. 

Where Black was apparently reluctant to apply his own doctrines of latent and 

specific heat to the chemical generation of heat by mixture, there were others 

 
96 Fordyce 1786b, f 67-68. 
97 Nicholson 1795, 372. 
98 Fordyce 1787, 316. 
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who were not so cautious.  Although the majority of these theorists assumed a 

material heat, this was by no means necessary to a chemical understanding of 

latent heat.  Cavendish, as McCormmach has shown, was committed to the view 

that heat resulted from vibrations of the particles of ordinary matter.  

Cavendish’s unpublished treatise on heat dating from the 1780s, attributed the 

heat and cold generated by chemical mixture to the vibrations of matter 

consequent upon the action of chemical affinity, although he was unable to 

avoid ambiguous language: 

“It seems a natural consequence of this theory that the mixture of 
two substances which have a chymical affinity should commonly 
be attended by an alteration of sensible heat; for as the 
arrangement of the particles must be alterd thereby, the quantity 
of latent heat can hardly fail of being alterd; & moreover it is 
very possible that the quantity of active heat necessary to produce 
a given sensible heat, may also be alterd; both of which causes 
will produce an alteration in the quantity of total heat necessary 
to produce a given sensible heat.”99 

In spite of Cavendish’s thoroughly mechanical theory of heat, he still referred to 

the ‘quantity’ of latent heat and active heat.  Cavendish’s latent heat was, 

however, a mathematical entity derived from his principle of conserved vis viva.  

He also suspected (although as he considered it to be too hypothetical he only 

included it in a footnote), that in most chemical combinations heat and not cold 

would be likely to be generated.  His mathematical explanation of this is 

complex, but broadly it seems to suggest that cold would only tend to be 

generated in mixtures where one of the substances was changed from a solid to 

a fluid state, or from either of those to an elastic.100 This hypothesis implies that 

while heat could only be produced in cases of chemical combination, cold 

would be more likely to be produced in solutions.  This echoed a hypothesis that 

had been set out by Cullen in the 1750s, although Cullen had coupled his 

conclusions to a quite different ontology.   

4.2.2 Dynamic Fire Particle 
Cullen’s only published work on chemistry was a short paper on the generation 

 
99 Cavendish, “Heat”, in McCormmach 2004, 183. 
100 Ibid. 
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of cold by evaporation published in the Essays and Observations in 1756.101 

This paper was not explanatory, but simply set out his experimental discovery 

that the evaporation of volatile liquids on the bulb of a thermometer drove its 

temperature down.  Another report given to the Literary Society in the College 

of Glasgow some time during the 1750s set out further experiments on which 

mixtures of substances generated heat, and which generated cold.102 His paper 

presented tables showing each type of mixture, and concluded that heat was 

always generated on proper mixture (chemical combination), while cold was 

invariably generated on solution. 

Some years later Cullen included a lengthy digression in his 1765 chemistry 

lectures that set out a complex and detailed theory of heat and combustion.103 

The inclusion of this highly speculative theory in his lectures is something of an 

anomaly.  In most extant sets of lecture notes Cullen avoided speculation.  

Although the theory is glimpsed in other sets of notes, the 1765 version appears 

to be the most detailed and comprehensive.104 

His theory sought to explain most of the phenomena of heat, whether physical, 

chemical or physiological by reference to the motion of an aetherial matter of 

heat.  Briefly, the ‘condensation’ of matter that occurred during proper mixture 

expelled a proportion of the aether and its accumulation and consequent 

oscillation caused the sensation of heat.  The amount of heat produced during 

the combination would thus be related to the proportions of the substances 

mixed.  The production of heat by mixture was thus a mechanical consequence 

of the affinities between substances.  Cullen’s theory set a clear division 

between chemical combination and other forms of mixture and implied (as 

Cavendish was to assert a little later) that in all cases of chemical union heat 

must necessarily be produced.   

Cullen also argued that combustion was merely a special case of the generation 

of heat by chemical combination.  Although all inflammable substances 

 
101 Cullen 1756. 
102 Donovan 1976, 221. 
103 Cullen 1765 MS1920.  Also Taylor  2006.   
104 Christie has drawn on an earlier version of the theory in Christie 1983. 
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contained one constituent in common, the hypothesised phlogiston, this was not 

the elementary substance that was normally envisaged.  Cullen’s phlogiston was 

compound, a union of an acid and mephitic air.105 

“Now if this be allowed what is become of the Chymical 
Principle of Inflammation, - There is no such Body   The 
<phlogiston> consists of 2 component parts neither of which are 
of themselves Inflammables”106 

Cullen’s elaboration of his phlogiston theory testified to the authority of affinity 

in his chemistry: 

“To me indeed Inflammation seems to depend on the 
decomposition of this Compound by the Common Air, which 
attracts the Mephitic Air.”107 

If the mephitic air must be attracted by common air for decomposition to take 

place, then common air was required for inflammation.  As the two airs united, 

the affinity between them resulted in a condensation of their bulk.  This was the 

proximate cause of the generation of heat: 

“From the whole I think we may conclude that the 
Inflammability of bodies is owing to the Resolution of a 
Compound, for which we shall return the name of a Phlogiston 
consisting of an yd108 and Mephitic Air, and that this resolution is 
effected by the Elective Attraction of the Common Air, … that 
the Heat generated under Inflammation is to be attributed to the 
new Combination that takes place, and that therefore after all we 
are to refer this to the generation of heat by Combination.”109 

This incarnation of Cullen’s heat theory differs from that cited by Christie, 

which was drawn from earlier lectures in which Cullen had explained affinity as 

 
105 For Cullen at this time, there were only two different airs in the armoury: ordinary atmospheric air and 
Black’s ‘fixed air’, which he called ‘mephitic’.  This was prior to the explosion of airs that began with the 
work of Cavendish and Priestley later in the 1760s. 
106 Cullen 1765, MS 1920 f74v .  This MS is not foliated and as the course is not divided into individual 
lectures it is difficult to cite references.  In order to provide a full citation I have counted pages from the 
first page of the notes “On Fire”.  These occupy the final quarter of the bound volume, and most pages are 
separated by a blank sheet.  These too I have included in the pagination.  The notes begin on f. 1r. 
107 Cullen 1765, MS 1920 f74v. 
108 This appears to be an unusual abbreviation of the word ‘acid’.  More familiar is the use of the ‘y’ 
shaped rune thorn (þ) for the phoneme ‘th’ resulting in abbreviations ‘yt’, ‘yn’, ‘yy’ and the more mundane 
‘ye’.   It is possible that this was simply a phonetic extension of this usage. 
109 Cullen 1765, MS 1920 f80r. 
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the consequence of varying densities of the aether.110 By 1765, Cullen no 

longer attempted to explain affinity in terms of the aether but, on the contrary, 

explained the behaviour of the aether as a consequence of affinity. 

Cullen’s theory, although adopting a very different ontology of heat from that of 

Cavendish, both implied and drew on the same two generalisations, the first 

chemical and the second physical.  The first, that chemical combination always 

produced heat while solution produced cold, and the second that condensation 

of bulk produced heat, while rarefaction produced cold.  The fact that the one 

entailed the other in both Cullen’s and Cavendish’s theories, and indeed the 

theories of many chemists who nevertheless adopted quite varying ontologies of 

heat emphasises the fact that most of these components were based on 

observation.  Ontologies undoubtedly influenced the precise form each 

component took, but nevertheless each was grounded upon similar 

generalisations of empirical observations.  Similarly, Black’s and Irvine’s 

doctrines of specific and latent heat offered formalised explanations of the very 

same observations that for many implied that heat was a material substance.  

After all, how reasonable was it to expect those who encountered their ideas to 

take the copious references to ‘quantities of heat’ anything but literally? 

4.2.3 Material Heat 
For many, the work of Irvine and Black (and, many would argue, their 

language) confirmed that heat was a material substance.111 However, the 

failure of either to publish led to a certain amount of confusion about their 

doctrines.  Milner complained that: 

“As Dr Black the Inventor of this Theory has no where printed 
his Ideas on this subject, one is left to collect them from what he 
is said to have delivered At his lectures, or from the Conversation 
& publications of his pupils or followers, who are very 
numerous.”112 

Both Black’s and Irvine’s ideas were initially disseminated in a pedagogical 

context.   In spite of their didactic roles, neither made any effort to extend their 

 
110 Christie 1983. 
111 E.g.. Encyclopaedia Britannica, 2nd ed., s.v. “Heat”.
112 Milner  1784, f 60v – 61r. 
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ideas to deal explicitly with the chemical generation of heat.  It was, as Milner 

noted, their students, with their sets of lecture notes, and their recollections of 

their masters’ theories, who were responsible for pushing versions of their 

theories out to the wider world.  For most chemists access to Irvine’s ideas came 

through the publication of Crawford’s Experiments and Observations upon 

Animal Heat, which was received with great interest by his fellow chemists.113 

It seems likely that it was this work, together with the Enquiry into the General 

Effects of Heat & Mixture that prompted British chemists to draw on the new 

concepts to explain the production of heat or cold by chemical reactions.114 

Under Crawford’s system,  

“the capacities of bodies for receiving heat, are considered as 
proportionable to the quantities of absolute heat which they 
contain, when the quantities of matter are equal, and the 
temperatures are the same”115 

‘Absolute heat’ denoted the quantity of heat contained in a substance.  So long 

as the quantity of matter remained the same, and no external heat was added, the 

only way in which sensible heat could be produced from a substance was by a 

change in heat capacity.  In spite of Crawford’s routine use of the phrases 

‘quantity of heat’, and ‘capacity for receiving heat’, his commitment to a 

material view of heat was somewhat tentative: 

“my sole motive for adopting this language, was, because it 
appeared to be more simple and natural, and more consonant to 
the facts which had been established by experiment.  At the same 
time, I am persuaded, it will be found to be a very difficult matter 
to reconcile many of the phenomena with the supposition that 
heat is a quality.”116 

Crawford compared the absolute heats of a variety of bodies, drawing the 

conclusion that the addition of phlogiston to any substance reduced its heat 

capacity, while its removal increased it.  In respiration therefore, where (to 

simplify matters) atmospheric air was converted to fixed air and sensible heat 

by the addition of phlogiston, this was because the addition of the phlogiston to 
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the dephlogisticated air reduced its heat capacity sufficiently to expel a 

proportion of its absolute heat.   The heat of combustion arose from the addition 

of phlogiston to the air which produced a reduction in the heat capacity that 

vastly outweighed the increase produced in the fuel.117 Crawford also claimed 

that where the combination of certain substances produced heat, the reverse 

separation would invariably produce cold.   

Any chemical operation was a complex system linking heat capacities, 

saturation quantities of phlogiston, quantities of matter and sensible heat in a 

web of influence.  Where the product of the heat capacity and “quantity of 

matter” of one substance in a system fell by more than the equivalent product of 

the other substance rose, sensible heat was expelled from the system.  This was 

essentially what Crawford believed happened in combustion, and he was able to 

account for some of the circumstances of particular combustions: 

“In the inflammation of alcohol and sulphur, a very great 
proportion of the fire which is detached from the air, is imbibed 
by the aqueous and sulphureous vapour; and, therefore, alcohol 
and sulphur burn with a pale and weak flame.  On the other hand, 
those inflammable bodies which produce little vapour, or which 
produce a vapour that is capable of absorbing but little heat, as 
pit-coal, oil, wax, phosphorus, burn with a strong and vivid 
flame.”118 

Combustion was only one chemical process amongst many others which also 

involved the transfer of phlogiston, and a consequent change in heat capacities.  

Crawford used an analogy to explain the apparent opposition of phlogiston and 

heat: 

“in consequence of the addition of phlogiston, a portion of the 
fire will be detached, in the same manner as the nitrous acid is 
detached, by the vitriolic, from an earth or alkali; and therefore 
respiration and combustion will be truly chymical processes.”119 

This is interesting for two reasons.  Firstly, it implied that in some sense 

phlogiston and heat belonged to the same class of substances, and thus could 

displace each other in combination, as acids did.  Secondly, it suggested that the 
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expulsion of heat by phlogiston occurred in a similar fashion to the model of 

single affinity.  This notion, of heat behaving as it if had its own affinities to 

matter, is explored further in next section.     

By the time Crawford produced his second edition, published in 1788,120 doubts 

as to the existence of  phlogiston were creeping in (although Crawford was for 

the most part unconvinced by the anti-phlogiston arguments), and the work was 

amended substantially.  Nevertheless, his explanation of the chemical 

generation of heat remained substantially the same, focused on the comparative 

heat capacities of reactants and products. 

Cleghorn’s De Igne, produced in the same year as Crawford’s first edition, cited 

Irvine as having shown by experiment that heat was not ‘generated’ in chemical 

processes, but simply ‘separated’.  He also, however, incorporated a nod to 

Cullen’s heat theory: 

“for a given temperature and quantity, a mixture of water and 
vitriolic acid contained a smaller quantity of fire than did these 
fluids separately.  Also the bulk of the mixture is less: when 
therefore water and vitriolic acid are mixed with one another, fire 
arises from both causes; this likewise occurs in other mixtures 
and for the same reasons.”121 

For Cleghorn, both the change in bulk on chemical combination and the change 

in heat capacity caused the generation of heat.  It is interesting to note that he 

regarded these as two different, separate causes of the generation of heat.  The 

change in heat capacity was not, for Cleghorn at least, necessarily linked to the 

physical change in bulk. 

Kirwan’s views were similar to Crawford’s, and it is clear that he was very 

interested in Crawford’s work.  His correspondence with Guyton de Morveau 

between 1782 and 1785 abounds with Guyton’s enquiries about the forthcoming 

second edition and both men were apparently eager to hear Crawford’s revised 

views.122 Nevertheless, in his 1783 discussion of affinities, Kirwan avowedly 

relied on “the doctrine of Dr Black”,  
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“viz. that solids absorb heat during their solution.  Both the heat 
and cold, produced in different solutions, seem to me to depend 
on the same principle.  If the menstruum gives out only so much 
of its fire as the solvend can absorb, or less, then cold is 
produced; but if it gives out more, of its specific fire than the 
solvend can absorb, this surplus heat becomes sensible”123 

Kirwan envisaged a transfer of “specific fire” during solution from menstruum 

to solvend, as the (usually) solid substance was dissolved in a fluid, becoming 

effectively fluid itself.  The action of affinities normally prompted this transfer, 

and as different substances in different states had different capacities for heat 

(the Irvinist view) sensible heat was generated when a menstruum gave up more 

heat than the solvend could absorb.  As in Crawford’s system, heat was 

transferred according to the various capacities, states and proportions of the 

substances involved.  It is interesting to note, however, that Kirwan 

(remembered primarily as the defender of phlogiston) did not specifically refer 

to the transfer of phlogiston between substances as the agent of change of heat 

capacities, but tied his ideas much more tightly to his affinity theory than had 

Crawford.   

While sometimes the action of affinities produced heat or cold through this 

juggling of heat, sometimes the capacities were balanced in such a way as to 

prevent affinities from acting as expected.  Kirwan utilised these ideas to 

explain certain anomalies in his affinity theory.  His quantified affinities 

indicated that all the mineral acids had the same affinity to fixed vegetable 

alkali.  This ran counter to two of the most familiar reactions, by which vitriolic 

acid decomposed both nitre and salt of sylvius (marine acid combined with 

fixed vegetable alkali).  On the other hand, it had recently been shown that 

nitrous and marine acids could decompose vitriolated tartar (fixed vegetable 

alkali combined with vitriolic acid), from which Kirwan deduced that 

compound attractions were at play in all these operations.124 He examined a 

mixture of vitriolated  tartar and nitrous acid.  Although no change was apparent 

to the naked eye, a small amount of the salt was found to have decomposed.  

Kirwan repeated the experiment using nitrous acid of a higher specific gravity, 
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which, according to his theory, contained a higher proportion of ‘real acid’.  In 

this case the result was more obvious as the temperature of the mixture rose, and 

the vitriolated tartar was dissolved quickly.   

Kirwan had already suggested that the apparently anomalous ability of some 

acids to decompose the vegetable alkali salts arose from their different heat 

capacities.125 From the above experiment he argued: 

“the nitrous acid having the same affinity to the alkaline basis as 
the vitriolic, but giving out, during the solution, more fire than 
was necessary to perform this solution, the vitriolic receiving this 
fire was disengaged; for as it cannot unite to alkalies without 
giving out fire, so when it receives back that fire it must quit 
them.  The reason why the nitrous acid, which specifically 
contains less fire than the vitriolic, gives out so much, is, that its 
quantity in both these experiments is far greater than that of the 
vitriolic.”126 

Although the measured affinities between the mineral acids and the fixed 

vegetable alkali were exactly the same, in this particular experimental situation 

one acid took priority over another; its observed affinity for the alkali was 

stronger.  The experiment showed that in a situation where the nitrous acid had 

been vastly in excess of the vitriolic acid, the amount of fire it held outweighed 

the amount required to restore the vitriolic acid to its uncombined state.   

Kirwan also showed that when equal proportions were present the vitriolic acid 

gave out more specific fire than either of the other acids.  This would rarefy 

either of the other acids sufficiently to expel them from combination and ensure 

that in the majority of situations, the vitriolic acid would have a greater 

‘effective’ affinity for fixed alkali than the other acids.127 Like Crawford, 

Kirwan claimed that chemists had to take account of the relative proportions of 

each substance in any operation.  As they had to balance the total amount of 

heat possessed by each substance with their total capacities for heat, such 

proportions  had a significant effect on the results of the operation.    

Kirwan’s thinking rested in part on a distinction between the physical processes 

 
125 Ibid. 
126 Ibid, 46-47. 
127 Ibid, 44-45. 



225 

of solution and more enduring chemical combination that Cullen might have 

appreciated.  While solution involved a physical change in one of the substances 

involved, it did not necessarily entail chemical combination.  Kirwan 

differentiated carefully between the quantity of fire transferred between 

substances, and the addition of heat by the operator.  This he called ‘foreign 

heat’.  Considering the failure of either nitrous or marine acids to decompose 

selenite (vitriolic acid combined with calcareous earth), he explained,  

“it is dissolved by neither without the assistance of heat, and then 
the solution is performed by a foreign heat, and not by that which 
these acids give out when they act without the assistance of 
heat.”128 

Although the application of heat could promote the solution of the selenite, this 

was simply a physical change; it did not initiate the transfer of specific fire from 

the free to the combined acids that was required for chemical decomposition.  It 

is clear that Kirwan saw two interacting but distinct processes – physical 

change, often caused by the transfer of heat, and chemical change caused by 

affinities which in turn could prompt changes of state and consequent exchange 

of specific fire.  Physical states of aggregation, themselves dependent on the 

amount of specific fire present, could also prevent or promote affinities.  

Kirwan did not draw on quantified heat capacities in this component of his 

affinity theory, and indeed seemed more concerned with what Crawford would 

have termed ‘absolute heat’ which was also dependent on proportions.  He 

treated his heat as a material substance, suggesting at one point that in 

operations where changes of state occurred, fire was transferred as part of a 

double decomposition.129 

Kirwan’s presentation of this component of his affinity theory perhaps does his 

theory a disservice.  It is included in his paper not as part of a consistent, 

predictive theory, but rather in order to explain deviations from his quantified 

affinities.  This gives the unfortunate impression that it was formulated solely in 

order to preserve Kirwan’s innovative quantification component.  We should 

hesitate to accept this assessment.  Kirwan’s interest in the chemical effects of 
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heat, and specifically in the doctrines of Irvine and Black, was of long standing 

(as is evident from his early measurement of specific heats), and it seems likely 

that some form of this component had been included his affinity theory for some 

time.  It was, however, presented as part of a paper that was intended to set forth 

Kirwan’s new method of quantifying affinities, and as such any lengthy 

disquisition of this component would have served to distract attention from the 

main thrust of his argument.  His consequent introduction of it only when 

necessary lent it an unfortunately ad hoc character.  This perhaps emphasises the 

difference between a pedagogical presentation which, although selective as we 

have seen, might be expected to give equal weight to each component of a 

theory, and more research presentations which were intended to put across a 

very particular point in a persuasive manner.      

Elliot, whose ideas are discussed in more detail in the next section, was 

unequivocal in his explanation of the generation of heat or cold: 

“When water is mixed with oil of vitriol, a great degree of heat is 
produced.  The capacity of the mixture becomes less than the 
sum of the capacities of the ingredients before mixture; of course 
the fire which they contained must occasion the temperature of 
the mixture to be higher.”130 

A simple mathematical relation was sufficient, Elliot implies, to give a priori 

notice of those combinations that would produce heat and those that would 

produce cold.  This is, of course, a vast simplification of the Irvinist basis of 

Crawford’s and Kirwan’s components.  Elliot’s component appeared in a 

pedagogical work explicitly intended to instruct the novice in the theory 

underlying chemical practice, and as such his priorities were different from 

those of either Crawford or Kirwan.131 His causal hierarchy was strikingly 

similar to that adopted by Cullen in his own explanation of the generation of 

heat.  He offered a more generalised explanation of the phenomena, with the 

specific case of phlogiston, and its (possible) effect in reducing heat capacity, 

subordinated to his theory of affinity, which was responsible for the changes in 
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capacity that in turn caused the generation of heat.132 Thus the translation to 

pedagogical context ironed-out difference and elided variation to produce a 

component not clearly distinguishable from many of those that we have looked 

at, yet far from identical with any of them. 

Irvine’s and Black’s doctrines were initially disseminated in the pedagogical 

context, but were translated into the research context by their students and 

extended to cover the chemical generation of heat, an area barely touched upon 

by the original theories.  From this process of translation, confusion and 

misrepresentation abounded, such that Kirwan, for example, could misrepresent 

Black’s doctrine as above.  Crawford’s theory, combined perhaps with 

Kirwan’s, was then generalised and simplified for re-presentation in the 

pedagogical context by Elliot.  Elliot’s elision of many of the details of 

Crawford’s theory in his much more generalised component offers an 

interesting example of the process of generalisation as these researches were 

translated for the pedagogical context.  This process was perhaps taken to the 

extreme in the production of reference works like James Parkinson’s Chemical 

Pocketbook, which in 1800 claimed that in all combinations consequent upon 

affinity, a change in temperature occurred immediately upon the union of the 

two bodies.133 Parkinson listed this as one of his ‘general principles or laws’ of 

affinity and offered an explanation much like Elliot’s, with the temperature 

change the consquence of changing heat capacities.  Perhaps more importantly 

though, heat capacities were themselves the measure of the affinities between 

heat and ordinary matter. 

4.3  Affinities of Heat 
For those who did adopt a material heat, one of the consequences was the 

possibility that it might be possessed of its own set of characteristic affinities for 

ordinary matter.  However, whether these affinities were of the same type as 

chemical affinities and could be determined by similar methodology, remained 

open  questions.  As I have demonstrated, affinities could be ordered on the 

basis of the speed of combination, ease of combination, the ease of separation, 
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precipitation orders, or relative quantities.  A correspondence between the 

affinities of heat and ordinary matter would presumably require a similar 

correspondence between the conceptualisations of affinity orders.   

Heat capacity, or specific heat, common to both Black’s and Irvine’s theories, 

was a substance-specific quality, that many saw as being a measure of the 

affinities of heat for ordinary substances (or vice versa).  Even the agnostic 

Nicholson let slip that if heat was a substance, then 

“the table of comparative heats or capacities may perhaps 
indicate the affinities of this substance, … better than any other 
table.”134 

Thus Nicholson, who removed the column for ‘matter of heat’ from Bergman’s 

affinity table, remained firmly ensconced on his fence.135 

On the other hand, it was Black’s doctrine of latent heat that lent itself most 

easily to the concept of heat in combination with matter, with the usual 

consequence of loss of characteristic properties on all sides.  I have, however, 

been unable to discover any chemist who suggested that the affinities of a 

material heat might be proportional to latent heats.  Although the qualitative 

conceptualisation might seem to be analogous to chemical affinity, it does not 

seem that any chemist maintained that they were truly comparable. Black’s own 

position is not entirely clear.  In the posthumously published lectures edited by 

Robison, he expressly disavowed any notion that heat combined chemically 

with other matter: 

“Heat is … supposed to be somehow contained or lodged in the 
pores of bodies, and we endeavour to account for the changes of 
sensible appearance, such as increase of bulk, or fusion, or 
vaporisation &c. by shewing some resemblance between those 
appearances, and those which occur in chemical unions or 
mixtures. 

Many have been the speculations and views of ingenious men 
about this union of bodies with heat. … This will please the 
imagination, but does not advance our knowledge.  I therefore 
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avoid such speculations …”136 

At least in his posthumous incarnation, Black took a puritan attitude to the 

question.137 On the other hand, he apparently expressed a preference for 

Cleghorn’s ontology as set out in his inaugural dissertation.138 Cleghorn 

speculated at length on the ontology of heat, concluding that heat or fire 

consisted of a self repulsive elastic fluid (hence the movement of heat until an 

equilibrium of temperature was attained), that was attracted by ordinary 

matter.139 He cited in support an experiment of Black’s (after Fahrenheit as 

reported by Boerhaave)140 mixing equal masses of mercury and water at 

different temperatures, and similar experiments with water and lead, tin and 

glass: 

“It must therefore be concluded that there is in bodies a force 
attracting fire and that this is different in different bodies.”141 

What Black termed heat capacity was thus explained by Cleghorn in terms of an 

attraction of bodies for the matter of fire, or heat.  When a number of bodies 

were apparently at the same temperature according to the measurement of the 

thermometer, they contained different quantities of fire, in each case 

proportional to “the power by which they attract fire and inversely [in 

proportion] to the repulsive power of the particles of fire.”142 

Cleghorn also explained the apparent generation or absorption of heat: 

“since fire is distributed among bodies directly as their attraction 
and inversely as the repulsion between the particles of fire, if in 
any body the former is diminished or the latter increased, fire will 
flow from that body until the equilibrium be again restored; heat 
is then said to be generated.”143 

This would seem to explain his view, noted above, that both the change in heat 
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capacity and the change in bulk on chemical combination were responsible for 

the generation of heat.  In the case of a reduction in bulk (Cullen’s 

condensation), the repulsion between the particles of fire increased and heat was 

generated.  Although Cleghorn explained both Black’s latent heat and Irvine’s 

theory of change of state in his dissertation, his avowed preference was for 

Irvine’s ideas.144 According to Cleghorn’s version of Irvinism, a change of state 

resulted in a change in a substance’s “disposition towards fire”, and the 

consequent absorption or generation of heat.   

Cleghorn made it clear, like Fordyce, that different types of attraction were 

destructive to each other.145 Thus, on the application of heat, any subsisting 

attractions (presumably including chemical affinities) would be diminished.  He 

opposed the attraction between fire and matter with the attraction within 

homogeneous substances that accounted for their aggregation.  The increase in 

the attraction for heat when substances were rarefied was thus explained by the 

opposition of this ‘attraction of cohesion’ to the repulsion between the particles 

of fire.146 

It is unclear from Cleghorn’s dissertation how he conceptualised the attraction 

between heat and matter.  Although he hypothesised freely on the ontology of 

heat, he was less concerned to distinguish between the attractions between heat 

and matter and chemical affinity.  As with affinity, attractions were particular to 

each substance, and resulted in some type of union of heat and matter.  But 

Cleghorn did not claim that heat was chemically combined with matter.  Rather, 

he described how it was drawn to it, and held to it.  Words like ‘squeezed’, and 

‘compressed’147 seem to imply a sort of sponge metaphor.   

Heat affinities were not invariably identified with heat capacities.  The earliest 

specific reference to heat as being subject to affinities is by Erasmus Darwin.  

Endeavouring to explain the varying expansion of bodies on the addition of 

heat, Darwin argued that  
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“some bodies have a greater affinity to heat, that is, acquire it 
sooner and retain it longer than others.”148 

Darwin thus hypothesized that ordinary matter had an affinity for heat.  He did 

not imply that such affinities might inhere in the heat itself. Rates of absorption 

and transmission of heat were at this time commonly related to the density of 

matter, and Darwin tried to develop this idea to fit his own observations.  The 

affinities of different substances to heat were   

“in ratio of their specific gravities and their powers of refraction, 
reflexion, or absorption of light; or at least in some ratio much 
greater than that of their specific gravities alone.”149 

His discussion was almost entirely focused on the physical effects of heat, 

although he returned to the ‘affinities’ of matter for heat towards the end of the 

paper.  He clarified his thoughts by separating out the two contributory powers 

of this ‘affinity’ into “the power of retaining heat” and “the quickness of 

acquiring heat”. 150 Thus,  

“if (the power of expansion by heat being equal) the power of 
retaining heat be in a greater ratio than the specific gravities; then 
during the time of cooling after being sufficiently heated, there 
will be an instant, when the heavier body will become the lighter, 
and swim upon the other. … if the quickness of acquiring heat be 
in a greater proportion than their specific gravities … then, 
during the time of their acquiring heat, there will be an instant, 
when the body that was heavier when cold , will now become the 
lighter.” 

Darwin’s concern was the physical behaviour of two dissimilar bodies when 

heated together rather than their chemical behaviour.  These bodies were not 

undergoing chemical change, but his notion of varied affinities for heat suggests 

that he drew an analogy from chemical affinity.   

As we have seen throughout this chapter, we can draw no distinct line between 

Irvinist and ‘Blackist’ theories.  This is probably a consequence of the rather 

piecemeal process of interpretive dissemination of Black’s and Irvine’s ideas.  

Many chemists segued seamlessly from ideas that changing heat capacities 
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caused changes of state to notions of heat in combination.  As such, there is no 

correlation between those who espoused Black’s theory and those who ascribed 

affinities to heat.  Irvine’s son provides an example of this confusion with a later 

attempt to describe his father’s account of specific heat: 

“If then we suppose that any substance were totally deprived of 
caloric, yet retained its power of receiving or combining with it; 
it appears reasonable to say, that a certain quantity of caloric 
applied to this body, would raise its temperature by a number of 
degrees proportional to its capacity.”151 

His perception of his father’s ideas, like many chemists’, incorporated 

something akin to the combination of matter with heat.  It is probable that Irvine 

himself would have accepted this view; indeed McKie and Heathcote tell us that 

both Black and Irvine referred to affinity when discussing what came to be 

known as ‘heat capacity’.152 

We have seen that Crawford was more adventurous than Black and Irvine in 

applying the theory of heat capacity to chemical processes, but he too was not 

beyond a Black-style evasion on more hypothetical matters.  He pointedly 

declined to speculate on the ontology of heat, but then reminded his readers that  

“if we adopt the opinion, that heat is a distinct substance, or an 
element sui generis, the phenomena will be found to admit of a 
simple and obvious interpretation, and to be perfectly agreeable 
to the analogy of nature.”153 

The habit of speculation died hard with Crawford, it would seem.  He was 

prepared, in a tentative fashion, to take one step that Cleghorn had disdained: 

“I may add, in the last place, that, if fire be considered as an 
element, which is capable of uniting chymically with bodies, a 
table may be formed, exhibiting the respective attractions of 
phlogiston and fire.”154 

An affinity column for phlogiston was not particularly novel.  Crawford ordered 

much of his column on the basis of conventional displacements (although 

comparing the heat required to accomplish each).  The bases of the inflammable 
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bodies though, were arranged “according to the degrees of heat which are 

necessary to their inflammation.”155 This contrasts with the heat capacities on 

which he based his suggested column for fire.   

“Fire should be placed at the head of the second column; and if 
the attractions of bodies to this principle, be proportionable to the 
quantities of it, which they are found to contain, when the 
quantities of matter are equal; under fire should stand 
dephlogisticated and atmospherical air – the vapour of the nitrous 
acid, and probably of some other fluids – arterial blood, water 
&c.”156 

In spite of the purportedly quantifiable basis of this latter column, Crawford’s 

description was conspicuously vague, and this acts as a reminder that it was 

written before Kirwan produced the first table of specific heats (many of which 

were derived from Crawford’s experiments).157 It is notable that in the heavily 

amended (and partly dephlogisticated) second edition of his work, he objected 

to suggestions that ‘elementary fire’ was a substance that could combine 

chemically with ordinary matter.158 He still allowed that fire was attracted to 

ordinary matter, but it was something more than a chemical combination:  

“Fire will be considered as a principle, … The mode of its union 
with bodies, will resemble that particular species of chemical 
union, wherein the elements are combined by the joint forces of 
pressure and of attraction.  Of this kind is the combination of 
fixed air and water; for fixed air is retained in water partly by its 
attraction to that fluid, and partly by the pressure of the external 
air”159 

We have already seen an example of hurried amendment of a component in the 

light of new empirical information in Kirwan’s response to Cavendish’s 

synthesis of water.  It was, perhaps, an inevitable consequence of the innovative 

nature of components such as this that they were subject to endemic uncertainty 

and prone to radical modification.  Fire was still, however, envisaged as having 

affinities for ordinary matter, and indeed as uniting with it in some way that was 
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analogous to solution, in particular because it apparently retained its 

distinguishing properties in such combination.  Crawford still suggested that a 

table could be produced, but now it should show “the comparative quantities of 

fire contained in all known bodies”.160 Although inflammable air now appeared 

at the head of the table, the list of substances exactly replicated that earlier 

suggested as an affinity column.      

Bergman took a more robust view than Crawford, introducing a column for 

“matter of heat” into his affinity tables in the second edition of his Dissertation.

He devised this column on the basis of observations of the flow of heat from the 

mercury in a thermometer when placed in an evacuated air pump.  He 

apparently understood these phenomena as proceeding from the successive 

attraction of heat by these different substances in a fashion a little like capillary 

action.161 When water was placed on the bulb of an open thermometer and the 

air pump evacuated, the heat capacity of the rarefied air increased, drawing heat 

from the water.  The water in turn attracted heat from the glass of the 

thermometer, and this finally drew heat from the mercury which contracted as a 

result and fell in the glass.  The attraction of air for heat was thus presumed to 

be stronger than for water, the attraction of heat for glass was weaker and for 

mercury weaker still.  Bergman believed that specific heats were a product of 

the particular attraction of a body for heat, and what he called the external and 

internal surfaces.  These corresponded generally to the internal and external 

surface areas of bodies, the porous structure of which he compared to a sponge.  

As bodies changed state, their internal surface area changed accordingly (the 

greater the bulk, the larger the internal surfaces).  Thus physical state and 

attraction combined produced specific heat.162 

There is an enlightening corollary to Bergman’s decision.  The post-

Lavoisierian Pearson amended and extended Bergman’s table to take account of 

the new chemistry.163 He reissued his translation of the Nomenclature 

 
160 Ibid, 437-8. 
161 Bergman  1970, 240-248. 
162 Ibid, 237-139. 
163 Possibly the largest affinity table ever produced at 62 columns in both the wet and dry ways.  Anon 
[George Pearson]  1799, Table III. 
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alongside his new tables which were “from Bergman, with alterations and 

additions”.164 Pearson adopted Bergman’s matter of heat column, renaming it 

‘calorific’ and adding at the bottom the “bases of all the gases”, presumably in 

consequence of Lavoisier’s theory.   Pearson’s tables were picked up and used 

in chemical reference works such as Nisbet’s General Dictionary of 

Chemistry165 and Parkinson’s Chemical Pocketbook.166 

In the latter work, Parkinson claimed that caloric combined chemically with 

matter according to its affinity for each particular substance.167 The “combined 

caloric” was explicitly equated with Black’s latent heat, while heat capacity was 

proportional to the affinities between caloric and matter.  Pearson’s 

dephlogisticated version of Bergman’s table appeared alongside this theory with 

a column for ‘calorific’ which was still predominantly based on Bergman’s 

idiosyncratic method of ordering, rather than on the heat capacities that might 

be expected from Parkinson’s theory.  

This example clearly illustrates the crucial nature of the connection subsisting 

between theories and tables.  When tables of affinity were abstracted from the 

particular theory that had governed their creation  their practical value declined.  

It is possible that Parkinson himself was ignorant of the way in which the 

‘calorific’ column had been set out, but in any event, a hopeful chemist 

assuming that the orders of affinities shown in this table for caloric represented 

the various heat capacities of the substances shown would be sadly 

disappointed.      

We have seen (see 3.3.3 above) that Kirwan’s affinity theory explained many of 

his unexpected chemical results by reference to “a sort of double 

decomposition”168 involving the transfer of ‘fire’ from one substance to another.  

Although this implies that Kirwan envisaged something like the classic elective 

 
164 Ibid. 
165 Nisbet 1805. 
166 Parkinson 1800, 6. 
167 Parkinson was scrupulous in presenting alternative views from the material view of heat as well.  His 
personal preference can, however, be ascertained by the fact that the four pages devoted to the caloric 
theory was ‘balanced’ by an account of Rumford, Davy and Beddoes’s arguments in favour of vibratory 
heat occupying barely a single page. 
168 Kirwan 1783,  36. 
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model of affinity, other texts suggest otherwise.  In many cases, it seems that the 

role of heat in chemical processes was not to combine with other matters, 

changing their properties, but to simply encourage affinities to operate: this was 

a reversion to the more traditional understanding:   

“it is remarkable, that bodies capable of an aerial form receive 
the latent heat necessary for that form, much more readily from a 
body that parts with its specific heat than by the mere application 
of sensible heat.”169 

Earlier works had implied a similar distinction between the heat held within 

bodies and sensible heat (previously referred to as ‘foreign heat’).   He 

continued with an example: 

“so liver of sulphur will not give hepatic air by mere heat, though 
it will by the intervention of an acid, even the weakest.  The 
reason of which seems to be this: the matter of heat has no 
particular affinity with any substance, as is evident from its 
passing indifferently from any hot body to a colder, of whatever 
sort or kind the bodies may be; but it is determined to unite with 
this or that body in a latent state, in greater or lesser quantity, in 
proportion to the greater or lesser capacity of these bodies to 
receive it.”170 

In spite of his use of the word ‘unite’, heat capacity for Richard Kirwan was not 

another word for affinity.  The fact that heat was present in all substances in 

different proportions distinguished it from chemical affinity.  This perhaps 

explains why so many chemists struggled with the assumption that heat capacity 

was a measure of the affinity of heat for matter.  All substances were assumed 

to have some affinity for heat, which distributed itself between all the 

substances according to these affinities.  Where chemical affinity was elective, 

heat affinities were equilibrial; the type of displacement that had always 

epitomised chemical affinity was not an appropriate model for the transfer of 

heat.  He continued: 

“acids, uniting to the alkaline basis of liver of sulphur, expel the 
sulphur, and give it their heat at the instant that it has the 
capacity to receive it; whereas external sensible heat, acting alike 
on both the constituent parts of liver of sulphur, separates 

 
169 Kirwan 1786, 147. 
170 Ibid, 147-8. 
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neither.”171 

Although the proportional relations of heat and matter must have seemed similar 

to those quantified in his affinity theory, Kirwan believed they were different in 

kind.  Heat influenced chemical operations, and there is some indication that he 

considered that it combined with ordinary matter, but it did not possess 

chemical affinity.  Most importantly, it could not supplant more tangible bodies 

in combination.  The sulphur in liver of sulphur could only be expelled by acids, 

at which point it absorbed their heat.  The application of heat was unable to 

expel the alkali. The very fact that Kirwan felt the need to explain this point 

perhaps suggests that many of his contemporaries were making this very 

assumption.   

It is certainly true that while many were reluctant to commit to the idea that 

even a material heat was capable of chemical combination, others (in particular 

Darwin’s fellow members of the Lunar Society) were positively bullish.  As 

early as 1784, Wedgwood speculated on the “chemical affinity or elective 

attraction [of heat] to water”.172 Nor does Watt appear to have differentiated 

between the affinity of heat for matter and chemical affinity, happily comparing 

the affinities of “dephlogisticated water” for phlogiston  and latent heat in a 

letter to Black.173 

Priestley too was amenable to the notion that the absorption of heat was 

identical with or at least analogous to chemical combination.  He believed, like 

Cullen, that the mark of true chemical combination was the disparity between 

the properties of the constituents of a combination and those of the compound.  

Combinations of heat with matter were, in his view, entirely consistent with this 

principle.  In the Philosophical Transactions paper in which he claimed the 

successful conversion of water into air, he explained: 

“The difficulty that strikes many persons the most forcibly, is the 
want of analogy between the conversion of water into air with 
any other known facts in philosophy or its nature.  But admitting 
that this conversion is effected by the intimate union of what is 

 
171 Ibid, 148. 
172 Wedgwood 1784, 383-4. 
173 Watt and Black  1970, 126. 
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called the principle of heat with the water, it appears to me to be 
sufficiently analogous to other changes, or rather combinations of 
substances.  Is not the acid of nitre, and also that of vitriol, a 
thing as unlike to air as water is, their properties being as 
remarkably different?  And yet it is demonstrable, that the acid of 
nitre is convertible into the purest respirable air, and probably by 
the union of the same principle of heat.”174 

Elliot was perhaps the most adventurous of the chemists who assimilated Black 

and Irvine’s notions into their affinity theories, although his writings were not 

entirely consistent.  His Elements demonstrates the horns of his dilemma most 

clearly.  Throughout the main part of the work, which as we have seen was 

pedagogical in tone, he adopted a simplified version of Crawford’s theory to 

account for the physical and chemical effects of heat.175 Changes of state were 

correlated with changes in heat capacity, and the generation and absorption of 

heat was caused by heat capacities changing on chemical combination.  The 

implication, avoided by Crawford, was that it was chemical action that was 

responsible for these phenomena, affinity presumably envisaged as the driving 

force.   As we have already seen, Elliot’s re-presentation of Crawford’s theory 

in general terms led to some interesting assumptions.  When he came to the heat 

produced in combustion, he explained: 

“Let it be supposed that a great quantity of fire is contained in air, 
in a fixed, or latent state.  In combustion, the phlogiston of the 
inflammable body is transferred to the air; the fire is set at liberty 
because it has a weaker attraction, and by uniting with the 
substances around, produces the great degree of heat observable 
on these occasions.”176 

The fire was not expelled because the various heat capacities of the bodies 

taking part in the process changed (Crawford’s view), but because the 

phlogiston of the inflammable body was more strongly attracted to the air than 

was the fire.  Phenomenologically speaking, this was pretty much the same as 

Crawford’s theory that the addition of the phlogiston to the air reduced its heat 

capacity, but Elliot had translated this to a wholly chemical understanding, 

describing the process in terms of the model of single affinity.  He had not 

 
174 Priestley 1783, 428-9. 
175 Elliot  1786, ch VII. 
176 Ibid, 126.   
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mentioned a ‘latent’ state of heat prior to this introduction of the idea, and 

indeed made little further reference to it.   

Elliot added a postscript to the first edition, and a number of Appendices to the 

second, which included his own exploratory speculations on heat.177 Here he 

reflected on the ontology of heat, explicitly suggesting that it should be viewed 

as a principle rather than as an agent. His decision was based on analogy with 

the phenomena of affinity.  Comparing the role of heat in promoting the mixture 

of water and cream of tartar, with the role of alkali in enabling the union of oil 

and water he suggested that fire could act as an “intermedium”, attracted by 

both the water and the cream of tartar.178 He unambiguously explained 

decomposition by heat in terms of the classic model of single affinity: 

“Is it not because one of the ingredients has a greater affinity to it 
[heat] than to the principle it is already united with?  The fire or 
heat, in some cases, is attracted away by the neighbouring bodies 
on exposure to cold, and the body is again capable of uniting 
with the principle that was expelled by the heat, but in other 
cases this does not happen.”179 

Elliot’s inclusion of heat in his cache of chemical principles was unqualified, 

even extending the analogy to predict its properties in combination.  It will be 

remembered that Elliot’s theory held that the stronger the affinity between two 

combined substances the less ‘active’ they became (3.3.1 above).  He also 

applied this component to his understanding of heat, confirming its status as a 

chemical principle.   

“If the same quantity of fire be transferred from some bodies, to 
others, in a like succession, according to their capacities for 
containing heat, the activity of this principle is, in like manner, 
decreased.  For fire to appear as heat therefore, must it not be 
dissolved in bodies, or combined with them in the form of 
atmosphere? And is not its activity more restrained, in 
proportion as bodies attract it more strongly?”180 

Elliot’s ideas, framed as an extended query that deliberately recalled Newton’s 

 
177 Ibid, 326-331. 
178 Ibid, 327. 
179 Ibid. 
180 Ibid,  328. 
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Queries were, like the latter, carefully demarcated from the didactic 

generalisations that constituted the major part of the work.  His affinity theory 

related heat capacity directly to affinity, but also incorporated a relationship 

between the strength of affinity and the sensible heat.  Crawford’s theory had 

balanced quantities of matter with heat capacities and temperatures, and a 

comparison of this trinity with Elliot’s emphasises the latter’s more 

comprehensively chemical stance.  But Elliot’s speculations continued: 

“Yet I think that we must consider heat, or fire in two different 
states. When it is set free, it then manifests itself as heat … and 
different bodies have different capacities for containing it, the 
same as they have for containing moisture.  … But when fire is 
chemically combined with bodies, it then, I think entirely loses its 
property of heat, even as water does that of moisture when 
combined in quicklime … It is then no longer sensible to the 
feeling … and of course is by no means discoverable by the 
methods of finding the capacities of bodies for containing 
disengaged fire, or heat. This difference is so very obvious, that 
I wonder it had not occurred to me before.”181 

It is indeed rather surprising that it hadn’t occurred to him, as a similar idea had 

been set forward by his friend Priestley only a few years earlier.   Elliot 

explained his thinking by reference to the deflagration of nitre with an 

inflammable body by means of an electric spark.  In this case he was able to 

find no difference between the heat capacities of the mixture and the residue and 

air generated by the process.  He was confident that no heat was absorbed from 

the surroundings, as this process would take far more time than did the 

deflagration itself.  The large amount of heat generated must have come from 

the combination of the nitre and the inflammable body. 

“I account for it by supposing that the latter displaces the fire 
chemically combined in the acid (or dephlogisticated air) of the 
former; all of which (except perhaps what the inflammable body 
absorbes in lieu of its phlogiston) becomes then disengaged fire, 
or sensible heat.”182 

Elliot’s heat theory cannot be correlated with Irvine’s or Black’s, or indeed any 

other.  While it borrowed certain components from these conventions, his heat 

 
181 Ibid,  329. 
182 Ibid, 330-331. 
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theory was entirely located within his affinity theory.  Heat was material, 

behaving according to the rules set out in the components of his affinity theory.  

It could combine with matter according to its affinities, and once combined it 

was “by no means discoverable”.  Heat capacity in Elliot’s theory only applied 

to sensible heat, and was no indication of the affinities of heat.  These affinities 

were presumably discoverable through experiments that displaced it from 

combination as in the deflagration of nitre.  His theory invoked a fixed, 

chemically combined heat that bore some resemblance to Black’s latent heat – 

perhaps a latent heat of combination - but viewed through chemical rather than 

physical spectacles.   

Over the last quarter of the 18th century there was much debate over whether 

heat was possessed of affinities, and if so, whether they were chemical 

affinities.  As this account has shown, although many were happy to agree that 

heat was indeed possessed of affinities, very few agreed that they were chemical 

affinities.  The consideration of these questions served an important purpose for 

chemists though, for in resolving them they clarified their own understandings 

of chemical affinity, and indeed of the way in which affinity acted.   

4.4  Conclusion: Preservation, Assimilation and Refinement 
This exploration of some of the components of affinity theory that were 

formulated to deal with the relationship between heat and affinities has further 

demonstrated the extent to which affinity theories varied; this much is clear.  

But perhaps more importantly, it has shed some light on how and why new 

components were formulated.   

The first section set out a range of components that attempted to rationalise the 

varied effects of heat on substances, and on their affinities.  These were for the 

most part intended to preserve the utility of theories in the face of admitted 

anomalies.  This preservative spirit is evident in an appendix that Keir added to 

his translation of Macquer’s Dictionary in which he explained and clarified the 

two affinity tables he had added:183 

183 He included Geoffroy’s table and Gellert’s table of solubilities, neither of which had been included in 
Macquer’s French original.  Macquer  1771 , 887-888. 
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“The affinities of bodies to each other, as they are laid down in 
the above Tables, … do not at all times take place; some of them 
requiring certain degrees of heat, dilution, and various other 
circumstances.  Many instances do also occur in which the 
affinities of substances seem even to be changed by these 
different circumstances; and hence many exceptions have been 
found to the present Tables, some of which are real, and others 
only apparent.  … instances might be adduced of the inaccuracies 
and defects of these Tables, and of the apparent variations from 
the general rules laid down in them; but as all chemical 
compositions and decompositions depend on the affinities of the 
substances employed, we cannot explain and correct these, 
without considering almost all the operations in Chemistry.  Till 
other Tables more perfect be formed, these may be of 
considerable utility.”184 

Keir’s commentary indicates both the importance of affinity theories to the 

discipline of chemistry, and the extent of the problems that beset them.  Many 

of the components cited in this chapter were formulated in an attempt to find a 

solution to the problems that Keir so eloquently laid out.  The effects of heat 

were thus ascribed to a variety of causes, none of which necessarily entailed that 

affinities were changed by the application of heat.  The consistency of affinities 

formed one of the crucial tacit assumptions of the doctrine of affinity, so 

exceptions were unacceptable.  Affinity tables and their associated theories were 

perceived as being too useful and too important to give up, and so chemists 

made strenuous efforts to rationalise and codify the effects of heat simply to try 

to save their theories. 

On this view, the eagerness with which chemists were to assimilate the 

doctrines of specific and latent heat into their theories is unsurprising.  The 

work of Black and Irvine on the interaction between heat and matter was 

quickly seized upon as offering an opportunity to explain the chemical 

generation of heat.  Earlier explanations had drawn on the sort of notions now 

abjured by chemists like the strife between opposing bodies, or rather naïvely 

mechanical ontologies.  The new ideas thus offered a new opportunity to try to 

explain these phenomena that evidenced the most obvious overlap between heat 

theories and affinity theories.  New components were formulated to affinity 

theories, assimilating often quite different understandings of specific and (less 
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often) latent heat.  My exploration of these new components testifies to their 

lack of correlation with ontology.  Components that were similar in kind were 

aligned with different ontological commitments, while quite different 

components apparently coexisted with the same or similar ontologies.   

Neither Black nor Irvine ever published their theories, and indeed it seems that 

both were reluctant to speculate beyond their empirical measurements of heat 

capacities and latent heat.  There is a historiographic parallel here between the 

dispersion or dissemination of their theories and the dispersion of affinity 

theories.  For most people, access to the new theories was mediated through a 

network of student notes and recollections, hints and misinformation.  Many 

chemists struggled to differentiate clearly between Irvine’s and Black’s theories, 

particularly as, from a phenomenological point of view, the differences were 

unintelligible.  As with the dispersion of affinity theories, differences arose 

between the theories presented at the apex of the pedagogical pyramid, and the 

theories that were adopted in the lower ranks.     

The first two sections examined components which sought to account 

theoretically for observed phenomena.  In contrast, the third section explored 

those components that wrestled with some of the logical implications of the new 

theoretical accommodations.  One of the beneficial effects of these more 

speculative efforts was that they led chemists to refine their understanding of 

affinity itself.  Lines of demarcation between physical and chemical phenomena 

were clarified, and new lines were drawn  between phenomena that might look 

like the actions of affinities but which were instead the result of some other 

cause.  Attempts to answer the question of whether the affinities of heat were 

chemical affinities, and whether heat combined chemically with matter served 

not only to clarify thinking on the behaviour of heat, but also to shed light on 

what was meant by chemical combination and chemical affinity. As a result of 

this deeper consideration of these questions, the differences between heat 

capacity and affinity seem to have become more apparent.   

My examination of these ‘supplemental’ components of affinity theories has 

emphasised the uncertainties that dogged the doctrine of affinity.  It has become 

clear throughout this chapter, whether chemists endeavoured to extend their 

affinity theories in a spirit of theory preservation, assimilation or refinement, 
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just how precarious their theoretical structures actually were.  As I have shown, 

both Kirwan and Crawford were obliged to amend their components fairly 

quickly, (and very publicly) in consequence of new empirical and theoretical 

information.   On the other hand, the very fact that they attempted to build these 

theoretical structures, indicates their belief that their affinity theories provided a 

solid foundation. 

Thus we begin perhaps to see a new line of demarcation being traced between 

the pedagogical context and the research context.  Kirwan and Crawford in 

general inhabited the latter, and perhaps their theories were more freely 

speculative in consequence.  In contrast,  Fordyce and, to a lesser extent, Elliot 

straddled both.  Both Fordyce and Elliot were notably more cautious in their 

speculations in the pedagogical arena, with Elliot adopting Newton’s tactic of 

inserting his more venturesome speculations in a set of queries in an appendix to 

his pedagogical work.   

In Elliot’s work we have also witnessed the translation of Crawford’s complex, 

highly speculative explanation of the generation of heat into an appropriate form 

for the pedagogical context.  The process is only rarely visible, and even here it 

is far from transparent, as we cannot know what works other than Crawford’s 

Elliot was familiar with.  It does, however, give some indication of the extent to 

which details of exceptions and anomalies were flattened, while the 

generalisation increased the scope beyond that justified by Crawford’s empirical 

evidence.  This process seems to be an interesting inversion of that carried out 

by Cullen in his translation of Geoffroy’s research paper to his own pedagogical 

context.  In that case, Cullen added considerably to Geoffroy’s original theory 

in order to prepare it for its role in his pedagogy.  Similarly, the very theory that 

Elliot was translating for pedagogical consumption was drawn originally from 

Irvine’s theory, itself disseminated solely within the pedagogical context.  It 

would thus be incorrect to assume that any such rudimentary line of 

demarcation between pedagogy and research was rigid.  We must bear in mind 

first and foremost that relations between the two contexts were complex and 

traffic across the line of demarcation was rarely one way.  Nevertheless, 

although we must be cautious in reading too much into this, there is some 

evidence that a distinction was being drawn in the minds of my actors between 
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research and pedagogy.   
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5. The Common Ground 

While previous chapters have revealed the variety and diversity prevailing 

amongst the components of affinity theories, this one examines the underlying 

consensus.  The phrase heading this chapter, ‘common ground’, is used in two 

senses.  Firstly, it describes the components of affinity theories that were 

present in each individual theory without variation.  Secondly, it refers to the 

role taken by the doctrine of affinity as a whole in providing a ‘disciplinary 

common ground’ for chemists. 

My decomposition of an array of affinity theories into their constituent parts has 

revealed both variety and and underlying consensus.  In addition to the 

structural similarities already highlighted, there were other, predominantly tacit, 

components of affinity theories to which all theorists subscribed.  This bundle of 

components I call the ‘logical common ground’, and in the first section of this 

chapter I endeavour to parse this notion, revealing the components that formed 

the necessary (although not sufficient) elements of an affinity theory.  

The common assumptions that constitute this logical common ground are 

distinct from the theoretical components set out above.  Those in chapter 3 were 

functional component-types, providing rules or instructions to enable affinity 

theories to be practically utilised.  Without a conceptual understanding of 

substance, combination and order the actual application of an affinity theory 

was simply not possible.  In contrast, the components that I exhibited in chapter 

4 as examples of ‘supplementary components’, were added to theories either to 

preserve or extend their explanatory and predictive power.  For both functional 

and supplementary component-types, as I have shown, there was an element of 

choice within each component-type, which are perhaps best conceived as 

clusters of possible components.  In contrast, the components of the common 

ground were ‘universal’; included in all affinity theories alike and forming the 

basis of each theory.   To revert to the metaphor of chapter 3 above, if my 

decomposition of affinity theories has distilled off a variety of components, the 

common ground might be seen as the caput mortuum, the residue that remained 

after each distillation.  As such, it perhaps offers the best way we have of 

characterising the ‘doctrine of affinity’, as the common basis of all the variety 
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of affinity theories adopted by individuals.   

The second section of this chapter details the various common assumptions  that 

prevailed amongst chemists in consequence of the the role taken by the doctrine 

of affinity as a ‘disciplinary common ground’.  This role was most clearly in 

evidence in chapter 2 above, as we saw how affinity became foundational to the 

discipline of chemistry.  Although individual affinity theories undoubtedly 

varied, the logical common ground ensured that the doctrine as a whole 

appeared homogeneous, sufficiently so for the undoubted variety to be  ignored.  

Cullen’s utilization of his affinity theory as a pedagogical tool transformed its 

status into a chemical tool.  Affinity thus became foundational to the discipline, 

providing the disciplinary common ground that in turn, entailed certain common 

assumptions about the practice and aims of chemistry.      

5.1  The Logical Common Ground 
I begin with an exploration of the specific components of the logical common 

ground.  Geoffroy’s affinity table was imprecise, limited in range and scope, 

and his articulation of his single law of affinity left many questions unanswered.  

Yet this very law (or an abstraction of it), together with the conceptualisation of 

the affinity table combined to form the logical common ground of the doctrine 

of affinity.  The first section below examines the articulated component, the law 

of affinity.  This component is not particularly difficult to elucidate; the same, 

unfortunately, cannot be said of the other component, the concept of the affinity 

table.   

I unpack this predominantly tacit conceptualisation in section 2.  The concept of 

tabulation in general necessarily implies that the relations depicted are both 

orderly and sufficiently consistent to be ascertained and represented.  The very 

particular conceptualisation of the affinity table implied that such order was 

transitive.  The concept of the affinity table also presumed a taxonomic system 

that discriminated the substances that were the subject of this ordering function, 

both from each other and from those that could not be so ordered.    

The third sub-section explores the correlation between the components of the 

logical common ground and the functional component-types set out in chapter 

3.  As the assumptions of the former were common to all affinity theories, I 
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argue that they provided the criteria for the formulation of the functional 

components, as well as restricting the scope of their variety.  

5.1.1 Articulated Affinity: The Law of Affinities 
The doctrine of affinity cannot be said to have originated anywhere but with 

Geoffroy’s 1718 Mémoire. Although many have endeavoured to settle the 

origin firmly in England at Newton’s feet (chapter 2 above), as I have shown 

this is somewhat specious.  Geoffroy’s law of affinity might, with hindsight, be 

perceived as implied by Newton’s hypothesis, but Newton had not intended to 

formulate any such law.  Indeed, there is no indication that he envisaged any 

further generalisation of the phenomena beyond the case that he cited.  

Geoffroy, on the other hand, drew on the regularities of similar phenomena to 

formulate an empirically justified law that was generalised across a range of 

different types of matter.  As Klein has pointed out, the substances implicitly 

included in his table as the results of the various combinations included alloys, 

amalgams, metallic and neutral or middle salts.1 The inclusion in the affinity 

table of generic columns (such as that for ‘esprits acides’) confirmed, if such 

confirmation were necessary, that this law was posited as a regularity of nature.  

A phenomenological belief in the existence of this regularity, rather than any of 

its specific manifestations or any particular causal factor,  formed the basis of 

affinity theories. 

The law was first enunciated in Geoffroy’s Mémoire, and it was from this paper 

that the components of the logical common ground proceeded.  The single 

articulated component of the common ground is plainly discernable, 

corresponding loosely to the text of Mémoire generalised in the form of the 

‘law’ of affinity.  To repeat the law: 

“Toutes les fois que deux substances qui ont quelque disposition 
à se joindre l’une avec l’autre, se trouvent unies ensemble ; s’il 
en survient une troisiéme qui ait plus de rapport avec l’une des 
deux, elle s’y unit en faisant lâcher prise à l’autre."2

This statement can be found reiterated in almost all presentations of affinity 

 
1 Klein 1995, 80. 
2 Geoffroy 1719, 203. 
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theory in Britain with little amendment; for example Lewis’s 1763 assertion: 

“a third body may have a stronger affinity to either of the 
component matters than they have to one another, in which case, 
on presenting to the compound this third body, the former union 
is broken, and one of the first bodies coalesces with the third, 
while the other is detached and separated.”3

This is the familiar account of the action of affinity, setting out the epitome of 

what came to be known as single elective attraction or single affinity, the 

primary model of the action of affinity.  This model was used firstly to 

ascertain, and then to demonstrate, the different affinities of substances.  

Nicholson offered essentially the same statement in 1790, although the details 

of his affinity theory are more complex than either Lewis’s or Geoffroy’s: 

“When a compound of two principles is so affected by the 
addition of a third, that a new compound is formed, of this last 
principle and one of the other two; at the same time that the 
principle which was part of the original compound, but does not 
enter into the second combination, is disengaged; the 
decomposition and new combination are said to be produced by 
simple elective attraction or affinity.”4

Geoffroy’s law was a practical law, a generalisation of observed phenomena.  It 

did not postulate a force or attraction between substances, but set out what 

happened in a conjunction of three different substances with varying ‘tendencies 

to join together’.  The cause or causes of these phenomena, represented as inter-

substance relations (‘rapports’), were deliberately left unexplored.  Nicholson’s 

iteration is perhaps closer to the spirit of Geoffroy’s original statement of his 

law than Lewis’s, being quite clear in its primary commitment to the 

phenomena as experienced by the chemist. Lewis’s version, in contrast, 

hypothesised a causal agent, affinity, which might be ‘stronger’ between some 

substances than others.  In spite of these variations, emanating perhaps from 

divergent ontological or methodological commitments, the essence of the law 

remained, referring to the relative positions of substances in a ‘triplet’ of 

substances.   

Certain of Cullen’s lectures, though, set forth a subtly different form of the law 

 
3 Lewis  1763,  v. 
4 Nicholson  1790b, 77-78. 
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that made the link to the relative positions of substances in affinity tables overt: 

“This Table is easily understood being made in the same manner 
as Geoffry’s [sic], the upper Substance will unite with any of the 
Lower, but if any of them be united with the Substance at the top 
of the column, any of the Intermediate ones will separate them.”5

This version of the law, with its references to the relative positions of 

substances in each column clearly implied that Geoffroy’s law was not to be 

considered to be the whole story of affinity.   As we saw in 3.3.1 above, 

Geoffroy’s law only compared the affinities between two different substances 

for a third.  These relations can be set out in what I have called ‘triplets’.  The 

original formulation of the law referred to the initial comparison of affinities, to 

the experimental discovery of the relations between substances.  Geoffroy 

translated his experimental observation according to his generalised law and 

then brought these observed relations between groups of three substances 

together in the form of a table.   In contrast, Cullen’s version of the law referred 

explicitly to the positions of substances in each column of his affinity table.  It 

told his students how to translate the contents of the affinity table into practice.  

Geoffroy presented a generalised law that enabled the constitution of a useful 

synoptic table.  Geoffroy’s law could be understood and even utilised without 

an accompanying table; while the latter relied on the former, this was not a 

mutual relation.  For Cullen’s students, the law was more intimately bound to its 

accompanying affinity table to the extent that either without the other was 

meaningless.  Cullen’s pedagogy thus emphasised and enforced a new 

conceptual link between the law and the affinity table.  This difference, subtle 

though it is, epitomises the conceptual change that took place as affinity theories 

assumed their status as pedagogical tools.   Thus the law and affinity tables were 

necessarily coupled, as invariable components of every affinity theory.  In this 

new conceptualisation, the law of affinity was only comprehensible (and useful) 

when set forth alongside an affinity table; any affinity theory necessitated a 

table of affinity. 

 
5 Cullen n.d. [1760?], f 143r.  The explanation given in Cullen 1757, f 97 matches this almost verbatim; it 
is sufficiently close a match to suggest that the two MSS are from the same course, which would date the 
British Library MS at 1757. 
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5.1.2 Tacit Affinity: The Concept of the Affinity Table 
Under the influence of Cullen’s pedagogy the law of affinity was explicitly 

linked to an accompanying affinity table.  The criteria for such tables were not, 

however, particularised; the law did not necessarily refer to any particular 

affinity table, or even any particular form of table.  Cullen’s version of the law 

was not going to be particularly useful without an affinity table to refer to.  On 

the other hand, it would at least be comprehensible so long as the chemist was 

familiar with the concept of an affinity table, with what such tables did, and 

what information was contained therein.  I would suggest that the law, as Cullen 

presented it above, did not require an actual table to be meaningful (although it 

certainly would, to be useful), but it did require an appreciation or 

understanding of the concept of an affinity table. (Geoffroy’s original law was 

both meaningful and useful without even the concept of an affinity table.)  

Cullen’s teaching clearly tightened the bond between the law and the table; 

sufficiently so, that affinity theories became meaningless without some 

understanding of the concept of the affinity table to which they referred.   

The concept of the affinity table which this section endeavours to unfold is not 

an easy conceptualisation for the historian to articulate.  Perhaps the most 

important point that should be borne in mind is the fact that it refers to a 

conceptualisation of the ideal affinity table.  Chemists constantly bemoaned the 

imperfections of their own affinity tables, and those of other chemists’.   From 

Fontenelle who, even as Geoffroy’s table was initially set loose on the world, 

looked forward to a more perfect table6 to Cullen, who objected to so much of 

Geoffroy’s table that he produced his own, to Fordyce, who, in the 1780s, was 

still telling his students that “although the Tables of Elective Attraction are not 

perfect yet as they are they are very usefull.”7 These chemists clearly 

maintained an ideal conceptualisation of the affinity table, to which the tables 

that they encountered were compared.  This would comprise the essential 

criteria that distinguished such an ideal affinity table, referring to the type of 

information it was intended to convey, to its intended function.  This, the 

 
6 Fontenelle 1719, 37. 
7 Fordyce 1788, Lecture 14th Oct 1788. 
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concept of the affinity table, thus formed the tacit part of the common ground.   

This section explores the two primary assumptions that can be discerned in the 

concept of the affinity table.  The first assumption derives from the fact that 

affinity tables set out ordered relations between different substances.  It 

presupposes that the tendencies set out in the table could be disposed to order, 

and that this order was transitive and consistent. The second derives from the 

fact that affinity tables set out ordered relations between different substances.

The conceptualisation of the affinity table thus entailed the assumption of a 

unique taxonomy of the substances that would appear therein.  This delineation 

of the facets of the concept of the affinity table is necessarily somewhat 

indistinct as a result of its tacit nature.  Nevertheless, however shadowy, their 

outlines are discernible and I hope that my identification will be a first step in a 

ongoing process of historiographical familiarisation.   

Geoffroy’s original table was, of course, amended by chemists throughout the 

century according to individual empirical observations; many published tables 

modified Geoffroy’s original, sometimes quite considerably.  As we have seen 

in earlier chapters, extensive amendments took place both to the content and the 

form of the table.    Poole’s presentation of the first table published in Britain 

took the form of a series of sixteen individual ‘tables’ or series.8 Lewis’s first 

table took the form of a grid, but read from left to right rather than in columns,9

while his second took the form of separate textual lists.10 Lewis’s researches 

on platina were apparently intended to supply further new affinity columns for 

the new metal, although these do not appear in his tables.11 Practising chemists 

produced tables according to their own observations and preferences.  It seems 

likely that most chemists kept their own affinity tables up to date, incorporating 

their own discoveries, and analyses and those of others.  Cullen amended the 

contents of his affinity table throughout his career, including judicious 

corrections and additions until it was almost twice its original size.12 Tables 

 
8 Poole  1748, 383-386. 
9 Lewis  1753, xi.  See Sivin 1962 for a detailed comparison of Lewis’s and Geoffroy’s tables. 
10 Lewis  1765, 28-29. 
11 They did, however, appear in those of Saunders  n.d. [1766?], 52-55, and Warltire  1769b, 24-25. 
12 See e.g. the tables in Cullen n.d. [1760?], Cullen 1765. 
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were produced that incorporated other factors for convenience, as Elliot’s table 

showed the resulting substance of each combination.  Fordyce’s of 1765 also 

showed new substances released when the action of affinity produced a 

decomposition of one substance.13 Cullen, Black and, more conspicuously, 

Bergman divided their tables according to specific chemical practice as we have 

seen.14 We have seen that affinity tables were easily able to accommodate the 

degree of translation necessitated by the Lavoisierian revolution.15 

In spite of this variety amongst the form and content of affinity tables, all 

affinity tables, regardless of their particular form or content, performed the same 

function: they all ordered the relations that were believed to exist between 

different substances.  The empirical bases of these relations were set out in the 

law, which, as we have seen, generalised the apparently preferential dispositions 

of different substances to combine.   The law implied that the behaviour of 

groups of three substances was dictated by dispositional relations, or affinities, 

between pairs of substances within each group.  These relations could be set out 

as ‘triplets’, as I showed in 3.3.1 above.  Affinity tables brought together a 

variety of triplets to form columns or series that ordered the affinities of 

inumerable substances.  This tabulation of these dispositional relations 

necessarily assumed that a transitive relation held between the relations set forth 

in the triplets.  Thus the conceptualisation of an affinity table included the 

assumption that the relations depicted were necessarily both orderly and 

consistent.   

The very concept of the tabulation of affinities necessarily implied a 

presumption of regularity and consistency.  There are two aspects to this 

assumption; the first that the relations between pairs of substances were 

conformable to order and and the second that they were contextually consistent.  

The ordering of affinities into series in the pattern inaugurated by Geoffroy’s 

table, extended beyond the triplets implied by his law.  The version of the law as 

 
13 Elliot  1782, facing page 105, Fordyce 1765, f 3-23. 
14 Black  1966, Cullen 1757, f 98. 
15 See George Pearson’s enlarged version of Bergman’s table of affinity  which converted the phlogistic to 
the anti-phlogistic, with an apparent ease which rather belies the philosopher’s insistence upon the 
incommensurability of the two theories.  Anon [George Pearson] 1799. 
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set out by Cullen above makes it clear that a transitive relation was believed to 

hold between the affinities of substances within a column.  The assumption of 

such a relation ensured that affinities (whatever they might be) could be ordered 

into relational series.   

Geoffroy’s law claimed that if substances B and Z were combined as BZ, and a 

third substance, A was introduced, if A had more rapport with B or Z than 

existed between them, it would replace it in combination.  From such an 

operation, either the relative affinities of A and B for Z  or of A and Z for B 

could be ascertained.  But the ordering of these relations or affinities into tables 

consisting of more than three substances required a further assumption that the 

affinities held a transitive relation even across different ‘triplets’.  For example,  

experiment (i) might look like this: 

BZ + A = AZ + B 

This would produce triplets: 

Z A

A Z

B B

Experiment (ii): 

CZ + B = BZ + C 

would similarly produce triplets: 

Z B

B Z

C C

The tabulation of these affinities would then require the addition of the two 

triplets showing the affinities for Z.  The two triplets setting out the affinities of 

A and B could not be combined.  Two separate experiments had showed that the  

affinity A for Z was greater than that of B for Z and that the affinity of B for Z 

was greater than that of C for Z.  Assuming, therefore, a transitive relation 

between affinities, such that if AZ>BZ and BZ>CZ, then AZ>CZ, a column 

could then be produced showing the affinities of A, B and C for Z as below: 
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Z

A

B

C

The very concept of the affinity table thus implicitly assumed that affinity was a 

transitive relation.  This was not implicit in Geoffroy’s law; it was, however, 

implied by the concept of the affinity table.   

The only way that the triplets that Geoffroy’s law implied could be combined 

was by assuming that this transitive relation existed between the affinities for 

one particular substance.  This was why the two triplets produced above 

showing the affinities of A and B could not be combined to produce a single 

affinity column.   Affinities were only comparable as long as one of the 

substances in each pairing remained the same.  This assumption of transitivity 

thus essentially determined the very particular configuration of an affinity 

column, and, by extension, of  affinity tables.    

It was this assumption of transitivity inherent in the concept of the affinity table, 

I would suggest, that naturally inspired many chemists to assume some sort of 

causal uniformity.  Geoffroy, of course, did his utmost to avoid such a 

proposition, but his own affinity table, which took the form of a true table, with 

the columns lined up alongside each other, the whole encompassed by a thick 

black line, must have supported their assumption.  It was perhaps this 

implication that led some chemists, beginning with Cullen, to translate the 

‘relations’ of Geoffroy’s table into an assumption of a single causal factor.   

The cause of affinity was rarely overtly speculated upon, although it is clear that 

there was a variety of opinions on the matter.   Although most chemists 

disavowed any particular causal allegiance, preferring, like Newton, to 

contemplate the effect rather than the cause, there seems little doubt that they 

only envisaged a single cause (whatever it might be) to lie behind the relations 
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set out in the tables.16 This assumption of a single causal factor forms part of 

the common ground as part of the concept of the affinity table.  Although 

affinity tables only compared affinities within each column, a   cross-columnar 

correspondence is in fact implied in the translation of the triplets implied by the 

law to the tabular form.  To return to the experiments set out above, my two 

experiments (i) and (ii) had shown: 

(i)(a) (i)(b) (ii)(a) (ii)(b) 

Z A Z B

A Z B Z

B B C C

If we imagine two further experiments: 

(iii) AB + C = AC + B and (iv) BC + D = BC + D, this would similarly produce 

triplets: 

(iii)(a) (iii)(b) (iv)(a) (iv)(b) 

A C B C

C A C B

B B D D

Experiment (iii) gives us another triplet for A and our first for C, while 

experiment (iv) gives us sufficient information to produce columns for B and C: 

B C

Z A

C B

D D

16 There is perhaps an interesting correlation between the forms that affinity tables took and the causal explanation 
assigned. As an example of negative evidence, Lewis, who had eloquently and specifically rejected any 
causal implication of his affinity theory, divided his second affinity table into a set of 19 separate textual 
series.  Lewis 1765, 27-29. 
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Note here though that the information gleaned from experiment (iv), which 

compared the affinities between B, C and D, is used (along with the triplets 

from the earlier experiments) to formulate both the columns showing the 

affinities of B and C.  Thus, although the relations delineated in the affinity 

table were only intended to be compared within each column, avoiding any 

implication of cross-columnar relations, such cross-columnar relations were 

inherent in the very building of a table.  The fact that triplets deriving from 

different experiments had to be pulled together to create the column for Z 

implied this, but it was confirmed in particular by the fact that the triplets from 

experiment (iv) enabled the formulation of two different columns showing the 

affinities for B and C.  Although, as relational series, affinity columns could not 

be compared directly, the implicit cross-columnar consistency was to underpin  

Cullen’s innovative analysis of double elective attractions, as well as Fordyce 

and Kirwan’s attempts at comparison and quantification of complex affinities.   

The use of the four experiments  set out above to produce our three affinity 

columns also serves to illustrate a further aspect of the common ground that 

inhered in the concept of the table.  The relations between substances as set out 

in affinity tables were both drawn from and applied to different experiments, 

and different combinations of substances in different contexts.  Our four 

experiments were carried out at different times, perhaps in different places, 

under different conditions, using different substances and probably different 

equipment, possibly even by different operators.   And yet the results of these 

experiments were brought together into a single table where the discrepancies 

between such circumstances became invisible.  The concept of the table thus 

necessarily included an assumption that the affinities represented therein were 

contextually consistent.  That is, in different places and at different times, and 

under differing circumstances, the affinities between substances did not change.   

Of course it quickly became clear that the observed affinities of substances did, 

in fact, change in certain circumstances.  Hence Bergman’s introduction of a 

table that differentiated between affinities observed in ‘the wet way’ and ‘the 

dry way’.  But this did not necessarily refute the assumption that affinities were 

consistent.  Bear in mind that we are trying to elucidate the concept of the ideal 

affinity table.  Affinities as observed might be obstructed, destroyed, tempered 
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or augmented by particular circumstances, but this was regarded as a secondary 

factor.  The underlying affinities remained consistent, even though they were 

subject to perturbations as a result of external influences.  Thus Bergman could 

talk of the ‘free attractions’ that he believed were observed in operations carried 

out in the wet way.  While affinities were admitted to fluctuate in certain 

situations, as with the addition of heat, or in the presence of other affinities, or 

even (for some chemists) when one substance was present in excess, we have 

seen that such fluctations were assumed to be obstructing or perhaps perturbing 

the otherwise consistent affinities.   

Other substances present in a mixture, particularly those that had been easily 

overlooked by Geoffroy and his contemporaries, substances like water and air, 

were regarded as fruitful sources of interference with affinities.   Nevertheless, 

affinities were assumed to act consistently unless and until other forces or 

influences interfered.  This was perhaps set out with greater clarity by Mill as 

the opposition between a natural tendency and a disturbing force.17 Affinities 

were perhaps the archetypal tendency (they were, after all, often described as 

the ‘tendency to combine’) and as such acted in an orderly fashion according to 

natural law.  As we have seen (particularly in Chapter 4), chemists recognised 

that apparent exceptions to affinities were in fact the consequence of external 

factors interfering with their action.  That the underlying tendencies that were 

affinities remained consistent was a universal assumption.  Similarly, as 

chemists sought to accommodate these interferences into their affinity theories, 

although their methods of accommodation were dissimilar, there seems to have 

been little doubt that the variations themselves would be found to be in 

accordance with some system, and thus themselves operate on a consistent, and 

possibly measurable, basis.  Affinity was presumed to be orderly, even in its 

disorder.  

As the above makes clear, the concept of the affinity table also incorporates an 

assumption that the information contained therein was derived directly from 

experimental observation.  The law of affinity emphasises this connection.  

Evidence of the affinities between substances had to be gleaned from 

 
17 Mill 1925, 293-294.  For a modern take on this, see Cartwright 1989. 
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experimental examination of the way in which such substances  behaved when 

brought into contact with each other.  This was commonly perceived to be an 

unproblematic relation.  However, this perception was not always altogether 

justified.  For example, the column for B produced from the four experiments 

above shows the relative affinities of B for Z, C and D.  This column predicts 

that if Z be added to a compound BD then the D would be expelled from the 

combination, leaving Z and B combined.  But we did not have to actually carry 

out this experiment, in order to  predict it, or for the relation to be included in 

our fledgling table.  The column we have produced, derived from a series of 

experiments, with the assumption of a transitive relation between affinities, 

enabled this purely theoretical prediction.  The prediction could, of course, be 

checked and confirmed experimentally, but it seems likely that the sheer 

number of such experimental checks that would be required would dissuade 

most chemists from such an action.  This is probably why Bergman admitted 

that his table was not perfect, saying “when I reflected on the shortness of life 

and the instability of health, I resolved to publish my observations, however 

defective.”18 

The assumption of transitivity thus ensured that it was quite possible to depict 

relations in an affinity table that had not actually been proven by experiment.  In 

reality, not every relation depicted in an affinity table could be assumed to 

derive directly from experiment, although it was undoubtedly true that many 

did.  Bear in mind here that affinity tables were never presented alongside 

detailed explanations of the experiments from which the relations set out therein 

were derived. Even Bergman’s Dissertation, which incorporated a great deal of 

information concerning how his immense tables had been put together, did not 

do this.  It would undoubtedly have negated the point of affinity tables if this 

had been normal practice.  Accordingly, the embedded discontinuity between 

the observations and the contents of the tables was not usually evident.  Because 

a large proportion of the contents were derived from experiments, and because 

the compilers of the tables did not enter into lengthy digressions explaining 

precisely which relations were empirically proven and which were theoretically 

 
18 Bergman 1970, 70. 
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derived, the assumption of empirical justification was universal.  In any event, 

the concept of the affinity table has to be taken as referring to what might be 

termed an ideal affinity table.  Such an ideal table was undoubtedly 

conceptualised as containing information derived straight from observation.  

The second main point that can be extracted from the concept of the table 

derives from the fact that affinity tables showed the relations between different 

substances. Although admittedly some chemists argued that the same power 

was responsible for cohesion or aggregation acting within a single substance,19 

an affinity table was unable to show such a relation.  The concept of the table 

therefore did not incorporate such a notion; the relations shown therein were 

between heterogeneous substances, ‘particular species’ of matter.  This 

assumption was exemplified by the tabular concept, which both reflected and 

reinforced the distinctions between the various substances.   

The concept of the table prescribed limits both on the class of matter with which 

chemists were primarily concerned, and on the degree of difference that marked 

the distinct species.  My algebraic examples above of experiments, the 

information gleaned from them and the resulting columns of my affinity table 

relied upon the identification of letters with particular, different substances.  

There was no doubt in this example that A was not B (or indeed C, D or Z) and 

there was no indication that it was transmuted into B at any point.  A was 

different from B, and remained so, but it was assumed that it could be 

recovered.  The grids of affinity tables were intended to be filled by substances 

that behaved like this; identifiable as distinct from each other, they were not 

presumed to be absolutely simple, or indeed to belong to the same level on a 

scale of absolute complexity.  They were merely required by the very 

conceptualisation of the table to be distinct from each other, stable in the 

context of the operations that constituted the tables, and recoverable from 

combination.  Bergman’s characterisation of some of the newly distinguished 

substances that appeared in his tables puts this assumption in a nutshell: 

“Should they be derived from others, they ought not, on this 

 
19 Nicholson 1795, 155.  Nicholson seems to have subscribed (on occasion) to some such idea.  In general, 
it seems to have been a component that appeared more commonly in the affinity theories of French 
chemists, most notably Lavoisier.  See Kirwan 1968, 46. 
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account, to be excluded, for they are now different, have constant 
properties, exercise their attractive powers without 
decomposition, and can at pleasure be obtained perfectly alike”20 

Klein has set out the criterion for the inclusions of substances in affinity tables, 

referring to the chemists’ conceptualisation of substances that were 

homogeneous, relatively stable and retrievable from combination.21 Her 

analysis essentially matches Bergman’s description, and is also familiar from 

elsewhere.  The function of an affinity table in listing the relations between 

different substances presupposed the heterogeneity of matter; it encompassed an 

implicit taxonomy based on such analysis that could be achieved by the exercise 

of a distinctively chemical methodology.   This assumed taxonomy was inherent 

in the very conceptualisation of the affinity table.  In Chapter 3 above we caught 

a brief glimpse of the basis of this classification of the bodies that were 

routinely included in affinity tables and that formed the basis of a useful, 

practical chemistry.  Fordyce’s notion of operationally contingent elements, 

concisely explained in Bergman’s terms as substances which “exercise their 

attractive powers without decomposition”22 was specified in his lectures as a 

component of his affinity theory, but this was one of the rare occasions on 

which a component that was intrinsic to the concept of the affinity table was 

glimpsed.  The same notion is obliquely referred to by Nicholson in his 

explanation of Bergman’s tables: 

“the substances enumerated are considered to be simple, as far as 
relates to the facts exhibited in these sketches.”23 

In practice this meant that the affinities between sulphur (for example) and 

metals could be exhibited in one column of an affinity table alongside the 

affinities between vitriolic acid (believed to be itself a constituent of sulphur) 

and metals.  Sulphur was capable of combining with metals (to form hepars) 

without decomposition, and so too was vitriolic acid.  The classification of the 

substances that appeared in affinity tables was thus based on a behavioural 

 
20 Bergman  1970, 71-72. 
21 Klein 1996, Klein 1994, Klein 1995. 
22 Bergman  1970, 72. 
23 Nicholson  1795, 165 (my emphasis). 
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hierarchy, avoiding questions of absolute ontological complexity.  Perhaps this 

tacit adherence to the distinctively chemical taxonomy implied by the concept 

of the affinity table might explain the apparent reluctance of most chemists to 

explicitly clarify or define the substances appearing in affinity tables on 

ontological grounds.  On this view, such an explanation was unnecessary, as the 

affinity tables themselves provided a tacit definition.   

5.1.3 Correlation: The Logical Common Ground and the Functional 
Components 

In the introduction to this chapter, I mentioned that the logical common ground 

was a necessary but not sufficient part of an affinity theory.  The logical 

common ground also entailed an assumption that the information depicted in 

affinity tables was empirically justified, and that it could be reapplied to 

chemical practice.  Affinity theories were intended to be useful, to aid chemists 

in their practices.  There was, however, a gap between the logical  common 

ground and such a useful affinity theory.  This gap was filled by the functional 

components set out in chapter 3.   

All the component-types set out in chapter 3 were grouped together on the basis 

of their functional similarities.  These component-types were also distinguished 

from those set out in chapter 4 as being required for the operational utility of 

affinity theories.  To take an example from Nicholson’s description of the 

construction of an affinity table: 

“If it were possible to procure simple substances, and combine 
two together, and to this combination of two to add one more of 
the other simple substances, the result of the experiment would in 
many cases determine, by the exclusion of one of the three, that 
its affinity to either of the remaining two was less than that 
between those two respectively.”24 

If we imagine trying to follow this description in practice, we can see that a 

diverse range of additional theoretical information would be required.  For 

example, we might draw on our own ideas of what Nicholson meant by “simple 

substances” (how would one know?), and we would also want to know a little 

more about combination (combine in what proportions?  Does it matter? How to 

 
24 Nicholson  1795, 160. 
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know when they were combined?).  The components of the logical common 

ground do not offer answers to these questions.  Although, for example, the law 

of affinity implied a comparison between combined substances and expelled or 

free substances, it did not actually give any information how to distinguish the 

two.  Or indeed how to identify the particular substance ‘excluded’.  The array 

of components set out in chapter 3 were formulated to supplement the logical 

common ground, by specifying methodologies and epistemic strategies that 

answered such practical questions.  However, these strategies were at the same 

time founded on the logical common ground, presupposing both the law of 

affinity (in some form) and a conceptualisation of an ideal affinity table.   

The components of the logical common ground incorporated an assumed 

dependence on chemical practice.  The law of affinity was a generalisation of 

the observed behaviour of conjunctions of particular substances and affinity 

tables were conceptualised as matrices for the collation and representation of 

experimentally acquired knowledge.  They purported to represent the observed 

behaviour of particular substances, and were understood as synopses of this 

behaviour.  Importantly though, the information contained within such tables 

was believed to correspond to the behaviour of substances in the ‘real’ world.  

As tables were built by collating information gleaned in the laboratory, this 

information could be reapplied in the laboratory context when desired.  There 

was a further principle inherent in the concept of the affinity table that, at least 

with regard to the model of single affinity (the model that derived from the law), 

they were predictive.  Cullen’s version of the law emphasises this point.  He 

specifically described how the affinity table could be used in this predictive 

sense to guide the chemist in his endeavours to combine or to separate 

substances.  This predictive function was assumed on the basis of the perceived 

dependency of affinity tables on observation and experiment. 

Thus the components of the logical common ground point to the existence of a 

two-way link to the practice of chemistry.  This link entailed, for example, the 

assumption that the contents of a table could be influenced by new empirical 

observations.  The heuristic or predictive aspect of this link, however, also 

implied that part of the intended function of affinity tables was to guide 

chemical practice.  Nevertheless, in spite of this fundamental connection 
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between the logical common ground and the messy, manual practice of 

chemistry, the abstraction of the former from the latter was similarly ingrained.  

Thus, although the connection was perceived, the supplementary assumptions of 

the functional components were also required to enble the application of affinity 

theories to chemical practice.        

As Nicholson’s example shows, the building of an affinity table was not based 

solely on the logical common ground, but also on the functional components 

formulated to supplement the logical common ground.  Mediating between the 

cognitive conceptualisation of the logical common ground and the observations, 

experiments and experiences that made up the actual physical activity of doing 

chemistry, the functional components bridged the concept-practice gap.  

Similarly, the application of the information contained in the table to actual 

chemical activity was informed by the practical instructions contained in the 

functional components.  The functional components thus bridged the gap that 

existed between the theoretical concepts of the logical common ground and the 

practice of chemistry.   

It will be noted that there seems to be a correlation between the two aspects of 

the concept of the affinity table set out above and two of the functional 

component-types that I picked out in chapter 3.  The component-types dealing 

with the variety of concepts of substance identities are clearly linked to the 

assumed taxonomy of substances inherent in the concept of the affinity table.  

Similarly, the variety of components dealing with concepts of order would seem 

to correlate in some way with the transitivity assumption implicit in the concept 

of the affinity table.   There is also a further correlation that is perhaps a little 

less obvious, between the ‘combination’ component-type and the law of 

affinity.  Bear in mind that the latter type grouped together various components 

dealing with the effects and mechanisms of combination, while the law of 

affinity offers a model for the combination (and separation) of substances.   

On the basis that the logical common ground by definition consists of the 

‘universal’ components of affinity theories, this is perhaps not particularly 

surprising.  The same conceptualisation of the affinity table was held by all 

affinity theorists, and formed a tacit part of their individual theories.  The law of 

affinity (in whatever form it was articulated) was similarly a necessary 
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component of all affinity theories.  The fact that all the many and various 

functional components were founded on the same logical common ground thus 

perhaps accounts in part for the correlation with the component-types that 

appeared in chapter 3.  All aspects of the logical common ground might be 

assumed to be influential on the formulation of the functional components  

Nevertheless, it is a correlation that deserves to be scrutinized a little closer. 

Although the logical common ground formed the nucleus of every affinity 

theory, it was insufficient to provide a useful, applicable theory on its own.  Any 

such practical application would necessitate the clarification of certain ill-

defined notions, such as those of substance, combination and order.  These 

notions were entailed or implied by the logical common ground, but were not 

determined by it.  Hence the formulation of the functional components, which 

were thus both inspired by and, to a large extent, determined by the logical 

common ground.   

The logical common ground provided the criteria that governed the variety of 

components set out in each functional component-type.  As the affinity table 

was conceptualised in terms of its functionality, so it was its functional 

application that prompted the formulation of the functional components.  My 

component taxonomy, grouping the individual components of theories 

according to their function, saw through the variety of articulated affinity 

theories to the logical common ground that underpinned them.  In spite of their 

diversity, the scope of the components exhibited within each functional 

component-type was not boundless.  No one would, for example, include a 

component in their affinity theories that suggested that affinities might be 

ordered by a method of throwing substances at a wall to see which slid down 

more rapidly.  The scope of the variety that was exhibited in each component-

type was clearly influenced by the logical common ground that underpinned 

each theory.  No component could be legitimately formulated to be included in 

an affinity theory that contravened the components of the logical common 

ground.   The creative powers of affinity theorists were restricted by the law of 

affinity and the concept of the affinity table, both of which tacitly constrained 

the degree of permitted divergence of components within each type.     
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5.2  The Disciplinary Common Ground 
Having endeavoured, in the first section of this chapter, to shed some light on 

the logical common ground that formed the nucleus of each and every affinity 

theory, this section takes an entirely different focus.   

Throughout this study (particularly in chapter 2) we have seen  evidence of a 

tacit consensus amongst chemists concerning the status and role of affinity 

theories, and their relation to the discipline.  Cullen’s role in instituting this 

consensus was crucial.  His deployment of his affinity theory as a pedagogical 

tool implicitly designated it as a unifying principle to the discipline.  For his 

students, as affinity was one of the two agents of the chemist, affinity theories 

were seen as chemical tools.  This new role taken by the doctrine as a 

foundation to the discipline in turn occasioned a series of disciplinary 

assumptions amongst chemists.  These assumptions, although they did not form 

part of their affinity theories, were nevertheless common to all chemists who 

subscribed to the doctrine of affinity (in whatever particular theoretical form it 

might take).  As such they formed what I have called the ‘disciplinary common 

ground’ amongst chemists. 

The first of these disciplinary assumptions to be discussed below is the common 

assumption of the applicability of affinity theory to a chemical understanding of 

matter.  Chapter 2 above indicated the role of pedagogy in installing the the 

doctrine of affinity (by which, of course, I mean a sort of aggregate of all the 

actual and potential affinity theories) as the basis of the discipline of chemistry.  

Implicit in this common subscription by chemists to the doctrine was an 

assumption that affinity was usefully applicable to their discipline and the 

expectation that it would continue to be so.   This aspect of the disciplinary 

common ground might be seen as the assumption of the heuristic value of 

doctrine of affinity.  It is evident both in the prevalence of affinity in chemical 

thinking, and in the apparent expectation of chemists that affinity would be of 

continuing and even increasing utility. 

The routine coupling of the doctrine to the discipline, a union that was first 

instituted in Cullen’s pedagogy, also resulted in the gradual identification of the 

theory with the discipline itself.  Cullen’s adoption of his affinity theory as a 

pedagogical tool involved the close identification of affinity with the discipline, 
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to the extent that the methodological and epistemic boundaries implied by 

affinity were similarly applied to the discipline itself.  This identification gave 

rise to a consensus amongst practitioners that the aims and practices of the 

discipline reflected the implicit boundaries of the doctrine of affinity.  These 

implicit boundaries were another aspect of the disciplinary common ground 

examined in the second section below.   

5.2.1 Applicability: Utility and Expectation 
I have already indicated that the logical common ground incorporated the 

presumption of a reciprocal relation between affinity theory and chemical 

practice.  As the tools of the chemist, affinity theories were intended to assist in 

the accomplishment of a performance, in the practical work of the chemist.  

Polanyi states that the creation of a tool necessarily involves the envisaging of 

the “operational field”25 in which the tool will be applied.   Cullen initially 

adopted his affinity theory as a pedagogical tool, assisting him to impose a 

coherent and unifying structure that underpinned his didactic endeavours.  In the 

process, however, as he defined affinity as one of the two agents of chemical 

change, he invested his theory with the status of a chemical tool that allowed 

chemists to manipulate matter, to exploit its natural tendencies.  The primary 

function of affinity theories began to be perceived in terms of the successful 

performance of the chemist’s art.  Note here the change in operational field.  

Cullen’s affinity theory was invoked in his pedagogical performance, but as a 

result of this pedagogical strategy, the doctrine of affinity was coupled to the 

practice of the discipline.  Affinity thus became a chemical tool.  As Polanyi 

explains, “the identification of a thing as a tool … implies that a useful purpose 

can be achieved by handling the thing as an instrument for that purpose.”26 

Where Geoffroy’s affinity theory was a passive portrait of chemical practice and 

operations, for Cullen’s students the theory became the paintbrush, the 

instrument that assisted the chemist in his endeavour to redesign matter.  The 

discipline of chemistry and the doctrine were bound together by the implicit 

assumption that it was in this operational field that it was applicable.   

 
25 Polanyi  1962, 60. 
26 Ibid, 56. 
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The use of any tool requires the user to have some understanding of its 

applicability, of where and when it should be used, and in order to achieve what 

result.  A theoretical tool is no exception to this rule.  In spite of the diversity 

amongst affinity theories that I noted in chapters 3 and 4, there seems to have 

been little doubt about where and when to utilise those theories.  Chemists were 

clear on this aspect but nevertheless this may be the most tacit (in the Polanyian 

sense of being unarticulable rather than merely unarticulated) of the common 

ground components – and hence, for the historian, irretrievable.  Nevertheless, I 

believe that this component can be glimpsed in operation in the case of the 

assimilation of novel, unexpected phenomena into the doctrine of affinity. 

Bas van Frassen points out (as something of an aside) that the first response of 

scientists to new phenomena “whether actually encountered or imagined” is to 

widen an existing theoretical framework. 27 For my actors this widening of the 

framework to accommodate new phenomena could be accomplished, if 

necessary, by the addition of new components to their affinity theories.  But 

when the chemist encountered the new phenomena, how was he to know that 

his affinity theory was the appropriate theoretical framework for the new 

phenomena he was dealing with.  Was an affinity theory a useful tool for 

tackling this new phenomena, or not; was it applicable?  Such circumstances put 

pressure on chemists to publicly justify their theoretical decisions.  An example 

of some of the particular new phenomena in which affinity theories were judged 

to provide the appropriate framework will perhaps shed light on the criteria of 

applicability tacitly employed as part of the disciplinary common ground.   

I have shown in chapter 4 above that from the 1760s onwards affinity theories 

were expanded by the inclusion of components linked in various ways to heat.  

Amongst these we noted that new components were formulated that postulated 

that heat itself was possessed of its own set of affinities.  These components 

(explored in detail in 4.4 above) were formulated in response to Black’s work 

on latent and specific heats, which described the newly discovered phenomena 

 
27 Van Frassen 2000, 182.  Van Frassen specifies that “by 'new' I mean here that there is no room for these 
phenomena in the models provided by the accepted theory.”  For Van Frassen, this is only the first phase 
of the response, which he  couples with a second phase in which the framework is again narrowed in order 
to retain predictive power. 
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that heat was apparently absorbed by substances at different rates, and that 

during a change of state vast amounts of heat were absorbed or expelled from 

matter with no concomitant change of temperature.  As we have seen, some 

chemists endeavoured to explain these phenomena in terms of their affinity 

theories, suggesting that the apparently absorbed heat was chemically combined 

with ordinary matter.  This is the type of framework-widening exercise that van 

Frassen refers to; the amendment or extension of an existing theory in order to 

explain new phenomena.  I have already indicated in 4.3 above that there was a 

fairly widespread perception that affinity theory was (or at least could be) 

usefully applicable to these new heat phenomena.  Some particular aspect of the 

conjunction of heat with ordinary matter, apparently conformed (at least in part) 

to a model or pattern which chemists identified as being characteristic of 

affinity.    The perception of such a pattern was the outcome of a non-verbal 

process of recognition and classification.  Chemists were adept at using analogy 

to draw comparisons and it seems likely that this was a similar process.   

For the historian, the details of this pattern are likely to be predominantly 

inaccessible.  Nevertheless, we can make some relatively safe generalisations of 

the factors that suggested that affinity theory was applicable.  It is clear from 

chapter 4 that those chemists who believed that affinity theory could be applied 

to the phenomena of specific and latent heat probably did so because they 

believed firstly, that heat was a material substance and secondly, that it was 

capable of combining chemically with other matter.  The apparent absorption of 

heat by ordinary substances without any apparent change in temperature could 

certainly be viewed as suggesting combination, while the accompanying change 

of state accorded with the understanding of many that chemical combination 

resulted in an apparently new substance with new properties.  What is 

interesting, though, is how far the phenomena could appear to depart from the 

pattern of the action of affinity, while still being judged to exemplify such 

action.   

Examples of this kind of pattern-almost-matching abound in the literature of 

affinity theories.  For example, platina, which could hardly be doubted to be a 

‘material substance’, appeared to dissolve only in aqua regia and, with some 

difficulty, mercury.  Platina barely had any affinities to speak of; but 
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nevertheless, these were still classed as affinities when recorded by Lewis, who 

apparently never doubted that, few though they were, these were the same kind 

of affinities exhibited by other substances.   Phlogiston, which had “never been 

got by itself”,28 was intangible, invisible and imponderable.  And yet, it had 

been included in affinity tables from Geoffroy’s onwards, as being possessed of 

clear and (relatively) distinct affinities that could be empirically justified.  Heat 

too was not visible, and was not believed to possess weight, but it was 

apparently possessed of clear and precisely differentiated relations to all 

ordinary substances, particular to each and every different combination.  For 

some, specific heat was an indicator of these affinities.  The pattern here was 

not entirely matched, but it seems that such correspondences as did exist were 

sufficient for chemists to hurdle the gap and assume the materiality of heat.  

Viewed from this context, the widespread belief in a material heat assumes a 

more rational form than historians have so far appreciated.  

As we saw in chapter 3, not all chemists believed that substances lost all their 

properties in combination (although admittedly most British chemists, following 

Cullen’s lead, did).  For those who did not, who believed that the properties 

were carried into combination, the apparent absorption of heat on change of 

state might not be so easily characterised as combination.  The lack of any 

increase in temperature of the new substance would tend to refute the idea that 

the heat was chemically combined.  These chemists would presumably be 

reluctant to incorporate a new component into their affinity theory that assigned 

heat its own affinities.  Others objected to the assignment of affinities to heat on 

the grounds of the immateriality of heat, and here the default lay in the 

‘materiality’ criterion.   Such theorists (Fordyce, for example) would not 

attempt to explain these new phenomena by reference to their affinity theory.  

What is important here is that the pattern or grounds for applicability were 

accepted even by those who refused to allow that heat was subject to its own 

affinities.  The assumption, drawn by analogy from familiar examples of the 

actions of affinity, that a material substance that could combine chemically was 

possessed of ascertainable affinities remained untarnished by exception.   

 
28 Cullen 1765, MS 1920, f 72v. 



272 

The ‘applicability’ component of the common ground, the heuristic of the 

doctrine of affinity might thus be cautiously enunciated in the form of the 

pattern or model above.  But how enlightening is this?  After all, all that it does, 

is link chemical combination (however that might be defined) with the action of 

affinity.  This component was implicit in the law of affinity tacitly assimilated 

by the tyro as he became familiar with the doctrine.  It conferred on the affinity 

theorist the ability to extend his theory to cover novel phenomena or substances, 

or a new type of use, through the conviction of applicability.  In the case of heat, 

those who did believe that affinity theory could be used to explain the 

phenomena of latent heat brought heat as a substance into the chemical fold, 

admitting it to the canon of objects of chemical (rather than philosophical or 

mechanical) investigation, in addition to its more traditional instrumental role.   

Margaret Masterman’s discussion of Kuhnian ‘paradigms’ offers a useful mode 

of analysis that sheds light on both this notion of ‘applicability’ and on the 

status of the logical common ground.29 Masterman discusses at length the 21 

different senses of the word ‘paradigm’ used by Kuhn in his Structure of 

Scientific Revolutions.30 She orders these into three classes: Metaphysical 

paradigms; Sociological Paradigms; and Artefact or Construct Paradigms.  The 

fundamental type of paradigm is what she calls the construct paradigm, which 

is a barely articulated  

“practical trick-which-works-sufficiently-for-the-choice-of-it-to-
embody-a-potential-insight”.31 

Masterman’s detailed exploration of the pre-science/science barrier leads her to 

argue that this notion of a trick, artefact or technique which seems to produce 

worthwhile results, but is no further developed theoretically is nevertheless 

paradigmatic.  Masterman specifically argues that in this early stage of 

paradigmatic science the ‘formal theory’ is not yet formulated:   

“In a new science, … a very great deal of high-powered scientific 
activity is aimed at the right choice of the moment when it will 
be worth the labour to construct it.  The alternative is 'just going 

 
29 Masterman 1972. 
30 Kuhn  1996. 
31 Masterman 1972, 70. 
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on as we are now'; that is, with some trick, or embryonic 
technique, or picture, and an insight that this is applicable in this 
field. And it is this trick, plus this insight, which together 
constitute the [construct] paradigm”32 

I believe that the logical common ground, together with this insight of 

applicability exemplifies Masterman’s construct paradigm.  Cullen 

reconceptualised Geoffroy’s original law of affinity to set out an ‘embryonic 

technique’ which incorporated the exemplar of the affinity table, and his 

invokation of this technique throughout his pedagogy implicitly claimed that it 

was useful to the practice of the discipline.  Later affinity theorists adopted this 

construct paradigm, adding components according to necessity and practice.  

Masterman argues that the construct paradigm must be able to be used 

analogically in order to provide the ‘metaphysical paradigm or metaparadigm’ 

which is the next step before the ‘sociological paradigm’ or acceptance by the 

community of scientists.  The attempts that we noted above to utilise the 

doctrine of affinity to decode the apparent combinations of matter and heat 

might be seen as an initial (somewhat faltering) step towards such a 

metaparadigm.  The process of formation of the full affinity paradigm was 

clearly lengthy and throughout the 18th century scientists were working from the 

fundamental construct paradigm, without having settled on a metaparadigm.  

Masterman of course is expanding on the Thomas Kuhn’s philosophy of 

paradigms and periodic revolutions; and her analysis is undoubtedly fruitful 

with regard to affinity.  It is vital for my purposes, however, not to lose sight of 

that part of her explanation that even she finds difficult to articulate as part of 

the construct paradigm.  Her notion that a new science requires the ‘insight that 

this is applicable in this field’ cannot be underestimated in its importance as part 

of the disciplinary common ground.  Without this insight, the logical common 

ground (the artefactual element of the construct paradigm), is ineffectual.  This 

confidence that the ‘trick’ of the table will work, and will assist the chemist in 

the practice of his discipline is part of the disciplinary common ground, a 

universal, though unarticulated, assumption that in part accounts for the 

prevalence of affinity throughout the period under consideration.   

 
32 Ibid, 69. 
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For the historian this opens up a new way of looking at scientific hypotheses, 

placing a greater emphasis on the role of pedagogy and training in scientific 

discovery.  Galison and Assmus have emphasised the crucial importance of 

pedagogy and training in scientific explanation of novel phenomena in their 

study of CTR Wilson’s researches into meteorological phenomena.  Wilson’s 

training at the Cavendish Laboratory in Cambridge, during which he “imbibed 

… the tradition of ion physics” meant that “for each new phenomenon, he 

would search for an ion-theoretical account”.33 Similarly, the foundational role 

allotted to the doctrine of affinity in Cullen’s pedagogy naturally led he, and his 

students to turn to their own affinity theories to explain new or unfamiliar 

phenomena.  Thus chemists used their theories to firstly identify new practices 

and new observations that might potentially impinge on the discipline, and 

where necessary to respond to them by formulating new theoretical components 

to their theories, bringing the new phenomena firmly within the bounds of their 

affinity theory and their discipline.  I have shown elsewhere that in the 1760s 

Cullen developed a theory of heat and combustion that clearly indicated the 

dominant role that his affinity theory was taking in his philosophical 

chemistry.34 This theory rested on a causal chain that was topped by chemical 

affinity, on which many heat producing phenomena (including fermentation and 

respiration as well as combustion) depended.  Cullen taught his students that all 

chemistry involved the manipulation of the two agents of the chemist, heat and 

elective attraction (affinity).  With the agency of heat brought within the ambit 

of affinity theory, the domination of affinity theory over chemistry would be 

complete. The role of affinity theory in such assimilations argues for the 

importance of affinity theories as part of the identity of the new science of 

chemistry.   

5.2.2 Boundaries: The Autonomy of Chemistry 
The previous section referred to Cullen’s exploitation of his affinity theory as a 

pedagogical tool, and its concomitant coupling with the discipline of chemistry.  

Cullen also used his affinity theory, as we saw in chapter 2, to demarcate the 

 
33 Galison and Assmus 1989, 266. 
34 Taylor 2006. 
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methods and aims of chemistry from other branches of natural philosophy.  As 

he pursued this strategy, and as the doctrine of affinity became routinely 

identified with his discipline, the methodological and epistemological 

boundaries that were inherent in the doctrine of affinity were projected onto the 

discipline itself.   

Chapter 2 gave a précis of Cullen’s chemistry courses.  To recap briefly, he 

taught that chemistry was the investigation of particularised matter, 

differentiated substances with distinct qualities.  The role of the chemist was to 

engender new qualities on matter by combining and separating substances.35 

Combination and separation were thus the principal operations in chemistry.  

Affinity, the power in substances to combine together with a concomitant 

(according to Cullen’s theory) change in properties, was responsible for all such 

combinations.  It was also responsible for many separations.  Early in each 

course of lectures, Cullen carefully demarcated physical from chemical methods 

of separation:  

“If I have a mixture of common sand & finely powdered chalks 
& want to separate these each from the other, one way of doing it 
is by affusing water, which will keep the chalk suspended after 
the sand had subsided; this is mechanical: the other way by 
Chemistry is by pouring on Vinegar, which will unite with the 
Chalk but leave the sand untouch’d.”36 

The general laws in operation in these two methods of separation belonged to 

different disciplines and indeed it was the distinction between these general 

laws that distinguished the methods of each.  Lewis described the distinction 

thus: 

“The act of combination, whether in bodies brought into fusion 
by fire, or in such as are naturally fluid, is truly chemical, and the 
laws of the mechanical philosophy have no place in it.”37 

The mechanical method was based on the differing specific gravities of the 

substances concerned, subject as it was to measurement and mathematical 

comparison.  The chemical separation of chalk and sand, using vinegar, was an 

 
35 Cullen 1766, Lecture 19. 
36 Ibid, Lecture 9. 
37 Lewis  1763, ix. 
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instance of the operation of the law of affinity.  The distinction of the 

methodology of affinity theory thus served also to demarcate the discipline of 

chemistry from natural philosophy.  The latter at this time was concerned with 

“the general properties of matter such as impenetrability, figure, size, etc.”38 

Chemistry, in contrast, dealt with “particular properties”, and those changes that 

could be brought about in matter using chemical methods or agents.   

Only the chemical agencies of fire and affinity had the ability of separating 

bodies once chemically combined, while affinity alone was responsible for such 

combinations.  We have seen in Chapter 2 how Cullen’s teaching made the 

alignment between between affinity theory and chemical methodology explicit, 

categorizing all the chemical processes into solution, fusion and exhalation on 

the basis of his affinity theory.  All these operations, though, relied on the 

chemical agencies of affinity and fire.  This became a core tenet of the 

discipline, as can be seen from the structure of Book I of Nicholson’s First 

Principles of Chemistry, which similarly set these two agencies as the 

foundation of the discipline.39 This sheds further light on the movement noted 

in chapter 4 to bring the understanding of heat within the compass of the 

doctrine of affinity.  

Affinity theories thus determined the methodological boundaries of the 

discipline.  Chemical processes and operations, the things that chemists actually 

did, were all classed on the basis of their theories.  Anything else was just not 

chemistry.  It might, of course, be pointed out here that distillation, an 

undoubtedly chemical process, could be carried out without additions, and that 

this process did not involve the action of affinities.  However, as we saw from 

the components set out in chapter 4, this type of process, separating chemically 

combined substances, was conceptualised in terms of affinities.  The affinities 

subsisting in the compound substance being distilled were somehow being 

overcome by the application of heat.  Chemical union or combination, as Lewis 

made clear, was not subject to mechanical methods of decomposition: 

“As the chemical union, and the properties thence resulting, are 

 
38 Cullen 1766, Lecture 9. 
39 Nicholson 1790b, 26-106. 
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exempt from all known mechanism, so neither can the bodies be 
separated again by mechanic force.”40 

Cullen’s discipline was characterised above all by its methodology and this was 

founded on his affinity theory.  For all those chemists who followed his lead and 

set affinity theory at the heart of their discipline, their affinity theories set the 

bounds of chemical methodology.   

Cullen’s positioning of affinity theory at the base of his discipline similarly 

served to set ontological boundaries to its practice.  For Cullen, his students and 

successors, combination and separation could only be accomplished by the 

agencies of fire and affinity, and only those substances whose affinities were set 

down in the affinity table were susceptible to the informed manipulation of the 

latter.  The connection between chemistry and the doctrine of affinity was thus 

so intimate that the discipline, as taught by Cullen, could only be practised by 

reference to affinity, making use of substances with affinities that either had 

been or could be ascertained.  We have already noted above the behavioural 

taxonomy that was implied by the concept of the affinity table.  The universal 

adoption of this classificatory aspect of the concept of the affinity table led to a 

a social consensus that identified knowledge of substances with knowledge of 

their affinities.  Knowledge of the affinities and behaviour of individual 

substances was necessary for them to become objects of chemical practice and 

this knowledge was codified in tables of affinity.  Harriet Ritvo has noted the 

development of systems classifying the natural world that similarly reflected the 

“particular needs and experience” of a variety of interest groups “although they 

seldom bothered to articulate them theoretically.”41 It might be stretching a 

point to suggest that a substance that had no ascertained affinities was not yet 

recognised as a substance, but perhaps it would not be going too far to say that it 

was not yet recognised as a chemical substance.     

This notion of recognition and identification by affinity was, of course, a 

circular relation.  I have shown in Chapter 3 above that substances were 

recognised as individuals (or indeed classed into genera) in many cases by 

 
40 Lewis 1763, v. 
41 Ritvo 1997, xi-xii. 
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identification of their affinities.  When Cullen reached the point in his lectures 

of where he taught “the chemical history of bodies”,42 he marched his students 

through the classes of bodies, salts, earths, metals, inflammables, waters and in 

latter years, airs.   The structure of this part of his courses seems to have 

remained pretty much the same right the way through his career, discussing 

firstly the class as a whole and then each individual member.  He ran through: 

“an account of the properties to be found in every body, whether 
as produced by nature, or by artificial composition, & of the 
methods by which these properties may be changed.”43 

Accordingly, each property was particularised by its origin, the methods for its 

extraction/isolation, and by its affinities, by the action of which its properties 

could be changed.  Affinity tables particularised and demarcated these distinct 

species and set out their chemical identities even as they relied on the 

identification of individuals for the articulation of their affinities.  The 

classification system inherent to affinity theory thus became invisible and “the 

system’s description of reality becomes true”, a phenomenon that has been 

labelled the “principle of convergence”.44 

As the assumed correspondence between affinity and chemistry imposed and 

enforced methodological and ontological limits on chemistry, so too it entitled 

the discipline to its explanatory autonomy.  As affinities were signalled by the 

activities of macro-scale property bearing substances, so explanations of 

observations in terms of affinities were deemed to be sufficient for the chemist.  

This is not to say that explanations that went a stage further were not attempted; 

we know that Cullen himself made at least one optimistic, but ultimately 

doomed, attempt to explain affinity in terms of the action of a Newtonian 

aether.45 Although some progress was made towards explaining the mechanical 

movement of two heterogeneous particles towards each other by the action of 

the aether, he was unable to account for the elective nature of this movement.  

Indeed, the mechanical account of affinity may have thrown up more problems 

 
42 Cullen 1766, Lecture 44. 
43 Ibid. 
44 Star and Bowker  1999, 49. 
45 Christie 1983, 91-95. 
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than explanations: if the changing density of the aether forced the particles 

together, how could this account for the preferential tendencies of matter?  As I 

explained above, Cullen eventually seems to have settled upon an explanation 

of heat and combustion which set affinity at the top of the causal hierarchy; in 

this scheme the explanatory buck stopped with affinity.46 

For the most part, Cullen’s pedagogy explicitly discouraged causal speculation: 

“the Great Newton again introduced only an Effect or 
Phenomenon often taking place & defines Attraction to be that 
power by wch Bodies are dispos’d to approach each other, 
without saying how it was caus’d.  With this Caution we might 
have expected it wou’d have been Universally admitted, but 
Foreigners have rejected it, … all these Abuses we shou’d avoid, 
& only call it the Determination of Bodies to each other, without 
pretending to say whether they are really drawn & forced towards 
one another.”47 

To cite the affinities of bodies as the cause of their combinations and 

separations was thus seen as being just as legitimate as to cite gravity as the 

cause of bodies falling to earth.  Explanations which reduced dynamics to 

ontology were always likely to cause conflict, and even to be misunderstood on 

the grounds that there were such widely differing ontologies in circulation 

(compare, for example, Priestley’s Boscovichian point atoms, Cullen’s aetherial 

ontology and Nicholson’s shaped particles).48 Any explanation on ontological 

grounds was more likely to cause dissent and divert attention away from the 

grounds for consensus and agreement.  The adoption of affinity as the 

foundation of chemistry implied a tacit agreement amongst chemists that for 

chemical purposes, explanations of phenomena that drew on knowledge of 

affinities were sufficient.   Hence a physician called Edward Bancroft, for 

example, ‘explained’ the reason why silk was more difficult to dye with indigo 

than was wool by claiming that it had less affinity for the indigo than did the 

wool.49 While Keir explained that  

“Metallic substances are in general more difficultly dissolved by 

 
46 Taylor  2006. 
47 Cullen n.d. [1760s] A, 87-88. 
48 See Heimann P E and McGuire 1971; Taylor  2006; Nicholson  1790a, 154-5. 
49 Bancroft  1794. 
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the marine than by the vitriolic and nitrous acids, because the 
first has less affinity  than the other two with phlogiston, which is 
the medium of union betwixt metals and acids.”50 

As we saw in chapter 2, this same attitude was exhibited by Cullen throughout 

his chemistry courses; in the familiar separation of potash from aqua fortis by 

exploiting the former’s stronger affinity for vitriolic acid.  A chemical 

explanation was framed in terms of affinity.  Nothing further was required.     

Thus the doctrine of affinity, in providing a disciplinary common ground 

amongst practitioners of the discipline provided an explanatory language which 

could be understood and adopted by each and every chemist.  This common 

language enabled communication between chemists, comparison of their results 

and understanding of each other’s actions.  As Elliot explained, the chemist with 

a knowledge of affinity theory would be able  

“to understand many particulars of the philosophy of chemistry, 
not … discoursed of. … he will now be capable of 
comprehending the reasonings of chemical writers, when treating 
of the theory of their art, or giving the rationale of any particular 
process; … he will also be enabled to comprehend the reason of 
the several general operations of chemistry.”51 

So, we can discern evidence of a tacit consensus amongst chemists that the 

methodological, ontological and explanatory boundaries implied by affinity 

theories, were projected onto the discipline of chemistry.   An affinity theory 

was certainly not a sufficient condition for the practice of chemistry, but 

Cullen’s pedagogy instituted an assumption that it was a necessary condition.  

As it became increasingly correlated with the discipline so too the conceptual 

boundaries implicit in the logical common ground reflected the boundaries of 

the discipline itself. 

5.3  Conclusion 
The components of the logical common ground formed the nucleus of each 

individual’s affinity theory.  The combination of the law of affinity with the 

conceptualisation of the affinity table entailed a number of universal 

 
50 Keir  1789, 77. 
51 Elliot  1782, 131. 
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assumptions that underpinned each affinity theory.   These assumptions are not 

easy to extract from the various theories examined above, being rarely if ever 

articulated, but I would suggest that they formed the ‘essence’ of the doctrine of 

affinity.   

In spite of the variety inherent in the doctrine of affinity, chemical 

communication does not evoke a tower of Babel, nor a multitude of 

incommensurable theories.  Quite the reverse, in fact.  As Cullen transformed 

his affinity theory into a pedagogical tool that conferred both disciplinary 

identity and order on didactic chemistry, so he set affinity at the heart of 

chemistry, implicitly identifying the doctrine with the discipline itself.  We have 

referred above to the pedagogical pyramid which disseminated affinity theories 

throughout British chemistry.  Through this dissemination, the doctrine of 

affinity became foundational to most individuals’ chemistry.  For the majority 

of British chemists of the second half of the 18th century the discipline of 

chemistry was, to all intents and purposes, defined by the doctrine of affinity.  

The logical common ground, lying at the heart of all the affinity theories in 

circulation, conferred upon chemists a common basis for communication and on 

which to base their beliefs and understanding of their discipline.     In this way, 

the doctrine of affinity, founded upon the logical common ground of Geoffroy’s 

law and the concept of the affinity table, itself formed a disciplinary common 

ground for practitioners.  
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6. Summary 

The previous three chapters have decomposed the doctrine of affinity into its 

constituent ingredients.  In this final summary of my research, I reconstitute the 

doctrine from what I have learned, bringing it together with the chronological 

narrative of chapter 2.  This will retell the story of the doctrine of affinity in 

Britain and assimilate what I have learned from my research. 

Prior to Geoffroy’s presentation of his Mémoire, chemists had few grounds for 

certainty in the material world.  Traditional metaphysical ontologies were in 

doubt after the works of Boyle, Descartes and Newton.  Causation was 

becoming an empirically questionable concept, while the properties and 

qualities of matter were believed by many to be mere appearances.  About the 

only thing chemists seem to have been sure of was that what they saw was NOT 

what they had got.  They were standing on shifting sand, with nothing against 

which to brace themselves.  The majority, as I have shown, believed that the 

bodies that they mixed and separated were neither pure nor simple.  Some, like 

water, were believed to be simple, but were thought to be impossible to get 

without impurity.  Others, like the metallic substances (for those who held to 

some variation of the phlogiston theory), were believed to be compounded, but 

of what, was unclear.  In his laboratory the 18th century chemist was doing well 

to keep the ambient temperature constant, the furnace functioning and the water 

out; the effects of other variables that might interfere with the action of affinity 

was impossible to foresee.1 Where, in this chaotic world, were chemists to 

place their faith?   

While perhaps factually accurate, the tone of my representation is in error.  It 

reflects my present-day assumptions and conjectures: my knowledge of atoms 

and elements, of quantum mechanics and organic chemistry leads me to 

describe the 18th century vista as a panorama of ignorance, of things not yet 

known. I am guilty of allowing my knowledge of the extent of what my actors 

did not know to cast a shadow over their position.  They could not have 

regarded their predicament so, and it is vital that the historian resists the 

 
1 Eklund  1975, 4-7. 
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temptation to describe it thus.  To correct the fault does not require revision of 

the basic picture, but rather a change of focus.  Rather than contemplating in 

despair (as we tend do on their behalf) the extent of the not yet known, my 

actors were active in seizing on the regularities that did come to their attention, 

on what they could know.  The regularities of affinity stood out against this 

background of chaotic unpredictability.  In an arena with so few theoretical 

certainties or even observational regularities, those regularities that were 

apparent were made all the more manifest, and carried correspondingly greater 

conviction.  

In 1718, Geoffroy presented his Mémoire to his colleagues at the Académie 

Royale des Sciences setting out the law that he had generalised from his 

observations, together with the synopsis of those observations, the table des 

rapports.  The rapports set out in Geoffroy’s table summarised familiar 

knowledge, both in the Academy and in the workshops of metallurgists and 

apothecaries.2 The phenomena thus depicted were familiar to Geoffroy (and his 

contemporaries) long before he formulated his law and table.  The table 

converted these a posteriori relations into spatial relations; knowledge 

summarised and made visible.  Geoffroy’s presentation of his law and table 

made it clear that the table served as a digest of observed rapports; he gave little 

indication that the relation between the table and the empirical observations that 

populated it might be reciprocal.  The law and table were new, but perhaps it 

was not clear what practical use they might serve.   

In Britain, there was apparently no interest in Geoffroy’s Mémoire, either on 

publication or for some years afterwards.  The gentlemen of the Royal Society  

made no comment at all on either the law or table.  In the early stages of this 

research, when I was seeking evidence of the use of affinity theories in the 

pages of the Philosophical Transactions, I was daily disappointed.  I struggled 

to reconcile this apparent lacuna with the ubiquity of affinity tables in books of 

chemistry published over the same period.   

After some ten years or so, Geoffroy’s Mémoire was assimiliated into the 

pedagogical arsenal.  A few entrepreneurial private lecturers found that there 

 
2 Klein 1996. 
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was some demand for the learning of chemistry.  At this stage, chemistry was 

hardly taught at all in the university environment, being restricted to sporadic 

lecture courses at a few Universities.  Shaw, a private lecturer, began to draw 

attention to Geoffroy’s Mémoire in his lectures, suggesting to audiences that it 

offered a useful digest of the relations between substances.    This view of the 

Mémoire persisted for some further fifteen years; we find no further mention of 

it until 1748 when we find a flurry of references appearing all at once.  Lewis, 

physician and lecturer, pursuing a career along the same lines as that of Shaw, 

promised that a table showing the affinities between different substances would 

appear in his Commercicum Philosophico-Technicum.3 Poole reprinted 

Geoffroy’s table in his Chymical Vade Mecum, and Cullen began to teach 

chemistry in regular lecture courses at Glasgow University.   

Between Geoffroy’s Mémoire and this sudden activity, a change took place in 

the relationship between the law and the table.  As we saw in chapter 5, Cullen 

presented the law of affinity in a new form that contrasts with Geoffroy’s 

generalisation of empirical observation.  The law now took the form of an 

instructional rule for the predictive use of the affinity table.  This change is also 

evident in Poole’s work4 and Lewis’s later New Dispensatory.5

The law and table were thus intertwined, dependent on each other for 

comprehensibility.  This was the genesis of what became the logical common 

ground of the doctrine of affinity.  It is unclear at what point, and under whose 

influence this change took place, but when Shaw referred his audience to 

Geoffroy’s table he might well have explained it thus.6 Shaw’s lectures 

introduced the table in the context of an explanation of the resolution of 

substances by the addition of others, and the new conceptualisation would have 

been appropriate in this context.   In any event, by the time Cullen began 

teaching chemistry, it seems that the reciprocal relationship between the table 

and the law was established, and the logical common ground was available to be 

built on.  

 
3 Lewis  1748, 18. 
4 Poole  1748, 383. 
5 Lewis  1753, xi. 
6 Shaw  n.d. [1733?]. 
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My work has emphasised the foundational role of the doctrine of affinity in 18th 

century chemistry, as well as revealing the role of pedagogy in assigning it this 

role.  A pathway can be traced following the changes in the way in which 

affinity was conceived, from Geoffroy’s useful synopsis, to a pedagogical tool, 

to a chemical tool as part of the norm of the discipline.  Cullen was responsible 

for initiating both these conceptual changes through his influential teaching at 

Glasgow and Edinburgh Universities.  The first took place when he allotted his 

affinity theory the role of a pedagogical tool.  The second followed directly on 

from this pedagogical strategem, as his students absorbed Cullen’s teaching and 

with it, the assumption that an affinity theory was an essential tool in the 

practice of chemistry.   

From the first years of his didactic career, Cullen enlisted his affinity theory in 

the service of his pedagogy.  As we saw in chapter 2, he taught his students that 

affinity was the chemical agency responsible for all combinations, and many 

separations.  As his students were taught chemistry they were taught his theory 

of affinity before they witnessed any of the phenomena that gave rise to it.  It 

was presented early in the course, prior to the examination of individual 

substances and their affinities.7 Cullen’s transformation of his affinity theory 

into a pedagogical tool corresponded with its transformation into a general 

principle of his discipline.  From this point forth, for novice chemists, the 

knowledge of the principle anticipated knowledge of the phenomena.  Affinity 

was presented as one of the general principles of chemistry, and individual 

substances were characterised in terms of their affinities.  Cullen also derived a 

new taxonomy for the processes of chemistry from the role of affinity as a 

general principle of the discipline.   In consequence of the pedagogical need for 

structure, for principles upon which to hang his lecture course, his theory 

became a pedagogical tool. 

The limited assumptions of the logical common ground were insufficient for 

Cullen’s pedagogical purpose.  For affinity as a general principle to be worth its 

salt it should be both practically useful and applicable beyond the contents of 

Geoffroy’s original table.  Cullen’s lectures specifically advocated the use of 

 
7 Cullen  1748, ii. 
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affinity tables as predictive tools, embracing the implications of the logical 

common ground.  Geoffroy had not explained how affinities might operate in 

more complex scenarios, for example, nor had he specified any practical 

conditions for how substances should be mixed, how the chemist might know 

when substances were combined, or what other factors impinged on the order of 

their affinities.  These rather routine details were omitted perhaps due to the 

context in which the original paper had been presented.  Geoffroy’s research 

had been presented to a community of experienced chemists and it would have 

been inappropriate for him to relate such mundanities in this context.  Much of 

his audience would have been familiar with this tacit knowledge.   

Cullen’s lectures were presented in a different country almost a generation after 

Geoffroy’s paper; they were removed both temporally and geographically from 

Geoffroy and his contemporaries.  The information that Geoffroy had omitted to 

provide was unlikely to be available to Cullen.  Even less was it likely to be 

available to his audience.  Cullen‘s theory was to be presented to novice 

chemists.  The details of how to apply knowledge of affinities in a laboratory 

context needed to be spelled out.    Affinity theories and tables were formulated 

on a base of empirical observation, and as I have shown, the instructions set out 

in the functional component-types were essential to both the compilation of 

affinity tables and their application.  Cullen expanded Geoffroy’s table himself, 

and the practical information that Geoffroy had neglected to incorporate needed 

to be added both in order that he might use the theory himself, and that he might 

teach it.   

Cullen accordingly formulated new, functional components to his affinity 

theory, to supply some of the details that Geoffroy had omitted.  His practical 

specifications that one substance in any combination must be fluid, and that 

combination resulted in a change of properties (and could be distinguished from 

other sorts of mixture on this basis) were included in his lectures.  He also 

developed entirely novel ‘chemical equations’ that enabled the easy depiction of 

the various separations and recombinations that occurred when two compound 

substances combined together.8

8 Crosland 1959, 75-6. 
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Not all of his new components were directly relayed to his students, however.  

Some, such as his apparent assumption that the intensity of heat required to 

separate combined substances was proportional to the strength of the affinity 

between those substances (noted in 3.3.1 above), can only be discerned 

obliquely from the notes of Cullen’s lectures, and it would seem that these did 

not form part of his affinity theory in its guise as a pedagogical tool.   

Cullen’s pedagogy was cautious with regard to the cause of affinity and, indeed, 

to most speculations that lacked empirical justification.  Although he translated 

Geoffroy’s ‘rapports’ into ‘attractions’, Cullen was clear that this signified only 

the “determination of bodies to each other”9 rather than the cause of such 

determination.  As we saw in chapter 4, he would not be drawn on the 

paradoxical role of heat in increasing and  reducing affinities.  Only rarely did 

his private speculations spill over into his pedagogy, as in his 1765 exposition 

of his hypothesis of heat and combustion.10 We might also suspect that the 

practical exigencies of pedagogy influenced the way in which he presented his 

affinity theory to students.  Like Geoffroy, he did not have time to explain in 

detail how he arrived at the orders of affinity shown in his table, nor what might 

happen if heat (or indeed cold) was applied.   

The second conceptual change that I noted above occurred even as Cullen 

presented his lectures, as his students watched and listened.  Perhaps to best 

understand this change, we need to return to the demonstration described in the 

prologue to chapter 2.  Cullen used the combination of potash and nitrous acid 

to synthesise nitre and the latter’s subsequent analysis using vitriolic acid to 

demonstrate both the combining power of affinities, and their manipulation to 

produce analysis.  This demonstration was also intended to convey to the 

students the “meaning of separating and combining”,11 responsible for all the 

changes in the qualities of bodies that were the particular concern of the 

discipline.  Cullen picked this demonstration for maximum effect, to shows his 

students early in the lectures how chemical combination and separation could 

 
9 Cullen n.d. [1760s], A, 87. 
10 Taylor 2006. 
11 Cullen 1749, 26. 
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change such qualities of bodies as fixity, hardness, elasticity and so on.  Later of 

course, he specified that separation of bodies could also be accomplished by the 

action of fire, but this does not appear to have been specifically illustrated by a 

practical demonstration.  From the students’ point of view, then, they learned 

early in the course that combination and separation both involved the action of 

affinity, and that affinity was thus the primary agent of the chemist.  Cullen’s 

pedagogical decision perhaps implied a little more than he had intended.   

Similarly with his comparison of mechanical and chemical separations (see 

5.2.2 above).  In this case, the particular form that his demonstration took 

specifically aligned chemical methodology with affinity by the exploitation of 

the different affinities of the sand and chalk that he was endeavouring to 

separate.  These substances were not even chemically combined together, but 

they were still separated by the action of affinity.  Again, from Cullen’s point of 

view, this was probably the simplest and most effective demonstration of the 

difference between mechanical methods and chemical.  From the students’ point 

of view it was a further indication that to practice chemistry was to manipulate 

affinities.     

From the viewpoint of Cullen’s students, chemistry must have appeared to be 

predominantly about affinities.  And Cullen’s use of his affinity theory as a 

pedagogical tool emphasised this implied correspondence throughout.  Thus 

affinity theories began to be perceived as chemical tools, as part of the chemical 

norm.  This was the second conceptual change, and it was this change that set 

affinity at the heart of the discipline.  Cullen’s chemistry lectures, given over the 

course of nearly twenty years, initiated the construct paradigm composed of the 

logical common ground together with the assumption that it was applicable 

throughout the discipline.  Cullen’s students propagated this construct paradigm, 

basing their own lectures, textbooks and of course chemical practices on it.  The 

pedagogical pyramid thus ensured that the construct paradigm continued to 

underpin the discipline throughout the Lavoisierian revolution and into the 19th 

century.12 

12 It is worth noting that Jane Marcet’s Conversations on Chemistry was still introducing affinity to its 
amateur 19th century audience as one of the ‘general principles’ of chemistry in 1817.   Marcet 1817 
Conversation 1, 1-25. 
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I would thus argue that it was Cullen’s adoption of affinity as a pedagogical tool 

that caused the revival of interest in affinity that is clearly evident in chemical 

sources from the middle of the century.  The process was of course continued by 

Cullen’s own students, Black, Fordyce and Saunders amongst others.  Cullen’s 

students embraced his emphasis on affinity and included it in their own 

chemistry lectures, as indeed did their students in turn (particularly Black’s).13 

This is what I have referred to as the pedagogical pyramid through which the 

doctrine of affinity was disseminated and dispersed.  Subscription to a theory of 

affinity gradually became a mandatory qualification for the practice of 

chemistry.  In this way, the doctrine of affinity came to provide a disciplinary 

common ground as part of the norm of chemistry. 

From around 1760 then, the majority of British chemists regarded the doctrine 

of affinity as fundamental to the discipline.  While the British pedagogical 

pyramid was clearly significant in prompting this viewpoint, it was supported 

by publications originating from elsewhere in Europe.  Macquer’s Dictionary 

and other French chemistry textbooks all ascribed great importance to affinity, 

but perhaps the most influential work was Bergman’s Dissertation.14 Although 

there is little explicit evidence (other than the sheer ubiquity of affinity in 

chemical publications from the 1760s onwards) that confirms this new status, 

many of the attempts to formulate new components set out above testify to this 

new perception.  I explored in chapter 3 efforts by Fordyce and Kirwan to 

‘perfect’ the doctrine by introducing a mathematical precision to the ordering of 

affinities.  Such travails were unlikely to have been lavished on a theory that 

was not perceived to be of value.  The English translator (Thomas Beddoes, 

according to Duncan)15 of Bergman’s Dissertation explained his decision to 

include textual versions of Bergman’s tables as well as copies of the original 

tables thus: 

 
13 Of course, not all chemical pedagogues from the 1760s to the 1790s were part of the Cullen headed 
pedagogical pyramid.  Hadley, teaching chemistry at Cambridge from 1759 provides an example of a 
pedagogue who was apparently not connected with Cullen or his students.  Hadley did incorporate an 
affinity theory as a large explanatory element of his teaching, although he did not use it in the same 
organisational way as Cullen.  
1414 Macquer 1771, Macquer 1758, Bergman 1970. 
15 Bergman 1970, Appendix 1. 
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“as most Chemists will wish for a set to stand always open for 
inspection, the two sets will scarce be thought superfluous by 
any.”16 

The fundamental status of affinity is also emphasised by the consideration of 

theoretical components dealing with the relation between heat and affinity set 

out in chapter 4.  The very precariousness of some of the attempts to include the 

phenomena of heat in the doctrine of affinity testifies to the perceived solidity of 

the foundation on which they were relying.  A similar phenomenon has been 

noted in the appropriation and adaptation of zoological classification systems by 

stockbreeders, where the very “boldness of the changes” has been correlated by 

Ritvo with the perceived solidity of the foundation on which the change was 

based.17 These supplementary components added to affinity theories testify to 

the increasingly common assumption that affinity was both crucial to chemistry 

and sufficiently reliable to build on.  The trend, clearly apparent in chapter 4, to 

bring the phenomena of heat to a similar state of order as prevailed over the 

tendencies of matter testifies to the role of the doctrine as a model of a reliable, 

predictive chemical tool. 

As my research has also amply demonstrated, however, individual theories 

differed both from each other and from Cullen’s theory.   I have shown that the 

doctrine of affinity in fact encapsulated a variety of theories differing in their 

functional components.  I suggest that the logical and disciplinary common 

grounds underpinned this diversity.  We saw in chapter 5 that the logical 

common ground both entailed and governed the functional components, 

requiring them by its very insufficiency, and yet only superficially limiting their 

scope.  Similarly the disciplinary common ground, offering  a set of disciplinary 

assumptions that further limited the scope for dissent, legitimised the diversity, 

providing a disciplinary context in which variety was obscured.         

Any ascription of a cause of the variety that prevailed within the doctrine can 

unfortunately only be tentative, but I would like to offer two suggestions of 

likely influencing factors.  The first relates to the fact that the difference 

between the pedagogical context in which an affinity theory was initially set 

 
16 Ibid, Preface, v. 
17 Ritvo 1997, 83. 
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forth and the practical context in which it was later utilised, while the second 

tentatively postulates a further distinction between the theory as promulgated 

and the same theory as it was understood by the listening student.     

I have already noted that Cullen’s pedagogical presentation of affinity was 

chary of causal speculation.  In addition, there is a clear distinction between the 

degree and species of detail appropriate in the pedagogical context, and that 

required for the practical application of what has been taught.   Polanyi asserts 

that:  

“the conceptual framework of applicable knowledge is different 
from that of pure knowledge.  It is determined primarily in terms 
of the successful performances to which such knowledge is 
relevant.”18 

There were two different types of ‘performance’ in which an affinity theory was 

utilised.  The first was pedagogical, in which case it acted as a pedagogical tool; 

the second was in the normal practice of chemistry as a more general chemical 

tool.  In the same way that the context in which Geoffroy’s original paper was 

set forth influenced its content, so too the pedagogical context in which Cullen 

disseminated his affinity theory impinged on its content.    Cullen’s affinity 

theory as it was set out in his lectures, was not confined simply to the logical 

common ground, incorporating a number of functional components.  Even so, 

many of the details of these components remained sketchy, to say the least.  His 

lectures conveyed the various assumptions of the logical common ground quite 

clearly, but were often vague concerning more functional aspects of the 

application of the theory.   Cullen’s successors, Black, Fordyce and Saunders 

amongst others, were similarly cautious in their pedagogical presentation of 

their theories.  We have similarly seen in chapter 4 evidence of a tacit 

demarcation between theoretical explanations that were deemed suitable for the 

pedagogical context and those more conjectural components that were not. 

Moreover, pedagogy necessarily generalises, smoothing over the lumps and 

bumps of reality, and taking a broad focus to the detriment of the particular.  

The mismatches and anomalies of actual practice and experience are brushed 

 
18 Polanyi  1962, 175. 
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under the carpet, as are the boring details about how the facts presented were 

ascertained.  On this view, the parts of Cullen’s affinity theory that were not 

referred to in his pedagogy were just as influential on the affinity theories of his 

students as those that were.  To take an example, Cullen’s explanations to his 

students of how his own affinity table had been produced, were brief and 

didactic. He avoided giving particulars of experiments, presumably believing 

such details to be confusing and unnecessary.  The result was that his affinity 

table was presented as a whole, the product of known and understood affinities, 

rather than of painstaking experiment and observation, contingent on a variety 

of factors and potentially subject to future amendment.   

The roles of individual affinity theories differed from the pedagogical to the 

practical context, in which they took on the role of more general chemical tools, 

and as a result of these different roles, gaps opened up between the practice of 

chemistry and its theory.  The use of an affinity theory in chemical practice, as a 

generally applicable chemical tool, required certain adjustments to be made to 

allow for a different context of performance.  Individuals amended and adapted 

the affinity theories they learned as they began to utilise them to guide their 

practices and procedures.  Accordingly, new components began to be 

formulated, either to fill in the gaps left out by the pedagogical presentation, or 

to replace such components in the light of the chemist’s own experience.     

A further modifying factor can be tentatively postulated as resulting from the 

inevitable disjunction between the theory set forth in a lecture, and the theory as 

conceived by the listening student.  The findings of modern researchers in 

chemical education have indicated that students tend to formulate their own 

individual ‘mental models’, ‘manifold conceptualisations’ of the metaphors and 

models that they are taught, that are not always clearly distinguished and often 

differ somewhat from the original.19 The examples investigated by Keith Taber 

involve (perhaps serendipitously) models of chemical bonding, and his 

investigations emphasise the variety of mental models inspired by such common 

phrases in chemical education as “the sea of electrons”.20 As with the 

 
19 See also Coll and Treagust 2003, Harrison and Treagust 2000. 
20 Taber 2003. 
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contextual discrepancy noted above, such misunderstandings tend to result in 

theoretical lacunae, in a conceptual gap opening up between the affinity theory 

of the lecturer and that of the student.  The best answer to a theoretical gap, of 

course, is to fill it, and I have already suggested that a large proportion of the 

functional components were originally conceived as theoretical ‘filling’.  Taber 

argues that where this type of theoretical hiatus exists, students “‘fill the 

explanatory vacuum’ with the most likely suspect.”21 I would suggest that this  

might well account for many of the discrepancies noted in my study. Cullen’s 

students, like those of today, when struggling to apply the theory that they had 

been taught, drew on the ‘most likely suspect’ for components to fill in the gaps.    

Perhaps one of the most direct examples of the difficulties caused by the 

difference between the information a lecturer thought he had conveyed and the 

way in which such information was conceived by the student is evident in the 

exchange between Fordyce and Cullen discussed in 3.3.2 above.  This 

correspondence concerned Fordyce’s attempt to formulate a generalised law that 

would enable the chemist to predict a priori the result of any combination of 

four or more substances.  As one of the most clearly articulated functional 

components of Cullen’s theory, this might not be thought to have been 

problematic. But the correspondence shows that even when a component was 

carefully and explicitly explained both in a lecture and in writing, the lecturer’s 

and the student’s conceptions could nevertheless be widely at variance.   Cullen 

and Fordyce appear never to have resolved their conceptual differences.  It is 

clear from the correspondence that Cullen did not understand Fordyce (writing 

to a friend - “He has puzled me these eight days with his compounded - I had 

almost said confounded - attractions & you should have saved me, by telling 

him honestly how difficult his piece was”),22 and Fordyce did not understand 

Cullen’s objections to his theory.  It is perhaps significant that from the 1760s 

the law that Cullen had tentatively proposed in 1757 governing the predictive 

power of his diagrams disappeared from his lectures.  Perhaps his experience 

with Fordyce had suggested to him that this particular aspect of the diagrams 

 
21 Ibid, 752. 
22 Fordyce 1759-1774. 
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was liable to misinterpretation by his students.   

It is worth bearing in mind when considering this point that chemistry students 

up to the end of the 18th century did not have the benefit of a standardised range 

of approved textbooks offering a ‘received view’ of affinity theory.  Cullen 

referred in his lectures to an array of works dating back to classical times, but he 

recommended only a few recent works to his students, only one of which was 

available in English; and he did not entirely approve of any of them.23 Of the 

works that Cullen recommended, only Macquer’s contained an affinity theory 

that went beyond the synoptic view of Lewis and Shaw.  In some sense, the 

pedagogy of Cullen and his students was closer to the research of today in being 

at the margins of knowledge.  Students who encountered the type of theoretical 

lacunae I have described would have been unable to simply look the answer up.   

It is impossible to assign a single cause to the variety that undoubtedly obtained 

amongst affinity theories, but I would suggest that all these factors were 

influential.  As Simões has argued, in the early stages of disciplinary 

development, there is little difference between the pedagogical and the research 

contexts.24 We have seen that only towards the end of the century did a line 

begin to be drawn between the two.  Even then, as we have seen, new ideas and 

concepts were translated between contexts with little mediation or delay.  This 

in itself is sufficient to infuse uncertainty into the fledgling discipline.     

Nevertheless, despite all the variety, this was not anarchy.  The period I am 

concerned with saw an explosion in communication between chemists.  The 

network of correspondence emanating from Cullen, Black and Kirwan has 

already been mentioned, but such associations as the Royal Society and the 

Lunar Society, Kirwan’s unnamed coffee house society, the large teaching 

hospitals and the universities fostered further contact between chemists.  

Chemists were able to discuss and compare their activities, relying often on 

their affinity theories, and sometimes referring to them.  They made use of a 

 
23 In 1766 Cullen recommended (but with caveats) works by Stahl, Boerhaave, Macquer and Wallerius.  
Cullen 1766, Lecture 10. 
24 Simões 2004, 300. 
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common idiom or lexicon that derived from their affinity theories.25 This was 

clearly a powerful unifying bond, as I have found little evidence of 

disagreement or controversy over the undoubted discrepancies between their 

affinity theories.   Both the disciplinary and the logical common ground lay 

behind this apparent harmony.   

Cullen taught that affinity was one of the two ‘general principles’ of 

philosophical chemistry, and at the end of the century it still featured as one of 

Nicholson’s two ‘chemical agents’.26 From Cullen to Nicholson, from 

Glasgow to London, the teaching of chemistry necessarily involved the teaching 

of an affinity theory.  In pedagogical sources affinity theories underpinned the 

innumerable particulars of chemistry.  Affinity theories were taught to medical 

students and apothecaries, novice chemists, rather in the same way that student 

chemists are now taught about atoms, molecules and chemical bonds.  Affinity 

theories were part of the norm of 18th century chemistry.  And yet, I have shown 

that there were wide ranging discrepancies between many of the components of 

individual affinity theories.  Nevertheless, the scope of divergence was limited; 

the very fact that the variety of theoretical components could be ordered into 

component-types confirms this.   This underlying organisation resulted from the 

unifying hub of affinity theory, the logical common ground.  This was the 

essence of the doctrine of affinity, encompassing the law of affinity and the 

conceptualisation of the table that brought together the relations described in the 

law.  The doctrine of affinity thus provided a disciplinary common ground 

between chemists, providing a mediating level of understanding and 

communication for all those who subscribed to the doctrine of affinity, in spite 

of their detailed differences. 

 

25 In a similar vein, Laszlo has recently pointed out some of the advantages accruing to chemists of the 
1960s from the NMR revolution, amongst which he lists a new idiom which improved communication.  
Laszlo 2006, 106.  
26 Nicholson, 1790b. 
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Appendix 1: On Compound Elective Attractions 

Glasgow University Library 

Cullen Papers MS 89: Paper sent to William Cullen by George Fordyce in 

1759 with letter contained in MS 180 

Archived as: “Account of Mr Slake’s Paper to the Chemists at Paris on 

Compound Elective Attractions” 

“1st 

Of Compound Elective Attractions 

Mr Stahl proposed to the Chemists at Paris to separate wt no greater heat than 

that of the Human Body the Vitriolic Acid from the Vegetable Fixt Alkali in 

vitriolated Tartar.  As each of these substances attract the other stronger than 

any thing besides that could be combined with it, in that heat they could none of 

them solve this Problem till Mr Stahl the son showed them it might be done by 

means of solution of silver in the nitrous acid by the following Process:- 

Take a perfect solution of Silver in the nitrous acid drop it into a solution of 

Vitriolated Tartar in water.  The vitriolic acid will leave the vegetable fixt alkali 

and joining the Silver (as solution of silver in that acid is not but in small 

proportion soluble in water) part of  

2nd 

of it will be precipitated along with part of the Silver, the nitrous acid remaining 

joined to the alkali and forming with it common Nitre. 

It was found afterwards that several other menstruums could be separated from 

their solvends by joining two compounds and this was called double Elective 

attractions. 

There were commonly said to be four cases in which this would happen and in 

all these cases setting the substances combined together on the same side, one 

substance on each side attracts another on the other side stronger than the 

substance it is combined with.   

This may be marked wt a dart cross from the substance which attracts the other 
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stronger than the one it is combined with to the substance so attracted. 

 

Thus Instance First:- 

1m 2m 

Vitriolic Acid Nitrous Acid 

 

1s 2s 

v^ Vegetable fixt alkali Silver ☾

i.e. the nitrous acid attracts the vegetable fixt  

3rd 

fixt alkali stronger than it attracts the silver and the silver attracts the vitriolic 

acid stronger than it does the nitrous.  Instance second which is the reverse of 

the first. 

1m 2m 

Vitriolic Acid Nitrous Acid 

 

2s 1s 

Silver ☾ v^ Vegetable fixt alkali 

i.e. Vitriolic acid attracts the vegetable fixt alkali stronger than Silver and 

vegetable fixt alkali attracts the vitriolic acid stronger than the nitrous. 
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Instance Third 

Im to 1s 1m to 2s 

Nitrous Acid  Muriatic Acid 

 

2s 1s 

Silver ☾ v^ Vegetable fixt alkali  

 Earth of Alum

i.e. vegetable fixt alkali attracts the nitrous acid stronger than the muriatic acid 

and silver attracts the muriatic acid stronger than the nitrous.  Instance Fourth 

2m 1m  

Nitrous Acid  Muriatic Acid 

 

1s to 1m 1s to 2m 

Silver ☾ ☿Quicksilver  

 

4th 

i.e. Nitrous Acid attracts Quicksilver stronger than Silver and Muriatic Acid 

attracts Silver stronger than Quicksilver.  In all these instances a decomposition 

takes place the menstruums changing solvends.  The two last evidently takes 

place always as will afterwards appear it remains for us to find out in what 

circumstances the two first do.   We must first observe in general than in 

Instance first and Second the one Menstruum attracts the same solvend strongest 

[marginal note: and in the same manner the Solvend ] that the other does and the 

same Solvend weakest that the other does and therefore are both a comparison 
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of the same attractions.  In the third instance the one solvend attracts the one 

menstruum strongest and the other the other.  In the fourth instance the one 

menstruum attracts the one solvend strongest and the other menstruum the other 

and wherever either of these happen they follow the same rule as in the 

particular instances.   

5th 

instances given.  Thus 

Instance 

 

First  Second 

1m 2m 1m 2m 

 

1s 2s 2s 1s 

[marginal note: 1 strongest 2 weaker] 

 

Third  Fourth 

1m to 1s 1m to 2s 2m  1m 

 

2s 1s 1s to 1m 1s to 

2m 

We shall consider now these attractions as so many given powers, the stronger 

attractions as the stronger powers acting to disjoin or join substances.  Then in 

the first and second instances the powers 1ms attraction→ to 1s and 2m →to 2s 

act against 1m → 2s + 2m → 1s but as 1m → 1s is the strongest & 2m → 2s the 

weakest and they are both on one side and 1m → 2s and 2m → 1s the middle 
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powers acting on the other side and as these powers can’t be defined by 

numbers a priori  

[marginal note: because if 1m joins 1s 3m must join 2s  & contrary] 

 

6th 

priori we can never say whether the first or second instance will take place.  In 

the third instance and likewise the fourth by supposition the strongest powers 

are on one side that is in instance third 1s → 1m to 1s is by supposition stronger 

than 1s → 1m to 2s and 2s → 1m to 2s by supposition stronger than 2s → 1m to 

1s but 1s → 1m to 1s + 2s → 1m to 2s is the powers endeavouring to join 1s to 

1m to 1s and 2s to 1m to 2s and 2s → 1m to 1s +1s → 1m to 2s the powers 

endeavouring to join 1m to 1s to 2s and 1m to 2s to 1s.  therefore the stronger 

powers being on one side this attraction must always take place which is 

confirmed by all the experiments yet made. 

In the same manner instance 4th the powers endeavouring to combine 2m & 1s 

to 1m and 1m to 1s to 2m are 2m → 1s to 1m + 1m

7th 

1m → 1s to 2m and 2m → 1s to 2m + 1m → 1s to 2m all the powers 

endeavouring to join 2m to 1s to 2m and 1m to 1s to 1m but 2m → 1s to 2m is 

by supposition stronger than 2m → 1s to 1m and 1m → 1s to 2m therefore the 

two stronger powers acting on the same side that must of necessity be strongest 

this too is confirmed by every experiment made on this subject therefore we ma 

conclude a priori & posteriori that the 3rd & 4th instances always take place 

Q.E.D. 

N.B. In this demonstration we have supposed the bodies being mixt together 

disjoined. 

It only remains to determine what will be the combination of the four substances 

1m 2m 1s 2s this as we have said before can only be determined by Experiment 

(1.2.) and every experiment I  

8th 
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I have as yet tried proves that 1m → 2s + 2m → 1s is stronger than 1m → 1s

+2m → 2s for in a moderate degree of heat 1m is joined to 2s and 2m to 1s and 

if the other combination has already took place the two compounds are 

decomposed but on the other hand in a very great degree of heat and by 

distillation the other combination may often if not always happen, but as a large 

degree of heat is necessary and as a certain degree of heat will decompose 

substances that are not both equally volatile by distillation or sublimation we 

have sufficient reason to conclude that 1m → 2s + 2m → 1s is stronger than 1m 

→ 1s + 2m→ 2s.  (3) 

We might repeat a great number of Experiments which we have made of this 

sort but as they are so common and so easy we shall only give a few instances 

by way of note. 

Corollary 

9th 

Corollary.  The difference between the strongest menstruum attraction to the 

strongest solvend and the same menstruum attraction to the weakest solvend is 

less than the difference betwixt the weakest menstruum attraction to the 

strongest solvend and the same menstruum’s attraction to the weakest solvend.  

i.e. 

1m → 1s – 1m→ 2s is less than  

2m → 1s – 2m→ 2s for add to  

1m → 1s + 2m → 2s a quantity |a| equal to the difference betwixt that powers 

and  

1m → 2s + 2m→1s then 

1m → 1s + 2m → 2s +a = 1m → 2s + 2m →1s subtract 2m → 2s from both 

sides then 1m → 1s +a = 1m → 2s + 2m → 1s – 2m → 2s again subtract 2m 

+2s then 

10th 

1m → 1s – 1m +a = 2m + 1s – 2m → 2s therefore 1m → 1s – 1m →2s is less 

by a than 2m → 1s – 2m→2s. 
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The same is true of the solvends. 

These principles being laid down we will next attempt to show in what manner 

any number of substances mixt together will combine themselves and first 

supposing three menstruums and three solvends mixt which bear the relations 

1m, 2m, 3m, 1s, 2s, 3s I say that 1m will join 3s, 2m 2s and 3m 1s for these can 

only be combined in six ways viz! –  

1st 

1m to 1s 2m to 2s 3m to 3s 

1m to 2s 2m to 1s 3m to 3s 

1m to 3s 2m to 2s 3m to 1s 

1m to 1s 2m to 3s 3m to 2s 

1m to 2s 2m to 3s 3m to 1s 

1m to 3s 2m to 1s 3m to 2s 

that is, there are six powers acting against one  

11th 

one another viz 

1m → 1s + 2m→ 2s + 3m→3s

1m → 2s +2m →1s + 3m→ 3s

1m → 3s + 2m→ 2s + 3m→ 1s

1m → 1s + 2m→ 3s + 3m→ 2s

1m → 2s + 2m→ 3s +3m → 1s

1m → 3s + 2m→ 1s + 3m→ 2s. 

Of these powers 1m → 1s + 2m → 2s + 3m→ 3s

Is less than 1m → 2s + 2m → 1s + 3m→ 3s

For 1m → 1s + 2m→ 2s is less than  

1m → 2s + 2m→ 1s and 3m → 3s is  

common – therefore 
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1m →1s + 2m→ 2s + 3m→3s

is less than 1m → 2s + 2m→ 1s + 3m→ 3s. 

Q.E.D. 

In like manner it may be proved that  

 

1m → 2s +2m →1s + 3m→ 3s is less than 

1m → 3s + 2m→ 1s + 3m→ 2s and this less than 

1m → 3s + 2m→ 2s + 3m→ 1s. 

therefore 

 

12th 

Therefore 

1m → 3s +2m →2s + 3m→ 1s is greater than 

1m → 3s + 2m→ 1s + 3m→ 2s or

1m → 2s +2m →1s + 3m→ 3s or

1m → 1s + 2m→ 2s + 3m→ 3s again 

1m → 1s + 2m→ 3s + 3m→ 2s is by the above method of reasoning less than 

1m → 2s +2m →3s + 3m→ 1s which is also less than 

1m → 3s + 2m→ 2s + 3m→ 1s Therefore 

1m → 3s + 2m→ 2s + 3m→ 1s is the strongest 

of the six powers.  Therefore 1m will join 3s, 2m 2s & 3m 1s.  Q.E.D. 

Example: 

1m Vitriolic acid 

2m Nitrous acid 

3m Muriatic acid 

1s  Fixt alkali the fossil 



304 

2s Calcareous earth 

3s Caustic volatile alkali 

13th 

will form 

1. Vitriolic ammoniac 1m3s 

2. Nitrous selenites 2m2s 

3. Common Sea Salt 3m1s 

By the same method of reasoning it may be proved that in any number of 

menstruums and solvends mixed bearing the relations  

1m  2m 3m 4m &c &c &c 

 1s 2s 3s 4s &c &c &c 

the strongest menstruum will always join the weakest solvend and the weakest 

the strongest and so on thro the remaining menstruums & solvends. 

Q.E.D.

To conclude 

In the first instance a Double Elective attraction will take place generally if not 

always in small degrees of heat except when the weakest menstruum bears no 

proportion  

[in the margin: 

 

F.A. C.E.] 

 

to the strongest. 

In the second instance a double decomposition  will take place in great degrees 
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of heat and where the 

C.E. F.A. 

 

weakest menstruum bears no proportion to the strongest. 

In the third instance a double decomposition always takes place. 

 

☾ F.A. 

 

In instance fourth a double decomposition likewise always takes place 

 

☾ ☿

Where more than two compounds substances are mixt bearing the same relation 

to one another as those in the first and second instances the strongest menstruum 

will (in the circumstances in which Instance First takes place) always join the 

weakest solvend and the weakest menstruum the strongest.  Where more than 

two compounds are mixt from which arise a complication of instance  
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first and second with either of the third and fourth instances or both or where the 

third and fourth are complicated together the combinations they will form may 

be found out by considering first all the possible combinations then the powers 

arising from them lastly comparing these powers as in demonstration page 

(10,11,12) as it would be endless here to consider all the possible complications. 

 

Notes 

(1) 

No. s  This is only meant of acids and their solvends for there are some cases in 

which acids are not the menstruums where 1m → 1s is greater alone than 1m →

2s + 2m → 1s. 

Example 1m  Vitriolic Acid 

 2m Oil 

 1s fixt alkali 

 2s Magnesia 

 

Here tho’ the oil does not disolve the magenesia yet the attraction of the 

Vitriolic acid to the fixt Alkali is greater than its attraction to the magnesia and 

the oils attraction to the fixt Alkali taken together  therefore the soap is 

decomposed.  And this may serve to explain why a contrary combination takes 

place in  

 

(2) 

heat; for the connection of bodies of different degrees of volatility is by heat 

diminish’d and destroy’d, as may be proved by the distillation of acids from 

vitriol of Iron, sea salt, and Nitr and several other experiments of the same 

nature. 
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It likewise appears from the corollary (page 9) that the attraction of the weakest 

menstruum will be diminished in greater proportion than the strongest.  For 

considering the strongest menstruums attraction to both solvends first in its 

strongest state of attraction and again as diminished by heat you will have a 

stronger and weaker menstruum. 

i.e.1m, 2m, but  1m → 1s – 1m→2s

is less than  2m →1s – 2m→ 2s. 

 

(3) Notes 

therefore if 1m → 1s be diminished to 2m → 1s as we suppose, 1m → 2s will 

be likewise diminished to 2m → 2s and consequently in greater proportion than 

1m → 1s. 

In like manner it may be proved that 1s → 1m will be diminished in less 

proportion than 1s → 2m but 1m → 1s acts against 1m → 2s and 2m → 1s and 

if diminished in less proportion than either will at last become greater than both 

and hence in very great heat instance 2d almost always if not always takes place 

as in distillation of Aqua Fortis by means of alumn or vitriol. 

 

No. 2  Altho in all the experiments I have made no exception to this rule has 

appeared yet it is possible there may be some but that will only affect the 

following reasoning 

(4)  with regard to them 

(5)  No. 3 Notes 

Experiments 

The darts show what substances combine themselves together 
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Expt 1st 1m 2m 

 Vitriolic Acid Nitrous Acid 

 

1s 2s 

 Vegetable fixt alkali Silver 

Expt 2nd 1m 2m 

 Vitriolic Acid Muriatic Acid 

 

1s 2s 

 Fossil fixt alkali Magnesia 

 

Expt 3rd 1m 2m 

 Vitriolic Acid Muriatic Acid 

 

1s 2s 

 V fixt alkali Calcareous Earth 

 

Expt 4th 1m 2m 

 Muriatc Acid Nitrous Acid 

 

1s 2s 

 Zinc  Copper 
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Expt 5  1m 2m 

 Muriatic Acid Nitrous Acid 

 

1s 2s 

 Zinc Lead 

 

(6) 

 

Expt 6th 1m 2m 

 Muriatic Acid Nitrous Acid 

 

1s 2s 

 Zinc Iron 

 

Expt 7th 1m 2m 

 Muriatic Acid Nitrous Acid 

 

1s 2s 

 Lead Copper 

 

Expt 8th 1m 2m 

 Muriatic Acid Nitrous Acid 

 

1s 2s 

 Copper Silver  
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Expt 9th 1m 2m 

 Vitriolic Acid Nitrous Acid 

 

1s 2s 

 Copper Silver 
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As part of this MS there is also a single column of an affinity table: 

 

Nitrous Acid 

Fixt Alkali 

Calcareous Earth 

Volatile Alkali 

Magnesia 

Zinc 

Tin 

Lead 

Iron 

Regulus of Antimony 

Bismuth 

Copper 

Regulus of Arsenic 

Quicksilver 

Silver 

Earth of Alumn 

Water 

Camphor   Ether 
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Appendix 2: The Pedagogical Pyramid 
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