
A Configurable Framework for Method and Tool

Integration

Jeff Kramer and Anthony Finkelstein

Department of Computing,

Imperial College of Science, Technology and Medicine,

180 Queen's Gate, London SW7 2BZ, UK.

jk@doc.ic.ac.uk , acwf @doc.ic.ac.uk

ABSTRACT

There is an urgent need to provide a sound generic framework for method and tool
integration, where many differing notations are used, software development is distributed
and management support for the software development process is provided. This paper
argues that there is much to be learnt from proven practical techniques for software
construction, particularly those that support distributed software integration, heterogeneity
and software management. Configuration Programming is one such approach which
advocates the use of a separate, declarative configuration language for the description of
system structure. It has been used in the Conic Environment for the development of
distributable software, and is being extended for the configuration of heterogeneous
components programmed in different programming languages. A number of software tools
exist for the development, construction and management of Conic systems. This paper
shows how an analogous set of the principles, practice and tools from configuration
programming can be combined with recent work on ViewPoints1 to provide a configurable
framework for method and tool integration.

Invited Paper: European Symposium on Software Development Environments
and CASE Technology, Königswinter, Germany, June 1991.

1

1 The work on ViewPoints [6] has been conducted in close collaboration with Michael
Goedicke of the University of Dortmund, but the obsession with configurations presented in
this paper is that of the authors.

1. INTRODUCTION

The process of software production involves many stages, from requirements elicitation and
specification through to system construction and maintenance. A large number of methods can
be used during this process, each covering different stages of the process. Each method
generally consists of one or more representation schemes (notations) together with a set of

r

recommended procedures and heuristics as to how to complete each representation and guidance
on how to move to the next representation. These methods may overlap or be disjoint. It is left
to the project team to try to convert information to a suitable form for the next stage, to ensure
consistency and to try to bridge the gaps between methods and notations by some ad hoc
means. In addition, even at a single stage in the process, it is necessary to represent different
aspects of the application, not only in terms of a partitioning of the application domain but also
to provide different views (such as functional, performance, fault tolerance, safety and others).
There is no doubt that different companies and project personnel will also wish to tailor
individual methods and the overall software process according to their experience and the
particular application domain.

Thus there is a need for multiple methods and their notations, together with the ability to modify
and integrate them. The vision is of a framework for method integration, which supports
distributed development by teams of personnel and provides tool support. How can methods be
“glued” together? How can information transfer and consistency checks between notations be
supported? How can advice and tool support for the use of each notation and between notations
be provided?

The ViewPoints Approach

This paper addresses these issues and proposes a configurable framework for method and tool
integration. The approach is based on decomposition of the application domain, the notations
and the method steps. The basic entities which are configured in this framework are ViewPoints
[6]. Each ViewPoint (fig.1) describes a part of the application domain using a single style
(representation notation or formalism). A workplan provides the rules and heuristics for use of
the notation together with relations or mappings to other ViewPoints to express information
transfer and consistency checks. The result is a ViewPoint specification of a particular part of
the application in a particular notation, together with its workrecord which records the current
status of the specification elaboration.

2

Style : definition of representation notation

Domain : selected part of the application

Specification in the style for the particular domain

Work Plan : style use and interaction rules and heuristics

Work Record : specification status and history

Figure 1. A ViewPoint

Loosely speaking, a method is described as a configuration of “interacting” ViewPoint types
(templates). Method use involves ViewPoint instantiation to provide the specifications in each
notation. Method integration is at the ViewPoint level, by configuration to form a software
process. Each ViewPoint can be elaborated separately subject to interaction constraints. Tool
support can be provided for each type of ViewPoint and for configuration and interaction.

Why is it that we believe that configuring ViewPoints provides a sound generic framework for
method and tool integration? In this paper we argue that there is much to be learnt from proven
practical techniques for software construction, particularly those that support distributed
software integration and interaction, heterogeneity and software management.

Learning from Software Configuration

Practical experience in software engineering has taught us that complex systems can be built and
managed provided we adhere to sound principles. Software modularity is essential to
encapsulate functionality behind clearly defined interfaces through which components can
interact with their environment. Descriptions of the constituent software components and their
interconnection patterns provide a clear and concise level at which to specify and design
systems, and can be used directly by construction tools to generate the system itself. This
approach has been variously referred to as "programming-in-the-large" [3], component-based
system building using module interconnection languages [9,20], and "configuration
programming" [15, 18]. Furthermore, evolution of the system can be achieved by making
extensions or changes to the system configuration by the addition or replacement of components
[16].

Configuration programming [18] advocates the use of the interconnected-component model for
software design and construction through to evolution. The description of system structure
(configuration), as a set of components and their interconnections, is separated from the
functional description of individual component behaviour. This general approach has been

3

successfully used in the Conic Environment for the development of distributable software.
Graphical and textual software tools are provided to construct, manage and evolve software
systems so that they correspond to their declarative configuration descriptions. Complex
components can be composed as interconnected instances of simpler component types. The
approach is considered "constructive" since it emphasises the satisfaction of system

r

requirements by composition of components. Provided that components adhere to interface
standards, the configuration framework can also be used to construct systems from
heterogeneous components ie. components written in different languages. Although the
configuration descriptions vary from one system to another, many of the basic component types
pertaining to an application domain tend to be the same. System variation is directed mainly at
the configuration level, with some variation being embedded in particular components. Thus the
opportunities for the employment of reusable components within an application domain are
excellent, with the configuration language providing the means to select and tailor their use to
the particular task at hand (cf. program families from information hiding modules [28]).

The analogy to configurations of ViewPoints and their interactions is obvious. We see
ViewPoints as the means for encapsulating each aspect and notation, and configurations as the
means for gluing them together. The description of method and process structure as a
configuration is separate from the description of a primitive ViewPoint. In order to provide for
the description of methods at different levels of abstraction, complex ViewPoints can also be
defined as compositions of simpler ones. We believe that the configuration level provides a
convenient level of abstraction at which to view and manage methods and software projects. In
addition, its declarative structural form makes it independent of the procedural aspects, thereby
implicitly supporting distributed (concurrent) development except where explicitly constrained
by dependencies.

In this paper we describe the principles which underlie the configuration programming approach
and briefly illustrate their usefulness by examples of some of the features of the Conic
environment. The vision of the configuration framework for method integration using
ViewPoints is then presented, based on analogous principles.

2. CONFIGURATION PROGRAMMING

2.1 Basic Principles

The basic principles of the configuration programming approach can be summarised as follows:

1. The configuration language used for structural description should be separate from the
programming language used for basic component programming.
This separation of concerns facilitates the description, comprehension and manipulation,

4

both by man and machine, of the system in terms of its structure. This is achieved by
abstracting away from the component programming concerns.The structural nature of the
configuration specification makes it amenable to both textual and graphical description.
System construction can be performed by translation of the structural configuration
description by component creation and interconnection. Furthermore, the configuration
language should be declarative, describing what the structure is, not how it is to be
constructed. Declarative descriptions tend to be more concise and amenable to analysis,
interpretation, and manipulation than their imperative equivalents.

2. Components should be defined as context independent types with well-defined
interfaces.
Context independence [12] means that the component makes no direct reference to any
non-local entities, but can be integrated into any compatible context without redefining or

r

recompiling it. We therefore require that components access only local data and use
indirect naming (such as local ports) to refer to connected components. Definition as a
type permits instantiation and reuse in different contexts. The component interface should
describe the interaction points with other components and permits validation of
interconnections at configuration time.

3. Using the configuration language, complex components should be definable as a
composition of instances of component types.
Hierarchies are a natural and convenient means for the support of subcomponent
encapsulation and information hiding. Interconnected instances of more basic component
types can be composed to form more complex components (ie. an instance hierarchy).
These composite components should themselves be component types, available for use in
further definitions. Such an approach also permits the definition and construction of
recursive structures.

4. Change should be expressed at the configuration level, as changes of the component
instances and/or their interconnections.
This follows from the first principle. Given that it is beneficial to utilise a structural
description to comprehend and manipulate the system, then change can also be
beneficially expressed as structural change. Changes can be made to component
instances, which are then of a new and different type.

2.2 An Exemplar of Configuration Programming: Conic Environment

The Conic environment [12, 22], developed by the Distributed Computing Group at Imperial
College, provides support for configuration programming for distributed and concurrent
programs based on the above principles. The environment provides support for two languages,

5

one for programming individual components (processes) with explicitly defined interfaces, and
one for the configuration of programs from groups of components. The Conic configuration
language includes facilities for hierarchic definition of composite components, for
parametrisation of components, for conditional configurations with evaluation of guards at
component instantiation, and even for recursive definition of components [4]. In addition, the
environment provides support for dynamic configuration using on-line management tools which
permit dynamic creation, control and modification of application programs.

We now briefly illustrate some of the features of the Conic use of configuration programming

for describing, constructing, monitoring and changing distributable systems. In order to provide
a feel for the approach, we use a simple example: a patient monitoring system [24]. The
intensive care ward in a hospital consists of a number of beds. Patients in each bed are
continuously monitored for a number of factors, such as pulse, temperature and blood pressure.
For each patient the current readings can be displayed both at the bedside and at the nurse unit.
If any of the factor readings of a patient are outside of preset limits, then an alarm is sent to the
central nurse station.

Component Types : - Provision of context-independent components (principle 2).

The patient monitoring system is constructed from the two context independent component
types (referred to as modules in Conic) defined both graphically and textually below in Figure
2. The interface to a component is defined by typed exit- and entryports. Messages are sent out
via exitports and received from entryports. The type definitions for messages and ports are
imported from definition modules by the use clause

bed

alarm
pat ient

bed[5]

bed[4]

bed[3]

bed[2]

bed[1]

a larm[5]

a larm[4]

a larm[3]

a larm[2]

a larm[1]

nurse

group module patient; group module nurse (maxbed:integer=5);

use monmsg: bedtype, alarmstype; use monmsg: bedtype, alarmstype;
exitport entryport

alarm:alarmstype; alarm[1..maxbed]:alarmstype;
entryport exitport

bed:signaltype reply bedtype; bed[1..maxbed]:signaltype reply bedtype;

Periodically reads patient sensors.

6

Readings outside range cause alarm Displays alarms received from alarm[]
messages to be sent to alarm.
Request message received on bed Requests particular patient data via bed[]
returns current readings and ranges.

end . end .

Figure 2. The Patient and Nurse Component Types

Component Hierarchies : - Composition of component instances (principle 3).

In the above, we have described the main component types to be used to construct the patient
monitoring system. In fact, each of the two component types used are themselves
configurations of components. For example, the internal structure of the patient component is
depicted in Figure 3. It is defined by instantiating an instance of each of a scanner and monitor
component types and interconnecting their exit- and entryports. The links between exitports and
entryports allow components to communicate by message passing. The Conic environment
permits only ports of the same type to be connected.

alarm
bedmonitorscanner

pat ient
alarm

bedreading reading

group module patient;
use monmsg: bedtype, alarmstype;
use scanner, monitor;
exitport alarm:alarmstype;
entryport bed:signaltype reply bedtype;
create

scanner;
monitor;

link
scanner.reading to monitor.reading;
bed to monitor.request
monitor.alarm to alarm;

end .

Figure 3. Internal structure of Patient Module

A system in Conic is thus an hierarchic structure of component instances. The components at
the bottom of the hierarchy are sequential tasks, implemented in a programming language. In
Conic, the internal programming language is Pascal extended to support message passing for
the distributed environment. Instances of these task modules execute concurrently.

Constructing Systems in Conic: - Component instantiation and interconnection using a
separate configuration language (principle 1).

7

We can construct an initial patient monitoring system consisting of one nurse and one patient by
instantiating one instance of each of the above component types and interconnecting their exit-
and entryports. Again, the Conic environment permits only ports of the same type to be
connected. The configuration description for this initial system is again shown both textually
and graphically in Figure 4.

The system is created by submitting the configuration description to a configuration manager
tool which downloads and interconnects component code. The configuration management tool
and its supporting environment is described in [22]. In addition to instance creation and linking
(interconnection), the configuration description can include component location (omitted here)
and parameters. For example the nurse has a default parameter setting to the value 5 (Figure 2)
however this could have been changed when the instance was specified, eg. create nurse:

nurse(3).

bed[2]
a larm[1]

bed

alarm

nurse
bed1

bed[3]

bed[4]

bed[5]

bed[1]

a larm[2]

a larm[3]
a larm[4]

a larm[5]

system ward;
create

bed1:patient;
nurse: nurse;

link
bed1.alarm to nurse.alarm[1];
nurse.bed[1] to bed1.bed;

end .

Figure 4. Initial Patient Monitoring System

REX, an ESPRIT II project, is extending the approach to permit configuration of heterogeneous
components written in different programming languages.

Note that the use of a declarative configuration language enables the actual order in which
configuration operations are performed to be left to the underlying support system. It can then
exploit the inherent parallelism of the underlying architecture where appropriate. If the
configuration statements were embedded in a procedural language, the current state of the
system configuration would depend on the state of the configuration program (as in [19]). This
would complicate the provision of support for dynamic configuration and the user/management
view of the system, both of which are discussed below.

8

change ward;
create

bed2:patient;
link

bed2.alarm to nurse.alarm[2];
nurse.bed[2] to bed2.bed;

end

bed[3]

a larm[5]
a larm[4]
a larm[3]

a larm[1]

bed

alarm

bed

alarm

nurse

bed2

bed1
bed[4]
bed[5]

bed[1]

bed[2]

a larm[2]

Figure 5 - Extended Patient Monitoring System
Dynamic Configuration for System Evolution:- (principle 4).

In addition to programming initial configurations, the Conic toolkit permits dynamic
configuration: changes to running systems. For example, extending the above system to include
an additional patient unit can be performed by submitting the configuration change of the system
'ward' (figure 5) to a configuration manager. The change can be thought of as an edit, in
configuration terms, of the configuration specification and the system itself. It results in both a
new specification and a correspondingly changed system. Thus the system itself can evolve

r

rather than necessarily regenerating the system ab initio. Recent work on change management
[16] has provided a sound basis for controlling change while preserving consistency and
without disrupting the unaffected components.

bed[5]
bed[4]
bed[3]

bed[1]

a larm[5]
a larm[4]
a larm[3]

a larm[1]
bed
alarm

nurse

bed[i]

bed[2]

remove

new

remove-patient a larm[2]

new-patient

wardmanager

bed[i]

ward new

remove

component ward (N:integer=5);

entryport new-patient, remove-patient;
use patient, nurse, manager;

9

create
wardmanager:manager ;
nurse: nurse(N) ;

link
wardmanager.new-patient to new-patient;
wardmanager. remove-patient to remove-patient;
wardmanager.new to new;
wardmanager.remove to remove;

change new (i:1..N);
create bed[i]:patient;
link bed[i].alarm to nurse.alarm[i];
link nurse.bed[i]} to bed[i].bed;

end;

change remove (i:1..N);
remove bed[i];

end;

end .

Figure 6. Patient Monitoring System with Programmed Changes

The REX project is again extending this work to permit the definition of programmed

r

reconfiguration changes to a composite component at the same level (and scope) as the
definition of the component. What changes are permissible are defined in the configuration
language; components determine when the changes should occur by invoking them. For
instance, figure 6 shows a possible description of a ward component in which a wardmanager
can invoke changes to create or remove patients, either under some internally specified condition
or as a result of a request initiated from outside the ward (ie. by a request to new-patient). There
is a general need to serialise the changes to a component to prevent interference between
concurrent changes.

Tool Support: Graphical Configuration Monitoring and Management

In addition to language compilers, runtime environments and communications support, the
Conic environment has provided software tools for monitoring system structure and component
status, for dynamic configuration and even for “spying” on the message contents of a particular
connection. We concentrate here on a graphics tool, ConicDraw, which can be used to display
and manage system configurations. As depicted in figure 7, ConicDraw maintains a graphic

r

representation of executing Conic systems in terms of the component instances which exist in
the system, their interconnections and their execution state. It gathers this information directly
from the executing system by communicating with a configuration manager.

10

Graphic Model
of System
(ConicDraw)

Actual System

Changes

Status

Figure 7. Interaction between ConicDraw and an Operational System .

Changes to the system are reported to ConicDraw by configuration management to enable it to
maintain an uptodate view of the system. In addition, ConicDraw can itself instigate changes to
the system as a result of edits to the graphic representation.

Figure 8. System Structure Monitoring and Linking via ConicDraw .

11

bed1 nurse
gummo

nurse bed3
Sun1

bed2

Figure 9. System Status Monitoring via ConicDraw .

For instance, the patient monitoring system being monitored in figure 8 can be extended by
editing the diagram directly. These edits caused the tool to send configuration text to a
configuration manager to change the actual system accordingly. Figure 8 shows a further bed,
bed3, being linked into the existing system using the link tool in the tool palette. The link
instruction generated by this graphic operation (link nurse.bed3 to bed3.bed) is shown at the
bottom of the figure.

Figure 9 illustrates the status monitoring facilities available via ConicDraw, in which the current
component name and type, machine location and type, and status and supporting OS are
indicated for each component. A full description of ConicDraw is given in [15].

2.3 Summary and Experience

This section has briefly outlined how configuration programming is used and supported in the
Conic environment. The configuration language and components both conform to the basic
principles described earlier in the paper. The interested reader can find a detailed description of
the Conic Configuration language in [4] and the Conic environment in [22].

The Conic environment has been in use for over 5 years. It has amply demonstrated the utility

12

of configuration level programming and the need for the separate configuration perspective. A
number of other research projects make use of a separate configuration (or module
interconnection) language (DICON [21], Durra [1], Lady [25], NETSLA [19], RNet [2],
Polylith [29], STILE [32]) but few are as widely distributed and used, and as simple yet
versatile as the Conic configuration language. Users of the Conic environment include a number
of universities and industrial research centres in the UK, Belgium, Germany, France, Greece,
Sweden, Finland, Canada, Korea, Hong Kong and Japan. Our experience at Imperial College
has been very positive and confirms our belief that the structural configuration level is a useful
level of abstraction for system description, construction and evolution. The provision of
software tool support has been essential in the successful use of Conic. This success has
encouraged us to embark on a broader and more ambitious project, based on the same principles
but incorporating many more of the aspects of the development process. This ESPRIT II
project, REX [30], includes work on formal specification techniques and tools for analysis and
verification, on design methods and tools for recording and aiding the design process, and on
configuration and dynamic reconfiguration and tools for performing the construction,

r

reconfiguration and extension of heterogeneous distributed systems. In particular, the work on
ViewPoints has also been adopted for REX.

13

3 . VIEWPOINTS

The concept of a ViewPoint is a synthesis of the concepts of "view" and "viewpoint" in earlier
work. The requirements analysis method CORE [23, 31] is based round the notion of
viewpoints which is characterised as "something that does things" in the domain under
consideration, akin to an agent or role. Thus the CORE viewpoint can be seen to be the
particular source for domain decomposition. The notion of views as partial specifications and as
the principal basis for incremental construction of specifications was developed in the
PEACOCK [7, 8] and PRISMA [26] projects. These projects have convinced us of the
importance of selecting the representation to suit the particular ViewPoint specification task, and
of subsequently combining representations. The notion of forming “configurations” of
ViewPoints is suggested by the need to provide an explicit structure for describing ViewPoint

r

relations, and the interesting analogy between the configuration of ViewPoints used in the
software process and the resulting software structure [17].

This section provides a general characterisation of ViewPoints and elaborates on the analogy
with the principles, techniques and tools offered in Conic for configuration programming.

3.1 ViewPoint Definition and Characterisation

A

A ViewPoint is a loosely coupled, locally managed object which encapsulates partial
knowledge about the application domain, specified in a particular, suitable formal
representation, and partial knowledge of the process of software development.

A ViewPoint (figure 1) is thus a combination of the following parts which we refer to as slots:

a

s

style

,

, the representation scheme in which the ViewPoint expresses what it can see
(examples of styles are data flow analysis, entity-relationship-attribute modelling, Petri nets,
equational logic, and so on);

a

d

domain defines which part of the "world" delineated in the style (given that the style
defines a structured representation) can be seen by the ViewPoint
(for example, a lift-control system would include domains such as user, lift and controller);

a

s

specification

,

, the statements expressed in the ViewPoint's style describing
particular domains;

a work plan

,

, how and in what circumstances the contents of the specification are
elaborated and changed;

a work record , an account of the current state of the development.

14

As can be seen, the ViewPoint encapsulates knowledge in the form of various slots e.g. a style
and a specification. The slots style and work plan represent general knowledge, in the sense that
it can be applied to a wide range of problems. In contrast to this the knowledge encapsulated in
the slots domain, specification and work record of a ViewPoint represent specific knowledge

r

related to one particular problem. The specification is given in a single consistent style and
describes an identified domain of the problem area. The work record describes the current state
of the specification with respect to the development activities and concerns of the ViewPoint.
This would include interaction between viewpoints to transfer information and perform activities
such as consistency checks. For instance, if a particular ViewPoint is required to use data flow
diagrams in its specification slot for a particular domain, the other slots would employ
appropriate languages to specify the DFD representation, its workplan and workrecord.

ViewPoints are organised in configurations which are collections of related ViewPoints. In the
descriptions which follow, we will show how a method in this setting can be viewed is a set of
ViewPoint templates (types), and their relationships, together with actions governing their
construction and consistency. A specification is viewed a configuration of ViewPoint instances.

3.2 Applying Configuration Programming Principles to ViewPoints

1. The configuration language used for structural description should be separate from the
language used for ViewPoint descriptions.
As before we separate the languages used for structural description from that used for the
slots in primitive ViewPoints. This structural view is useful for description,
comprehension and manipulation of the ViewPoints. The configuration language is
declarative, describing what the structure is, not how it is to be constructed; that is part of
the role of the workplan slot.

2. ViewPoints should be defined as context independent types with well-defined
interfaces.
We refer to these as templates (eg. figure 10). A ViewPoint template consists of a
ViewPoint in which only the style and the work plan have been defined. Context
independence means that the workplan makes no direct reference to any non-local entities
ie. those mappings to other ViewPoints are indirect to permit its ready use with different
ViewPoints. A ViewPoint interface describes the interaction points with other
ViewPoints.

3. Using the configuration language, complex ViewPoints should be definable as a
composition of instances of ViewPoint templates.
The style slot of a complex ViewPoint permits the use of the configuration language to
specify it as a configuration.

15

instances and/or their interconnections.
Modifications to the method and specification (at a large grain level) are reflected as
changes to the configuration.

In order to illustrate the use of these principles and their relation to configuration programming,
we now overview the configuration of ViewPoints approach, following the same structure of
the description of Conic and its facilities and tools given in the previous section. The illustration
is made more concrete by using the framework to overview part of the JSD Method (Jackson
System Design [10]). We concentrate on the first three steps which produce an initial model of
the required system and its environment:

1. Entity-Action step: identify each real world entity (object) of interest, and list the
actions performed or suffered by it, and the data attributes for each action.

2. Entity-Structure step: impose an ordering on the actions of each entity (like a process)
using a diagrammatic notation (as in JSP) and text.

3. Initial Model step: identify the relation between the real world entities (processes) and
the system processes in a process model with connections, called an initial System
Specification Diagram (SSD).

The descriptions of our framework are rough and informal so as to convey the general
approach. Detailed examples are available elsewhere [6, 27].

3.3 An Analogous Configuration Framework for ViewPoints

ViewPoint Templates :- context independent ViewPoint types (principle 2)

As mentioned, a ViewPoint template elaborates only the style and workplan slots. These aspects
are closely related as the work plan describes the basic actions which need to be performed in
order to provide a specification in the given style. As such, these actions are general, and can be
used to guide the specification of any specific, selected portion of the application domain. Such
a specification is termed a ViewPoint instance since it refers to a specific instantiation of the
template, and would include identification of the selected domain and elaboration of the
specification and its state of development, given as the work record.

A method is defined as a form of configuration of a selected set of ViewPoint templates which
together describe the styles and work plans to be used in the method. The mappings and checks
between templates should also be specified.The dynamics of the method are described by
permitting one ViewPoint to create (or spawn) another as the method unfolds. Information in a
"parent" ViewPoint which is relevant to "child" ViewPoint can be transferred using the

16

mappings. Method use is thus represented as a dynamically evolving configuration of
ViewPoints.

The method designers are thus responsible for the definition of ViewPoint templates, while the
method users are responsible for following the workplans in ViewPoint instances and for
elaborating the specification in the given style.

SSD Template

Domain

Specification

Work Record

SSD Style

SSD Work Plan Actions

Figure 10. ViewPoint Template for System Specification Diagrams in JSD

An example of a template for the initial model step of JSD is given in figure 10. This models the

r

real world in a style called the System Specification Diagram (fig. 11). This description
provides the syntax and constraints for a “well-formed” diagram in the style. The description of
the workplan actions describe how to construct a specification in SSD, together with any
desired constraints on the ordering of workplan actions (eg. using pre- and post-conditions),
heuristics and mappings to other ViewPoints. Other templates required for JSD include the
entity-action and entity-structure templates (fig. 12). Since the structure template provides an
ordering for the actions specified in the action list, we indicate this mapping by an arc. The
mapping can be interpreted at the recipient in either of two manners:

1.

E

Either the information received by the structure ViewPoint is used as the source of the
actions to be ordered,

2. or the information is used by the structure ViewPoint to check consistency and
completness of the actions with those of the action ViewPoint.

This dual interpretation is generally useful in that it permits the completion of the ViewPoint
specifications to be performed sequentially (in which case the former interpretation may be

17

preferable) or concurrently (in which case the latter consistency check may be desirable). In this
case, the sequential order is the most likely, but one need not enforce that constraint unless it is
specifically required.

P Process P (Structure Diagram
 Structure text)

F Data Stream F
(ordered, sequential, consumed)

P QF

State Vector Inspection

P produces stream F
Q consumes stream F

S inspects State Vector of R

(not consumed, merely read)

R S

P QF

R S

P produces data streams to
many processes of type Q
S inspects the SV of many
processes of type R

Non-specific merging of
data streams

Figure 11. Outline Style for System Specification Diagrams in JSD

Entity-Actions Template Entity-Structure Template

Domain

Specification

Work Record

Domain

Specification

Work Record

Entity-Action Style

Domain

Specification

Work Record

Entity-Action List

Add action; Add attribute; ...
Transfer action-list

Domain

Specification

Work Record

Domain

Specification

Work Record

Entity-Action Style

Domain

Specification

Work Record

Entity-Structure Diagram

Add ordered action; ...
Accept/Check action-list

Figure 12. ViewPoint Templates for Entity-Actions and Entity-Structure

18

Although the principle of context independence requires that a template interface be defined,
irrespective of the actual connection to other ViewPoints, we have not yet found a suitable
means for the definition of template interfaces.The intention is that that part of the workplan
which produces or consumes information should become the interface. One possibility is to
define the mappings and their data content in separate definitions units (cf. definitions modules
in Conic which can define message and port types) which are then imported.

ViewPoint Hierarchies : - Composition of ViewPoint instances (principle 3).

In JSD, each entity has an action-attribute list and an entity structure diagram/text. A composite
template can be defined for each entity which combines these templates, and indicates the
transfer of information between them and to the “interface” of the composite template (fig. 13).
In this case, there is a single instance of each of the sub-templates. In general, a composite
template will indicate the sub-templates and their interactions, but the number of instances may
well depend on the particular application, and hence on the circumstances of instantiation of the
composite template. This situation is illustrated in that, at the next level, the number of instances
of entity templates will be dependent on the number of entities identified.

Entity Template

Domain

Specification

Work Record

Domain

Specification

Work Record

Entity-Action StyleDomain -X

Work Record

Configuration Language

Configuration of Templates
Consistency / Information transfer

x x
E-A Style E-S Style

E-A WP E-S WP

Figure 13. Composite ViewPoint Template for an Entity

19

Doma
in
Specificati
on

Work
Record

Doma
in
Specificati
on

Work
Record

Entity-Action
Style

X[i] : entity-template

Domain

Specification

Work Record

SSD Style

SSD Work Plan Actions

model : SSD-template

Work Record

Work Plan -

Domain

Configuration language

Initial Model

SSD-spec

ViewPoint Template initial-model;
 exitport SSD-spec;
 use entity-template, SSD-template;
 create
 model: SSD-template;

 link
 SSD.specification to SSD-spec;

 change new-entity (X: id; i:1..N);
 create X[i]:entity-template;
 link X[i].out to model.in[i];
 end;

end.

Configuration rules (incl. new entities), mappings,

Figure 14. Initial Model Specification for JSD using ViewPoints

Constructing Specifications: - ViewPoint instantiation and interconnection using a
separate configuration language (principle 1), including dynamic configuration (principle 4).

20

A system specification is a configuration of (consistent) specifications given in selected
ViewPoint instances describing those parts of the domain which are of interest. As described
above, method use is represented as a dynamically evolving configuration of ViewPoint
instances. For instance, the partitioning of the application domain (into entities in JSD) provides
a variable dimension to the method. For each part of the domain (entity) the method may need to
create a configuration of ViewPoints as the method unfolds. This is illustrated in figure 14 for
the initial model steps of JSD, together with a possible outline of the configuration description
which would form part of the workplan.

We believe that the configuration and its dynamics are well described using a configuration
language with the permissible changes (usually restricted to extensions) specified in the same
declarative structural language. As with configuration programming, the decision as to when to
perform configuration changes, such as ViewPoint creation and interconnection, would be
described in the general workplan rather than the configuration.

Tool Support: Graphical Configuration Monitoring and Management

A particular benefit which seems to follow from the identification and encapsulation of a style
(representation) and its workplan (specification method) in a single ViewPoint Template is the
opportunity for tool support. We believe that individual support can be designed for each
template in a particular method, thereby simplifying the complexity of the tool in much the same
way as one expects to simplify the steps and expression of that particular ViewPoint
specification. We can then envisage method tool support as comprising a configuration of
template support tools, configured to suit the particular method adopted.

In addition to individual ViewPoint tools, the configuration view of the method and
specifications seems to offer the promise of practical monitoring and management tools. As with
ConicDraw for configuration programming, one can envisage a graphical management tool to
support monitoring the current configuration structure of an ongoing project. In addition, the
status of each individual ViewPoint (reflected in its workrecord) could be monitored in order to
gain insight into the current status of the project. This form of status monitoring of the
partitioned parts of a method were successfully prototyped in the TARA project [13,14] for the

r

requirements method CORE (see figure 15, which marked each part asfollows: blank- not
needed for elaboration, shaded- not started, ?- started but not completed or consistent, √-
completed).

Finally, the configuration management approach also offers the possibility of performing
external, evolutionary adjustments and modifications to the method and development structure
dynamically, while in use. Although the opportunity and facilities to perform such arbitrary
adjustments does seem to be desirable, they should obviously be performed in a careful and
controlled manner. The kind of change management approach adopted for configuration

21

programming [16] may also provide some guidance as to how to control dynamic change.

Nuclear Power
Safety Viewpoint

?
Operator

?
Nuclear
Generator

Safety
Monitoring

Environment

Data Acquisition
System

Figure 15. Status Monitoring for parts of a CORE Specification in TARA

4. CONCLUSIONS

Configuration programming, with its use of a separate configuration language, provides an
excellent means for expressing system structure rather than the embedding of structural
decisions in the software components themselves. The approach produces systems which are
comprehensible, maintainable and amenable to change and has facilitated the provision of
software tools to support system construction and management. The Conic environment for
distributed programming is an exemplar for configuration programming. In this paper, we have
argued that a configurable framework, analogous to that in configuration programming, can be
combined with the notion of ViewPoints to provide similar benefits to the problem of method
and tool integration. A vision of this configurable framework has been proposed.

The ViewPoint approach to software development advocates the use of multiple ViewPoints to
partition the domain information, the development method and the formal representations used
to express software specifications. System specifications and methods are described as

22

configurations of related ViewPoints. The partitioning of knowledge exemplified in the
ViewPoints approach facilitates distributed development and the use of multiple representation
schemes.

Since all method steps are expressed in this common form, we believe that ViewPoints are also
particularly useful in the description of integrated or mixed approaches such as those described
as “multiparadigm programming” [33]. The ViewPoint approach is also strongly related to
Jackson’s recent work on views and implementations [11] in which he describes “complexity in
terms of separation and composition of concerns”, and focuses on the problems of coping with
the relationships between concerns (cf. ViewPoint relationships). As expected, the major issue
is the expression of ViewPoint interaction.

Although the number of different kinds of relationships between arbitrary ViewPoints is
theoretically enormous, we believe that, in practice, these relationships can be kept to a
manageable number. ViewPoints are not selected arbitrarily: the domains obviously interact and
are closely related, and the representation styles can and should be selected so as to express
different aspects yet permit reasonable mappings between them. It is certainly advantageous to
describe the same domain using different styles to specify different aspects of behaviour.

We believe that the explicit expression of these relationships is aided by the need to consider
only one formalism (style) at a time, and then to express its relationship with others. The style
slot provides the required representation information while the workplan provides the place
where such relations can be expressed. In addition the dual interpretation of the relationships,
as information transfer or consistency check, is useful. Expressing relationships as a ViewPoint

interface still requires further investigation.

An additional benefit which seems to follow from the identification and encapsulation of style
(representation) and workplan (specification method) in a single ViewPoint Template is the
opportunity for tool support. Individual support could be designed for each template in a
particular method, thereby simplifying the complexity of the tool in much the same way as one
expects to simplify the steps and expression of that particular ViewPoint specification. We can
then envisage method tool support as comprising a configuration of template support tools,
configured to suit the particular method adopted.

An interesting suggestion considering ViewPoints as active agents has been proposed by the
notion of a "software development participant" in the IC~DC project [5]. There it is an active,
autonomous and loosely coupled agent - in the distributed artificial intelligence style.

Current work is being conducted within the REX and SEED (Software Engineering -
Engineering Design) projects. A design tool, RexDesigner, is under construction using a

r

restricted form of ViewPoints for CDA (Constructive Design Approach [17] for distributed

23

programming). Other work using ViewPoints is examining methods associated with PrtNets, an
extended form of Petri Nets, and CSP, and a general framework is being prototyped in
Smalltalk.

Acknowledgements

Acknowledgement is made to my colleagues at Imperial College, Naranker Dulay, Anthony
Finkelstein, Jeff Magee, Keng Ng, Morris Sloman and Kevin Twidle for their contribution to
the configuration programming work described in this paper. Anthony Finkelstein, Michael
Goedicke and Bashar Nuseibeh have contributed much to the work on ViewPoints. Finally I
gratefully acknowledge the SERC under grant GE/F/04605 and the CEC in the REX Project
(2080) for their financial support.

REFERENCES

[1] M.R.Barbacci, C.B.Weinstock, and J.M.Wing, "Programming at the Processor -
Memory - Switch Level", Proc. of 10th IEEE Int. Conf. on Software Engineering,
Singapore, April 1988.

[2] M. Coulas, G. MacEwen, G. Marquis, “RNet: A Hard Real-Time Distributed
Programming System”, IEEE Transactions on Computers, C-36 (8), August 1987.

[3] F. DeRemer, H.H.Kron. "Programming-in-the-large Versus Programming-in-the-small,

IEEE Trans. Software Engineering", Vol. SE-2, 2, June 1976.

[4] N. Dulay, “A Configuration Language for Distributed Programming”, Ph.D. Thesis,

Imperial College, London University, 1990.

[5] A.Finkelstein and H.Fuks, “Multi-Party Specification”; Proc 5th International Workshop
on Software Specification & Design; pp 185-196, IEEE CS Press.

[6] A. Finkelstein , J. Kramer, and M. Goedicke. “ ViewPoint Oriented Software
Development”, Proc. of 3rd International Workshop on Software Engineering and its
Applications, Toulouse, France, December 1990.

[7] M.Goedicke, W.Ditt, H.Schippers, “The ∏-Language Reference Manual”, Research
Report No 295 1989, Department of Computer Science, University of Dortmund.

[8] M.Goedicke, “Paradigms of Modular Software Development” Mitchell R.J. (Ed);
Managing Complexity in Software Engineering; Peter Peregrinus, 1990, England.

[9] J.A.Goguen. "Reusing and Interconnecting Software Components", IEEE Computer,
(Designing for Adaptability), Vol. 19, 2, February 1986.

[10] M.A.Jackson, "System Development", Prentice Hall 1983.
[11] M.A.Jackson, “Some Complexities in Computer-Based Systems and their implications for

System Development”, Proc. of IEEE Int. Conf. on Computer Systems and Software
Engineering (CompEuro 90), Tel-Aviv, Israel, May 1990, 344-351.

[12] J.Kramer, J.Magee, "Dynamic Configuration for Distributed Systems", IEEE
Transactions on Software Engineering, SE-11 (4), April 1985, pp. 424-436.

[13] Kramer J., Finkelstein A., Ng K., Potts C. & Whitehead K. (1987);"Tool Assisted

24

Requirements Analysis: TARA final report”; Imperial College, Dept. of Computing,
Technical Report 87/18.

[14] J. Kramer, K. Ng, C. Potts, K. Whitehead, “Tool Support for Requirements Analysis”,
IEE Software Engineering Journal, Vol. 3,3, May 1988.

[15] J. Kramer, J. Magee, K. Ng, "Graphical Configuration Programming", IEEE

Computer, 22(10), October 1989, 53-65.

[16] J. Kramer, J. Magee, "The Evolving Philosophers Problem: Dynamic Change
Management", to appear in IEEE Trans. on Software Eng., November 1990.

[17] J. Kramer, J. Magee, A. Finkelstein, “A Constructive Approach to the Design of
Distributed Systems”, to be presented at the 10th Int. Conf. on Distributed Computing
Systems, May 1990.

[18] J. Kramer, “Configuration Programming - A Framework fo the Development of
Distributable Systems”, Proc. of IEEE Int. Conf. on Computer Systems and Software
Engineering (CompEuro 90), Israel, May 1990.

[19] R.J. Leblanc and A.B. MacCabe, “The Design of a Programming Language based on a
Connectivity Network”, Proc. 3rd Int. Conf. On Distributed Computing Systems, 1982.

[20] T. LeBlanc and S. Friedberg. "HPC: A model of structure and change in distributed
systems". IEEE Trans. on Computers, Vol. C-34, 12, December 1985.

[21] I. Lee, N. Prywes, B. Szymanski, “Partitioning of Massive/Real-Time Programs for
Parallel Processing”, in Advances in Computers, ed. M.C. Yovits, Vol.25, Academic
Press 1986.

[22] J.Magee, J.Kramer, and M.Sloman, "Constructing Distributed Systems in Conic" IEEE
Transactions on Software Engineering, SE-15 (6), June 1989.

[23] G.Mullery, “Acquisition - Environment”; (In) Paul, M. & Siegert, H. "Distributed
Systems: Methods and Tools for Specification"; Springer Verlag LNCS 190, 1985.

[24] W.P. Myers, G.F. Myers and L.C. Constantine. "Structured design", IBM Syst. J., vol.

13, no. 2, pp. 115-139, 1974.

[25] J. Nehmer, D. Haban, F. Mattern, D. Wybranietz, D. Rombach, “Key Concepts of the
INCAS Multicomputer Project”, IEEE Transactions on Software Engineering, SE-13 (8),
August 1987.

[26] C.Niskier, T.Maibaum, D.Schwabe, “A Look Through PRISMA: towards knowledge-
based environments for software specification”; Proc 5th International Workshop on
Software Specification & Design; pp 128-136, IEEE CS Press.

[27] B. Nuseibeh, “ViewPoint Oriented Systems Engineering: an Interim Report and Case
Study”, Internal Report, Department of Computing, Imperial College, March 1991.

[28] D.L. Parnas, "On the Design and Development of Program Families", IEEE Transactions
on Software Engineering, SE-2 (1), March 1976, pp. 1-9.

[29] J. Purtilo, “A Software Interconnection Technology”, Computer Science Dept.,
University of Maryland, TR-2139, 1988.

[30] REX Technical Annexe, ESPRIT Project 2080, European Economic Commission, March

25

1989.
[31] M.Stephens, K.Whitehead, "The Analyst — A Workstation for Analysis and Design";

Proc 8th ICSE; IEEE CS Press.
[32] M. Stovsky, B. Weide, “STILE: A Graphical Design and Development Environment”,

Digest Compcon Spring 87, CS Press, California.
[33] P.Zave, "An Operational Approach to Requirements Specification for Embedded

Systems", IEEE Trans. on Software Engineering, SE-8 (3), 1982.

26

