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Thin-shell deployable reflector structures that are folded elastically in a

nearly-inextensional mode have been recently realized, exploiting the recent

availability of high-modulus, ultra-thin composite materials. An inherent,

and significant limitation of this approach is that these structures remain

“floppy” in their deployed configuration. This paper presents a general

concept for increasing the deployed stiffness of such structures, through

the addition of a collapsible edge stiffener around the rim of a reflector

dish. An analytical expression of the frequency/stiffness related to the

softest deformation mode of a thin-shell reflector structure is presented,

both with and without the stiffener. During folding, the stiffener collapses

elastically, and this behaviour is facilitated by the introduction of suitable

discontinuities within the stiffener, or between the dish and the stiffener. A

detailed study of a range of different options is presented, and one particular

scheme is selected and optimized. For a specific example, a stiffness increase

by a factor of 31 and a fundamental frequency increase by a factor of 4 are

achieved, with a mass increase of only 16%.
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Nomenclature

Ai amplitude of mode i

B breadth of rim

b breadth of rectangular cross-section

c radius of coiling

D plate bending stiffness pg. 9 and 10, aperture diameter (pg. 13 onwards)

d diameter of tubular cross-section

E Young’s modulus

Ffinal, Fmax final packaged force, maximum force

fi frequency of mode (i− 1)

F focal length of paraboloid

f fundamental frequency

g1, g2 dimensionless parameters for calculation of natural frequencies of spherical shells

h height of rectangular cross-section

h0 height of rim

IR, IT second moment of areas of rectangular section and tubular section

k initial stiffness

r, rs radius, radius of mid surface of spherical shell

T depth of rim

t thickness of shell

U strain energy

V kinetic energy

w width of stiffener

Symbols

η slit angle

γ slit angle

ν Poisson’s ratio

φ, φ0, φ1 angles that define general parallel of shell, rim of shell, and inner edge of stiffener

ρ density

σ, σmax, σy stress, maximum stress in packaged configuration, yield stress

θ angle that defines a meridian of the shell

I. Introduction

Thin-walled deployable structures have been used for a variety of spacecraft structures

and, until recently, almost only in the form of singly-curved shell structures. Notable ex-
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amples include tubular metallic booms such as the Storable Tubular Extendible Mast1 and

the Collapsible Tube Mast,2 and self-locking hinges consisting of short lengths of steel tape

measure (tape springs) for solar arrays.3 A feature that is common to all of these foldable

structures is that they undergo a continuous process of inextensional elastic deformation

that transforms the structure from its operational configuration into a compactly packaged

configuration.

The recent availability of high-modulus, ultra-thin composite materials has led to the real-

ization of structures with greater functionality, through the use of complex three-dimensional

shapes. Novel applications of this approach to deployable reflector structures have been pro-

posed.4–6

An example of particular relevance to the present paper is the Spring Back Reflector,7,8 an

ultra thin flexible parabolic shell made from triaxially woven carbon-fibre reinforced plastic

(CFRP). The whole structure, shown in Figure 1, is manufactured as a single piece, and

hence without any expensive and potentially unreliable joints; it has a diameter of about

6 m, thickness varying between 0.3 mm and 3.2 mm, and a total mass of around 20 kg.

The folding concept9 is both simple and effective: opposite edges of the reflector are

pulled towards each other by about half of their original distance, and thus the reflector

becomes folded elastically, as shown in Figure 1. Once in orbit, the tie cables that hold

the reflector in its packaged configuration are cut, and the reflector deploys by releasing its

stored strain energy.

Figure 1. MSAT-2 spacecraft during ground testing with two Spring-Back Reflectors, one
deployed and one folded. Courtesy of Canadian Space Agency.
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Intuitively, a “floppy” structure is more likely to survive this process undamaged than

a “stiff” structure, but reflector structures of low stiffness have poor shape accuracy10 and

are also prone to becoming dynamically coupled with the attitude control of the spacecraft.

Both of these limitations would severely restrict the potential range of applications.

This paper proposes a modification of the Spring Back Reflector concept, based on the

idea of adding a thin-walled stiffening element around the edge of the dish. This element

significantly increases the overall stiffness of the dish in the deployed configuration, and yet

it is engineered in such a way that the stiffened dish can still be folded elastically. A detailed

description of the stiffening concept together with the subtleties that are required to make

this approach work are presented.

The paper is presented in seven sections plus an appendix. Following the present intro-

duction, Sections II and III explain the concept of exploiting geometrically non-linear effects

through which an elastic structure becomes softer while it is folded. The concept is illus-

trated by comparing two different designs for a coilable cantilever beam. It is shown that

a beam whose cross-section can be flattened prior to coiling can be several orders of mag-

nitude stiffer than a standard, rigid cross-section beam of equal mass. Section IV presents

a straightforward extension of Rayleigh’s classical work on the vibration of thin spherical

shells, leading to an approximate, analytical expression for the natural frequencies of vi-

bration of a spherical cap with an edge stiffener. The fundamental natural frequency ratio

—which is a measure of the stiffness increase achieved divided by the mass penalty— can

thus be estimated. The range of applicability of this result is discussed and its accuracy

is assessed. With this background, Section V carries out a detailed study of 7 different

configurations of the edge stiffener, for the particular case of a small scale dish. For each

configuration, detailed finite-element simulations of the folding process are performed in or-

der to estimate the deployed fundamental natural frequency, initial stiffness of the reflector,

packaging force characteristics and the maximum stresses in the packaged configuration. For

some selected configurations, the sensitivity of these results to two key design parameters

of the stiffener is determined. This work leads to the choice of a specific configuration of

the stiffener, consisting of a conical-section ring that is attached to the rim of the reflector,

but left disconnected at four locations. In practice, the edge stiffener would be made as an

integral part of the structure, and four slits would be cut along the connection between the

two surfaces. Section VI presents an optimized version of the configuration selected in the

previous section. Section VII concludes the paper. The Appendix presents a derivation of

the spherical equivalent to a dish of parabolic shape.
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II. Structures that Become Softer during Folding

Consider a general deployable structure made of linear-elastic material, which is assumed

to deform according to a linear force-displacement relationship when it is folded. Here, the

displacement variable is a parameter that describes the configuration of the structure, and

the force variable is the corresponding value of the external action(s) required to keep the

structure in static equilibrium in each particular configuration. Now, consider a modified

design of this structure which is (i) stiffer than the initial design and (ii) follows the same

deformation mode when it is folded as the initial design. The force-displacement relationships

of the two designs are schematically shown by the two dashed straight lines labelled ‘softer’

and ‘stiffer’ in Figure 2.

Softer

Stiffer

Stiffer 
+ Non-linear

Displacement

F
o

rc
e

Figure 2. Schematic of folding force-displacement relationships for linear and non-linear struc-
tures.

Since the “stiffness” of the structure has been increased, the slope of the force-displacement

relationship will be higher. Furthermore, since the final value of the displacement parameter

in the folded configuration is the same, the total amount of strain energy required to fold

the structure will increase proportionally with its stiffness.

Now, if it is further assumed that the folding of the structure can be modelled as a process

that involves purely beam-bending deformation, two extreme ways of achieving the stiffness

increase are (i) to increase the width of the bending elements, in which case the stiffness

increase is directly proportional to the width increase, or (ii) to increase their thickness, in

which case the stiffness increases with the cube of the thickness. In terms of mass efficiency,

case (ii) is clearly superior to (i) but the maximum bending stress in the folded configuration

will also increase in proportion to the thickness. In fact, neither scheme is ideal for light-

weight deployable structures.

In deployable structures of simple shape it is already well known that the best way of
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designing for high deployed stiffness and low maximum stress in the folded configuration is to

exploit geometrically non-linear behaviour. This can be achieved, for example, by allowing a

thin-walled, transversally curved strip to become flatter as it begins to fold. Further details

are given in the next section.

III. Coilable Beams

In this section we consider the simple problem —simple in the sense that it admits a

full analytical solution— of designing a straight, uniform metallic beam that can be coiled

uniformly, without yielding. For a given radius of coiling, c, we compare the stiffest possible

design that can be achieved for a beam with rectangular cross-section with an alternative

design based on a slit circular tube, as in Figure 3. This alternative design allows the beam

cross-section to be flattened before being coiled. Both the total cross-sectional area and the

material of the beam, and hence the mass of both designs, are the same.

In the rectangular cross-section beam of breadth, b and height, h, the maximum stress

in the coiled configuration is

σ =
Eh

2c
(1)

where E is the Young’s modulus. If the maximum allowable value for σ is the yield stress

σy, then the maximum value of h is

h = 2cσy/E (2)

and the bending stiffness of this maximally stiff rectangular-section beam is —neglecting the

modulus—

IR = bh
3
/12 =

2

3
bc3

(σy

E

)3

(3)

Next, consider a tubular beam whose cross-section has diameter, d, thickness, t, and is

split at the top. To make its cross-sectional area, and hence its mass, equal to that of the

previous beam we set

bh = πdt (4)

and so, solving for d and substituting Equation 2,

d = 2bcσy/πEt (5)

The value of t can be determined by requiring that this beam be on the point of yielding

(according to the Tresca yield condition) when its cross-section is flattened and the beam is
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Figure 3. Coilable beams with rectangular and tubular cross-sections.

longitudinally coiled. Rimrott1 has shown that this condition requires

d

t
=

E

σy

(2c/d) + ν

(1− ν2)(2c/d)
(6)

where ν is the Poisson’s ratio.

Substituting Equation 5 into Equation 6, one obtains a quadratic equation in t, which

has the solution

t =

(√( ν

2π

)2

+
2(1− ν2)

π

c

b
− ν

2π

)
σy

E
b (7)

When this beam is uncoiled, its bending stiffness —again neglecting the Young’s modulus—

is

IT ≈ πd3t

8
(8)

where d and t can be obtained from Equations 5 and 7.

To compare the static stiffness of these two beams, consider the ratio IT /IR, which can

be shown to have the expression

IT

IR

=
3

2π2

(
E

σy

)2
/(√( ν

2π

)2

+
2(1− ν2)

π

c

b
− ν

2π

)2

(9)

For equal mass beams the ratio IT /IR is inversely proportional to the the radius of coiling, c,

divided by the breadth of the original rectangular section, b, and is directly proportional to

the squared ratio of the modulus divided by the yield stress. Note that this latter proportion

(E/σy) has typical values of 50-200 for most structural materials.

Equation 9 has been plotted for E/σy = 100 in Figure 4. The plot shows that the stiffness

ratio is in excess of 200, even for loosely coiled beams, and much larger for more tightly coiled

beams.
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Figure 4. Variation of flexural stiffness of maximally stiff tubular beam with respect to stiffness
of rectangular cross-section beam, for E/σy = 100.

This example has shown that a beam with a rectangular cross-section is much less stiff

than a beam of equal mass whose tubular cross-section can be flattened prior to coiling. Non-

circular cross-sections could provide even stiffer designs, but the example presented above

has demonstrated the potential advantages of designing thin-walled foldable structures with

stiffening elements that increase the stiffness of the deployed structure, but can be elastically

collapsed prior to folding.

IV. Spherical Caps

The stiffness of a parabolic dish can be increased in many different ways. An obvious way

is increasing the thickness of the dish uniformly; other options are adding a solid ring beam

around the rim of the dish, or adding a series of radial/hoop ribs, etc. We are interested

in choosing a solution that requires only a very small increase in mass to provide a large

increase in stiffness, and the most effective way of doing this is adding a thin-walled stiffener

around the rim.

We show this by investigating how the fundamental natural frequency of an open spher-

ical cap, which is a close approximation to a thin-walled, parabolic shell reflector (see the

Appendix for details), varies when a ring beam is monolithically attached along the rim.

We will show that the stiffness of the fundamental mode of vibration of the spherical cap

increases with the cube of the depth of this edge stiffener and, neglecting the mass of the

stiffener, the corresponding natural frequency increases with the 1.5 power of the depth of

the stiffener.

Consider a thin-walled, isotropic and homogeneous spherical cap, with mid-surface radius,

rs, uniform thickness, t and subtending an angle 2φ0, as shown in Figure 5(a). The Young’s
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modulus, Poisson’s ratio and density of the material are denoted respectively by E, ν and ρ.

rs

φ0 φ0

(a)

t φ0

B

Tφ1

(b)

Figure 5. Cross sections of (a) unstiffened (b) stiffened spherical caps.

A good estimate of the fundamental natural frequency of this shell structure can be

obtained11 by assuming an inextensional mode of vibration of dimensionless amplitude Ai,

with i (=2,3,. . . ) circumferential waves. Considering a polar coordinate system r, θ, φ, the

radial components of motion, denoted by the subscript r, have the expression

wr = Airs(i + cos φ) tani φ

2
sin iθ (10)

The corresponding hoop and meridional components are obtained by imposing the condition

that no extension takes place.

Rayleigh11 derived the following expressions for the strain energy, U , and kinetic energy,

V , associated with harmonic vibration at angular frequency ωi

U(i, φ0) = 2π(i3 − i)2(1− ν)Dg1(i, φ0)A
2
i sin2 ωit (11)

V (i, φ0) =
π

2
ρtr4

sg2(i, φ0)ω
2
i A

2
i cos2 ωit (12)

where for φ = φ0

g1(i, φ) =
1

8

[(
tan φ

2

)2i−2

i− 1
+

2
(
tan φ

2

)2i

i
+

(
tan φ

2

)2i+2

i + 1

]
(13)

g2(i, φ) =

∫ φ

0

(
tan

φ

2

)2i [
(i + cos φ)2 + 2 (sin φ)2] sin φ dφ (14)

The form of the equations presented above is largely due to Blevins.12 Note that D is the

flexural stiffness of the shell, i.e.

D =
Et3

12(1− ν2)
(15)

The corresponding natural frequencies of vibration, obtained by equating the maximum
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strain energy (setting sin ωit = 1) to the maximum kinetic energy (setting cos ωit = 1) in

each mode are then

fi =
ωi

2π
=

i3 − i

2π

√
E/ρ

3(1 + ν)

√
g1

g2

t

r2
s

for i = 2, 3, 4..... (16)

where fi is the natural frequency of mode (i− 1).

For a preliminary estimate of the fundamental natural frequency of a Spring-Back Re-

flector we assume rs = 3100 mm, t = 1 mm, φ0 = 48◦, E = 40, 000 N/mm2, ν = 0.3,

ρ = 980 kg/m3. Substituting φ0 = 48◦ and i = 2 into Equations 13 and 14 gives g1 = 0.030

and g2 = 0.033, and then substituting all of the geometric and material properties of the

reflector into Equation 16 gives f2 = 0.305 Hz.

Next, consider adding a light, solid ring beam around the rim of the shell, of cross-

sectional dimensions B by T , as shown in Figure 5(b). Note that B is measured on the

mid-surface of the spherical shell. It will be assumed that the natural modes of the resulting

shell —consisting of a spherical cap clamped to a truncated cone— can be approximated by

Equation 10.

To estimate the natural frequencies of this stiffened shell we need to determine the strain

energy associated with the chosen vibration mode; the kinetic energy is still given by Equa-

tion 12, as the ring beam has been assumed to be light.

Since the assumed vibration modes are unchanged, the strain energy of the stiffened shell

is obtained by adding the strain energy of the original shell —given by Equation 11, and

which will now be denoted by Usphere— to the strain energy of the ring, Uring. The strain

energy of the ring beam can be obtained approximately by considering the difference between

a spherical cap of thickness T that subtends an angle φ0 and a spherical cap, also of thickness

T , that subtends the smaller angle

φ1 = φ0 −B/rs (17)

Hence we can write

Uring(i) = U(i, φ0)− U(i, φ1) (18)

Equation 18 could be calculated using U given by Equation 11 but, because the width

of the edge stiffener is too small for the plate flexural stiffness, D, to be activated, it will be

replaced with the bending stiffness per unit width, ET 3/12. Hence, we obtain

Uring(i) =
π(i3 − i)2(1− ν)ET 3(g1(i, φ0)− g1(i, φ1))A

2
i sin2 ωit

6
(19)

Thus, the frequency of mode (i− 1) of the stiffened shell, again obtained by equating maxi-
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mum strain and kinetic energies, is

f ′i =
i3 − i

2π

√
E

ρ

√
g1(φ0) + (1− ν2)(g1(φ0)− g1(φ1))

(
T
t

)3

3(1 + ν)g2(φ0)

t

r2
s

for i = 2, 3, 4..... (20)

We can determine the effectiveness of adding an edge stiffener to a spherical cap by

considering the ratio between two corresponding frequencies, and in particular the ratio

between the fundamental frequencies. The stiffness ratio is given by the square of the

frequency ratios.

Dividing Equation 20 by Equation 16 and simplifying, or alternatively taking directly

the square root of the strain energy ratio —since the kinetic energies cancel out— we obtain

f ′i
fi

=

√
1 + (1− ν2)

g1(φ0)− g1(φ1)

g1(φ0)

(
T

t

)3

(21)

This equation shows that for any value of i the frequency ratio is proportional to the

power 1.5, and the stiffness ratio to the power 3, of the thickness of the stiffener divided by

the thickness of the shell. The dependence with the breadth of the stiffener, B is hidden

behind the variation of g1(φ1), and is more readily captured by plotting f ′1/f1 for different

widths of the stiffener, see Figure 6.
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Figure 6. Variation of corresponding natural frequencies with cross-sectional dimensions of
stiffener.

From the figure, note that the most efficient way of increasing the fundamental frequency

of the reflector is to increase the depth of the stiffener, T . Also note that the frequency

increases that can be achieved are potentially very significant. For example the addition of
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a 1 mm wide and 40 mm thick stiffener to the edge of the Spring Back Reflector described

above (with B/t = 1) would increase its fundamental natural frequency from 0.305 Hz to

2.382 Hz, obtained from Equations 16 and 20. More refined estimates of these frequencies,

obtained from ABAQUS13 finite element simulations are 0.301 Hz and 2.840 Hz, respectively.

Note, however, that very deep stiffeners, with T >
√

rst, will also have their own vibration

modes and, while Equation 20 may still be reasonably accurate in predicting the frequency

of the main mode of the dish, the existence of lower frequency modes for the edge stiffener

should be expected in such cases.

Also note that —in showing the potential effectiveness of providing an edge stiffener for

a thin shell reflector— we have not considered one essential requirement, that the stiffened

reflector should not break when it is folded.

V. Stiffened Reflector Dishes

It has been shown that the addition of a stiffener around the rim of a thin dish greatly

increases the stiffness of the structure and hence its fundamental natural frequency. However,

a key problem with introducing such a continuous stiffener is that it makes the structure so

stiff that it can no longer be folded elastically.

Following the general reasoning presented in Section II, this problem will be addressed

by introducing either a small number of radial cuts in the stiffener or circumferential slits

between the stiffener and the rim of the dish, which have the purpose of facilitating the folding

of the structure without significantly reducing its stiffness in the deployed configuration. A

list of the different configurations that have been considered is presented in Table 1, where

the diameters d1 and d2 are defined in Figure 9(a). A small scale model of the Spring Back

Reflector, approximately 1/10th scale of a full-size structure, has been used to study the

performance of these different stiffened configurations.

A particular type of behaviour that is obtained for some cases is that the cuts/slits allow

the stiffener to“snap through” while the reflector is being folded, thus decreasing the force

required to fold the reflector and also reducing the peak stresses in the structure. It should

be noted that Greschik4 also introduced cuts in a thin-walled reflector structure to allow the

formation of localised folds in the surface, but his analysis of the stresses that occur during

folding was purely geometric.
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Name Description

Reference configurations

O Original configuration (unstiffened)

OS Continuous stiffener (no cuts, no slits)

Stiffener Configurations with Cuts

A0 Cuts along diameter d1

A90 Cuts along diameter d2

B Cuts along diameters d1 and d2

Stiffener Configurations with Slits

C0 Slits at ends of diameter d1

C90 Slits at ends of diameter d2

D Slits at ends of diameters d1 and d2

Table 1. Configurations of stiffened reflector.

A. Modelling Details

The particular structure that has been analysed has a uniform thickness of t = 1 mm and

forms an axisymmetric paraboloid of equation

z =
x2 + y2

4F
(22)

where F is the focal length. The focus to diameter ratio is F
D

= 0.296, the diameter of the

aperture is D = 452 mm and hence, the height of the rim above the apex is h0 = 95.6 mm.

The material properties were based on a thermoplastic material with the trade name of

Vivak,14 from which several experimental dishes were manufactured.15 The properties of

Vivak are E = 2 GPa, ρ = 1270 kg/m3 and ν = 0.3.

The geometry and the finite element mesh were created in the pre-processor PATRAN,16

see Figure 7. The node and element numbers were then optimized in PATRAN using both

the Cuthill and GBBS-Pool-Stk methods.

To keep computational times low, only a quarter of the dish was analysed, using the

appropriate boundary conditions. Rigid body motions were constrained by fixing the center

of the reflector, Figure 7.

Consistent convergence was achieved with a fine mesh of general purpose, linear 3-noded

triangular shell elements (S3R)– average density of 1000 elements per quarter mesh – to-

gether with the default ABAQUS iteration control parameters. S3R elements are general

purpose shell elements which account for finite membrane strains and will allow for changes

in thickness and are therefore, suitable for large-strain analysis. These elements use reduced

13 of 28

Tan & Pellegrino



(lower-order) integration, which significantly reduces run times in three dimensions. Accord-

ing to the ABAQUS manual, these elements provide accurate results, provided that they are

not significantly distorted and/or loaded in in-plane bending.13

yx

z

Figure 7. Quarter mesh with boundary conditions. Undeformed mesh (grey) and fundamental
bending mode (black).

Depending on the width of the edge stiffener, up to eight uniform rows of S3R ele-

ments were used to model this component. These formed a conical surface which was fully-

connected to the rim of the parabolic dish, Figure 7. The slits between the dish and the

stiffener were modelled by defining two separate sets of geometrically coincident nodes on

either side of each slit. The cuts in the stiffener were modelled by simply leaving the respec-

tive edges of the stiffener free from any symmetry boundary conditions. See Reference17 for

further details.

All simulations were performed with ABAQUS running on a Pentium III 1 GHz PC; the

average run time was less than 20 minutes. A typical analysis consisted of two steps, the first

being a linear eigenvalue analysis, to extract the natural frequencies and eigenmodes of the

reflector in its deployed configuration, and the second step being a geometrically non-linear

simulation of the folding of the reflector.

The first step carries out a *FREQUENCY step, which uses the default ‘subspace’ eigen-

solver in ABAQUS, to extract the first 10 eigenmodes. The maximum frequency of interest

was set to 20 Hz. The fundamental natural frequency which is used as a measure of the

reflector’s stiffness in the deployed configuration is obtained from this step.

The second step is a geometrically non-linear static analysis that simulates the folding

of the reflector under displacement control. This uses the *STEP, NLGEOM and *STATIC

options in ABAQUS. Moving boundary conditions were applied to the rim of the reflector,

to impose a total displacement of about D/2.
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The initial slope of the force-displacement relationship, k, which defines the resistance to

folding, the maximum stress, σmax, the maximum force that needs to be applied to fold the

reflector, Fmax, and the final value of the force required to hold the reflector in its packaged

configuration, Ffinal, were all extracted from this final step.

B. FE Model Verification

First, the fundamental frequency of the unstiffened reflector obtained from the FE model,

6.0 Hz, was compared to an approximate analytical estimate based on Equation 16.

The spherical equivalent to the structure that is being analysed, see the derivation in the

Appendix, has a radius rs=316 mm and subtends an angle, φ0 = 45.7◦. Substituting these

values, and the properties of Vivak into Equation 16, with g1 = 0.026 and g2 = 0.025, gives

6.28 Hz.

The difference between the two values is 4.7% and can be attributed to the fact that the

analytical estimate is for a spherical, not a parabolic shell. The FE estimate increases to

6.28 Hz if the geometry is modified to a spherical cap.

Next, it was verified that the quarter-models set up in ABAQUS yield similar results to

the corresponding full models of the structure. Figure 8 shows force-displacement curves for

configurations A90 (parameters: w = 22 mm, θ = 50◦ and t = 1 mm) and D (parameters:

w = 10 mm, θ = 50◦ η = 12◦, γ = 4◦, t = 1 mm). For A90 the discrepancies between the two

models are negligible. For configuration D the quarter model reaches a 3% higher peak force

and predicts a slightly lower final force. Two different full models have been analysed, one

with two planes of mirror symmetry and the other obtained by rotating the quarter mesh

about the z-axis; practically no difference was found between these two cases.

Despite the closeness of the results obtained from the quarter and full models, care needs

to be taken when performing eigenvalue analyses. It was found that for certain cases a

second bending mode, at a frequency very close to that of the first bending mode, was

captured by the whole model but not by the quarter model. This mode was observed in

a series of experiments on physical models.15 Hence, whereas in all optimization runs the

quarter model was used —to save computing time— as the mode of interest is the lowest

bending mode which is easily captured by the quarter model, the full model was used for

all experimental verification work. Finally, note that the fundamental frequency of the

configuration D quarter model considered above is 19.5 Hz while that of the full model is

19.6 Hz; the difference is only 0.5%.

C. Stiffener Design Parameters

The design parameters for the edge stiffener are, see Figure 9:
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Figure 8. Comparison of force-displacement response from different ABAQUS models.

• The width, w, and thickness of the stiffener, B.

• The apex angle, θ, of the conical surface.

• The number of cuts, the number of slits, and their location.

• The angles subtended by the slits, γ and η.

where it should be noted that, on the basis of preliminary experimentation on simple physical

models, the range of options for the number and location of the cuts/slits is restricted to

those listed in Table 1. Also, it was decided that the thickness of the stiffener would be set

equal to that of the main shell, i.e. B = t, for simplicity.

To obtain an indication of the effectiveness of each design parameter in increasing the

fundamental natural frequency of the chosen small scale reflector, while also evaluating the

effect it has on increasing the maximum stress in the folded reflector, a series of preliminary

studies were carried out on configurations A90, B, and D only. In each study, only one design

parameter was modified, starting from a common initial design.

First, the effect of increasing the stiffener width, w, was considered —assuming the

stiffener to be a flat horizontal plate (i.e. a cone with θ = 90◦) with either two or four cuts.

Figure 10(a) shows that the frequency increases rapidly for w < 20 mm for configuration

A90 and w < 10 mm for configuration B, but both decrease for w > 20 mm.

This is because the frequency is dependent on the ratio between modal mass and stiffness

and, as w increases, so does the mass. Beyond a certain limit, the mass penalty associated

with increasing w outweighs the increase of stiffness provided. This result is somewhat
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Figure 9. Design parameters of stiffener.

different from the power law relationship in Equation 21, which assumed the added mass to

be negligible, the stiffener to be perpendicular to the shell surface and no cuts.

The effect of w on the maximum stress in the packaged reflector is plotted in Figure 10(b).

Increasing the width of the stiffener increases the stress, initially at a faster rate.

Second, the effect of varying the angle of the stiffener was considered, for the cases of

either two or four cuts. The results are shown in Figure 11. Both the frequency and stress

variations are roughly bilinear; the maximum frequency occurs around θ = 80◦, which is

close to the stiffener being a flat plate. This increase of stiffness is coupled with the penalty

of increased maximum stress in the packaged configuration, Figure 11(b).

The above results show that, although effective in increasing the deployed frequency, the

introduction of radial cuts in the the stiffener leads to high peak stresses. These high stresses

arise from having localized the bending of the main dish near the apex of the cuts, and hence

the maximum stress is relatively insensitive to the addition of radial cuts along diameter d1.

This sharp localization in the bending of the surface is avoided in configuration D. This

is because the slits allow a larger area of the dish to bend, rather than concentrating the

curvature change along a narrow region of the dish. Two pairs of diametrically opposite
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Figure 10. Variation of fundamental deployed frequency and maximum packaged stress with
stiffener width, for θ = 50◦.
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Figure 11. Variation of fundamental deployed frequency and maximum packaged stress with
stiffener angle, for w = 20 mm.

slits were considered in the present study; the resulting load-displacement plots are shown

in Figure 12.

The pair of slits at the end of diameter d2 serve the purpose of allowing larger portions of

the dish to deform, and so reduce the peak strains in the folded dish. They also control the

final force required to keep the reflector packaged; increasing the slit angle η reduces these

forces. On the other hand, the pair of slits at the end of diameter d1 allow the stiffener to

buckle during packaging, and hence affect the initial stiffness of the reflector.
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D. Packaging

An analysis of the packaging force-displacement relationship of the reflector provides signif-

icant insight into the behaviour of the structure and is also useful in making comparisons

between different designs of the edge stiffener. The reflector structure is folded about diam-

eter d2 which is equivalent to applying two diametrically opposing forces, F along diameter

d1 – causing it to fold in a way similar to Figure 1

This relationship has been computed for the eight different design configurations listed

in Table 1, see Figure 13. Note that the displacement plotted in Figure 13 is that of one

loaded point; the point diametrically opposite moves by an equal but opposite amount. In

all cases, the stiffener width is w = 20 mm, its angle θ = 50◦, and the slit angles where

applicable are equal, η = γ = 10◦.

The unstiffened reflector, O, and the reflector with a continuous stiffener but neither

slits nor cuts, OS, i.e. the configurations with minimum and maximum initial stiffness, were

analysed to obtain two reference curves. In all cases it was assumed that the behaviour of

the material is linear-elastic, regardless of strain magnitudes.

Table 2 compares key characteristics of these different configurations. Columns 2 to 4

list the ratios between the initial (i.e. tangent) stiffness in the deployed configuration, k,

the fundamental natural frequency of vibration, f , the final packaging force, Ffinal, and

the maximum force reached during packaging, Fmax, —for each design configuration— with

respect to the unstiffened reflector, whose values are denoted by the subscript 0. Column 5

lists the ratios between the final and maximum force. Column 6 lists the maximum stresses,
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Figure 13. Force-displacement plots for eight different designs.

σmax, in the packaged reflector assuming the structure to be made of Vivak and yet to remain

linear-elastic regardless of the large stress magnitude.

Configuration k/k0 f/f0 Ffinal/Ffinal0 Ffinal/Fmax σmax(MPa)

O 1.0 1.0 1.0 1.0 10

OS 53.2 5.0 13.9 1.0 181

A0 17.4 3.3 14.1 1.0 179

A90 27.2 3.3 5.1 1.0 152

B 5.0 1.6 6.0 1.0 151

C0 16.5 4.2 14.7 1.0 100

C90 46.1 4.2 3.2 0.6 85

D 16.7 3.5 3.2 0.7 84

Table 2. Key characteristics of different structural configurations.

It is useful to discuss the response curves by grouping them into sets that share common

features, as follows.

1. Very low initial stiffness and very low packaging force – Configuration O. The unstiff-

ened configuration has an initial stiffness of 0.06 N/mm and a final packaged force of

3.1 N.

2. Low initial stiffness and high packaging force – Configuration B. The reason for the high

packaging force is that the reflector folds into two almost rigid half-shells connected by

an elastic hinge aligned with the two cuts. The transverse curvature in this hinge region
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increases with the amount of folding and its longitudinal curvature is approximately

zero. Hence, after some initial non-linearity the force displacement relationship is

almost linear. However, note that Configuration B has the lowest initial stiffness

among all stiffened configurations, despite a 5 fold increase on Configuration O.

3. High initial stiffness and low packaging force – Configuration D. This configuration

exhibits a high initial stiffness (16.7 times higher than Configuration O) but then

gradually softens and so the final packaging force is only about double that of the

unstiffened reflector. Note that Configuration D also has the lowest packaged stresses

among all stiffened configurations.

4. High initial stiffness and high packaging force – Configuration A90. Its initial stiffness

(1.6 N/mm) is over five times that of Configuration B, due to the smaller number of

cuts, however its large displacement characteristics tend towards that of Configura-

tion B.

5. High initial stiffness and very high packaging force – Configurations A0 and C0. These

two configurations show very similar folding behaviours, despite one having cuts and

the other slits. The reason is that the folding deformation is in both cases concentrated

in regions where there are no cuts or slits. Hence in the large displacement regime the

behaviour of both configurations approaches that of Configuration OS. Comparing

Configurations A0 and C0 with Configuration OS, the initial stiffness is much lower,

and hence it can be concluded that the slits or cuts at the ends of diameter d1 play a

key role in determining the initial stiffness of the reflector.

However, if we compare k and σmax there are some important differences between

Configurations A0 and C0. C0 has a higher deployed stiffness, due to the fact that

the edge stiffener is continuous, whereas the discontinuous stiffener in Configuration

A0 is less effective (due to the introduction of two cuts). Furthermore, the cuts in

Configuration A0 lead to higher stress concentrations at the apexes of the cuts.

6. Very high initial stiffness and low packaging force – Configuration C90. As for Config-

uration D, there is a gradual softening response, however this time the initial stiffness

is higher, but the large displacement behaviour is identical to Configuration D.

Configuration C90 is particularly interesting; its initial stiffness is 46 times higher but

the force required to hold it folded is only 2.3 times higher than for Configuration O.

Indeed, this configuration has both the highest initial stiffness and deployed frequency

of all non-reference configurations, together with the second-lowest packaged stress and

final packaged force.

21 of 28

Tan & Pellegrino



7. Very high initial stiffness and high packaging force — Configuration OS. This is obvi-

ously the stiffest possible arrangement which suffers from the highest maximum stresses

of all configurations and is hence not a viable option.

A characteristic common to the two most interesting configurations emerging from this

study, C90 and D, is that they are the only two that show snapping behaviour after an initially

linear response. This is is also evident from Column 5 in Table 2 as ratios of Ffinal/Fmax < 1

indicate ‘snapping’ – the lower the value the more pronounced the snapping behaviour. This

type of behaviour is very desirable as the structure locks into the fully-deployed configuration

and yet it folds rather easily, after some initial resistance. The presence of long slits at the

end of diameter d2 has the effect of spreading the deformation of the dish, when it is folded,

over a wider region than when radial cuts are used.

The decrease in initial stiffness from Configuration C90 to Configuration D is due to the

introduction of two rather long slits at the end of diameter d1. Hence, these slits should be

as short as possible, and certainly not of equal length to those at the end of diameter d2.

VI. Optimal Configuration

Taking Configuration D as a starting point, an optimization study was performed to

determine the best values of the parameters θ, w, γ, η (defined in Figure 9) that control

the design of the collapsible stiffener. The objective was to maximize the deployed stiffness,

represented by the fundamental deployed frequency, f , subject to the maximum stress, σmax,

in the packaged reflector being smaller than a set limit.

It needs to be noted that in considering the maximum stress in the packaged reflector, the

stresses around the tips of the slits were neglected. For the optimization study, the slits were

modelled as long voids of finite width –rather than unconnected portions between the dish

and stiffener– hence the very high tip stresses in the first finite width element at each slit end

were neglected. These are regions of very high stress concentrations, but it has been shown18

that detailed redesign of these regions, by rounding the corners and/or grading the stiffness

of the material, can reduce these stresses to values close to those that occur elsewhere in the

reflector. This redesign is best carried out as a separate step, after determining the overall

stress distribution of stress in the folded reflector.

An automatic mesh generation procedure was created, and the Hooke & Jeeves direct

search method was used to find a series of optimal configurations. Details of this study will

be published in a separate paper.17

An optimal Configuration D, obtained for σmax = 26 MPa, is presented in Table 3. The

corresponding values of the design parameters are;

• apex angle of stiffener, θ = 88.1◦
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• width of stiffener, w = 20 mm

• angle of slit at end of diameter d1, γ = 6.1◦

• angle of slit at end of diameter d2, η = 17.4◦

Figure 14 compares the load-displacement relationship of this optimised structure (Op-

timal D) with the original, unstiffened structure (O) and a stiffened structure with only two

slits (C90), which however, has a maximum stress well in excess of the specified limit. This

C90 configuration is identical to Optimal D except for the fact that the pair of slits at the

ends of diameter d1 have been removed, i.e. η = 17.4◦and γ = 0◦.

Configuration
k f Ffinal σmax Mass

(N/mm) (Hz) (N) (MPa) (kg)

O 0.06 6.00 3.10 9.98 0.236

Optimal D 1.88 24.13 4.11 25.91 0.274

C90 2.72 24.76 4.18 39.18 0.274

Table 3. Comparison of optimized Configuration D.
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Figure 14. Comparison of force-displacement relationship of optimized Configuration D with
original unstiffened configuration (O) and 2 slit configuration (C90).

More detailed information on the stress distribution in the folded structure is presented

in Figure 15. It can be observed that the highest stresses occur in the unsupported regions of

the stiffener; the first region of high stress being the stiffener region adjacent to the shorter

slit and the second region being the area surrounding the tip of the longer slit.
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Figure 15. Von Mises stress distribution for optimized Configuration D, in MPa.

VII. Discussion and Conclusion

The simple analytical estimates presented in Section IV have allowed us to quantify the

increases in a thin-shell reflector’s deployed stiffness, and fundamental natural frequency of

vibration, that are achieved through the addition of a thin stiffener around the rim of the

reflector structure. It has been shown that 10-fold increases in frequency can be achieved

quite easily. Hence, increasing the deployed stiffness of a thin-shell reflector structure is

not difficult, but the key problem is ensuring that the stiffened structure can still be folded

elastically.

Two different ways of achieving stiffer reflectors that can still be folded have been ex-

plored, through the introduction of (i) cuts or (ii) slits in the stiffener. The first approach,

with cuts in the stiffener, tends to concentrate the deformation of the folded reflector in a

narrow strip. This results in maximum stresses that are at least 15 times larger than the

maximum stress in the unstiffened dish. The second approach, with circumferential slits,

spreads the deformation over a wide region, whose width is largely controlled by the length

of the slits at the end of diameter d2. Hence, it has been concluded in the paper that the

introduction of slits between the dish and the stiffener is the most effective way forward.

Varying the length of the two pairs of slits is a way of controlling the stiffness of the

deployed reflector, the maximum disturbance force that it will withstand without starting to

fold, and the maximum stress in the folded reflector. Very broadly speaking, for a stiffener
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of given width and thickness, shortening the slits at the end of diameter d1 increases the

stiffness, whereas shortening the slits at the end of diameter d2 has the effect of increasing

the maximum stress in the folded reflector. The magnitude of the maximum force before the

reflector snaps is controlled by both sets of slits, and increases when they are shorter.

The specific case of a Vivak dish with aperture diameter of 452 mm, thickness of 1 mm,

and focal length to diameter ratio of 0.296 has been considered. It has been shown that its

stiffness in the deployed configuration increases by a factor of 53.2 when a 20 mm wide and

1 mm thick edge stiffener is continuously connected to the edge of the reflector. However,

the penalty associated with this design modification is an 18-fold increase in the maximum

stress in the folded reflector, which would be well in excess of the yield stress.

Hence, having assumed that Vivak would remain close to linear-elastic for stresses up

to 26 MPa, this value was set as a limit when searching for an optimized set of design

parameters. One of the optimal configurations that was arrived at has a 20 mm wide by

1 mm thick stiffener that is nearly planar (the optimal value of the cone angle was 88.8◦, i.e.

almost 90◦); the slits at the end of diameter d1 subtend a total angle of almost 35◦ whereas

the second set of slits are about one-third this length. This configuration is 31 times stiffer

but is only 16% heavier than the unstiffened dish, and has a maximum stress within the

prescribed limit.

The force-displacement relationship for this optimized configuration is shown in Figure 14.

The significant increase in initial stiffness with respect to the unstiffened dish, and the

snapping behaviour of the stiffener, whereby the forces needed to package the dish suddenly

decrease, are evident in the figure. Non-optimized configurations tend not to show such a

pronounced snapping behaviour.

It is also insightful to make a further comparison with the corresponding non-reference

configuration (C90) which was shown in Section V to have the highest deployed stiffness

and frequency. Figure 14 shows a 42% increase in maximum ‘snapping’ force, Fmax but an

almost identical final packaged force, Ffinal. The ratios of Ffinal/Fmax are 0.84 and 0.60 for

configurations Optimal D and C90 respectively. This 2 slit configuration has a 16% higher

initial stiffness but a 50% increase in packaged stress – well in excess of the specified limit.

The only difference between these two configurations is the absence of slits at the end of

diameter d1, hence C90 is the limiting case of D and this demonstrates the tunability of

configuration D.

In conclusion, the viability of stiffening a thin shell deployable reflector by putting a

collapsible stiffener, which still allows for elastic folding and completely passive deployment,

around its rim has been demonstrated. Key to this scheme are two pairs of circumferential

slits which allow localised elastic buckling of the stiffener, hence significantly reducing the

stiffness of the reflector when it is being packaged. The performance of the stiffener can
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be enhanced significantly by optimizing its design parameters. A small number (four) of

adjustable parameters have been considered so far and a 70% reduction in the maximum

stress in the folded reflector has been achieved, without any significant reduction in the

stiffness of the reflector.

Acknowledgments

We thank Professors C.R. Calladine and C.R. Steele for helpful comments.

A. Appendix: Derivation of Spherical Equivalent to a Parabolic

Cap

A spherical cap that approximates to a paraboloidal cap can be determined based on

the assumption that both caps have the same aperture diameter, D and rim height, h0,

Figure 16. The spherical cap is fully described by the radius, rs, and the angle subtended,

φ. From triangle I in Figure 16,

rsφ

I

II

D

h0

φ/2

φ/2

Figure 16. Approximation of paraboloid with a spherical cap.

sin
φ

2
=

√(
D
2

)2
+ h2

0

2rs

(23)

While from triangle II,

sin
φ

2
=

h0√(
D
2

)2
+ h2

0

(24)

Combining Equations 23 and 24, and solving for rs,

rs =
1

2

(
D2

4h0

+ h0

)
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For a parabola with focal length F , the height of the rim, h0, is

h0 =
D2

16F
(25)

Substituting into Equation 25 results in

rs = 2F +
D2

32F
(26)

Next the subtended angle, φ, of the spherical cap needs to be determined. From Figure 16

sin φ =
D/2

rs

(27)

hence the subtended angle of the spherical cap is

φ = sin−1

(
D

2rs

)
(28)

= sin−1

(
D

2F + D2

32F

)
(29)
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