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Abstract 

Chronic hepatitis B (CHB) results from a complex interaction between a replicating 

non-cytopathic virus and an impaired antiviral host immune response. The 

Programmed Cell Death (PD-1) pathway is an immunoinhibitory T-cell pathway 

implicated in virus-specific T-cell dysfunction in several chronic viral infections.  

 

The role of the PD-1 pathway in the immunopathogenesis of chronic hepatitis B was 

investigated through several different approaches. Firstly, longitudinal changes in 

PD-1 expression in patients with CHB undergoing oral antiviral therapy was 

investigated. A direct correlation between viral load and PD-1 expression on virus-

specific CD8+T-cells was observed in this patient cohort, and treatment induced 

suppression of viraemia resulted in a significant decrease in PD-1 expression on 

virus-specific CD8+ T-cells with a decrease in HBV-DNA and improvement in virus 

specific T-cell reactivity. 

 

Secondly, through the employment of a purposely-designed in vitro cell co-culture 

model of Hepatitis B virus infection the interactions between HBV-producing 

hepatoma cells (target cells) and HBV-specific CD8+ T-cells (effector cells) was 

investigated. This model provided evidence that both cytolytic and non-cytolytic 

CD8+ T-cell effector functions are important in effective control of viral replication, 

and blockade of the PD-1 pathway distorts the balance between these differential 

effector functions in vitro. 
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Finally through the transfection of a human hepatoma cell line with hepatitis B virus 

(HBV) and the analysis of hepatoma cell lines that differentially express HBV these 

studies demonstrate that the Hepatitis B virus itself upregulates PDL1 expression on 

infected hepatocytes in vitro and in doing so, are able to alter the balance between 

cytolytic and non-cytolytic CD8+ T-cell effector functions favouring chronicity of 

infection. 

 

Manipulation of the PD-1 pathway may be a possible mechanism to improve virus-

specific host immune responses and allow control of HBV infection. However, these 

immunotherapeutic strategies require careful application as there is a potential risk of 

immune-mediated host tissue damage. 
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1. INTRODUCTION 

1.1. HEPATITIS B VIRUS BIOLOGY, EPIDEMIOLOGY AND NATURAL 

HISTORY 

 

1.1.1. Discovery. 

In 1965 Blumberg et al. identified an antibody in two haemophiliac patients who had 

previously undergone multiple blood transfusions. This antibody reacted with an 

antigen in a single serum sample from their panel, which came from an Australian 

Aborigine (Blumberg et al 1965). This “Australia Antigen” was subsequently found in 

patients with a viral hepatitis like illness, and was identified as the hepatitis B surface 

antigen (HBsAg). Blumberg was awarded the Nobel prize for this discovery in 1977. 

Further experimentation by London virologist David Dane led to the discovery of the 

complete hepatitis B virus, known as the Dane particle (Dane et al 1970) present in 

the blood of patients with hepatitis. The Dane particle is spherical with a diameter of 

42nm and is the infectious particle responsible for transmission of infection. 

 

1.1.2. Molecular Virology & Lifecycle of Hepatitis B virus (HBV). 

HBV is a hepadnavirus with a 3.2kb partially double-stranded circular DNA 

representing the viral genome and replicates mainly in hepatocytes. The viral 

genome encodes several proteins from four overlapping open reading frames (ORF), 

which use the same DNA template to encode the major viral proteins including the 

precore and core proteins, the polymerase protein, large, medium and small 

envelope proteins and the transcriptional regulator (X-protein) (Scaglioni et al 1996). 
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The structure and organisation of the HBV virion and genome are illustrated in 

Figures 1 & 2 (Karayiannis 2003, Harrison 2006). 

 

The preS-S ORF consists of three in-phase start codons and a common stop codon 

encoding three viral envelope proteins; preS1 (L or Large protein), PreS2 (M or 

medium protein) and S (small protein). The L envelope protein is predominantly 

found in complete virions, whilst the M and S envelope proteins are found in all forms 

of viral and subviral particles. The S envelope protein more commonly known as 

HBsAg is the most abundant of these surface proteins and its detection in serum is 

used as a marker in the diagnosis of an HBV infection (see Section 1.2. (Diagnosis)). 

The presence of HBsAg in the serum of a patient for > 6 months following acute 

infection, defines the presence of chronic hepatitis B infection (McQuillan et al. 

1999). 

 

The precore/core ORF is made up of 2 in-phase start codons. Translation from the 

precore start codon results in a precore polypeptide, which undergoes post-

translational modification to produce a soluble protein, the Hepatitis B e antigen 

(HBeAg). This non-structural protein is conserved and yet is not a pre-requisite either 

for virus replication or infection. HBeAg’s precise function is unknown but it is 

thought to play a role in the induction of tolerance, shifting the immune response to 

an immunotolerant Th2 profile. (Milich et al 2003, Valsamakis. 2007). The presence 

or absence of HBeAg and antibodies to this protein (anti-HBe antibodies) defines the 

stage of chronic hepatitis B infection (see Chronic Hepatitis B virus Infection – 

Section 1.1.5.2.) and is important in the optimum management of these cases (see 

Treatment – Section 1.5.). Hepatitis B core antigen (HBcAg) is produced following 
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translation from the second start codon in the precore/core ORF. This forms the 

inner core protein shell referred to as the core particle or nucleocapsid (Figure 1). 

 

The polymerase ORF overlaps with the core, envelope and X ORFs. The 

polymerase protein consists of a protein primer (or terminal protein (TP)), a spacer, a 

reverse transcriptase/DNA polymerase, and an RNase H domain. The X protein is a 

potent transcriptional transactivator of many promoters including HBV and cellular 

oncogenes. It is not required for viral replication, and has been implicated in 

hepatocarcinogenesis (Lupberger et al 2007). 
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Figure 1: The structure of the HBV virion 

 

 

(Structure of HBV virion illustrating large, middle and small envelope proteins that 

are coded for by the pre-S/S ORF (pre-S1, pre-S2 and S regions respectively).)  
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Figure 2: Hepatitis B virus genome organisation 

 

 

 

(adapted from Karayiannis 2003; Hepatitis B virus: old, new and future approaches 

to antiviral treatment. J Antimicrob Chemother. 2003 Apr; 51(4):761-85) 

 

Genomic organisation of the hepatitis B virus showing the partially double-stranded 

DNA and the positions of the direct repeats (DR) 1 and 2, and those of the 

enhancers 1 and 2 (EN). Also shown are the four open reading frames encoding the 

relevant viral proteins as indicated, as well as the various RNA transcripts which 

terminate at a common polyadenylation signal. 
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Life Cycle of hepatitis B virus 

The HBV life cycle is illustrated in Figure 3. Following binding with an as yet 

unidentified cellular membrane receptor on the surface of the hepatocyte, the HBV 

particle fuses with the membrane and subsequently releases its nucleocapsid into 

the cytoplasm. During this process the viral envelope proteins are shed and the 

nucleocapsid migrates to the nucleus of the host cell. 

 

Viral DNA enters the nucleus where it is transformed into a supercoiled covalently 

closed circular pro-viral DNA molecule (cccDNA) (Tuttleman et al 1986). This 

process results in the cleavage of the covalently attached viral polymerase from the 

negative strand and of the oligoribonucleotide sequence from the positive strand. 

Completion of the positive strand follows, with ligation of both strand extremities to 

form a covalently closed circular molecule, with subsequent supercoiling of the viral 

DNA in the host chromatin. The exact sequence of enzymatic processes involved in 

this process remains unknown.  

 

Viral genome integration is not a pre-requisite for viral replication and the hepatitis B 

cccDNA is not incorporated into the host genome. The cccDNA has a long half life 

within infected hepatocytes and acts as a stable intermediate responsible for viral 

persistence and rebound viraemia when anti-viral therapy has been withdrawn, or 

following host immunosuppression (organ transplantation, HIV co-infection etc). 

 

The cccDNA acts as a template for the transcription of pregenomic and subgenomic 

mRNAs which are subsequently translated into viral proteins in the cytoplasm. This 

transcription from cccDNA is performed by host RNA polymerase and is driven  
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Figure 3: The lifecycle of the hepatitis B virus 

 

(Reproduced from: Wands JR. N Engl J Med. 2004 Oct 7;351(15):1567-70.)  
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by the HBV core promoter in the nucleus of the host cell. The pregenomic RNA is 

then encapsidated together with the viral polymerase. Within this newly formed 

nucleocapsid, the negative DNA strand is synthesized using the pregenomic RNA as 

a template by the viral reverse transcriptase. Minus strand synthesis then proceeds 

and the viral pregenomic RNA is progressively degraded by the RnaseH domain of 

the polymerase. The positive strand is then synthesized from the negative strand 

(template) by the viral polymerase. Maturation of the nucleocapsid before positive 

strand synthesis is complete results in the characteristic, partially single-stranded 

genome. At this stage the capsid is mature and can be assembled with the viral 

envelope proteins present in the endoplasmic reticulum into a complete virion which 

can be released from infected cells into the circulation (Sheldon et al 2006). 

During viral replication, a lack of proof reading together with a high daily virion 

production results in a significant error rate (Nowak et al 1996) with viral variants 

(with multiple base changes)  existing within the same host at any given time. The 

genetically different viral strains concomitantly present in a single cell or individual 

are termed the viral quasispecies (Carman et al. 1993). 

   

Selection pressures from both the host immune system (endogenous) and antiviral 

therapies (exogenous) will dictate the predominant HBV quasispecies that exist in an 

infected individual at any given time point. Viral fitness is determined both by at a 

cellular level (e.g. viruses which replicate most efficiently will predominate) and at an 

extra-cellular level (viruses that avoid immune elimination, or develop resistance to 

anti-viral drugs when a patient is on therapy, will become dominant) (Oldstone 1991).   
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1.1.3. Epidemiology, transmission and prevention of hepatitis B virus 

infection. 

There are approximately 400 million people worldwide infected with chronic hepatitis 

B virus (HBV) (Maddrey et al 2000), the majority of whom reside in the developing 

world (Figure 4). Patients with chronic hepatitis B infection are at risk of developing 

progressive liver disease (including cirrhosis and hepatocellular carcinoma and it is 

estimated that worldwide over 200,000 chronic HBV carriers die each year from liver 

cirrhosis and over 300,000 die from hepatocellular carcinoma (HCC) (Perz et al 

2006) making HBV the second commonest carcinogen worldwide after tobacco. 

 

In the U.K. there are currently 180,000 patients with chronic hepatitis B, with 15,000 

new cases reported annually. The majority (> 95%) of newly diagnosed cases result 

from immigration of persons from areas of high prevalence and further immigration 

patterns will have a significant impact on the prevalence of HBV in the UK (Hahne et 

al 2004). The lack of specific symptoms often accompanying infection with hepatitis 

B leads to concerns of an increasing pool of patients who remain undiagnosed with 

chronic HBV infection. Although efforts are underway with the construction of a 

national database of patients chronically infected with HBV (the Collaborative 

Hepatitis B in the UK Study Index – CUSHI-B study) currently there is a paucity of 

information regarding the true prevalence and genotypic distribution of HBV in the 

UK. 
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Figure 4: Global prevalence chart for worldwide Chronic Hepatitis B Infection 

2006 

 

 

 

In areas of highest prevalence (e.g. China & the Far East, HBV is most commonly 

acquired, either during labour or perinatally (Vall Mayans et al. 1990, Mast et al 

1993, Alter 1996) – (Vertical transmission). In areas of low prevalence the majority of 

transmissions are sexual, between both heterosexual and male homosexual partners 

(Arima et al 2003; Veldhuijzen et al 2005) (Horizontal transmission). Occupational 

exposure to contaminated blood and sharing of needles amongst intravenous drug 

users remains a significant mode of transmission. HBV has been identified in the 

blood, saliva, semen, vaginal secretions, menstrual blood, sweat, breast milk, tears 
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and urine of infected individuals (Boag et al 1991). However, many cases of acute 

HBV occur sporadically where the source of infection is not apparent. 

 

Both active and passive immunisation strategies have been employed to limit viral 

transmission. Prior to the advent of vaccination, Hepatitis B immunoglobulin was 

used to prevent perinatal transmission of infection. By the mid-90’s, vaccination was 

preventing HBV transmission in up to 95% of those completing a course of 3 

vaccinations. The current hepatitis B vaccine used in the U.K. contains one of the 

viral envelope proteins, hepatitis B surface antigen (HBsAg). A course of three of 

these vaccine injections are given with the second injection at least one month after 

the first dose and the third injection given six months after the first dose. To establish 

whether there has been an adequate immune response following vaccination, the 

levels of antibody to HBsAg (HBsAb) are measured in the blood. Levels above 100 

mIU/ml are consistent with a satisfactory immune response and are achieved in 

approximately 85-90% of individuals. This antibody and concomitant immune system 

memory provide immunity to hepatitis B infection. The first vaccine became available 

in 1981.  

 

Taiwan was the first country to employ a mass vaccination programme against HBV 

in 1984. As a result of this programme both perinatal and horizontal HBV 

transmission decreased, and the carrier rate was reduced by more than 10-fold 

(Chen 1996). A significant decrease in the incidence of childhood HCC was also 

subsequently observed some 10 years later. Now more than 140 countries 
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worldwide have added the hepatitis B vaccine to their national immunisation 

programmes and worldwide population-based studies show reductions from 8% or 

greater to less than 2% in immunised cohorts of children. For his work in initiating the 

Taiwan mass vaccination programme, D.S. Chen was awarded the International 

Recognition Award from the European Association for the study of the Liver (EASL) 

in 2009. In the U.K. infants are not currently routinely vaccinated against hepatitis B 

infection.  

 

Epidemiology of Hepatitis B in Africa 

The size and diversity of the African subcontinent, the lack of resources and the 

dispersion of much of its population across vast rural areas makes accurate 

determination of HBV carrier rates very difficult. However, epidemiological studies 

suggest that there are approximately at least 50 million people with chronic hepatitis 

B virus infection in Africa, with an associated 25% mortality. In sub-Saharan Africa, 

rates of infection range from 9-20%.(Kiire 1996). 

 

Studies suggest that in contrast to the Far East where a high proportion of the 

population acquires infection perinatally, HBV infection of newborns is relatively 

uncommon in West Africa. Instead studies report that nearly all infections occur in 

childhood so that by the age of 10 years, 90% of children have become infected and 

20% have become chronic carriers. (Whittle et al 1983, Hall et al 1988). 
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Important modes of transmission on this continent include percutaneous infection 

through saliva or traces of blood as well as through unsterile needles and tribal 

scarification. 

 

1.1.4. Hepatitis B virus genotypes 

The hepatitis B virus has been classified according to eight different HBV genotypes 

(A-H) that differ by 8% at the nucleotide level over the entire genome (Ganem 2001). 

These genotypes differ in their geographical distribution, with A distributed 

worldwide, B & C found predominantly in Asia, D mainly in Southern Europe, E 

mainly in Central Africa, F mainly in South America, G mainly in the USA and 

France, and H mainly in Central and South America (Lai et al 2003, McMahon et al 

2004) (Figure 5). It is important to highlight that whilst these genotypes differ in their 

historical geographical distribution, migration significantly alters the actual genotypes 

that may be seen in clinical practice today. For example, more than 95% of new 

cases of chronic hepatitis B diagnosed in the UK are in immigrant populations, with 

significant numbers of patients from the Far East and Africa making up the diverse 

populations treated in the UK with all genotypes represented. 

 

Viral genotype can impact on the replicative ability of the virus, the rate of 

progression of disease and the response to treatment. An association between HBV 

genotype and subsequent progression of liver disease has been reported in several 

studies, mainly in Asia. These studies provide evidence that HBV genotype B is 

associated with less active and more slowly progressive liver disease compared with 



38 

 

genotype C (Lindh et al 1999, Kao et al 2000, Ding et al 2001, Sakugawa et al 

2002). 

 

Large, multicentred trials conducted in Europe, Asia and North America have 

revealed a statistically significant association between viral genotype and response 

to pegylated interferon therapy ± Lamivudine. Importantly, the highest rates of 

HBeAg seroconversion was seen in patients infected with genotype A (47%), 

followed by B (44%), C (28%) and D (25%) (Janssen et al 2005). Further analysis 

demonstrated HBsAg clearance was also associated with genotype, with again the 

most favourable outcome seen in genotype A patients (14%), followed by B (9%), C 

(3%) and D (2%) (Flink et al 2006). Finally, re-evaluation of this cohort 3 years after 

treatment, revealed that genotype A patients had the most durable response, with 

96% having sustained HBeAg-negativity and 58% having developed HBsAg 

negativity. The same endpoints were obtained in 86% and 14% of patients with 

genotype B, 67% and 0% of genotype C and 76% and 6% of genotype D patients 

(Buster et al 2008).  

 

The reasons underlying these differences in virological response to treatment 

according to genotype remain unclear, but may reflect changes in viral sequences 

that occur during interferon therapy and their impact on host immune responses.  
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Figure 5: Worldwide distribution of Hepatitis B virus genotypes 

 

Reproduced from: Datta et al 2008 (Virology Journal 2008, 5:156) 

(Whilst this figure demonstrates historical genotypic distribution, migration has 

profoundly altered the genotypes encountered in clinical practice – see text)  
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1.1.5. Natural History of hepatitis B virus infection 

1.1.5.1. Acute Hepatitis B infection 

Following exposure to HBV infection, individuals may mount a vigorous immune 

response and establish sustained control of infection with antibodies to HBsAg, or 

fail to achieve adequate control of viral replication with subsequent persistence of 

viral replication and the establishment of a chronic hepatitis B virus infection. The 

impact of immunological factors which can dictate whether chronicity of infection 

occurs are discussed in detail in subsequent chapters. The likelyhood of developing 

chronic HBV is higher when exposed perinatally (90%) or during childhood (20-30%) 

compared with immunocompetent subjects infected during adulthood (1%) (Ganem 

et al 2004). The clinical presentation of acute hepatitis B in adults is typically that of 

an icteric disease, with the jaundice lasting 1-4 weeks. Rarely a fulminant hepatitis 

may develop (0.1-0.5%) with consequent massive immune-mediated lysis of infected 

hepatocytes (Berk et al 1970). 
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1.1.5.2. Chronic Hepatitis B infection 

Chronic hepatitis B is defined as the presence of HBsAg in the serum of a patient for 

>6 months following exposure to the virus. Although the natural history of chronic 

HBV is complex and is not fully understood, 4 phases of chronic hepatitis B are now 

recognised (EASL consensus statement 2002, Lok et al 2007): 

 

1) Immunotolerant – This phase is characterised by the presence in the serum of 

hepatitis B e antigen (HBeAg), high serum levels of HBV-DNA, but normal or 

minimally elevated serum alanine aminotransferase (ALT). These patients 

classically have minimal histological activity and scant fibrosis or normal 

histology on liver biopsy. This phase can last from 10-30 years in perinatally 

infected subjects, whereas it is short-lived ( approx 5-10 years) in childhood-

acquired infection and often absent in adult-acquired HBV infection. 

 

2) Immunoactive – After a variable period of HBeAg positivity (immunotolerant 

phase), depending on the age at acquisition of HBV infection, immune 

tolerance to the virus is lost and the immune system attacks infected 

hepatocytes. This phase is characterised by an elevated ALT, fluctuating but 

in the main decreasing HBV-DNA levels and moderate to severe 

necroinflammation with variable amounts of fibrosis on liver biopsy 

(HBeAg+ve chronic hepatitis B).  

 

3) Immunocompetent / Inactive carrier - This immunocompetent phase of 

infection results from seroconversion from HBeAg to HBeAb positivity, 
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marking a transition to a third phase of infection characterised by HBeAg 

negativity and anti-HBe Ab positivity, persistently normal ALT levels and 

inactive liver histology with very low or undetectable levels of HBV-DNA in the 

serum. 

 

4) Reactivation phase – Reactivation may occur with wild type virus or much 

more commonly with replication-competent HBV variants that have mutated 

such that they do not express HBeAg, thereby avoiding the immune response. 

This phase is characterised by HBeAg negativity, anti-HBe antibody positivity, 

detectable, elevated HBV-DNA levels (>2000IU/mL), ALT elevation and 

significant ongoing necroinflammation of the liver with variable degrees of 

fibrosis on liver biopsy (HBeAg negative chronic hepatitis). 

 

Inactive HBeAg carriers (phase 3) may over time lose HBsAg with the development 

of neutralising HBs antibodies. This HBsAg seroconversion results in long-term 

immune control of HBV, but in the event of immunosuppressive therapy (e.g. 

chemotherapy for malignancies or following organ transplantation), reactivation of 

hepatitis B with subsequent liver necroinflammation can occur. 

 

The phase of chronic hepatitis B infection can therefore be categorised according to 

an individual patient’s serological status, ALT and HBV-DNA levels as shown in 

Table 1 & Figure 6 (Fattovich et al 2008 (i), Alawazi et al 2008). 
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Table 1: Recognised phases of chronic hepatitis B infection 

 

Phase Serum 

ALT 

HBeAg HBeAb Commonly observed HBV-DNA  

IU/ml 

1 Normal Positive Negative 20 million – 20 billion 

2 Elevated Positive Negative 200,000 – 2 billion 

3 Normal Negative Positive <2000 

4 Elevated Negative Positive 2000 – 20 million 

 

(adapted from Fattovich G. Natural history and prognosis of hepatitis B. Semin Liver 

Dis. 2003 Feb; 23(1):47-58.) 

 

Figure 6: Phases of infection in chronic hepatitis B 

 

 

(adapted from Alazawi W, Foster GR. Advances in the diagnosis and treatment of 

hepatitis B. Curr Opin Infect Dis. 2008 Oct;21(5):508-15.) 
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HBeAg+ve chronic hepatitis B 

Adult patients with HBeAg positive chronic hepatitis usually present with the disease 

in the third or fourth decade of life and are more frequently males. The duration of 

HBeAg positive chronic hepatitis is variable, but can be prolonged and in some 

cases results in disease progression to liver cirrhosis. However, approximately 65% 

of patients with chronic hepatitis B infection will eventually undergo HBeAg 

seroconversion during the course of their infection. This is observed as a loss of 

HBeAg from the serum and the development of antibodies to this e-antigen (HBeAb 

positivity). This seroconversion is a favourable outcome and results in a reduction in 

HBV-DNA levels, normalisation of ALT and associated with this a decrease in the 

risk of disease progression (Fattovich et al 2008 (ii), Hsu et al 2002). HBeAg 

seroconversion occurs at an annual rate of 10-15% in adults with HBeAg+ve chronic 

hepatitis B and elevated ALT levels (Fattovich 2003). A longitudinal study in Italy has 

reported that 90% of Caucasian adults with chronic HBV will undergo HBeAg 

seroconversion within 10yrs of follow-up. (Fattovich et al 2008(ii)). 

 

It is established that HBeAg seroconversion, has to be accompanied by normal ALT 

and HBV-DNA less than 104 copies/ml if regression of fibrosis and inflammation is to 

occur. (Hui et al 2007). 

Higher rates of HBeAg seroconversion are seen with older age, higher ALT levels, 

HBV genotype B (vs C) and A (vs D) and ethnicity with lower rates seen in the Asian 

population ( Fattovich 2003, Kao et al 2006, Lok et al 2007). 
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HBeAg-ve chronic hepatitis B 

The natural selection pressure on hepatitis B virus following HBeAg seroconversion 

to anti-HBe can result in the eventual selection of pre-core mutant virions that do not 

produce HBeAg. In this way the virus evades effective immune control and continues 

to replicate. The most common mutation that prevents HBeAg production is a 

guanine (G) to adenine (A) change at nucleotide 1896 (G1896A) that creates a stop 

codon (at pre-core codon 28) that prematurely terminates synthesis of HBeAg. Other 

pre-core mutations and mutations in the basic core promoter region have been 

identified (Hadziyannis et al 2006). Epidemiological studies suggest that selection of 

these mutants can be influenced by viral genotype. HBeAg negative chronic hepatitis 

is more common in Southern Europe, where genotype D predominates, and in Asia 

where both B and C are common. The observed increased prevalence of HBeAg 

negative chronic hepatitis B probably reflects the aging of existing HBV carriers a 

proportion of which will undergo pre-core mutations with reactivation of HBeAg-ve 

chronic hepatitis B. 

 

Patients with HBeAg-ve CHB are in general terms older than patients with 

HBeAg+ve CHB, have lower levels of  HBV-DNA (2000-20 million IU/ml) than 

patients with HBeAg+ve chronic hepatitis B and have a poorer prognosis with many 

likely to have cirrhosis at the time of their first presentation (Zarski et al 2006, 

Hadziyannis et al 2006). They also have wide fluctuations in both HBV-DNA levels 

and ALT levels. 
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Inactive HBsAg carrier – Immunocompetent phase of infection 

These patients have HBeAg negativity, low or undetectable HBV-DNA levels and 

normal ALT levels. Furthermore the relative risk of developing HCC is lower than in 

other phases of infection where a higher HBV-DNA level and necroinflammation of 

the liver is seen. However, long term longitudinal studies have revealed that 15-24% 

develop HBeAg-ve CHB and up to 17% have sustained reversion back to HBeAg 

positivity during the course of their infection(Chu et al 2004, Hsu et al, Fattovich et al 

(ii) 2008). 

 

Spontaneous HBsAg clearance: 

Spontaneous HBsAg loss is observed in approximately 1% per year of Caucasian 

carriers in the inactive carrier state. HBsAg loss is much less common in endemic 

areas where infection is acquired perinatally. (Lok et al 2007) Factors associated 

with HBsAg seroclearance include older age at diagnosis and sustained remission of 

hepatitis during follow up. 

 

Disease Progression: 

It has been observed that male sex, age and high circulating HBV viral loads are 

associated with increased incidence of cirrhosis and HCC (Fattovich et al 2008 (i), 

Iloeje et al 2006). The molecular mechanism underlying this observed increased risk 

in disease progression in men is unknown, but may relate to the anti-fibrogenic effect 

of oestrogen (Shimizu et al 2003). It has been demonstrated that CHB progresses 
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more rapidly in males than in females, and cirrhosis and HCC predominate in men 

and postmenopausal women. Premenopausal women have decreased production of 

proinflammatory cytokines, and hepatic steatosis has been reported in aromatase-

deficient mice, and decreases in animals after estradiol treatment. Estradiol is a 

potent endogenous antioxidant which modulates induction of redox sensitive 

transcription factors, hepatocyte apoptosis and suppresses hepatic fibrosis in animal 

models, suggesting that greater progression of cirrhosis and HCC in men and 

postmenopausal women may in part be due to lower production of estradiol. 

(Shimizu et al 2007). A family history of HCC is also associated with an increased 

risk of HCC suggesting a genetic susceptibility to this disease. (Yu et al 2000). 

 

Repeated severe acute exacerbations with failure to suppress HBV replication 

predict higher rates of cirrhosis (Liaw et al 1988). Delayed HBeAg seroconversion, 

indicating a long period of viral replication and necroinflammation are also 

associated with an increased rate of cirrhosis. Viral factors influencing disease 

progression include genotype (D more aggressive than A), certain HBV mutations 

and concurrent infection with HCV, HDV or HIV. Coinfection with HCV will result in 

liver inflammation and injury, resulting in faster progression of liver fibrosis. Most of 

the studies of HIV/HBV co-infection pre-date the use of HAART, but it seems that 

HIV co-infection may also result in more aggressive progression of disease. Heavy 

alcohol intake is also associated with an increased risk of progression to cirrhosis. 

Diabetes and obesity may also adversely affect disease progression.  
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The liver responds to immune-mediated injury through hepatocellular regeneration 

and the activation of reparative and fibrogenic processes in acute hepatitis B 

infection. However, in patients with chronic infection, the continuous cycle of low-

level hepatocyte necroinflammation leads to fibrosis, cirrhosis and HCC. The 

pathogenesis of these secondary events involve both host and virus dependent 

factors that distort normal liver repair functions (Henderson et al 2008). 

 

The rate of liver cirrhosis development depends on many factors including the phase 

or type of chronic hepatitis B suffered. In patients with HBeAg positive chronic 

hepatitis the rates are 1.6 and 3.8 per 100 patient years in East Asian and European 

countries respectively; the corresponding 5 year cumulative incidences of cirrhosis is 

8% and 17% (Fattovich et al 2008 (i)). In patients with HBeAg negative chronic 

hepatitis the summary cirrhosis incidence rates are 2.8% and 9.7% per 100 person 

years in East Asian and European countries respectively; the corresponding 5-year 

cumulative incidence of cirrhosis is 13% and 38%. Inactive carriers have lower rates 

of cirrhosis development with less than 1 per 1000 patient years (Hsu et al 2002). 

 

The incidence of hepatic decompensation with encephalopathy and/or variceal 

bleeding is 3-4 per 100 patient years in both European and Asian patients with early 

cirrhosis, with a 5yr cumulative incidence of 15% (Fattovich et al 2008 (i)). Once 

hepatic decompensation occurs, mortality rates increase to approximately 70% at 

5yrs (Fattovich et al 2003). 
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The rate of development of HCC depends upon levels of HBV replication, the 

presence/degree of fibrosis/cirrhosis and the geographical area examined. This 

geographical factor probably relates to the age of infection (Higher frequency with 

perinatal infection in East Asia). The reported incidence of HCC is illustrated in Table 

2.  

 

 

Table 2: Rates of HCC development according to Phase of Infection and 

Geographical Area 

Phase of HBV 

infection 

Geographical 

Area 

HCC incidence 

per 100 person 

years 

5yr HCC 

cumulative 

incidence 

Inactive Carriers East Asia 0.2 1% 

Europe & U.S 0.02 0.1% 

Chronic Hepatitis B 

without cirrhosis 

East Asia 0.6 3% 

Europe & U.S 0.3 1% 

Chronic Hepatitis B 

with compensated 

cirrhosis 

East Asia 3.7 17% 

Europe & U.S 2.2 10% 

 

(Reproduced from Fattovich G. Natural history and prognosis of hepatitis B. Semin 

Liver Dis. 2003 Feb; 23(1):47-58.) 
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Disease Progression and rates of HCC in Africa – the role of aflatoxin: 

In the 1960s it was noted following a survey of cancer incidence in the capital city of 

Mozambique, that there was an exceptionally high rate of H.C.C. even in relation to 

HBV prevalence (Prates & Torres 1965). Further work demonstrated the 

hepatocarcinogenic properties of aflatoxin (Newberne & Butler 1969, Carnaghan 

1967). Following on from these studies a relationship has been observed between 

HBV infection and aflatoxin in the development of H.C.C. in sub-Saharan Africa, with 

mean aflatoxin dietary intake values significantly associated with HCC rates (see 

Table 3 - Van Rensburg et al 1985). HBV interferes with the ability of hepatocytes to 

metabolise aflatoxins, therefore an aflatoxin M1-DNA conjugate exists for a longer 

period of time in the liver, increasing the probability of damage to tumour suppressor 

genes such as p53. This effect is synergistic with the resulting damage far greater 

than just the sum of aflatoxin and HBV (Williams et al 2004). 
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Table 3: Summarised Results of studies measuring crude rates of HCC (male & 

female) and aflatoxin intake (ngkg-1 body wt day-1) with cooked food 

 Locale HCC rate 

(10
5
/yr) 

Aflatoxin B1 intake 

Kenya  High Altitude 1.2 3.5 

Thailand Songkhla 2.0 5.0 

Swaziland Highveld 2.2 5.1 

Kenya Middle Altitude 2.5 5.9 

Swaziland Middleveld 3.8 8.9 

Kenya Low Altitude 4.0 10.0 

Swaziland Lebombo 4.3 15.4 

Thailand Ratburi 6.0 45.0 

Transkei Four Districts 6.9 16.5 

Mozambique Manhica-Magude 5.9 20.3 

Swaziland Lowveld 9.2 43.1 

Mozambique Massinga 5.0 38.6 

Mozambique Inharrime 9.0 86.9 

Mozambique Inhambane 12.1 77.7 

Mozambique Morrumbene 15.5 87.7 

Mozambique Homoine-Maxixe 17.7 131.4 

Mozambique Zavala 14.0 183.7 

 

HCC incidence vs aflatoxin intake: r=0.8792, p<0.001 

(Reproduced from Van Rensburg et al 1985 Br.J.Cancer 51: 713-26) 
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1.2. DIAGNOSIS 

 

1.2.1. Hepatitis B virus serology 

There are three distinct antigen-antibody systems that are significant during HBV 

infection. Hepatitis B surface antigen (HBsAg) is produced in great excess during 

viral replication (100-1000 times more than HBV virions, Hollinger et al.2001). This 

viral protein is associated with the viral surface coat. Its presence in serum is usually 

the first evidence of acute hepatitis B infection appearing during the incubation 

period 1-6 weeks before clinical symptoms develop. The corresponding antibody 

(HBsAb) appears weeks or months later and persists, thus its detection in the serum 

indicates past HBV infection and consequent immunity. Failure to clear the virus 

results in persistence of HBsAg and chronic hepatitis B infection. 

Current vaccination strategies for HBV use a surface antigen and therefore patients 

who have undergone a successful vaccination will have HBsAb detectable in their 

serum.  

 

Hepatitis B core antigen (HBcAg) is the viral nucleocapsid. It can be found within 

infected hepatocytes but not routinely in serum. Antibodies to HBcAg (HBcAb) 

appear in the serum after the onset of clinical symptoms. The presence of HBcAb 

and HBsAb indicate previous infection, with the presence of IgM anti-HBcAb 

suggestive of recent infection. 

 

Hepatitis B e antigen (HBeAg) is a secretory protein that results from post-

translational modification of the precore protein and is detectable in the serum. 
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Whilst not required for viral replication or assembly, HBeAg is conserved in HBV wild 

type virions and is thought to play a role in promoting immunotolerance of infection 

(Milich et al 1990) – (see Section 1.3.3.1). Over time, tolerance to the HBV infection 

breaks down and host immune responses lead to reduced virus replication, HBeAg 

and HBV-DNA serum levels. Ultimately HBeAg may become undetectable with 

seroconversion to antibody (HBeAb), signalling an inactive carrier phase of infection 

(see section 1.1.5.2) (Harrison et al 2006). The selection pressure of HBeAb can 

result in selection of pre-core & core mutant virions that do not produce HBeAg with 

subsequent escape from immune control and liver injury (see Section 1.1.5.2). 

 

1.2.2. Molecular assays for HBV-DNA quantitation, genotyping and resistance 

testing. 

In addition to the established serological markers of antigen and antibodies 

described above, molecular quantitation of HBV-DNA levels, viral genotyping and 

resistance sequencing have improved the assessment of hepatitis B viral infection, 

allowing more accurate assessment during the diagnosis, treatment and outcome of 

chronic hepatitis B infection. 

 

HBV-DNA quantitation 

It is well established that the level of circulating HBV (viraemia) measured by HBV-

DNA levels,  is a risk factor for the development of cirrhosis and hepatocellular 

carcinoma. (Chen C. et al 2006, Iloeje et al 2006, Chen G. et al 2006). It is also used 
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to define phase of infection and also response to treatment (Pawlotsky et al. 2008) 

(see Chronic hepatitis B infection (Section 1.1.5.2.) & Treatment (Section 1.5.). 

 

Historically there was no internationally accepted assays for HBV-DNA 

quantification, and assays varied widely from centre to centre, with different 

sensitivities and also a difference in the units used to describe HBV levels (e.g. 

copies/ml, megaequivalents/ml and the WHO’s international units (IU/ml). The IU/ml 

is now the internationally accepted standard both for clinical trials and clinical 

practice, with 1IU equivalent to 5.82 copies. HBV-DNA levels in this study were 

quantified using a real-time polymerase chain reaction (Garson et al 2005). 

 

HBV genotyping 

Hepatitis B virus genotyping is not widespread in clinical practice. However, HBV 

genotyping can provide valuable information for clinicians and patients in deciding 

optimum treatment strategies (e.g. in HBeAg positive patients who are considering a 

course of pegylated interferon therapy). Clinical trials have demonstrated that 

genotype A & B have a greater than 40% chance of undergoing HBeAg 

seroconversion following a 48 week course of pegylated interferon, compared with 

much lower rates observed for genotypes C and D (Janssen et al 2005). 

 

A variety of methods have been used to assess HBV genotype including whole or 

partial genome sequencing, restriction fragment length polymorphism (RFLP), 
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genotype-specific PCR amplification and PCR plus hybridisation.  At the Health 

Protection Agency (HPA) which performs all HBV genotyping for University College 

Hospital (UCH), they use an in-house protocol to amplify the entire HBsAg region 

and this encompasses domain A to E of the overlapping polymerase region. They 

then sequence across the region and carry out phylogenetic analysis comparing the 

generated sequence against known genotypes. On the basis of clustering, it is 

therefore possible to identify the genotype. 

 

Antiviral Resistance testing 

With the growing armamentarium of anti-virals and cross-resistance amongst drugs 

of the same structural class (e.g. lamivudine and entecavir), identification of the 

mutation conferring drug resistance is an increasingly important part of the 

management of anti-viral resistance (Lok et al 2007). Resistance can be 

documented by both phenotypic analysis and/or through methods to detect 

genotypic resistant mutations. Phenotypic analysis entails assessment of mutant 

replication in the presence of drug and requires some form of genetic engineering 

(either site-directed mutagenesis of wild-type sequence or construction of full-length 

mutant clones expressed in baculovirus models) followed by expression in cell 

culture systems (Shaw et al 2006). This approach is the most effective means of 

ascertaining whether a complex set of mutations confers antiviral resistance. 

However, it is far too cumbersome for standard clinical molecular laboratories and is 

usually limited to specialized laboratories with a specific interest in antiviral 

resistance (Chotiyaputta et al 2009). 
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In the assessment of genotypic mutations, direct sequencing can identify known and 

new mutations that potentially confer resistance. However, this method will only 

detect mutations in the dominant HBV strain and is not sufficiently sensitive for the 

detection of emerging, resistant mutants that are present in low concentrations 

(<20% of total HBV quasispecies) (Lok et al 2007). Although these minor populations 

can be identified by large-scale cloning and sequencing protocols this is beyond the 

capacity of clinical laboratories. In comparison, hybridization-based methods are 

more sensitive and less labour-intensive. However only known mutations can be 

identified with this technique, and individual probes are required to detect each 

mutation. Furthermore single-nucleotide polymorphisms that have no effect on 

phenotype can impair probe binding and produce false-negative results (Lok et al 

2002). A small number of sequence determination assays are commercially 

available, including hybridization (biotinylated amplicons hybridized to membrane-

bound oligonucleotides specific for each mutation) and direct-sequencing formats.  
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1.3. IMMUNOPATHOGENESIS 

The immune determinants of successful clearance of hepatitis B are complex and as 

yet remain to be fully elucidated. It is clear however that both cellular and humoral 

responses play important roles (Rehermann et al 1995, Penna et al 1997, Webster 

et al 2000). As previously described, chronic infection with Hepatitis B virus can 

result in persistent necroinflammation of the liver with progression to cirrhosis and 

liver cancer. However, it is well established that HBV is a non-cytopathic virus, and 

liver injury with subsequent disease sequelae are largely immune mediated. There is 

therefore a complex, variable and dynamic interaction between the host immune 

defences, which attempt to prevent and eradicate infection with minimal host 

collateral damage, and the hepatitis B virus, which tries to remain undetected and/or 

to overcome or escape any immunological response directed against it. This 

interface occurs during the initial clearance of the virus, the long-term persistence of 

HBV and the pathogenesis of HBV-related liver disease (Bertoletti et al 2003, 

Rehermann & Nascimbeni 2005, Chang et al 2007). 
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Figure 7: Immune responses to HBV infection and the effects of chronic 

hepatitis B infection 

 

 

 

 

(Reproduced from Chang JJ & Lewin SR. Immunopathogenesis of hepatitis B virus 

infection. Immunol Cell Biol. 2007 Jan; 85(1):16-23. 
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The study of the immunopathogenic mechanisms involved in Hepatitis B virus 

infection has been limited by a lack of available animal models and cell lines that 

support HBV infection. HBV can infect chimpanzees, but they only acquire a self-

limiting acute hepatitis. More recent developments of transgenic mouse models of 

HBV infection have allowed for a better understanding of the various components of 

the immune response in the clearance of HBV infection (See Figure 7). 

 

There is a paucity of data surrounding early intrahepatic events following human 

infection with HBV, but available animal model data suggests that clearance of HBV-

DNA is largely mediated by antiviral cytokines produced by cells of the innate and 

adaptive immune response. Type 1 Interferons (IFN) α/β, Tumour Necrosis Factor 

(TNF) and IFNγ trigger pathways that in turn inhibit viral replication without direct 

destruction of target cells (infected hepatocytes) (Guidotti et al 1996). Evidence for 

the relative roles of components of the innate and adaptive immune system in 

dictating the outcome of acute hepatitis B virus infection are discussed below. 
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1.3.1. Innate immune response to hepatitis B virus 

The innate immune system represents the first line of host defence against viral 

pathogens. In response to acute infection with hepatitis B virus, it is postulated that 

hepatocytes produce Type I interferons (IFN α/β). This is thought to be via 

recognition of highly conserved viral signatures known as pathogen associated 

molecular patterns (PAMPs) by toll-like receptors on the surface of dendritic cells, 

with subsequent activation of intracellular pathways such as the RIG-1 pathway, 

leading to an increase in the transcription of Type 1 interferons (Pichlmair et al 

2007). These in turn upregulates several interferon stimulated genes (ISG).  The 

upregulation of these genes has both autocrine and paracrine effects, inducing an 

anti-viral state in both the infected hepatocyte and the surrounding liver parenchyma. 

These genes have a variety of functions; in a transgenic mouse model of HBV 

infection, production of IFN α/β is associated with a 10-fold reduction of viral capsids 

containing HBV pregenomic RNA and the activation of double-stranded dependent 

protein kinase activity (PKR), which inhibits HBV protein synthesis (Wieland et al 

2000). Type 1 interferons also recruit and mediate the activities of antigen-presenting 

cells (APCs), in particular Kupffer cells and dendritic cells, which in turn produce IL-

18 and CCL3. These cytokines induce natural killer (NK) and natural killer T-cell 

(NKT) activity.  

 

NK and NKT cells have two main effector mechanisms for the control of HBV 

infection. They can directly kill infected hepatocytes and they inhibit HBV replication 

via robust production of anti-viral cytokines e.g. IFNγ / TNFα as observed in 
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transgenic mouse models of HBV infection (Kimura et al 2002 (i) & (ii), Kakima et al 

2000). 

 

These cytokines destabilise viral capsids via NFκB pathway, increase proteosome 

activity, degrade viral protein via nitric oxide activity and prompt post-transcriptional 

degradation of HBV-RNA (Visvanathan et al. 2006). Studies from experimentally 

infected chimpanzees have demonstrated that control of HBV replication is mediated 

by the early burst of intrahepatic IFNγ production by NK and NKT cells and this is 

correlated with the development of effective downstream adaptive immune 

responses. (Guidotti et al 1999). 

 

Kupffer cells are thought to play a major role in both the early innate and adaptive 

immune response to infection. These cells are known to coordinate recruitment and 

maturation of HBV-specific T-cells by the synthesis of chemokines and cytokines 

such as IFNγ, CXCL9 and CXCL10 (Kakimi et al 2001). The activation of these cells 

by other infections can lead to a cytokine response which effectively will control an 

ongoing HBV infection – Following infection of HBV transgenic mice with a liver 

specific malaria strain, Kupffer cells produce cytokines that reduce both malaria and 

HBV levels (Pasquetto et al 2000).  

 

There is considerable evidence therefore that cells of the innate immune response 

play an important part in the anti-HBV response that precedes upregulation of HLA 
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class 1 expression and activation of the adaptive immune response. However, 

genomic analysis of the host immune response to hepatitis B virus infection in 

acutely infected chimpanzees demonstrated that viral infection and replication did 

not result in the upregulation of 2’5’ oligoadenylate synthetase (2’5’OAS) mRNA, 

which is a protein involved in the innate immune response to viral infection and 

known to be induced by Type 1 interferons (Wieland et al 2004). As Type 1 

interferons are produced as part of the innate immune response, primarily by 

infected hepatocytes and plasmacytoid dendritic cells, it is postulated that, in 

contrast to HCV, HBV may act as a stealth virus early in infection, remaining 

undetected and spreading until the onset of the adaptive immune response with 

infiltration of the liver parenchyma by virus specific CD3(+) T-cells several weeks 

later. Wieland and co-authors also demonstrated in a chimpanzee model of acute 

HBV infection, there was no activation of IFNγ-stimulated genes early in infection, 

which is primarily produced by NK and NKT cells during the innate immune 

response. The authors conclude that virus-specific T-cells produce IFNγ, and 

infection is controlled through both cytolytic and non-cytolytic effector mechanisms of 

the adaptive immune response. Whether results from these animal models of HBV 

infection can be translated into man is unclear; one obvious difference is that the 

chimpanzee model does not develop chronic hepatitis B. Other studies using a 

different animal model of HBV infection (Woodchucks infected with hepatitis B) did 

reveal early activation of NK and NKT cells occurring 48-72 hrs after infection 

(Clifford et al 2008). Furthermore a recent report (Fisicaro et al 2009) demonstrated 

prompt activation of NK and NKT cells with IFNγ production prior to maximum HBV 

DNA elevation in 2 patients with newly acquired hepatitis B infection. 
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Given the T-cell priming and subsequent shaping of the adaptive immune response 

by the innate immune response, it seems likely that the innate immune response is 

important in determining the outcome of an acute hepatitis B virus infection.  
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1.3.2. Adaptive Cellular Immunity 

The adaptive immune response is thought to play a crucial role in determining 

whether chronicity of infection occurs following acute exposure to the hepatitis B 

virus. It is mediated by a complex interplay between many different cells. Antigen 

presenting cells (dendritic cells, kupfer cells) orchestrate the virus-specific T-cell 

responses through presentation of viral antigens, in the context of HLA class I and II 

to CD8+ and CD4+ T-cells respectively. These antigen presenting cells also produce 

cytokines which are necessary for maturation, differentiation and activation of virus-

specific T-cells.  

 

1.3.2.1. CD8+ T-lymphocyte response 

Virus-specific CD8+ T-cells and CD4+ T-cells play key effector and regulatory roles 

in antiviral immunity. However, virus-specific CD8+ T-cells have also been implicated 

in the immunopathogenesis of HBV infection. For example, the onset of liver injury in 

a chimpanzee model of acute HBV infection coincides with the entry of virus-specific 

CD8+ T-cells into the liver (Guidotti et al 1999, Thimme et al 2003). Furthermore the 

depletion of these cells (but not CD4+ T-cells) delays the onset of biochemical, 

histological and clinical evidence of hepatitis (Thimme et al 2003). It has also been 

observed that when virus-specific CD8+ T-cells are adoptively transferred into 

immunologically tolerant HBV transgenic mice, the resulting liver injury histologically 

closely resembles acute viral infection in humans (Ando et al 1994, Guidotti et al 

1996). 
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A robust, virus-specific CD8+ T-cell response targeting multiple epitopes during an 

acute hepatitis B infection is associated with a more severe degree of hepatitis and 

liver injury, but is also associated with successful resolution of infection. Conversely 

a weak CD8+ T-cell response with a narrow repertoire, whilst associated with less 

liver injury during the acute infection, is also associated with failure to clear HBV 

infection, with subsequent chronicity of infection (Ferrari et al 1990, Chisari et al 

1995, Rehermann et al 1995, Thimme et al 2003). The importance of the CD8+ T-

cell response in dictating the outcome of acute hepatitis B infection was elegantly 

demonstrated by Thimme et al 2003, in studies where depletion of CD8+ T-cells 

following acute HBV infection of chimpanzees led to failure of viral clearance and 

subsequent persistence of HBV infection. It has also been observed that patients 

with chronic HBV infection have a significantly diminished HBV-specific CD4+ and 

CD8+ T-cell response (Chang et al 2005, Maini et al 2000) to cognate antigens. 

Patients with HBeAg+ chronic hepatitis and high viral loads, have almost 

undetectable core epitope (c18-27) specific CD8+ T-cell responses. It has also been 

demonstrated that individuals with chronic hepatitis B infection, with a high ALT and 

HBV-DNA levels have HBV-specific CD8+ T-cells with decreased proliferative 

capacity compared with individuals with low ALT and low HBV-DNA levels (Maini et 

al 2000).  

 

Virus-specific CD8+ T-cells are primed by viral antigens which have been processed 

and subsequently expressed bound to MHC class 1 molecules on the surface of 

professional antigen presenting cells (APCs) e.g. dendritic cells, in the lymphoid 

tissues (Steinman et al 1999, Sallusto et al 1999). In contrast, if priming occurs 
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within the liver then it is more likely to result in T-cell inactivation with tolerance and 

apoptosis of antigen specific CD8 T-cells. This is likely to have evolved to cope with 

the unique architecture and micro-environment in the liver, where the liver is 

exposed to many food antigens that are absorbed from the GI tract and travel via the 

portal system to the liver.  

 

Virus-specific CD8+T-cells display dual effector functions in vivo; cytolysis of infected 

cells mediated through FasL and perforin, and the production of anti-viral cytokines 

(eg. IFNγ, TNFα) which purge HBV from infected hepatocytes (Guidotti et al 1996). 

The balance between these cytolytic and non-cytolytic CD8+ T-cell functions is vital 

in the successful clearance of HBV infection without concurrent overwhelming 

immunopathogenesis and subsequent fulminant hepatitis. Transferring of HBV-

specific CD8+ T-cell clones that are genetically deficient in perforin or FasL into 

transgenic mice has shown that both the perforin and FasL death pathways must be 

simultaneously activated for CD8+ T-cell mediated killing of infected hepatocytes 

(Nakamoto et al 1997). 

 

Evidence for the importance of cytolytic mechanisms in the successful clearance of 

HBV infection was reported by (Nair et al 2001) who observed that in a group of 

patients undergoing treatment for chronic hepatitis B infection, a severe flare in ALT 

levels (a surrogate marker of immune-mediated cytolysis of hepatocytes) was the 

most powerful predictor of a sustained loss of HBV-DNA. It is also recognised that a 

flare in ALT often accompanies HBeAg seroconversion; a favourable outcome and 
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an established treatment goal resulting in patients entering an immunocompetent 

phase of infection, characterised by low/undetectable HBV-DNA levels and minimal 

necroinflammation of the liver (Liaw et al 2003).  

 

In murine and chimpanzee models of chronic hepatitis B infection, HBV-specific 

CD8+T-cells can be shown to kill a minority of the infected hepatocytes, and also to 

downregulate expression and replication of HBV by all hepatocytes in the absence of 

cell lysis (Guidotti et al 1996, Guidotti et al 1999). This non-cytolytic mechanism was 

elegantly demonstrated following adoptive transfer of virus-specific CTLs from 

perforin deficient and Fas-ligand deficient mouse models into a HBV transgenic 

mouse model with an observed abolition of HBV replication in the absence of liver 

disease. (Guidotti et al. 1994 & 1996, Nakamoto et al.1997). Non-cytolytic inhibition 

of HBV replication is mediated by several independent mechanisms and has been 

shown to be induced in the main by IFNγ and TNFα. In transgenic models of HBV 

infection, administration of anti- IFNγ and anti-TNFα antibodies resulted in failure of 

the CD8+ T-cells to clear HBV-RNA intermediates and nucleocapsid protein (HBcAg) 

demonstrating the importance of these cytokines and the non-cytolytic clearance of 

HBV infections (Guidotti et al 1994 & 1996, Wieland et al 2004, Cavanaugh et al 

1998). Furthermore, patients with chronic hepatitis B treated with recombinant IL-12 

had an increase in IFNγ production and a dose-dependent reduction in HBV-DNA 

levels without a concurrent increase in ALT levels. (Rigopoulou et al 2005).   
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As described, both curative and destructive CD8+T-cell functions are crucial both in 

dictating the outcome of infection (resolution vs chronicity) and in limiting extensive 

immunopathogenesis. The mechanisms which determine the balance between these 

cytolytic (destructive) and non-cytolytic (curative) virus-specific-CD8+T-cell functions 

and dictate which of these effector functions are dominant during resolution / 

chronicity of infection are, however, poorly understood. The mechanisms which 

dictate the degree of virus-specific CD8+ T-cell activation are also not clear. The 

recent identification of many co-stimulatory and co-inhibitory T-cell pathways (e.g. 

CTLA-4, PD-1 etc) suggest that T-cell activity is regulated by a balance between 

inhibitory and stimulatory T-cell signalling. These immunoinhibitory pathways and in 

particular the PD-1/PDL1/L2 pathway are discussed below. 

 

1.3.2.2. CD4+ T-lymphocyte response 

CD4+ T “helper” cells have a central role in the regulation of immune response to 

viral infection. As well as the production of anti-viral cytokines (eg IFNγ), CD4+ T-

cells facilitate the induction and maintenance of virus-specific CD8+ T-cells. A lack of 

CD4+ “help” can impair CD8+ T-cell activity and antibody production (Sun et al 2003) 

culminating in viral persistence. Conversely a robust CD4+ T-cell response is always 

accompanied by a significant CD8+ T-cell response in the resolution of acute 

hepatitis B infection (Chisari et al 1995). Although previous in vitro studies have 

suggested that CD4+ T-cells demonstrate cytolytic activity, when these cells are 

depleted in a chimpanzee model of acute HBV infection, there was no significant 

decrease in the level of liver cell injury observed (Thimme et al 2003), suggesting 

that the main role of the virus-specific CD4+ T-cell in HBV infection is 
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immunoregulatory with CD8+ T-cell induction and the formation of a memory cell 

pool. The importance of CD4+ T-cells in CHB infection is confirmed by the 

observation of a generalised CD4+ hyporesponsiveness in individuals with chronic 

HBV infection (Boni et al 2001). This observed CD4+ T-cell hyporesponsiveness 

may be related in turn to impairment of dendritic cells, which have a reduced 

frequency, lower expression of co-stimulatory molecules and produce less antiviral 

cytokines, associated with reduced T-cell activity and poor viral clearance (Duan et 

al 2005, Beckebaum et al 2003). This deficiency has been demonstrated to be 

reversible, with adoptive transfer of HBcAg-specific CD4+ T-cells in chronic HBV 

carriers resulting in HBsAg clearance and resolution of infection (Lau et al 2002).  

 

CD4+ T-cells also drive the production of antibodies to components of the HBV virus 

by B cells (See Humoral response - Section 1.3.2.4.). 

   

1.3.2.3. Regulatory T-cell response 

The concept of T-cell mediated immune suppression was initially postulated in the 

early 1970s by Gershon and colleagues who coined the phrase “suppressor T-cells”. 

Although this concept fell out of favour over the proceeding 2 decades, there has 

been a recent flurry of activity in revisiting this phenomenon. A subset of specialised 

T-cells known as regulatory T-cells (T-regs) that suppress auto-reactive cells, 

maintaining immunological tolerance and inhibiting autoimmunity has recently been 

reported. (Sakaguchi 2005). 
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These regulatory T-cells make up a heterogenous population including the classical 

CD4+CD25+Foxp3+ T-cells, CD4 T-cells which secrete IL-10 or TGF-β, CD8 T-cells, 

double negative T-cells and γδ T-cells (Alatrakchi et al 2009). 

There is a growing body of evidence that these regulatory T-cells play an important 

role in the suppression of anti-viral T-cell responses in the acute and chronic phases 

of hepatitis B infection. Most of the studies of these regulatory T-cells focus on the 

classical CD4+CD25+ population. One report suggest a higher frequency of these T-

regulatory cells in the peripheral blood and liver of patients with chronic hepatitis B 

than in patients with resolved infection or healthy controls together with an 

association between increased frequency of T-regulatory cells and blood titres of 

HBeAg (Yang et al 2007). In another study, depletion of CD4+CD25+ T-regulatory 

cells in vitro enhanced proliferation of HBV specific effector cells (Franzese et al 

2005).  

 

It is postulated that these T regulatory cells have evolved to prevent excessive 

immunopathogenesis following acute viral infection and that, as a consequence of 

their immunosuppressive actions, chronicity of infection is favoured (Belkaid 2007). 

 

1.3.2.4. Humoral Immunity 

The exact role of neutralising antibodies in the context of acute hepatitis B infection 

remains poorly understood. The fact that neutralising antibodies tend to appear 

relatively late on following exposure to HBV suggests that they do not play a role in 

determining the outcome of an acute infection. Rather it is likely that these antibodies 
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prevent the re-emergence of hepatitis B virus in patients who have successfully 

resolved an acute infection. Evidence for this is observed in the chimpanzee model 

of HBV infection, and in the success of the protective vaccination used in humans, 

where individuals with high titres of antibodies to HBsAg are in the main protected 

from subsequent infection with HBV. The humoral response is also important not 

only in protecting from further exposure to hepatitis B virus, but also in the long-term 

clearance of the virus. Following successful resolution of acute HBV infection, CD4+ 

T-cells induce B cell production of antibodies to components of the HBV virus 

(HBsAb, HBcAb, and HBeAb). 

 

Neutralising antibodies can also enhance the removal of virions from the blood 

through the interaction between the Fc portion of virus-bound antibody complexes, 

with the Fc receptors found on the surface of phagocytic cells (Cooper et al 1984). 

These Fc-dependent interactions also occur on APCs and may facilitate the uptake 

and presentation of viral antigens to T and B cells in the lymphoid tissues 

(Bachmann et al 1997).   
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1.3.3. Viral and host factors which attenuate the immune response to HBV 

infection 

1.3.3.1. Viral Factors 

Although it is clear that a robust immune response to infection results in successful 

resolution of acute hepatitis B infection, there is an increasing body of evidence to 

suggest a role for various viral factors that impact on the adaptive immune response 

to hepatitis B infection. That of HBeAg - a truncated form of the HBV core protein 

(HBcAg) that is secreted in hepatitis B virus infection. The role of this viral protein 

remains incompletely understood. Despite its preserved production, HBeAg is not 

required for viral assembly, replication or infection (Chang et al 1987, Tong et al 

1991, Chen et al 1992); indeed HBeAg negative chronic hepatitis B, which occurs 

following a mutation in the pre-core / core region, is a recognised phase of chronic 

infection with ongoing viral replication and necroinflammation of the liver in the 

absence of HBeAg production. Interestingly, there is some evidence to suggest that 

HBeAg may be important in the induction of immune tolerance to HBV with 

subsequent chronicity of infection. HBeAg can cross the placenta, and furthermore 

induces neonatal tolerance to HBV infection in transgenic mice (Milich et al 1990). 

HBeAg has also been shown to inhibit induction of the T-cell response to a cross 

reactive epitope in HBcAg in adult T cell receptor transgenic mice (Chen et al 2004). 

Furthermore, recent work on Toll-like receptors (TLRs) which play an important role 

in the innate response to viral infections demonstrated that HBeAg leads to the 

reduction of TLR2 expression on monocytes (Riordan et al 2006). This in turn can 

result in inefficient triggering of a cascade of responses including the release of 

inflammatory cytokine TNFα. A recent study by Wu et al (2010) in the HepG2 



73 

 

hepatoma cell line, demonstrated that HBeAg downregulated transcription of the 

inflammatory cytokines TNF, IL-6, IL-8, IL-12A, IFN-α1, and IFN-ß compared to 

HBeAg-negative HepG2 cells. Real-time RT-PCR-based cytokine-related gene 

arrays also demonstrated downregulation of both cytokine and IFN production. 

Inhibition of the activation of NF-κB- and IFN-ß-promoter in HBeAg-positive HepG2, 

as well as inhibition of IFN and IL-6 production in HBeAg-positive HepG2 cell culture 

fluids was also seen. These results suggest that HBeAg may modify disease 

progression by inhibiting inflammatory cytokine and IFN gene expression, while 

simultaneously suppressing NF-κB-signaling- and IFNß-promoter activation. 

 

There is also evidence to suggest that HBsAg acts as a tolerogen at higher doses. 

HBsAg levels correlate closely with HBV-DNA levels and change according to the 

phase of infection with lower levels seen in the immunocompetent phase of infection 

(Nguyen et al 2009, Jaroszewicz et al 2009). Furthermore it has been demonstrated 

that baseline HBsAg levels can predict HBsAg loss in patients with chronic hepatitis 

B undergoing treatment with pegylated interferon and adefovir (Takkenberg et al 

2009, Lau et al 2009). It has also been reported that the HBsAg-specific CD8+ T-cell 

response is blunted and exhibits altered HLA/peptide tetramer-binding properties in 

patients with chronic hepatitis B who have high serum HBsAg titres (Reignat et al 

2002). 

 

Finally the HBV X protein can reduce proteosome activity in vitro (Hu et al 1999). If 

this phenomenon is present during infection, then the X protein may decrease the 
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visibility of infected hepatocytes to the adaptive immune response by inhibiting 

antigen processing and presentation.   

 

1.3.3.2. Host Factors 

Chronic hepatitis B does result from acute infection in a small minority of 

immunocompetent adults (<5%), and it is thought that there are several possible 

explanations as to why these patients fail to mount an adequate cellular response: 

 

1) Virus-induced deficiencies in antigen presentation. (see above) 

2) Genetically determined restriction of HBV-specific T-cell repertoire. 

3) Antigen overload during immunological priming. 

4) Induction of exhaustion /anergy of an initially vigorous virus-specific T-cell 

response (either through the effects of T regulatory cells (described above) or 

through the delivery of co-inhibitory T-cell signals e.g. via the PD-1/PDL1 

pathway (described below). 
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1.3.4. T-cell co-stimulation in activation/inhibition of T-cell responses 

The immune system has evolved to recognise and eliminate infectious organisms 

(non-self) whilst tolerating host tissues, leaving them intact. This highly selective 

immune response is achieved through tight regulation of the activation of cells of the 

immune system. In recent years, significant advances have been made in the 

identification of co-stimulatory T-cell signalling pathways that can activate or inhibit 

T-cell effector functions with the PD-1/L1 pathway increasingly recognised as 

important in the regulation of immune responses to potentially chronic viral 

infections. 

 

The model by which naïve T-cells require two-signals for activation was originally 

proposed by Lafferty and colleagues in 1975. The first signal is provided by the 

interaction of the T-cell receptor with the antigenic peptide-MHC complex and this 

specifies the immune response (Th1 vs Th2) with T-cell activation via an intracellular 

signalling pathway involving an immunoreceptor tyrosine-based activation motif. The 

second signal is in fact antigen independent and is delivered by antigen-promoting 

cells to promote T-cell proliferation, cytokine production and effector functions. In the 

absence of this second signal, antigen specific T-cells are functionally inactivated, or 

anergic, and fail to activate in response to subsequent antigen exposure (Jenkins et 

al 1987). The recognition that CD28 on T-cells interacted with its ligands B7-1 

(CD80) and B7-2 (CD86) demonstrated the molecular basis for this costimulatory 

signal. CD28 signalling positively influences T-cell proliferation, IL-2 production and 

promotes cell survival through the induction of anti-apoptotic genes (e.g. BCLXL, 

clonal expansion and differentiation (Boise et al 1995, reviewed by Sharpe and 
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Freeman 2002), It has also been reported that antibodies to B7-1 and B7-2 can 

inhibit T-cell activation in vitro,(Saloman et al 2001 (ii)) and CD4+ T-cell proliferation 

is severely impaired in CD28-deficient mice (Green et al 1994).  

 

Additional members of the B7:CD28 family, including the PD-1 receptor and its 

ligands PDL1/L2, have subsequently been identified and recognition of a spectrum of 

costimulatory pathways that provide a balance of positive and negative secondary 

signals to antigen experienced effector T-cells has evolved (Figure 8). 
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Figure 8: Structures of the B7-1/B7-2-CD28/CTLA-4 superfamily members 

 

(Reproduced from: The B7-CD28 superfamily. Sharpe AH & Freeman GJ. Nature 
Reviews Immunology 2002; 2:116-126) 

 

1.3.4.1. Cytotoxic T-lymphocyte antigen 4 (CTLA-4) 

Cytotoxic T Lymphocyte-associated antigen 4 (CTLA-4) is a member of the CD28-

like receptor family and has been shown to have an important inhibitory role in T-cell 

signalling. Following activation of T-cells, CTLA-4 is rapidly expressed on the cell 

surface of T-cells and is highly upregulated by CD28 engagement (Walanus et al 

1994). CD28 engagement therefore not only activates T-cells, but also initiates a 
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negative feedback loop with upregulation of CTLA-4 that ultimately allows regulation 

of T-cell activation. CTLA-4 shares the ligands B7-1 and B7-2 with the positive 

costimulatory molecule CD28, adding to the complex biology of CTLA-4. (Salomon et 

al 2001 (i))    

 

On a cellular level, CTLA-4 engagement antagonizes early T-cell activation, leading 

to decreased IL-2 production, inhibition of cell cycle progression, decreased cyclin 

expression, and modulation of TCR signalling (Fife et al 2008). In addition, CTLA-4 

binds to B7 proteins and therefore as a result of direct ligand competition CD28 

cannot physically bind and mediate the positive signals required for efficient 

activation. The signalling molecules involved in CTLA-4 (and CD28) function are 

illustrated below(Figure 9). 

 

It has been reported that T-cells with the highest affinity for a given antigen have the 

highest level of CTLA-4 expression; therefore these cells will be preferentially 

inhibited, allowing the lower affinity clones to respond and participate in the immune 

response (Allison et al 1998). It is postulated that this CD28/CTLA-4 sliding threshold 

acts to ensure that the body mounts a diverse T-cell response and this increases the 

potential to clear invading pathogens. 
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Figure 9: Signalling molecules involved in CD28 and CTLA-4 function 

 

(Reproduced from: Rudd et al. Immunol.Rev.2009.May; 229(1):12-26) 

 

The CTLA4 deficient mouse strain rapidly develops lymphoproliferative disease with 

multiorgan lymphocytic infiltration and tissue destruction, which is invariably fatal at 

3-4wks (Tivol et al 1995), demonstrating the importance of CTLA-4-mediated 

inhibition of T-cell responses in immune homeostasis. It is therefore postulated that 

CTLA-4 is critical in early tolerance induction, when T-cells are generated and rapidly 

expand to fill the lymphatic environment. (Fife et al 2008). 
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CTLA-4 has also been implicated in susceptibility for several autoimmune diseases 

including diabetes, multiple sclerosis and rheumatoid arthritis (Greenwald et al 2005) 

and there is therefore currently a great deal of interest in targeting this pathway as a 

therapeutic approach to treat autoimmunity and prevent organ transplant rejection. 

  

1.3.4.2. Inducible Costimulatory Signal (ICOS)/ICOS-Ligand Pathway. 

As its name implies, ICOS is not constitutively expressed but induced in CD4+ and 

CD8+ T-cells upon TCR engagement and T-cell activation (Hutloff et al 1999). In 

contrast to CD28 and CTLA-4, blockade of ICOS has no significant effect on IL-2 

production (Yoshinaga et al 1999). However, ICOS expression significantly impacts 

on the production of several other cytokines in activated T-cells, with production of 

IL-4, IL-5, IL-10, IL-13 and IFNγ being highly ICOS dependent (Hutloff et al 1999). 

These cytokines follow a Th2 milieu and it is therefore postulated that ICOS is 

important in Th2 cell differentiation and effector functions. 

 

Studies using pathway antagonists, transgenic mice and knockout mice have 

revealed that ICOS also plays a crucial role in B-cell differentiation, germinal centre 

formation, memory B cell development and immunoglobulin class switching 

(reviewed in Greenwald et al 2005).  
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1.4. THE PROGRAMMED CELL DEATH (PD-1) PATHWAY 

1.4.1. Introduction 

The Programmed Cell Death (PD-1) receptor was discovered in 1992 on a T-cell 

hybridoma undergoing cell death (Ishida et al 1992). The autoimmune prone 

phenotype of a PD-1-/- mice first suggested an important negative regulatory function 

for PD-1 in 1999 (Nishimura et al 1999 & 2001). Since identification of the ligands for 

PD-1 (PDL1 & PD-L2) in 2000 and 2001 (Freeman et al 2000, Latchman et al 2001) 

there is an increasing body of evidence suggesting that PD-1 and its ligands play an 

important role in regulating immune defences against microbes that cause acute and 

chronic infections, regulating the delicate balance between effective antimicrobial 

immune defences and immune-mediated tissue damage. There is also currently 

considerable interest in the therapeutic potential of manipulating this pathway.   

 

1.4.2. PD-1 pathway in infectious disease and microbial pathogenesis 

In a murine model of chronic lymphocytic choriomeningitis virus infection, Barber et 

al. (2006) using a genome wide microarray in exhausted vs functional virus-specific 

CD8+ T-cells, demonstrated a significant up-regulation of PD-1 expression on 

exhausted virus-specific CD8+T-cells, compared with functional LCMV-specific 

CD8+ T-cells. Furthermore, blockade of PD-1 expression on these exhausted CD8+ 

T-cells resulted in restoration of CD8+ T-cell functions, with increased proliferation, 

cytotoxicity and cytokine production and a decrease in viraemia. A similar 

relationship between PD-1 expression and virus-specific T-cell reactivity was 

subsequently observed in HIV infection and PD-1 expression on HIV-specific CD8+ 
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T-cells was shown to directly correlate with viral load (Trautmann et al 2006, Day et 

al 2006, Colle et al 2006). This has important implications as it is known that viral 

load directly correlates with disease progression in HIV infection. Blockade of PD-

1/PDL1 engagement results in enhancement of the proliferative and survival capacity 

of HIV-specific CD4+ and CD8+ T cells with increased production of cytokines and 

cytotoxic molecules in response to cognate antigen.  

  

PD-1 expression was also found to affect T-cell reactivity and consequently may 

contribute to the outcome of acute hepatitis B or C infection, (i.e. resolution of 

infection or viral persistence), (Urbani et al 2006, Boettler et al 2006). 

 

There is emerging evidence to suggest a role for the PD-1 pathway in maintaining 

the balance between immune defences and immune-mediated tissue damage. This 

is demonstrated by the observation that adenovirus infected PD-1-/- mice, clear an 

adenoviral infection more rapidly, but develop more severe hepatocellular injury than 

wild-type mice (Iwai et al 2003). PD-1-/- knockout mice also succumb early to 

extensive immunopathogenesis in a mouse model of chronic LCMV infection (Barber 

et al 2006). Furthermore with the use of monoclonal antibodies which block PD-

1/PDL1 ligation, it has been demonstrated in murine transgenic models of herpes 

stromal keratitis that blockade of this pathway resulted in significant exacerbation of 

the keratitis (Jun et al 2005). PD-1 blockade in a further transgenic mouse model 

which expresses OVA as a self-antigen throughout the small bowel resulted in a 
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highly specific CD8+ T-cell mediated fatal auto-immune enteritis (Reynoso et al 

2009). 

 

It is unclear as to whether PD-1 has a global impact in inhibiting all aspects of CD8+ 

T-cell effector functions (both cytolytic – through perforin and FasL-mediated target 

cell apoptosis and non-cytolytic – through the production of anti-viral cytokines e.g. 

IFNγ and TNFα) or whether there is a “skewing” of the delicate balance between 

CD8+ T-cell effector functions, in favour of non-cytolytic mediated viral clearance. 

The temporal relationship between PD-1 mediated inhibition and the suppression of 

differential effector functions is different in acute versus chronic infection states. 

 

The expression of PDL1 has been shown to be up-regulated on hepatocytes, stellate 

cells and Kupffer cells in response to infection with adenovirus or exposure to 

activated T cells and/or Type 1 interferons (Mulbauer et al 2006). Whether this 

phenomena is also observed following infection with chronic viral infections, such as 

hepatitis B/C is currently unknown. The mechanism by which viral infections may up-

regulate PD-1 expression also remains to be fully elucidated. 

 

Impairment and skewing of T cell maturation and altered T cell differentiation is 

another important factor that may contribute to the persistence of chronic viral 

infections. It has been established that there are subgroups of virus-specific CD4 

and CD8+ T-cells that differ in function and phenotypic appearance (Harari et al 

2006). The relative proportions of central memory (CM), effector memory (EM) and 
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effector (E) CD8+ T cells is thought to play a central role in immune modulation of 

chronic viral hepatitis. It has been demonstrated in HIV that there is skewed 

maturation of memory HIV-specific CD8+ T-cells and treatment with HAART therapy 

can favourably alter the balance of these cell lines as the immune system 

reconstitutes (Day et al 2006, Trautmann et al 2006). The relationship between PD-1 

expression on virus specific T-cells and memory phenotype in chronic hepatitis B is 

currently unknown. 

 

In chronic HBV infection, virus-specific T-cells are functionally impaired, but the 

relative role of viremia (HBV-DNA levels) and/or HBeAg in the impairment of T-cell 

reactivity has not been defined. Given the role of PD-1 as an important inhibitory 

pathway in T-cell function, the relative expression of PD-1 before and after 

seroconversion in the absence of changes in HBV-DNA may provide useful 

information as to the mechanism of tolerance induced by the Hepatitis B e antigen.  
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1.4.3. Expression of PD-1 and its ligands 

PD-1 is not expressed on naïve T-cells, but is found on activated T-cells, B-cells, NK 

T-cells, activated monocytes and dendritic cells. PDL1 is expressed on a wide range 

of non-haematopoietic cells including hepatocytes, as well as on cells of the immune 

system. PDL1 expression is upregulated by Type 1 and 2 interferons (Eppihimer et 

al 2002, Schreiner et al 2004).  

 

Analysis of the human PDL1 promoter demonstrated that both constitutive and 

inducible PDL1 expression are dependent on two IFN regulatory factor-1 (IRF-1) 

binding sites that are between 200 and 320bp upstream of the transcriptional start 

site. (Freeman et al 2000) 

 

In contrast, PD-L2 expression is much narrower, with inducible expression seen on 

dendritic cells, macrophages and bone-marrow derived mast cells (Zhong et al 

2007). PD-L2 can also be induced by IFNγ and this induction is partially dependent 

on NF-κB (Liang et al 2003). 
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1.4.4. The PD-1 signalling pathway 

The signalling pathway for PD-1 is illustrated below (Figure 10). Upon ligand 

engagement, PD-1 is phosphorylated on its two intracellular tyrosines, and 

subsequently binds phosphatases that downregulate antigen receptor signalling 

through direct dephosphorylation of signalling intermediates. 

 

SHP-1 & SHP-2 (SH2-domain containing tyrosine phosphatase 1 and 2), bind to the 

ITIM (immunoreceptor tyrosine associated inhibitory motif) and ITSM 

(immunoreceptor tyrosine associated shock motif) of PD-1 (Okasaki et al 2001). PD-

1 inhibitory function is lost when the ITSM is mutated, demonstrating that this 

tyrosine plays the primary functional role of PD-1 mediated inhibition. The proximity 

of PD-1 to the antigen receptor appears to be important in PD-1 mediated inhibition; 

PD-1 ligation only inhibits antigen receptor signalling in cis and not in trans. 
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Figure 10: Intracellular mechanisms of PD-1 mediated inhibition 

 

 

 

(Reproduced from Keir et al 2008. PD-1 and its ligands in tolerance and immunity. 

Annu. Rev. Immunol. 2008; 26:677-704). 

 

In contrast to CTLA-4 which inhibits Akt activation, PD-1 ligation inhibits PI3K 

activity, indicating these co-inhibitory pathways function through distinct 

mechanisms. PD-1 ligation inhibits phosphorylation of CD3 ζ, ZAP70 & PKCθ (Parry 

et al 2005).  
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1.5. TREATMENT  

Introduction 

There are currently 7 drugs that are licensed for the treatment of chronic hepatitis B 

infection in the UK including interferon (both standard and pegylated forms), and oral 

antiviral therapies which target the HBV polymerase enzyme. These oral antiviral 

agents can be divided into L-nucleoside analogues (lamivudine & telbivudine), 

acyclic phosphonates or nucleotide analogues (adefovir dipivoxil and tenofovir 

disoproxil fumarate) and cyclopentanes (entecavir). 

 

The primary long-term goal of therapy is to improve the quality of life as well as 

patient survival by preventing progression of liver disease to cirrhosis, 

decompensated cirrhosis, end-stage liver disease, hepatocellular carcinoma and 

death (EASL guidelines 2009).  These therapeutic goals can be achieved with a long 

term sustained suppression of viral replication (Chen CJ et al 2006, Chen G et al 

2006, Iloeje et al 2006) through the use of potent oral anti-virals that directly inhibit 

viral replication, and/or through the induction of robust anti-viral immune responses 

through immuno-modulatory (interferon-alpha based) therapeutic strategies. 

However, HBV infection cannot be eradicated entirely due to the persistence of 

covalently closed circular DNA (cccDNA) in the nucleus of infected hepatocytes. 

A further important treatment goal in the management of chronic hepatitis B infection 

is HBeAg and/or HBsAg seroconversion (Liaw YF. 2009). Reports have 

demonstrated that following HBeAg seroconversion, >75% of patients will have 

low/undetectable HBV-DNA levels and normal ALT levels indicating effective 
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immune control of viral replication off therapy (Hadziyannis et al 2001). A minority of 

these patients will however develop HBeAg negative chronic hepatitis B (see Section 

1.1.5.2). Whilst HBsAg seroconversion, with the development of anti-HBsAg 

antibodies and the loss of HBsAg from the serum is overwhelmingly associated with 

indefinite control of viral replication, in the event of patients subsequently being 

exposed to immunosuppressive therapy, reactivation of hepatitis B virus with re-

emergence of HBsAg and subsequent liver damage has been reported (Palmore et 

al 2009). 

 

1.5.1. Definitions and Assessment of treatment response 

The definition of a response to antiviral therapy varies according to whether 

interferon alpha or a nucleos(t)ide analogue is used (EASL Clinical Practice 

Guidelines 2009): 

On interferon alpha-based therapy: 

Term Definition 

Primary non response <1log10 IU/ml decrease in HBV-DNA level from baseline 
at 3 months of therapy. 

Virological response HBV-DNA concentration of less than 2000IU/ml at 24 
weeks of therapy. 

Serological response HBeAg seroconversion in patients with HBeAg positive 
chronic hepatitis B virus infection. 

 

(adapted from EASL Clinical Practice Guideines 2009) 
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On nucleos(t)ide analogue therapy: 

Term Definition 

Primary non response <1log10 IU/ml decrease in HBV-DNA level from baseline 
at 3 months of therapy 

Virological response Undetectable HBV-DNA by real-time PCR assay within 
48 weeks of therapy. 

Partial Virological 
response 

Decrease in HBV-DNA by >1log10 IU/ml but detectable 
HBV-DNA by real-time PCR assay. This should be 
assessed at 24 weeks in drugs with low genetic barrier 
to resistance (e.g. lamivudine) and at 48 weeks for drugs 
with high genetic barrier to resistance (e.g. entecavir). 

Virological Breakthrough Confirmed increase in HBV-DNA level of more than 
1log10 IU/ml compared to the nadir (lowest value) HBV-
DNA level on therapy; it usually will precede a 
biochemical breakthrough, characterised by an increase 
in ALT levels. Virological breakthrough arises either from 
the selection of drug-resistant HBV variants, or through 
poor compliance with therapy. 

 

(adapted from EASL Clinical Practice Guideines 2009) 

A sustained HBV-DNA reduction to undetectable levels is necessary in NUC therapy 

to reduce the risks of HBV resistant strains emerging. Undetectable HBV-DNA also 

increases the chances of HBeAg seroconversion in HBeAg-positive chronic hepatitis 

B virus infection. The management of resistant strains of HBV are discussed in a 

subsequent section. 
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1.5.2. Interferon Therapy 

 

1.5.2.1. Mechanism of action 

Type I interferons (including interferon alpha) are naturally occurring cellular proteins 

that act through a variety of mechanisms to induce a non-specific antiviral state in 

both infected and uninfected target cells thereby reducing the spread of infection. 

Following a pegylated subcutaneous injection, IFNα, binds to high affinity receptors 

on the surface of target cells triggering a cascade of intracellular reactions that 

activate numerous IFN-inducible genes which in turn mediate the antiviral effects of 

IFNα (Katze et al 2002).  

 

In Hepatitis C virus infection, IL-28B has been found to predict the response to 

treatment with interferon, but this has not been established in hepatitis B virus 

infection. 

 

As well as induction of this non-virus-specific anti-viral state which results in direct 

inhibition of viral replication, IFNα also has immunomodulatory effects that enhance 

the host’s specific antiviral immune responses and may accelerate the death of 

infected cells (Sen et al 1993).  
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1.5.2.2. Pegylated Interferons 

Pegylated interferons are formed by covalent binding of an inert polyethylene glycol 

moiety to the interferon molecule resulting in a higher molecular weight, with a 

subsequently reduced renal clearance and altered metabolism, prolonging the half-

life of the peg-IFN molecule (Reddy et al 2001). This allows for a steadier serum 

level of interferon and also allows patients to undergo subcutaneous injection once a 

week, compared to the 3 times a week necessary with standard interferon. For these 

reasons, pegylated interferons have almost entirely replaced standard interferon 

preparations in the treatment of chronic hepatitis B infection. There are 2 main 

preparations that are currently used in clinical practice, Viraferon™ (Schering-Plough) 

and Pegasys™ (Roche). In a large, multicentred randomized controlled trial, 

pegylated interferon alpha 2a demonstrated superior efficacy over lamivudine on the 

basis of HBeAg seroconversion, HBsAg seroconversion and HBV-DNA suppression. 

(Lau et al 2005). Further randomized prospective clinical trials have confirmed the 

efficacy of pegylated interferons in the management of chronic hepatitis B infection 

(Marcellin et al 2004, Janssen et al 2005). 

 

Pegylated interferons are most effective in the treatment of chronic hepatitis B 

infection, when administered for a finite period of time (e.g. 48weeks), when there is 

an active immune-mediated inflammatory response to infection that can be 

augmented through the administration of IFNα. Given the immunomodulatory 

mechanisms of action, it is perhaps unsurprising that IFNα therapy is associated with 

relatively high rates of HBeAg seroconversion (Figure 11). 
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.Figure 11: Rates of HBeAg seroconversion following one year of therapy 

         

(These numbers come from different randomized clinical trials, and were not from a 

head-to-head study.) ( Adapted from EASL Clinical Practice Guidelines: 

Management of chronic hepatitis B. 2009) 

 

Large, multicentred trials conducted in Europe, Asia and North America revealed a 

statistically significant association between viral genotype and response to pegylated 

interferon therapy ± Lamivudine (see Section 1.1.4). 

 

Multi-variate analysis has suggested that as well as genotype, baseline ALT, 

baselines HBV-DNA levels (<109 copies/mL) and low concentrations of pre-treatment 

HBeAg are also predictive of HBeAg seroconversion. 

 

The main disadvantages of treatment with pegylated interferons are the inconvenient 

mode of administration (subcutaneous injections weekly) and the frequent and on 
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occasion severe side effects of interferon therapy. The comonest adverse effect is a 

flu-like syndrome characterised by fever, chills, arthralgia, fatigue and malaise 

(Schellekens et al 1984, Gota et al 2003). It is recognised that 3-14% of patients on 

interferon therapy will develop anti-thyroid antibodies resulting in thyroiditis, 

hypothyroidism or hyperthyroidism (Ward et al 2001). Other AI diseases associated 

with interferon therapy include SLE, RA, dermatomyositis & polymyositis, psoriasis, 

vitiligo and many others (Burdick et al 2009). Significant neuropsychiatric side effects 

have also been reported with interferon treatment, including irritability, depression, 

memory loss and rarely psychosis. In patients with pre-existing neuropsychiatric 

problems, treatment with interferon alpha must be in conjunction with ongoing 

specialist psychiatric care (Schaeffer et al 2007). Interferon-alpha therapy may also 

result in bone marrow suppression with subsequent neutropenia, thrombocytopenia 

and anaemia.  

 

These disadvantages prompt many patients and clinicians to favour nucleos(t)ide 

analogues in the treatment of chronic hepatitis B infection. In the main pegylated 

interferon use is restricted to patients with HBeAg-positive chronic hepatitis B 

infection. In this patient group, genotyping of the virus, together with the assessment 

of other parameters including HBV-DNA levels and baseline ALT should be 

assessed, before a frank discussion with individual patients about the benefits and 

risks of a course of therapy. 

 

Interferon therapy can lead to an immune mediated flare in ALT, which in the context 

of cirrhosis with borderline liver failure, can result in hepatic decompensation. 
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Patients with pre-existing cirrhosis should therefore be carefully monitored for this 

potentially serious complication. Interferon is also contraindicated in pregnancy. 

 

1.5.3. Nucleos(t)ide Analogues 

1.5.3.1. Mechanisms of action 

All of the currently licensed direct oral anti-viral therapies are competitive inhibitors of 

the HBV polymerase enzyme, competing with the incorporation of endogenous 

intracellular nucleotides in nascent viral DNA. This inhibition targets the priming of 

reverse transcription, viral minus strand DNA synthesis (i.e. RNA dependent DNA 

polymerase activity or reverse transcription), or plus strand DNA synthesis (i.e. DNA 

dependent DNA polymerase activity of the viral enzyme) (Zoulim et al 2004).  

In contrast to pegylated interferons these oral anti-virals are therefore given for many 

years (sometimes indefinitely) to maintain suppression of viral replication. 

 

Lamivudine acts predominantly as an inhibitor of the reverse transcriptase activity of 

the HBV polymerase enzyme. Adefovir and tenofovir are active on the priming of the 

reverse transcription as well as on elongation of viral minus strand DNA (Delaney et 

al 2006, Seigneres et al 2001). Telbivudine inhibits the priming of reverse 

transcription, as well as viral minus and plus strand DNA synthesis (Standring et al 

2001). Entecavir inhibits both minus and plus strand DNA synthesis (Seifer et 

al.1998). 
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Once incorporated these nucleos(t)ide analogues can also terminate DNA synthesis 

by preventing the incorporation of subsequent nucleotides in the viral DNA strand. 

By inhibiting the HBV polymerase enzyme, there is decreased production of 

infectious viral particles, which limits the spread of virus to uninfected hepatocytes. 

Although some in-vitro studies suggest an additive effect for combinations of 

nucleos(t)ide analogues (Delaney et al 2004, Seigneres et al 2003), clinical trials 

have shown no additional benefit, with the most potent anti-viral drug in any 

combination dictating anti-viral efficacy (Lai et al 2005, Sung et al 2008). 

  

1.5.3.2. Oral anti-viral drug resistance and viral breakthrough 

A major drawback of the long-term use of oral anti-viral therapies is the emergence 

of resistant HBV strains which can result in viral breakthrough with an increase in 

necroinflammation of the liver, hepatic decompensation, increased Child-Pugh 

scores in cirrhotic patients and ultimately death (Lok et al 2003). As described 

above, resistance rates with lamivudine or adefovir monotherapy, which until recently 

have represented the standard of care for chronic HBV patients are disquieting with 

5 year viral resistance rates of >50% and 20% respectively. However newer agents 

such as Tenofovir and Entecavir, with a higher genetic barrier to resistance and 

greater anti-viral potency have thus far demonstrated very low resistance rates, even 

when used as a monotherapy (Tenofovir – 0% at 3 years, Entecavir 1.2% at 6 

years).  

 

 



97 

 

1.5.3.3. Managing Anti-viral Resistance 

The major challenge currently facing hepatologists is how best to avoid the 

development of these multi-drug resistant strains of hepatitis B virus infection.  There 

is however, much controversy over the most effective way to achieve this. Some 

clinicians advocate single agent therapy with either the substitution or addition of a 

second agent should resistance occur. Experience with lamivudine and adefovir 

have demonstrated that the addition of a second agent is a superior strategy to 

substitution in preventing the development of multi-drug resistant HBV to both of 

these agents (Lampertico et al 2007, Lee et al 2006). The much lower rates of 

resistance observed with newer more potent oral anti-virals e.g. entecavir (1.2% at 5 

years) & tenofovir (0% at 3yrs) have led to a monotherapeutic approach to care 

being widely re-adopted. Whether in the long-term these agents will also select 

resistant strains of hepatitis B virus is disputed.  

 

When antiviral resistance does emerge to a particular agent then it is important to 

consider the issue of cross-resistance when selecting a rescue agent to add in. 

Table 4 illustrates cross-resistance data for the most frequent resistant HBV variants. 
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Table 4: Cross resistance data for the most frequently occurring HBV resistant 

strains 

 

HBV Variant Level of Susceptibility 

 Lamivudine Adefovir Telbivudine Entecavir Tenofovir 

Wild type S S S S S 

M204I R S R I S 

L180M + M204V R S R I S 

A181T/V I R S S S 

N236T S R S S I 

L180M + M204V 

±I169T±V173L±M250V 

R S R R S 

L180M + M204V 

±T184G±S202I/G 

R S R R S 

 

S = sensitive   I = intermediate/reduced susceptibility  R = resistant 

(Adapted from Fournier C & Zoulim F. Antiviral therapy of chronic hepatitis B: 

prevention of drug resistance. Clin. Liver Dis 2007; 11: 869-892.)    
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1.5.3.4. Impact of antiviral therapy on host immune responses 

HBeAg seroconversion with subsequent transition to an immunocompetent phase of 

infection characterised by low HBV-DNA levels and normal ALTs is defined as an 

endpoint of treatment. Although a proportion of patients will undergo HBeAg 

seroconversion spontaneously, Antiviral treatment with pegylated interferon or an 

oral nucleoside analogue can accelerate this transition with seroconversion rates of 

20-30% following 1 year of therapy (Wong et al 1993, Lai et al 1998, Marcellin et al 

2003, Krogsgaard et al 1994). As previously described a robust, multi-specific host 

immune response is associated with long-term control of viraemia and the ultimate 

goal of newer therapeutic approaches must be the restoration of immune responses 

with subsequent control of viraemia. 

The five currently licensed oral anti-viral agents (Lamivudine, Adefovir, Telbivudine, 

Tenofovir and Entecavir) have been shown to be efficacious in suppression of viral 

load through inhibition of the HBV polymerase. Immunological studies have reported 

that high viral loads directly contribute to T-cell hyporesponsiveness, and the 

frequency of intrahepatic virus-specific T-cells is inversely proportional to the level of 

HBV replication (Webster et al 2004). It is therefore reasonable to hypothesize that 

viral load reduction due to the direct anti-viral action of these nucleos(t)ide analogues 

is responsible for any subsequent improvements in immune responses to HBV which 

allow control of viral replication and “T-cell driven” HBeAg seroconversion.  

However, further studies suggest a wide degree of heterogeneity in patients with 

chronic hepatitis B infection, with viral suppression not always temporally associated 

with restoration of anti-HBV immunity, and often with only a transient increase was 

observed in a proportion of treated patients (Marinos et al 1996, Boni et al 1998, 
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Boni et al 2003). Analysis of T-cell responses during lamivudine therapy in 

HBeAg+ve chronic hepatitis B infection in patients who had failed previous interferon 

therapy showed no significant improvement of T-cell reactivity to HBV and an early 

relapse of HBV replication after stopping Lamivudine (Marinos et al 1996). However, 

in another study, lamivudine monotherapy in a group of patients with treatment naïve 

HBeAg positive chronic hepatitis B led to a marked enhancement of HBcAg-specific 

reactivity for both CD4+ and CD8+ T-cells as early as 2-4 weeks after starting 

treatment although importantly this enhancement was observed to be only transient 

(Boni et al 1998, Boni et al 2003).    

A further study in 2004 examined cellular immune responses to the hepatitis B virus 

polymerase during a course of oral antiviral treatment with Lamivudine (Mizokoshi et 

al 2004). They reported that antiviral therapy enhanced HBV-specific T-cell 

responses during the first year of treatment, but thereafter, responses decreased 

such that after 3 years of treatment responses were no different to those observed in 

untreated patients. They observed that the decrease in T-cell responsiveness during 

prolonged therapy was associated with an increased prevalence of lamivudine-

resistant HBV mutants and increased HBV titres. 

A prospective, longitudinal, placebo-controlled trial demonstrated that suppression of 

HBV replication with adefovir dipivoxil significantly enhances virus-specific CD4+ T-

cell reactivity in a proportion on patients in whom greater suppression of HBV-DNA 

replication, and higher HBeAg seroconversion rates were observed (Cooksley et al. 

2008).  

Finally the functional characteristics and memory phenotype of CD4+ and CD8+ T-

cells were assessed in a subgroup of patients receiving either telbivudine or 
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lamivudine as part of the Phase 3 GLOBE trial (Riva et al 2007). This prospective 

study demonstrated that pharmacological suppression of HBV replication was 

associated with increased breadth of T-cell reactivity in patients infected with 

genotype A or D. Crucially however, no increase in frequency and central memory 

phenotypes were observed, which may explain why individual T-cell subsets fail to 

establish host-immune control during pharmacological suppression of HBV 

replication, and thus the need for long-term maintenance therapy in the management 

of chronic hepatitis B infection with oral nucleos(t)ide analogue therapies.  
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Chapter 2 

 

Hypothesis to be tested 
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HYPOTHESIS TO BE TESTED 

The Programmed Cell Death (PD-1) immunoinhibitory T-cell pathway plays a central 

role in the impaired adaptive immune responses characteristically observed in 

chronic hepatitis B.  

 

OBJECTIVES: 

1. To characterize the relationship between the PD-1 pathway, virus-specific 

CD8+ T-cell responses and control of viraemia in patients with chronic 

hepatitis B. 

 

2. To assess the impact of the PD1 pathway on differential virus-specific CD8+ 

T-cells effector functions in hepatitis B virus infection. 

 

3. To define whether the Hepatitis B virus itself exploits the PD-1 pathway to 

favour chronicity of infection. 
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Chapter 3 

 

Materials & Methods 
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3. MATERIALS AND METHODS 

3.1. Patients 

Patients with chronic hepatitis B virus (HBV) infection were referred from primary 

care to the specialist viral hepatitis clinics at University College London Hospitals, for 

assessment and management. At initial assessment, confirmation of chronic HBV 

infection was performed with HBV serology and HBV-DNA determination. Patients 

were considered for anti-viral therapy and where appropriate underwent 

percutaneous liver biopsy. 

Written informed consent was obtained from each patient and all study protocols 

were approved by the Ethics Committee of University College London Hospitals. 

 

3.2. Liver Histology 

Diagnostic liver biopsies were carried out using a Menghini suction needle to obtain 

a tissue core. All histological samples contained ≥ 5 portal tracts for optimum 

assessment of the necroinflammatory activity based on the Ishak modification of the 

Histological Activity Index of Knodell (Ishak et al 1995). 
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3.3. Reagents used for T-cell reactivity and cell culture assays 

sRPMI 

RPMI 1640 (Gibco BRL, Life Technologies, Paisley, UK) is a neutral nutrient media 

used for cell cultures. It is supplemented with 11.5ml of 1M HEPES (Sigma, Poole, 

Dorset, UK) as a buffer, 4ml of 10M NaOH to maintain neutral pH, 0.5ml glutamine to 

allow for any breakdown of this essential amino acid during transport and storage, 

and 5ml of penicillin / streptomycin (Sigma, Poole, Dorset, UK) to prevent bacterial 

contamination of medium. These solutions were prepared and used within 30 days, 

stored at 40c and filtered using a 0.22 micron filter (Acrodisc, Gelman Sciences, Ann 

Arbor, MI, USA) to ensure sterility. 

 

DMEM (Dulbecco/Vogt modified Eagle’s minimal essential medium) 

DMEM is a cell culture medium used to maintain cells in tissue culture. It is a 

modified form of the cell culture medium originally produced by Harry Eagle. DMEM / 

F12 is DMEM supplemented with Ham’s F12. 

 

Foetal Calf Serum 

Foetal calf serum (F.C.S.) or foetal bovine serum (F.B.S.) is commonly used as a 

supplement to growth media in cell culture. Foetal bovine serum is obtained from 

foetuses harvested in abattoirs from healthy dams fit for human consumption. 

Occasionally, there may be use of other bovine sera, such as newborn calf serum or 

donor bovine serum. In cell culture, serum provides a wide variety of macromolecular 
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proteins, low molecular weight nutrients, carrier proteins for water – insoluble 

components, and other compounds necessary for in vitro growth of cells, such as 

hormones and attachment factors. Serum also adds buffering capacity to the 

medium and binds or neutralizes toxic components. Attempts to replace serum 

entirely with serum-free medium have met only with limited success. 

 

Human AB serum 

This serum was used to supplement culture media with essential nutrients allowing 

cell proliferation and growth. Foetal calf serum (FCS) was also used depending on 

the cell culture being performed. In cell cultures involving primary human 

lymphocytes (CD8+ T-lymphocytes) growth media was supplemented with human 

AB serum as FCS can cause non-specific activation of T-lymphocytes. 

 

Lymphoprep (Nycomed, Nyegaard, Norway) 

Lymphoprep allows the separation of peripheral blood mononuclear cells from other 

blood constituents according to their density upon centrifugation (see PBMC 

separation). 

Hanks Balanced Salt solution: 

This is a balanced salt solution used for a wide variety of tissue culture applications.  
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Counting Solutions: 

For Freshly Isolated Cells: This was composed of 450ml of distilled water, 50ml of 

acetic acid and 5 drops of tryptan blue. This solution lyses red blood cells from a 

PBMC suspension so only lymphomonocytes are seen and counted under the 

microscope. 

 

For Cryopreserved Cells: 

Trypan Blue Exclusion 

Diluted trypan blue was prepared (160µl of sRPMI + 40µl of trypan blue(Sigma, 

Dorset, UK)). 10µl of the cell suspension was then added to 190µl of diluted trypan 

blue. 10µl of this mix were loaded into the haemocytometer. To assess the 

concentration of PBMCs, the live cells (white cells) were counted in two diagonal 

quadrants and multiplied by 105 to give the number of cells per ml of cell suspension. 

The number of blue cells (dead cells) was also counted in two diagonal quadrants. 

The % viability was calculated by the following equation: 

Viability (%) = 100 x number of white cells / number of total cells (white and blue) 

A viability of >90% was achieved for all samples used to analyse T-cell reactivity. 
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Figure 12: Counting number of cells using a haemocytometer 
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3.4. Peripheral Blood Mononuclear Cell (PBMC) preparation 

 

3.4.1. PBMC isolation  

PBMCs were isolated from heparinised blood by standard density gradient 

centrifugation.  

1. 40ml of blood was venesected from each patient into a vacutainer containing 

30IU (0.03ml) of sodium heparin.  

2. The blood was subsequently diluted in a ratio of 1:1 with 0.9% sterile saline.  

3. 20ml of the blood/saline mixture was carefully layered over 10ml of 

Lymphoprep (Axis-Shield, Oslo, Norway) in a universal container ensuring 

that a distinct interface between the two layers was maintained (Figure 13). 

4. The blood was then centrifuged at 750g for 30 minutes at 200c, with no brake 

applied, to ensure separation of the PBMCs from the denser Ficoll/erythrocyte 

layer below, and the less dense dilute plasma layer above (Figure 13).  

5. The top plasma level was siphoned off and discarded. The peripheral blood 

mononuclear cell layer was then gently removed with a sterile pipette and 

placed in a fresh universal container. 

6.  The PBMCs were further washed twice with sRPMI and centrifuged at 1000g 

for 10 minutes with brake applied.  

7. The cell pellet was finally resuspended in 3-4mls of sRPMI/10% human AB 

serum.  
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8. The freshly isolated PBMCs were counted by adding 25µl of cell suspension 

to 475µl of counting solution. 10µl of this counting mix was loaded in a 

haemocytometer (Neubauer). 

9. Cells were counted in all 4 quadrants. The concentration of cells (x106/ml) 

was calculated by dividing the number of cells counted by 20 (dilution factor). 

The cell concentration was adjusted to 5-10 x 106 cells/ml with sRPMI/10% 

AB serum. 

 

Figure 13: PBMC separation by Ficoll Density Gradient Centrifugation 

 

 

 

(adapted from Lan et al 2007) 
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3.4.2. PBMC cryopreservation 

1. Freezing mix was prepared by adding 3 volumes of sRPMI to 2 volumes of 

dimethyl sulphoxide (DMSO), and cooled at room temperature for 20 minutes. (This 

reaction is exothermic and therefore freezing mix must be prepared at least 20 

minutes before being added to cells). 

2.  The cell suspension from the PBMC separation was pelleted by 

centrifugation at 1000g for 10 minutes. 

3. The pellet was then resuspended in 750µl heat-inactivated foetal calf serum 

per 5-106 PBMC, and 250µl of pre-prepared freezing mix was added.  

4. This 1ml mixture was placed into a cryovial, and deposited into a Nalgene 

cryocontainer (Mr Frosty, Merck BDH, Leicestershire, U.K.) with isopentane to freeze 

to -700C at a cooling rate of 10C per minute.  

5. Vials were transferred to liquid nitrogen or a -800C freezer after 24 hours. 
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3.4.3. Defrosting of cryopreserved PBMCs 

1. Vials of PBMCs were transferred from liquid nitrogen or from -800c freezer 

on dry ice for sequential defrosting.  

2. 50mls of sRPMI / 20% FCS was prepared and warmed in a water bath. 

3. Each vial was defrosted in a water bath until the cell pellet became mobile. 

Once mobile, the pellet was transferred into a fresh 30ml universal container and 1ml 

of warmed media was added.  

4. PBMCs were then defrosted using a “step-by-step” method, with the 

addition of 3 drops of media, followed by 20 seconds of gentle swirling of the 

universal until a total volume of 5mls was reached. 1ml of media was subsequently 

added followed by 20 seconds of gentle swirling until a total volume of 10mls was 

reached. 

5. The defrosted cells were centrifuged at 1600 rpm for 10 minutes with brake 

applied, the supernatant discarded and the cell pellet resuspended in 1ml of sRPMI / 

10% AB serum.  

6. Cells were then counted by trypan blue exclusion. 
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Fresh vs Frozen Peripheral Blood Mononuclear Cells 

Although there has been some data suggesting that cryopreservation of PBMCs 

resulted in attenuation of their functionality, we observed significantly lower levels of 

variability both within experimental duplicates and from one experiment to another by 

batch testing frozen PBMCs rather than by processing fresh PBMCs as they were 

obtained from patients. There is also data suggesting that CD4+ and CD8+ cells in 

cryopreserved human PBMC maintain full functionality in cytokine ELISPOT assays 

(Kreher et al 2003).  
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3.5. Hepatoma Cell lines  

The cell lines that were used comprised Huh-7 cells, HepG2.2.15 cells, HepG2 cells, 

AD38 cells and Alexander cells. The Huh-7 cell line is a commercially available 

human hepatoma cell line that was derived from a 57 year old Japanese male 

patient with well differentiated hepatocellular carcinoma. Hepatoma tissue was 

removed and minced and cultivated in RPMI 1640 supplemented with 20%FCS and 

0.4% LAH. An epithelial cell colony isolated from primary culture on Day 28 was 

designated as Huh-7 (Nakabayashi et al 1982).   

The HepG2.2.15 cell line is derived from the parent HepG2 line and is stably 

transfected with the full HBV genome supporting the production and secretion of 

infectious virions (Sells et al 1988). HepG2 cells are HLA-A2-positive and express 

cognate HLA-A2. This cell line was originally derived from a 15yr old male (Aden et 

al 1979).  

It was confirmed that HepG2.2.15 cells are HLA-A2-positive by flow cytometry using 

FITC-labelled antibody (Serotec, Oxford, UK). The AD38 cell line is also derived from 

the parent cell lines HepG2. The AD38 cell line contains a complete HBV genome 

under the control of a tetracycline-off promoter region (Ladner et al 1997). By the 

addition or removal of tetracycline from the growth media, this cell line can have HBV 

production switched on/off. This allowed the study of the impact of HBV replication in 

this cell line on cell surface expression of PDL1. Both HepG2.2.15 and AD38 cell 

lines were grown in containment level 3 laboratory.  
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3.5.1. Hepatoma cell line thawing and propagation  

Growth media (DMEM + 10%FCS + Penicillin/Streptomycin + L-glutamine) was 

warmed to 370C. For HepG2.2.15 cell lines, growth media (GM) was supplemented 

with Geneticin (0.4mg/ml) to maintain the 2.2.15 cell line during propagation. For the 

AD38 cell line the following GM was used: DMEM/F12 + 20%FCS (500ml) + 

Penecillin/Streptomycin (5ml) + L-Glutamine (5ml) + Geneticin (4.4ml of 50mg/ml) + 

Gentamicin (1.1ml of 10mg/ml) +/- Tetracycline (66.6ul at 2.5mg/ml)). For “switching 

on” of HBV production this GM was used without the tetracycline. 

 

1. Cells were removed from -800C freezer and thawed in a 370C water bath 

until the cell pellet was mobile. The pellet was then placed into a 30 ml 

sterile universal and 1ml of warmed GM was added.  

2. Hepatocytes were then defrosted using a “step-by-step” method, with the 

addition of 3 drops of media, followed by 20 seconds of gentle swirling of 

the universal until a total volume of 5mls was reached. 1ml of media was 

subsequently added followed by 20 seconds of gentle swirling until a total 

volume of 10mls was reached.  

 

N.B. (This “step-by-step” method resulted in an improved cell viability and total 

number of cells recovered following thawing compared with the immediate addition 

of 10mls of growth media and is now standard operating procedure within the 

laboratory.)  
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3. The defrosted cells were then centrifuged at 1400 rpm (1000g) for 10 

minutes with a brake applied.  

4. The supernatant was discarded and the cell pellet resuspended in 1ml of 

growth media. 

5.  A further 9ml of media was added to the cells and a cell count was 

performed by tryptan blue exclusion (see previous section).  

6. 10ml of media was then added to a 75cm2 tissue culture flask.  

7. The hepatocytes were subsequently seeded into a tissue culture flask and 

incubated at 370C / 5%CO2 until the cells were confluent, changing the media every 

2-3 days. 
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3.5.2. Cell Line Propagation 

1) Acutase (cell dissociation solution) – (eBioscience, Hatfield, UK) GM and 

Hanks BSS (Sigma, Dorset, UK) were warmed to 370C in a water bath.  

2) The tissue culture flasks were removed from the incubator and the 

supernatants were discarded.  

3) The cell monolayer was then washed with Hanks BSS, with 5ml of Hanks 

BSS added to the flask, and gently rocked back and forth over the cell monolayer 

before being aspirated and discarded.  

4) 3ml of Acutase was then added to cover monolayer, and the cells were 

then incubated at 370C / 5%CO2 for 10 minutes to allow cell detachment. Cell 

detachment was visually monitored, and the sides of the flasks were tapped to 

facilitate this process as necessary.  

5) The cells were then aspirated and transferred to a universal tube. 3ml of 

warmed media was added to the flask and rocked back and forth to collect any cells 

remaining in the tissue flask. This was then aspirated and added to the universal 

tube containing the cells.  

6) This cell suspension was then centrifuged at 1400rpm for 10 minutes with 

brake applied.  

7) The supernatant was discarded and the cells were resuspended in 1 ml of 

GM.  

8) For cell line propagation, a further 9ml of GM was added and the cells were 

subsequently seeded into tissue culture flasks. 
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8i) For plating of hepatocytes, following resuspension of cells in 1ml of GM, a 

cell count was performed with tryptan blue exclusion (see previous section). Cells 

were then plated in 2-3 ml of medium in each well. The number of cells per plate was 

dependent on cell type and based on cell confluence at 24-48 hours: 

1) HepG2/G2215/AD38 – 800,000 cells/well 

2) Huh7 – 500,000 cells/well 

9) For freezing of hepatocytes, once a cell count has been performed, cells 

were frozen with up to 7 million cells / cryovial with 1ml of DMEM 

20%FCS, 10% DMSO and kept at -800c for up to 2 years without loss of 

viability or recovery. 
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3.6. Transient transfection of Human hepatoma cell line 

3.6.1. Principle of Transfection 

Transfection is the general process of bringing foreign DNA into cells and monitoring 

protein expression. DNA transfection is essential for the study of gene function and 

regulation. Common transfection techniques include calcium phosphate 

coprecipitation, electroporation, and the use of viral vectors. Fugene 6 Transfection 

Reagent (Roche, Indianapolis, USA) is a multi-component lipid-based transfection 

reagent that complexes with and transports DNA into the cell during transfection.  

 

3.6.2. Transient transfection of Huh7 cells 

1) Huh-7 cells were thawed and plated as described in a previous section.  

2) Huh-7 cells were grown into a confluent monolayer in a 150mm flask. This 

confluent monolayer was then washed with Hanks Balanced Salt Solution (HBSS). 

3) 2-3ml of trypsin was added ensuring complete coverage of cell monolayer and the 

cells were incubated for 5 minutes at 370C to allow cell detachment.  

4) The cells were then transferred to a red topped vacutainer and 10ml of growth 

medium were added (DMEM + 10%FCS + glutamine + penicillin/streptomycin).  

5) The cells were centrifuged at 1400rpm for 10 minutes. The supernatant was 

discarded and cells were resuspended in growth medium without 

penicillin/streptomycin (all growth medium used from this point onwards is without 

penicillin/streptomycin).  



121 

 

6) The cells were then passed several times through a 1ml tip of a pipette to ensure 

a cell suspension with no cell clumping, and then a further 9ml of growth medium 

was added.  

7) The cells were then counted and the concentration adjusted to 1.5-3 x 106/ml. 

8) 0.9ml of growth medium was pipetted into individual wells of a 12 well plate.  

9) 5 x 105 cells were added to each well and the plates were incubated for 16-18 

hours at 370C.  

N.B. (For optimum transfection rates cells were between 80-90% confluent at this 

stage; therefore if cells were <60% confluent further time was allowed for the cells to 

grow before transfection. Alternatively if the cells were already 100%confluent, they 

were re-seeded to achieve confluency rates of 80-90% before proceeding with 

transfection.) 

10) The plasmid DNA (pCMV-HBV) - pSM2, (containing an HBV head-to-tail dimer 

DNA of subtype ayw cloned via the EcoRI site with a CMV promoter (Galibert et al 

1979) and Fugene 6 transfection reagent was thawed.  

11) 100µl of DMEM was aliquoted into a red-topped vacutainer. 4µl of Fugene6 was 

added directly to the DMEM. These were mixed gently and incubated at room 

temperature for 5 minutes.  

12) 1µg of total plasmid DNA was added to the Fugene/DMEM and mixed gently 

before being incubated at room temperature for 15-20 minutes.  

13) The growth medium was removed from the cells (in the 12 well plate) and 0.9ml 

of fresh growth medium was added.  
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14) 100-110µl of the DMEM/Fugene6/DNA mix was added drop-by-drop to the cells 

whilst gently rocking the plate.  

15) The plates were then incubated at 370C for a further 6 hours.  

N.B. (In practice when the same plasmid was used for an experiment (in triplicate 

wells), a mastermix of DMEM/Fugene/DNA was prepared to the required volume in 

the above ratios.) 

This mode of transfection was repeated with an empty (mock) plasmid, in order to 

evaluate the impact of non-specific transfection reagents on cell surface expression 

of PDL1 by hepatocytes. 

The efficiency of transfection was estimated by performing transfection with the 

plasmid containing LacZ (a reporter gene that codes for beta galactosidase). 

Following transfection, cells were subsequently stained with X-gal solution (0.2% X-

gal, 2mM MgCl2, 5mM K4Fe(CN)6.H20, 5mM K3Fe(CN)6 in PBS. Cells which had 

undergone successful transfection with LacZ stained blue on microscopy. 

Transfection rates achieved were 30-50%. The subsequent production of HBV by 

transfected Huh7 cells (determined by HBV-DNA quantification with PCR) further 

confirmed successful transfection. 
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3.7. T cell clone generation 

 HBc18-27 -specific CD8+T-cell clones were generated from an HLA-A2 positive 

patient who resolved acute HBV infection as described by Gehring et al 2007. This 

T-cell clone was kindly donated for this work by Prof. Antonio Bertoletti (Singapore 

Institute for Clinical Sciences, Singapore.) The CD8+ T-cell clone was >90% specific 

for the HBc18-27 epitope (see Figure 14). 

 

Figure 14: Specificity of T-cell clone 

 

 

3.8. Co-culture of HepG2.2.15 cell line (Target cells) with HBV-specific CD8+ T-

cell clone (Effector cells) 

The HepG2.2.15 cells (target cells) were seeded in 24-well plates and once 

confluent (after 3 days); the CD8+T-cells (effectors cells) were added. Two models 

were investigated in parallel: 1) Direct Effector:Target (E:T) contact where CD8+T-

cells were stimulated by recognising the viral peptides expressed on the surface of 

HepG2.2.15 cells.  2) Indirect E:T contact where the effector and target cells were 
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separated by a 0.4μm membrane (Marathon, London, UK) which allows the passage 

of soluble factors only. In this second model, CD8+T-cells placed in the insert were 

stimulated with the corresponding HBV core 18-27 peptide  at 1μM together with EBV- 

B-cells used as antigen presenting cells (Figure 15). The CD8+T-cells and 

HepG2.2.15 cells were co-cultured for 24hrs and 48hrs at E:T ratios: 1:60 and 1:6. 

As controls, HepG2.2.15 cells were cultured alone, and CD8+ T-cells were cultured 

in the insert with EBV-B cells but without HBV peptide. These direct and indirect co-

culture models allowed the study of both cytolytic and non-cytolytic virus-specific 

CD8+ T-cell pathways respectively.  

 

These direct and indirect co-cultures were performed in the presence/absence of 

neutralising monoclonal antibodies to IFNγ, TNFα and PD-1 (R&D systems, 

Abingdon, UK), at neutralization doses of 36g/mL, 0.9 g/mL and 10µg/mL 

respectively. Hepatoma cell lines HepG2 and 2.2.15 cells were also treated with 

recombinant IFNγ (rIFNγ) and/or TNFα (rTNFα). The concentration of rIFNγ and 

rTNFα used were determined by measuring the concentrations of these cytokines 

produced by the CD8+ T-cell clone, in the supernatant of the direct and indirect cell 

co-culture models described above. The cytokines concentration was assessed 

using cytokine bead array (CBA) (BD Biosciences, Oxford) described below. 

Confluent HepG2 and 2.2.15 cell lines were incubated with 4 concentrations of 

rIFNγ(100,1000,5000 and 10,000pg/ml) and/or 4 concentrations of rTNFα 

(100,300,700 and 1000pg/ml)(R&D Systems, Abingdon, UK) for 24 hrs.  
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Figure 15: Schematic representation demonstrating direct and indirect co-

culture models 

 

 

 

(Co-cultures were performed for 24 and 48 hours, in the presence/absence of 

neutralising antibodies to IFNγ, TNFα and PD-1. Virus-specific CD8+ T-cells in the 

indirect co-culture were stimulated with HBc18-27 peptide in the presence of EBV-B-

cells for antigen presentation. Representative flow cytometric dot plots illustrate T-

cell lineage(CD8+) and >90% HBc18-27 specificity as assessed by pentamer staining.)  
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3.9. RNA extraction from PBMCs and hepatocytes 

For quantitation of PD-1/PDL1/PDL2 at an mRNA level, total cellular RNA was 

isolated from cryopreserved PBMCs or snap frozen hepatocytes. Contamination with 

RNases was minimised by the use of certified RNase-free tips and regular glove 

changing, as well as using RNAse/DNAse free water. 

 

5 x 105 PBMCs and 3 x 105 hepatocytes were used for total RNA extraction.  

1. Cryopreserved PBMCs / Snap frozen hepatocytes were taken from -800c 

freezer, and kept on dry-ice. The pellets were quickly thawed in 370c water 

bath until mobile within eppendorf, and were then resuspended in 500µl of 

Trireagent (Ambion, Applied Biosystems, Warrington, UK) to preserve RNA 

whilst breaking down cellular components.  

2. The suspension was homogenised by passing the lysate 10 times through a 

20G sterile needle fitted to an RNAse-free syringe.  

3. The suspension was then allowed to stand at room temperature for 5 minutes 

to ensure complete homogenisation.  

4. 100µl of chloroform was added to the suspension, vortexed for 15-20 seconds 

and allowed to stand for 15 minutes.  

5. The suspension was then centrifuged for 15 minutes at 40c at 13,000 rpm.  

6. The aqueous phase of this suspension was transferred to new RNAse free 

tubes.  
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7. 250µl of isopropranol and 1µl of glycoblue was then added to this aqueous 

phase and vortexed for 15-20 seconds, before resting for 10 minutes. 

8. The suspension was subsequently centrifuged for 8 minutes at 40c at 13,000 

rpm.  

9. The supernatant was carefully removed and discarded.  

10. 500µl of 75% Ethanol was added, and the suspension was further centrifuged 

at 40c at 13,000 rpm for 5 minutes.  

11. The Ethanol was carefully removed and the RNA pellet was dried at room 

temperature for 4-5 minutes.  

12. The RNA was then re-suspended in 12µl of RNAse free water and quantified 

using a NanoDrop spectrophotometer (Labtech, International, Sussex, UK). 

(see pg.105) 

13. Extracted RNA was stored at -800c. 

 

3.10. Reverse transcription of extracted total cellular RNA 

Extracted RNA was reverse transcribed using a Quantitect reverse transcription kit 

(Qiagen, Hilden, Germany).  

1. 0.5µg of extracted RNA was added to 2µl of gDNA wipeout solution (Qiagen, 

Hilden, Germany) and the total volume was then made up to 14µl with RNAse 

free water.  

2. Samples were kept on ice once prepared.  
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3. A mastermix was subsequently prepared, with 1µl/sample of Quantitect 

Reverse Transcriptase (Qiagen, Hilden, Germany), 4µl/sample of Quantitect 

Buffer solution (Qiagen, Hilden, Germany) and 1µl/sample of R.T. primer mix 

(Qiagen, Hilden, Germany). 

4. Samples were then placed on a standard PCR machine and heated to 420c 

for 2 minutes.  

5. 6µl of master mix was added to each sample, and they were then heated to 

420c for 15 minutes.  

6. Finally samples were heated to 950c for 3 minutes. 

7. cDNA was subsequently quantified using a NanoDrop spectrophotometer 

(Labtech, International, Sussex, UK) (see pg. 105). 
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3.11. Quantitation of PD-1/PDL1 mRNA by real time PCR 

cDNA from reverse transcription of extracted total cellular RNA was used to 

quantitate PD-1/PDL1/PDL2 mRNA through real time PCR. Real time PCR was 

performed with SYBR green using the Quantitect Two-Step RT-PCR according to 

manufacturer’s instructions on an ABI 7500 Real-time PCR machine ( Applied 

Biosystems, Foster City, USA).  

 

For each sample, 1µl of cDNA was added to 12.5ul of SYBR green – a fluorescent 

dye which binds to all double-stranded DNA molecules emitting a fluorescent signal 

on binding (Qiagen, Hilden, Germany), 2.5µl of QT primer assay (Qiagen Hilden, 

Germany) and 9µl of RNAse free water. Samples were placed in a 96 well optical 

reaction plate (Applied Biosystems).  

 

In order to standardise PD-1/PDL1 quantitation results, cDNA was normalised to β-

actin – a widely used control housekeeping gene present in all cells. The presence 

and stable expression of β-actin, was confirmed in the hepatoma cell lines and 

PBMCs in which subsequent assessment of PD-1/PDL1 expression was anticipated. 

β-actin was stably expressed in these cells, and the expression did not significantly 

change following cell culture (up to 72hrs), or during a “starvation experiment”, where 

cells were incubated in media in the absence of FCS for 14 hours followed by the 

addition of 10% FCS. β-actin expression was then evaluated (Figure 16). 
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Figure 16: β-actin expression following 14 hours “starvation” 

 

β-actin expression remains constant in HepG.2.2.15 cells following 14 hours 

starvation. β-actin expression is normalised to 0hrs, when 10% FCS was added to 

HepG2.2.15 cell culture following 14hrs with no FCS in growth media. 

 

The QT primers used were commercially available for PD-1/PDL1 (PDCD1_1_SG, 

CD274_1_SG) and for β-actin as the house-keeping gene (HB-ACTB_1_SG) 

(Qiagen, Sussex, UK). 

 

The cycling conditions for two-step PCR are illustrated in Table 5. All plates 

incorporated a negative control (no template control) to ensure there was no 

contamination of samples. 

 

Following RT-PCR the results of each plate were analysed with AB 7500 software. 
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Table 5: Cycling conditions for two-step RT-PCR 

Stage TEMP DURATION No. of cycles Additional 

comments 

Stage 1 500C 2 minutes 1  

Stage 2 950C 15 minutes 1 Activates 

HotStarTaq DNA 

polymerase 

Stage 3 

3 step cycling 

940C 15 secs 40 Denaturation 

550C 30 secs Annealing 

720C 34 secs Extension 

(Fluorescence data 

collection) 

Stage 4 950C 15 secs 1 Dissociation curve 

600C 1 minute 
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3.12. Purification of HBV-DNA 

3.12.1. Purification of HBV-DNA from supernatants 

HBV-DNA was extracted and quantitated from the supernatants of cell cultures 

performed using an in-house protocol which was developed and is described below.  

1. 400µl of supernatant was placed in a 1.5mL RNAse/DNAse free sterile 

eppendorf tube and centrifuged at 15,000rpm for 5 minutes to remove any cell 

debris.  

2. The supernatant from this centrifugation was carefully aspirated and 

transferred to a new 1.5mL eppendorf tube.  

3. 2µl of DNAse I (Sigma, Dorset, UK) (10mg/mL) and 2µl of MgCl2 (1M) was 

subsequently added.  

4. The supernatant was then vortexed and heated for 1 hour at 370c.  

5. 40µL of proteinase K at 10mg/ml, 10µl of Tris base pH8 at 2M and 27µl of 

15% SDS(Sigma, Dorset, UK) were then added sequentially, and the 

suspension vortexed and heated for 30 minutes at 700c.  

6. The samples were removed from the heating block and phenol:chloroform 

was added at a 1:1 ratio. 

7. MaXtract High Density columns (Qiagen, Sussex, UK) were pre-spun at 

15,000rpm for 30s in a microcentrifuge.  

8. The samples were then added to the pre-spun columns and centrifuged at 

15,000rpm for 5 minutes.  
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9. The upper aqueous layer was carefully removed and transferred to a clean 

1.5ml eppendorf tube. 

10. Sodium Acetate (NaAc) at a concentration of 3M was added at a ratio of 1/10 

(40µl).  

11. 800µl of 100% ethanol was subsequently added to each tube.  

12. Samples were then incubated for 1hr at -800c. 

13. Following this incubation, the samples were centrifuged at 15,000rpm for 10 

minutes at 40C.  

14. A white pellet was visible at the bottom of the eppendorf following this 

centrifugation.  

15. The supernatant was carefully aspirated and discarded, 0.5ml of 70% ethanol 

was added to these samples and they were incubated at room temperature 

for 5 minutes, before a further centrifugation at 15,000rpm for 5 minutes at 

40C.  

16. The supernatant was again discarded. The tubes containing the samples 

were then placed in a speed vac in the fume hood with open lids.  

17. Samples were spun for 30 minutes at 450C to evaporate any remaining liquid.  

18. Finally the samples (dried DNA pellet) were resuspended in 30µl of low TE 

buffer (1mM Tris.cl/0.01mM EDTA pH 8) and digested with 0.3µl RNAse A at 

10mg/ml.  



134 

 

19. The quantity and purity of the DNA was then assessed on the nanodrop (see 

pg. 132). 

20. The extracted DNA was subsequently stored at -200C.  
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3.12.2. Purification of intracellular HBV-DNA from cells 

Intracellular HBV-DNA was also isolated and quantified from crypopreserved PBMCs 

or snap frozen hepatocytes using an in-house technique described below.  

1. Cell pellets were resuspended in lysis buffer (50mM Tric HCL pH 7.5; 150mM 

NaCl; 1% NP40 (now called Ipgal); 1mM EDTA) and incubated for 10 minutes 

at 370C in 1.5ml eppendorfs.  

2. The resulting suspensions were vortexed for 15-20 seconds, and then 

centrifuged at 15,000rpm for 2 minutes.  

3. The supernatants were transferred to clean 1.5ml tubes and 3µl of 1M MgCl2 

was added to each tube.  

4. Subsequently 10µl of DNAseI solution (10mg/ml) and 5µl RNAse A solution at 

10mg/ml was added, and the tubes were vortexed and incubated at 370C for 2 

hours.  

5. Following this digestion, the remaining lysate was centrifuged at 15,000rpm 

for 1 minute, and the supernatant was collected.  

6. The following were then successively added to these supernatants: 23µl of 

0.25M EDTA, 39µl of 15% SDS, 12µl of 5M NaCl and 12µl of Proteinase K 

solution (10mg/ml).  

7. These samples were then vortexed and incubated at 550C for 1 hour. 

8. Purification was completed by continuing with protocol 3.13.1. from step 6 ( - 

the addition of phenol:chloroform) 
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3.13. Nanodrop Spectrophotometer 

The NanoDrop ND-1000 (Labtech, Sussex, UK) is a full-spectrum (220-750nm) 

spectrophotometer that measures 1µl samples with high accuracy and 

reproducibility. A sample is pipetted onto the end of a fibre optic cable (the receiving 

fibre). A second fibre optic cable (the source fibre) is then brought into contact with 

the liquid sample causing the liquid to bridge the gap between the fibre optic ends 

(see Figure 17). A pulsed xenon flash lamp provides the light source and a 

spectrometer utilizing linear CCD array is used to analyse the light after passing 

through the sample. 

 

Figure 17: The Nanodrop spectrophotometer 

 

 

 

The ratio of absorbance at 260nm and 280nm is measured to assess the purity of 

DNA and RNA. A 260/280 ratio of ~1.8 is generally accepted as “pure” for DNA; a 

ratio of ~2.0 is generally accepted as “pure” for RNA. The quantity of RNA / DNA is 

also assessed in ng/ul based on absorbance at 260 nm. 
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3.14. HBV-DNA quantitation with Polymerase Chain Reaction (PCR)  

Extracted HBV-DNA from supernatants and cells was quantitated using RT-PCR. 

The standards were prepared (Table 6) from an HBV plasmid donated by Dr John 

Taylor (University of Auckland, New Zealand). This plasmid had 1.3 copies of 

genome / molecule. The HBV genome was again under a CMV promoter. The stock 

solution provided was 7.5 x 108 copies /ml. The standard curve was validated using 

the WHO HBV international standard 97/746 (National Institute for Biological 

Reference Standards, Potters Bar, UK). HBV DNA quantitation was normalized 

using human β-actin, which was quantitated with a commercial human β-actin kit 

(Eurogentec Ltd., Hampshire, UK). 
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Table 6: Preparation of standard for HBV quantification 

Dilution factor HBV plasmid Volume of RNase/DNase 

free H2O added 

1:5 9uL neat 36uL 

1:10 4.5uL neat 40.5uL 

1:100   4.5uL 1/10 40.5uL 

1:1000 4.5uL 1/100 40.5uL 

1:1x104 4.5uL 1/1000 40.5uL 

1:1x105 4.5uL 1/1x104 40.5uL 

 

Amplification was performed in 25 µl reactions (in triplicate for all samples) 

containing 12.5µl of 2×TaqMan Universal PCR mix, 0.6 µM (0.225µl) forward and 

reverse primers (HBV core 2253-2274, HBV core 2422-2405), 0.15 µM probe 

(0.05µl) (HBVcprobe:2279-2304-JOE), 7µl of RNAse free water and 5 µl of template.  

 

A mastermix containing the primers, probe and universal PCR mix was prepared and 

20µl of this was pipette into designated wells in a 96-well optical reaction plate 

(Applied Biosystems, Warrington, UK). 5ul of sample was then added to respective 

wells. The plate was then covered with an adhesive cover and centrifuged at 

3000rpm for 2 minutes. The plate was then loaded into a 7500 ABI real-time PCR 
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machine (Applied Biosystems, Warrington, UK).  Table 7 below illustrates the PCR-

set up for HBV-DNA absolute quantitation: 

 

Table 7: Cycling conditions for absolute quantitation of HBV-DNA 

Stage TEMP DURATION No. of cycles Additional 

comments 

Stage 1 500C 2 minutes 1  

Stage 2 950C 10 minutes 1 Activates 

HotStarTaq DNA 

polymerase 

Stage 3 940C 15 secs 40 Denaturation 

600C 1 minute Annealing & 

Extension 
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3.15. Enumeration of HBV-specific, IFNγ-producing T-cells by Elispot assays 

3.15.1. Principle 

The Elispot (enzyme-linked immunospot) assay is used for the detection and 

quantitation of individual cells secreting specific cytokines in response to an 

antigenic stimulus. The Elispot assays are reproducible and sensitive and accredited 

to GCLP standards in our laboratory. 

This section describes the procedure for the detection of HBcAg-specific IFNγ 

producing cells. The detection of other cells secreting other cytokines (e.g. IL-4, IL-5, 

IL-10) can also be performed using appropriate antibody kits. 

3.15.2. Materials 

Equipment: 

1. Class II laminar flow cabinet. 

2. 370c / 5% CO2 incubator. 

3. Stereomicroscope or automated Elispot reader system. 

4. Multi-channel pipette. 

Reagents: 

1. Hepatitis B core antigen - recombinant – (American Research Products, MA, 

USA). 

2. Phytohaemagluttinin (Sigma, Poole, UK) – mitogen used as positive control. 

3. 96-well round-bottomed tissue culture plates 
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4. Tetanus toxoid – positive control (recall antigen) – (Connaught Int. 

Laboratories, Ontario, Canada). 

5. Elispot kit for human interferon-γ ( Mabtech, Nacka, Sweden). 

6. PVDF (polyvinylidenedifluoride) – backed microplates (Millipore, MA, USA) 

7. Human AB serum 

8. Buffered RPMI 1640 media (see prev) 

9. BCIP (5-Bromo-4-chloro-3-indoyl phosphate / NBT (Nitrotetrazolium blue 

chloride) tablets (Roche, Lewis, UK). 

10. Buffers: 

a. 70% ethanol 

b. Phosphate buffered saline (PBS) 

c. PBS/0.05% Tween 

d. PBS/1% bovine serum albumin 

3.15.3. Method 

1. PBMCs are prepared as described in previous section (3.4.1). 

2. The protocol was split over 3 days required to perform the assay (see Figure 

18 & 19). 
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Figure 18: Schematic illustrating Elispot methodology 

 

 

(adapted from: Generalized Steps of the ELISPOT Assay Procedure – Sigma-

Aldrich). 
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Figure 19: Representative plates showing PBMCs activated with PMA / 

Ionomycin in a human IFNγ ELISPOT assay 

 

                           

            Control      Activated PBMCs 

 

Day 1: Stimulation of cells 

1. PBMCs concentration was adjusted to 2 x 106 PBMCs/ml. 

2. Antigens were prepared at working concentrations in buffered RPMI / 10% 

human AB serum as shown in Table 8 below: 
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Table 8: Preparation of antigens for ELISPOT 

Well Antigen Working 

concentration 

Final 

Concentration in 

well 

1 No antigen Medium only Medium only 

2 HBcAg 4µg/ml 2µg/ml 

3 Tetanus Toxoid 1µg/ml 0.5µg/ml 

4 PHA 2µg/ml 1µg/ml 

 

3. 100µl of each antigen was added per well in triplicate to a round bottom 96 

well tissue culture plate. 

4. 100µl of PBMC suspension at 2 x 106/ml was added to each experimental 

well. 

5. Tissue culture plates were incubated for 24 hours at 370C in a CO2 incubator. 

 

Day 2: Preparation of Elispot plate 

1. Add 100µl of 70% Ethanol to the required wells of the Elispot 96 well plate. 

2. Incubate the plate for 15 minutes at room temperature with the prepared 

captured antibody (supplied in kit) 100µl of 10µg/ml concentration per well. 
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3. Add 200µl of sterile PBS to each well using a multichannel pipette. Flick off 

PBS, blot plate on tissue thoroughly to remove all PBS. Repeat this wash step 

a further 5 times. 

4. Add 100µl of capture antibody to each experimental well. 

5. Incubate at 40C for 6 hours in the dark. 

6. Wash each well with 200µl of sterile PBS using a multichannel pipette. 

Perform 6 washes 

7. Add 100µl of buffered RPMI/10% AB serum to block the membrane and 

incubate plate(s) for 1 hour at 370C in a CO2 incubator. 

8. Flick off buffered RPMI/10% AB serum and blot plate. 

9. Transfer PBMCs prepared on day 1 to corresponding wells on the Elispot 

plate. 

10. Incubate plate(s) for 20 hours at 370C in a CO2 incubator. 

 

Day 3: Development 

1. Flick cells off and wash Elispot plate with PBS/0.05% Tween. 

2. Wash twice with PBS. 

3. Wash twice with distilled water. 

4. Prepare 1µg/ml concentration of biotinylated anti-IFNγ antibody in PBS 1% 

bovine serum albumin. 
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5. Add 100µl of antibody to each experiment well of the Elispot plate. 

6. Incubate for 2 hours at room temperature. 

7. Wash 5 x with PBS/0.05% Tween. 

8. Wash 2 x with PBS. 

9. Prepare 1:1000 dilution of the streptavidin-alkaline phosphatase conjugate in 

PBS 1% bovine serum albumin. 

10. Add 100µl of streptavidin solution to each experiment well of the Elispot plate. 

11. Incubate for 1.5 hours at room temperature. 

12. Wash 6 x with PBS. 

13. Wash 1 x with distilled water. 

14. Prepare the BCIP (5-Bromo-4-chloro-3-indoyl phosphate / NBT 

(Nitrotetrazolium blue chloride)(Roche, Lewis, UK) solution by adding 1 tablet 

to 10ml of distilled water. 

15. Add 100µl of BCIP/NBT solution to each experiment well of the Elispot plate. 

16. Allow colour to develop for 15 minutes. At this point flick off BCIP/NBT 

solution and immerse in tray of tap water. 

17. Flick off water and rinse thoroughly under running water. Ensure each well is 

filled and emptied at least 5 times. 

18. Blot dry, remove plastic base and dry inverted. 

19. Read plate in automated AID Elispot reader.   
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Notes on Elispot assay: 

 Ensure strict adherence to aseptic technique on Day 1 and 2 of the protocol, 

after which the assay can be performed on the bench. 

 AB serum and recombinant HBcAg must be batch tested as prone to inherent 

variability. 

 If performed on cryopreserved cells, the assay is not reliable if the viability of 

the cells falls below 95%. 

 Always run assay with a minimum of 3 replicates to reduce variability. 

 Each spot represents an antigen-specific interferon-γ producing cell. Results 

are usually expressed as the number of spot forming cells per million PBMCs. 

As there are 200,000 PBMCs in this assay the number of SFC is multiplied by 

5 to get the SFC/106 PBMCs. 
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3.16. Flow Cytometry 

3.16.1. Principle 

Flow cytometry is a technique for counting and examining individual cells suspended 

in a stream of fluid. This technique allows simultaneous multiparametric analysis of 

the physical and/or chemical characteristics of individual cells flowing through an 

optical, electronic detection system.  

 

A beam of light of a single wavelength is directed onto a hydrodynamically-focused 

stream of fluid. A number of detectors are aimed at a point where the stream passes 

through the light beam: one in line with the light beam (Forward Scatter or FSC) and 

several perpendicular to it (Side Scatter (SSC) and one or more fluorescent 

detectors). Each cell passing through the beam scatters light in some way, and 

fluorescent markers present within the cells, or attached to the surface of the cells 

(e.g. bound to a cell surface receptor), can be excited and emit light at a different 

wavelength than the light source. By detecting the combination of light scatter and 

fluorescent light detected, it is possible to derive information about the physical and 

chemical structure of each particle (Figure 20). For example FSC correlates with the 

cell volume, whilst SSC is influenced by the inner complexity of the cell (e.g. shape 

of nucleus etc).  
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Figure 20: Principle of Flow Cytometry  
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The data from flow cytometric analysis is usually represented in 2 dimensional 

representative dot plots. The regions of these plots can be separated by creating a 

series of subset extractions, termed “gates” (Figure 21). 

 

Figure 21: Representative dot and plot illustration of flow cytometric data and 

how “gates” are applied to study cell subsets  

  

(Representative dot plot illustrating cell gating strategy for the selection of 

CD3+CD8+cell from PBMCs) 

 

This technique can be utilised with fluorescent tagged antibodies that will bind to 

specific antigens on the target cells and fluoresce following appropriate excitation. 
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The following commercially available fluorescent antibodies were used for PBMC 

and hepatocyte staining throughout the course of these experiments: 

 Anti-CD8/APC-Cy7       Anti–CD3/PE-Cy7  

Anti-PD-1/PE        Isotype control/PE 

 Anti-CD45RA/PECy7       Anti-CD127/PE  

Anti-CD62L/PE        Anti-CD4/APCCy7  

Anti-PDL1/PeCy7 

(All antibodies were obtained from BD Biosciences, Oxford, UK). 

Virus-specific T-cells were also identified by using Class I - peptide tetramic and 

pentamic complexes. These tetramers/pentamers are produced using MHC-peptide 

complexes that mimic the situation on the surface of an infected cell.  

 

These pentamers are limited in use to cells from patients who are HLA-A2 positive, 

as this is the basis of the MHC component of these tetramers. 

HBV-specific CD8+T-cells were identified with HLA-A2 pentamers containing HBcAg 

18-27 peptide (FLPSDFFPSV) and HBsAg 183-191 peptide (FLLTRILTI), which 
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were labelled with the fluorochrome Allophycocyanin (APC) (Proimmune,Oxford,UK). 

CMV-specific CD8+T-cells were identified with an APC-labelled HLA-A2 pentamer 

containing CMV pp65 495-504 (NLVPMVATV). According to published guidelines 

(Rehermann et al 2007) background PBMC staining with pentamers was established 

using PBMCs from 10 HLA-A2 negative patients, and a cut-off of 0.02% was 

identified. 

 

3.16.2. Staining Protocol of PBMCs for Flow Cytometric Analysis 

1) PBMCs were thawed using the method previously described.  

2) The PBMC’s were then resuspended in 1ml of PBS/1%FCS.  

3) The cell number and viability were assessed with tryptan blue as previously 

described.  

4) A further 9ml of PBS/1%FCS was added, and the cells were centrifuged at 

1400rpm for 10 minutes.  

5) The supernatant was discarded and the cell concentration was adjusted to 2.5 

million PBMCs/100µl of PBS/1%FCS.  

6) 5 x 106 cells/200µl was aliquoted into wells in a 96 well U-bottomed plate.  

7) HBV and CMV specific pentamers were then briefly centrifuged (few seconds at 

15,000rpm) and then 10µl was aliquoted into each well.  

8) The cells were incubated at room temperature in the dark for 15 minutes to allow 

pentamer staining.  
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9) 100µl of PBS/1%FCS was then added, and the cells were centrifuged at 1500rpm 

for 5 minutes. 

10) The supernatant was discarded and the cells resuspended in 50µl/well of 

PBS/50% mouse serum. The cells were rested for 5 minutes to allow non-specific 

binding.  

11) The fluorescent tagged antibodies were then added to stain cell surface markers 

of interest: αCD3(PECy7) 3µl; αCD8(APC-Cy7) 10µl; αPD-1(PE) 10µl, isotype 

control (PE) (for PD-1) 10µl; αCD45RA(PECy7) 10µl; αCD127(PE) 10µl; 

αCD62L(PE) 10µl; αCD4(APCCy7) 10µl. 

12) Cells were then rested for 30 minutes at 40C to allow staining to occur.  

13) Following this staining, 100µl of PBS/50% mouse serum was added to each well 

and the cells were centrifuged at 1500rpm for 5 minutes.  

14) The supernatants were again discarded, and cells were resuspended in 

200µl/well of PBS / 50% mouse serum and again centrifuged for 5 minutes at 

1500rpm.  

15) Finally the cells were resuspended in 200µl/well of PBS / 1%FCS and acquired 

on a Becton Dickinson FACS Array and analysed with BD FACS-Canto software.  

 

Lymphocytes were gated according to their physical parameters (forward and side 

scatter) and CD3+CD8+ lymphocytes were then selected. Virus-specific CD8+T-cells 

were examined as a percentage of the total CD8+T-cell population, as well as the 

Mean Fluorescent Intensity (MFI) on the pentamer positive cells. 
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The memory phenotype of CD4+T-cells was determined by staining with 

fluorochrome-labelled CD45RA and CD62L antibodies. Four subsets of memory 

cells were identified: naive cells (N:CD45RA+/CD62L+), central memory cells 

(CM:CD45RA-/CD62L+), effector memory cells (EM:CD45RA-/CD62L-) and effector 

cells (E:CD45RA+/CD62L-). 

 

The memory phenotype of CD8+T-cells was determined by staining with 

fluorochrome-labelled CD45RA and CD127 antibodies. Four subsets of memory 

cells were identified: naive cells (N:CD45RA+/CD127+), central memory cells 

(CM:CD45RA-/CD127+), effector memory cells (EM:CD45RA-/CD127-) and effector 

cells (E:CD45RA+/CD127-). The frequency of each memory subsets was evaluated 

within the total CD4+ or CD8+ populations. For detection of HLA-A2 positive cases, 

PBMC were labelled with a mouse anti-human HLA-A2 (OneLambda,Inc., SanDiego, 

CA), followed by a fluorescein isothiocyanate (FITC)-conjugated goat anti-mouse 

IgG secondary antibody (Sigma, Dorset, UK).  

 

3.16.3. Staining of hepatocytes and virus-specific CD8+ T-cell clone from cell 

co-cultures for Flow Cytometric Analysis 

Hepatocytes were gently harvested using a cell dissociation solution (Accutase - 

eBioscience, Hatfield, UK) from cell culture experiments and resuspended in PBS/ 

1%FCS at a concentration of 3 x 105cells/100µl. Staining was then carried out on the 

hepatocytes or T-cell clone, as described above with the fluorescent labelled 

antibody of interest: The following antibodies were used to stain T-cells: Anti-
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CD8(APC-Cy7) 10µl; Anti-PD-1(PE) 10µl; Isotype control(PE) 10µl (BD Biosciences, 

Oxford, UK). The following antibodies were used to stain hepatocytes: Anti-

PDL1(PeCy7) 10µl (BD Biosciences, Oxford, UK). The specificity of the T-cell clone 

to HBcAg 18-27 was confirmed by FACS analysis after staining with HLA-A2 

pentamers containing HBcAg 18-27 peptide (FLPSDFFPSV) labelled with the 

fluorochrome Allophycocyanin(APC) (Proimmune, Oxford, UK). After washing the 

stained cells were re-suspended in PBS/1%FCS and acquired on a Becton-

Dickinson FACS Canto II and analysed. Subsequent analysis was performed using 

FACSDiva software. 

 

3.16.4. Assessment of cytotoxicity by Annexin V/PI staining 

The proportion of apoptotic 2.2.15 cells was assessed using the TACSTM Annexin V-

FITC Apoptosis detection kit (R&D Systems, Abingdon, UK). Cells were stained with 

Annexin V and PI to assess the proportion of cells undergoing apoptosis. Propidium 

iodide (PI) intercalates into double-stranded nucleic acids. It is excluded by viable 

cells but can penetrate cell membranes of dying or dead cells, Thus cells which are 

dead or in the late apoptotic stage of death will stain positive for PI. Cells undergoing 

apoptosis also express phosphatidylserine on their cell surface. Annexin A5 is a 

protein that binds to phosphatidylserine containing membrane surfaces. Thus cells in 

the early and late phase of apoptosis will stain positive for Annexin V (see Fig. 22). 

By combining PI and Annexin V staining it is therefore possible to distinguish viable 

cells from those in the early and late phases of apoptosis. 
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Figure 22: Representative FACS plot showing cells stained with PI and 

Annexin V 

 

 

3.16.5. Assessment of cytotoxicity through ALT measurements 

The proportion of HepG2.2.15 cells undergoing cytolysis was also evaluated through 

the assessment of ALT (an enzyme released from hepatocytes undergoing 

cytolysis), in the supernatants of the cell co-culture experiments. 200µl of 

supernatant was centrifuged on a microcentrifuge at 13000rpm for 5 minutes and 

then directly processed through an automated clinical chemistry analyzer (COBAS 

Integra 400, Roche Diagnostics, Ltd, Sussex, UK). This analyser directly measures 

ALT in samples processed comparing them against a standard curve generated from 

stock solutions.  
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3.17. Cytometric Bead Array (CBA) 

3.17.1. Principle 

Cytometric bead array (CBA) utilises the principles of flow cytometry and employs 

particles with discrete fluorescent intensities to detect soluble analytes. This test 

uses single bead populations with distinct fluorescence intensity coated with a 

capture antibody specific for a soluble protein (e.g. IL-10). Each bead population 

(flex set) is given an alphanumerical position designation indicating its position 

relative to other bead populations. 

 

3.17.2. Cytometer Optimisation 

Cytometer Set-up and Tracking (CST) beads (BD Biosciences, Oxford, UK) allow the 

software to automatically characterise, track and report measurements of supporting 

BD digital flow cytometers. Each vial of CST beads contains equal concentrations of 

beads of 3 fluorescent emission intensities. The beads are used to define a 

cytometer baseline. Median fluorescent intensity (MFI) and robust CV (rCV) are 

measured for each bead in all fluorescent detectors. The software then calculates 

the fluorescence detection efficiency (Qr), relative background (Br), the standard 

deviation of electronic noise, and cytometer settings can subsequently be adjusted 

for maximising population resolution in each detector. 
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3.17.3. Preparation of CBA Human Soluble Protein Flex Set Standards 

For each multiplex assay a standard curve must first be prepared. One lyophilized 

standard vial from each Flex Set to be tested was opened and pooled together into 

one tube, labelled “Top Standard”. These standards were then reconstituted with 

4.0ml of Assay Diluent and allowed to stand for 15 minutes. Tubes for the standard 

dilutions were subsequently prepared (1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128, 1:256), 

and 500µl of assay diluent was added to each of the remaining tubes. A serial 

dilution was then performed, transferring 500µl from the “top standard” to the 1:2 

dilution tube and so forth.  

 

3.17.4. Preparation of CBA Human Soluble Protein Flex Set Capture Beads and 

PE detection reagents 

Each capture bead stock (BD Biosciences, Oxford, UK) was vortexed for at least 15 

seconds to resuspend the beads thoroughly. The total volume of diluted beads 

needed was calculated by the number of tests to be performed multiplied by 50µl 

(volume of diluted beads needed for each test). The volume of capture beads and 

capture bead diluents (BD Biosciences, Oxford, UK) was then calculated and 

combined in a tube labelled “Mixed Capture Beads”. 

 

The PE detection reagents provided with each Flex set were mixed and diluted with 

Detection Reagent Diluent (BD Biosciences, Oxford, UK) to their optimal volume per 

test (50µl/test).The Detection Reagents and Detectin Reagent Diluent was then 

combined in a tube labelled “Mixed PE Detection Reagents”. The PE detection 
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reagents should be protected from exposure to direct light as they can become 

photobleached and lose fluorescent integrity. 

 

3.17.5. CBA Assay Procedure 

1) Mixed capture beads were vortexed for 5 seconds and 50µl was added to each 

assay tube.  

2) 50µl of the standard or the sample to be tested was then added to each assay 

tube.  

3) The assay tubes were then incubated for 1 hour at room temperature.  

4) 50µl of Mixed PE Detection Reagent was added to each assay tube. 

5) The assay tubes were then incubated for 2 hours at room temperature.  

6) 1mL of Wash Buffer was added to each assay tube and the tubes were 

centrifuged at 13,000rpm for 5 minutes.  

7) The supernatant was aspirated and discarded from each tube.  

8) 300µl of Wash buffer was added to each assay tube. 

9) Finally, the assay tube was briefly vortexed to resuspend the beads and the 

samples were acquired and analysed on a B.D. FACS Canto II.  

10) The concentration of all cytokines was calculated using BD FCAP Array software 

(BD Biosciences, Oxford, UK). 
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3.18. Statistical Analysis 

Changes in PD-1/PDL1/L2 expression at different time points/different experimental 

conditions were analysed by Student’s t-test and Mann-Whitney U test. Correlation 

between HBV-DNA levels over time and PD-1/PDL1 expression by FACS was 

assessed by Pearson’s correlation analysis. Correlations between HBV-DNA levels, 

PD-1 expression, memory phenotype and the frequency of virus-specific IFNγ & IL-

10 producing T-cells were assessed by Pearson’s correlation analysis. 
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Chapter 4 

 

PD-1 Expression During Antiviral Treatment of 

Chronic Hepatitis B: Impact of HBeAg 

Seroconversion 
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4. PD-1 EXPRESSION DURING ANTIVIRAL TREATMENT OF CHRONIC 

HEPATITIS B: IMPACT OF HBeAg SEROCONVERSION  

 

4.1. Background to study 

Virus-specific T-cells are functionally impaired, but the relative role of viraemia (HBV-

DNA levels) and/or HBeAg in the impairment of T-cell reactivity have not been 

defined. The biological function of HBeAg is not fully understood, as it is not required 

for virus assembly, infection or replication (Milich et al 2003). HBeAg is secreted 

from hepatocytes and is thought to have a central role as a tolerogen during HBV 

infection and during vertical transmission appears to be fundamental to the induction 

of immunological tolerance in utero (Milich et al 1990). It is also well established that 

HBeAg seroconversion is a T-cell driven phenomenon and therefore it is likely that 

expression of PD-1, an immune-inhibitory T-cell pathway may be important in HBeAg 

seroconversion. The relative expression of PD-1 before and after HBeAg 

seroconversion, in the absence of changes in HBV-DNA, may provide useful 

information as to the mechanism of tolerance induced by the Hepatitis B e antigen.  

 

To gain further understanding of the role of PD-1 in chronic HBV infection the 

relationship between PD-1 expression, viral load and HBeAg in patients with chronic 

hepatitis B undergoing treatment with oral antiviral agents was investigated 

longitudinally. The impact of changes in viral load and PD-1 levels on the frequency 

of virus-specific T-cells producing IFNγ and IL-10 was also examined. In addition, the 

memory phenotype of the T-cells during treatment, particularly before and after 

HBeAg seroconversion was characterised.  
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4.2. Materials and Methods 

Patients 

Eighteen treatment-naïve patients with chronic hepatitis B infection, attending the 

Hepatitis Clinic at University College Hospital, London, were enrolled into the study 

(Table 9). All patients were seropositive for HBsAg, hepatitis B e-antigen (HBeAg), 

with HBV-DNA levels >106 IU/ml. All patients were negative for anti-hepatitis D virus, 

anti-hepatitis C virus, anti-human immunodeficiency virus (HIV1/2), and 

autoantibodies. Twelve of the patients were male and the mean age of the patients 

was 38.9±9.9yrs. A liver biopsy was performed in all patients as part of a routine 

diagnostic evaluation and the inflammation grade and fibrosis stage were scored 

according to established criteria (Ishak et al 1995). Patients were followed serially 

with protocol visits for a median period of 18 months (range 12-25 months) during a 

course of antiviral treatment with nucleoside analogues (Telbivudine or Lamivudine). 

Written informed consent was obtained from each patient and the study protocol was 

approved by the Ethics Committee of University College London Hospitals. During 

treatment 6 patients seroconverted to anti-HBe (Group 1) after a median period of 9 

months (range 6-10 months), while 12 patients (Group 2) remained HBeAg positive 

throughout the monitoring period – median 18 months (range 12-25 months). 
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Table 9: Baseline characteristics of patients 

 

*= Combined frequency detected with pentamers for both HBcAg and HBsAg. 

 

Patient no. Baseline (T1) 

 HBV DNA 

Log10 

copies/ml 

ALT 

IU/

ml 

Ishak 

Fibrosis 

score 

HBeA

g 

status 

% pent* (+) on  

total CD8+   

T-cells 

% of PD-

1(+) on 

pent*(+) 

CD8+ T-

cells 

% of PD-

1(+) on 

total CD8+  

T-cells 

1  9.52 206 1 +ve 0.41 3.72 9.17 

2 9.78 233 1 +ve 1.29 4.73 3.34 

3  9.11 436 1 +ve 0.91 2.69 5.67 

4  8.48 81 4 +ve 1.34 1.47 2.5 

5 8.59 363 3 +ve 0.89 1.57 2.95 

6  9.08 221 1 +ve 0.60 4.77 5.12 

7 8.05 48 1 +ve 1.23 7.19 9.75 

8 7.76 82 3 +ve 0.76 nd 0.05 

9 9.25 113 4 +ve 1.04 nd 3.95 

10 8.19 252 2 +ve 0.45 nd Nd 

11 7.37 59 1 +ve 0.99 3.21 6.04 

12 7.93 35 5 +ve 0.76 4.29 Nd 

13  6.92 107 1 +ve 0.59 nd Nd 

14  10.07 153 2 +ve 0.90 nd 1.37 

15  7.06 99 1 +ve 1.98 0.07 Nd 

16  8.78 56 3 +ve 1.46 6.27 7.75 

17  7.75 139 2 +ve 0.63 nd 1.16 

18  8.56 150 2 +ve 0.54 1.47 2.25 
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Investigations were focused on three time points with heparinised blood for 

separation of peripheral blood mononuclear cells (PBMC) obtained serially from all 

patients (Table 10).  

 

Table 10: Timepoints when peripheral blood mononuclear cells were obtained 

from heparinised blood for analysis 

 

Timepoints Conditions 

Time point 1(T1) Baseline - high viral load, HBeAg positive 

Time point 2(T2) Early on antiviral treatment (treatment week TW12-

16) - reduced viremia, all patients HBeAg positive; 

Time point 3(T3) Late on antiviral treatment (TW32-56) - undetectable 

or very low serum HBV-DNA (<103 copies/ml) with or 

without HBeAg loss and anti-HBe positivity in Group 

1 and 2 respectively.  
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Hepatitis Serology 

HBsAg, HBeAg, anti-HBe, anti-human immunodeficiency virus(1&2) were 

determined by commercial immunoassays (Abbott Laboratories, Maidenhead,UK). 

Anti-HCV was detected using Ortho HCV 3.0 ELISA (OrthoDiagnostics,High 

Wycombe,UK). Serum HBV-DNA was quantified by a sensitive real time PCR 

technique with a lower limit of quantitation of 300 copies/ml (Garson et al 2005).  

 

Flow Cytometry  

Flow cytometric assessment was performed according to methods previously 

described (see Chapter 3). Due to limitations in the number of cells available and the 

relatively low frequency of virus-specific T-cells, staining was carried out 

simultaneously with pentamers to both HBsAg and HBcAg performed.  

 

Quantitation of PD-1 mRNA by real time PCR 

Total RNA was extracted from 5x105 PBMCs obtained from the same time points as 

described above. RNA was extracted, quantitated and reverse transcribed according 

to techniques previously described (see Chapter 3).   
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Enumeration of HBV-specific, IFNγ and IL-10 producing T-cells by Elispot 

assays  

The Elispot assays were performed with freshly isolated PBMCs from the time points 

described above. Enumeration of HBV-specific, IFNγ and IL-10 producing T-cells by 

Elispot assays was performed according to previously described methods (see 

Chapter 3).  
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4.3. Results 

4.3.1. Clinical Outcomes 

Six of 18 patients enrolled lost HBeAg and became anti-HBe(+)(Group 1), while 12 

patients remained HBeAg+(Group 2). At baseline, serum HBV-DNA levels were 

comparable between the two groups, while patients in Group 1 had significantly 

higher ALT levels (p<0.01, Table 10). The profound suppression of HBV replication 

early after starting antiviral treatment (T1 to T2) was paralleled by a decrease in 

serum ALT levels with no significant differences in the magnitude of HBV-DNA or 

ALT reductions between the two groups(Table 11). Fifteen of 18 patients had 

undetectable serum HBV-DNA levels by time point 3(T3).  
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Table 11: Changes in serum HBV-DNA and ALT levels over course of antiviral 

treatment 

 

 

 HBV-DNA 

(log10copies/ml) 

Baseline 

Δ serum HBV DNA 

(log10copies/ml) 

ALT 

baseline 

(IU/ml) 

Δ serum ALT 

levels 

  T1-T2 T2-T3  T1-T2 T2-T3 

Group 1 9.1±0.5  5.1±1.1 

 

1.5±0.8 

 

256±125 

(♦) 

97±128 

 

133±91 

 

Group 2 8.1±0.9  4.2±1.2 

 

0.9±1.2 

 

107±60.5 

(♦) 

23±78 

 

46±70 

 

 

(The baseline values are reported as mean±standard deviation. The differerences 

(Δ) in HBV DNA or ALT levels between the time points (T1-T2 and T2-T3)) are 

shown as mean±standard deviation. (♦) indicates a significant difference between 

Group 1 and 2 (p<0.01).) 
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 4.3.2. Longitudinal Analysis of PD-1 expression by flow cytometry 

In all patients the frequency of HBV-specific CD8+ T-cells (combination of pentamers 

including HBcAg and HBsAg epitopes) ranged between 0.4 and 1.98% of the total 

CD8+ T-cells and did not change between the three time points of the study (Table 

8). In contrast, PD-1 expression significantly decreased both on total CD8+ and 

HBV-specific CD8+ T cells in all patients (Figures 23 & 24). During anti-viral 

treatment between T1 and T3, the proportion of PD-1 positive cells within the total 

CD8+ T-cells decreased from 4.98±0.94 to 1.71±0.86, respectively (p=0.002) and 

within HBV-specific CD8+ T-cells from 3.28±1.05 to 0.95±0.75,(p=0.01). 
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Figure 23: PD-1 expression on total CD8+ T-cells, CMV-specific CD8+ T-cells and cell gating 

strategy 

 

(A) Representative dot plot illustrating cell gating strategy for the selection of CD3+CD8+PD-

1+ cells from PBMCs. 

(B) Representative dot plots for PBMCs from 2 patients with chronic HBV infection stained 

with anti-CD3, anti-CD8 and anti-PD-1, at baseline (T1) and following a course of anti-viral therapy 

(T3). A reduction in PD-1 expression on CD8+ T-cells over time is illustrated in 2 representative 

patients. 

(C) Representative dot plots for PBMCs illustrating staining with anti-CD3, anti-CD8, anti-PD-

1 and CMV-specific pentamers. Levels of PD-1+ CMV-specific CD8 T-cells were low and did not 

significantly change from T1 to T3.   
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Figure 24: PD-1 expression on total CD8+ and HBV-specific CD8+ T-cells 

during a course of anti-viral therapy 

 

 

 

 

 

(Decrease in PD-1 expression seen both in terms of percentage of cells staining positive for 

PD-1 (Panel A & B) and Mean Fluorescent Intensity (MFI), (Panel C & D), from baseline(T1) 

through a course of anti-viral treatment. This decrease was observed in both total CD8+ T-

cells (Panel A & C) and in virus-specific CD8+ populations (Panel B & D). Each line 

represents changes in an individual patients’ PD-1 expression from baseline(T1) to T3. 

Changes in HBV-DNA levels from T1 to T3 are shown as bar graphs.) 
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The levels of PD-1 expression, as assessed by MFI, were also reduced between the 

same time points: total CD8 subset T1:721±206.59, T3:383.59±71.27 (p=0.03) and 

HBV-specific subset T1:762.38±280.26, T3:528±170.3 (p=0.05). 

 

In contrast to HBV-specific CD8+T-cells, CMV-specific CD8+T-cells exhibited low 

levels of PD-1 positivity which did not change over time (p>0.1) (Figure 23C). 

 

There was no correlation between PD-1 expression on HBV-specific CD8+T-cells 

and baseline serum ALT levels. Although serum ALT levels were significantly higher 

in patients who seroconverted on treatment, there was no difference between PD-1 

expression between Group 1 and 2 at baseline (p>0.1). 
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PD-1 expression on CD3+ve/CD8-ve T-cells was also assessed over the three time 

points described. A significant decrease in both the percentage of CD3+ve/CD8-ve 

T-cells staining positive for PD-1 (p=0.014) and the MFI (p=0.014) from baseline (T1) 

to T3 was observed. 

 

HBeAg seroconversion, which occurred in patients in Group 1 between T2 and T3, 

was associated with a trend towards a decrease in the frequency of PD-1 expressing 

total CD8+T-cells: T2:3.27±0.86, T3:1.41±0.64 (p=0.068), despite no significant 

decrease in viral load. It is possible that the sample size (6 patients, Group 1) 

precluded statistical significance in this observation. In contrast, there was no 

decrease in PD-1 expression between T2 and T3 in the absence of seroconversion 

Group 2 (p>0.1). Furthermore, the magnitude of PD-1 changes from T2 to T3 

differed between the two groups. A 51% decrease in the frequency of PD-1-

expressing HBV-specific CD8+T-cells from T2 to T3 associated with HBeAg 

seroconversion(Group 1) compared with only a 3% decrease in the absence of 

seroconversion (Group 2) (p=0.057) was observed. 

 

Three of 18 patients did not achieve undetectable HBV-DNA levels at T3 but also 

showed a reduction in PD-1 expression between T1 and T3, which mirrored the 

decrease in serum HBV-DNA levels. In a representative patient, MFI on total CD8 

decreased (T1 to T3) from 1509 to 565 for a 3-log drop in HBV-DNA levels. None of 

these patients had seroconverted, and no significant difference in PD-1 expression 

was observed between T2 and T3. 
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During antiviral treatment the frequency of PD-1-expressing virus-specific CD8+T-

cells correlated closely with HBV-DNA levels (r=0.998, p=0.036). The strength of PD-

1 expression on CD8+T-cells also decreased in all patients from baseline to T3. This 

decrease directly correlated with a decrease in HBV-DNA levels(r=0.996, p=0.054), 

(Figure 25).  
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Figure 25: Correlations between PD-1 expression and HBV-DNA levels 

 

 

 

(Reduction in PD-1 expression on HBV-specific and total CD8+ T-cells correlates with 

reduction in HBV-DNA levels. The average HBV-DNA and level of PD-1 expression for each 

timepoint (T1-T3) are represented (♦). Error bars illustrate standard errors. The four panels 

demonstrate changes in PD-1 expression on total CD8+ (A & C) and virus specific CD8+ T-

cells (B & D), both as changes in MFI (C & D) and changes in percentage of positive cells (A 

& B). 
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4.3.3. Longitudinal Analysis of PD-1 mRNA expression 

PD-1 mRNA levels decreased significantly during antiviral treatment between T1 and 

T3 (p=0.001, Figure 26). There was a correlation between PD-1 mRNA and HBV-

DNA levels, but this was not statistically significant (r=0.977, p=0.1). A further 

analysis was performed to assess whether there was a direct correlation between 

PD-1 expression on the cell surface (as assessed by flow cytometry) and PD-1 

mRNA levels, as quantitated by real time PCR. A direct correlation between PD-1 

expression on HBV-specific CD8+T-cells in terms of MFI and relative gene 

expression as assessed by RT-PCR (r=0.994, p=0.07) was observed.  
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Figure 26: Relative expression of PD-1 at the mRNA level as assessed by Real 

Time quantitative PCR from baseline to time point 3 

 

 

 

 

 

 

 

 

 

(PD-1 expression at the mRNA level is displayed from high to low viral load (T1 – 

T3). The y-axis represents the relative PD-1 gene expression for each patient from 

T1 to T3. Each line represents changes in an individual patients’ relative PD-1 

expression from T1 to T3. A significant decrease in PD-1 expression was seen 

(p=0.001)). 
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4.3.4. Correlation between PD-1 expression, HBV-DNA levels, and frequency of 

IFNγ and IL-10 producing T-cells. 

In 14 of 18 patients the frequency of HBV-specific T-cells producing IFNγ was 

assessed at the three time points specified. There was a significant increase in the 

frequency of IFNγ producing CD4+T-cells between T1 and T3 in response to both 

HBV-core (p=0.009) and surface (p=0.002) antigens (Figure 27A). This inversely 

correlated with the decrease in PD-1 expression and HBV-DNA levels (r=-0.994, 

p=0.067). In contrast, the frequency of HBV-specific CD4+T-cells producing IL-10 

decreased markedly between T1 and T3 in response to surface antigen (p=0.02) and 

a similar trend was observed in response to HBV-core antigen (p=0.08). 

 

In 6 of 18 patients the frequency of HBV-specific CD8+T-cells producing IFNγ was 

assessed at the three time points specified. The frequency of Influenza-specific 

CD8+T-cells was also assessed as a control (Figure 27B). There was a significant 

increase in the frequency of IFNγ producing HBV-specific CD8+T-cells between T1 

and T3 (p=0.03), whereas there was no significant change in the frequency of IFNγ 

producing influenza-specific CD8+T-cells (p>0.1). 
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Figure 27: Frequency of HBV-specific CD4+ and CD8+T-cells and Influenza-

specific CD8+T-cells producing IFNγ and PD-1 expression over time 

 

(An increase in the mean frequency of IFNγ producing HBV-specific CD4+(Fig 5A) and CD8+T-

cells(Fig 5B) was observed from T1 to T3. In contrast there was no significant change in the 

frequency of Influenza-specific CD8+T-cells producing IFNγ from T1 to T3(Fig 5B). In parallel there 

was a decrease in mean PD-1 expression on total CD8+ T-cells (MFI) in the subgroup of patients 

analysed. Error bars represent standard error of the mean.) 
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4.3.5. Correlation between PD-1 expression, HBV-DNA levels and memory 

phenotypes 

Four of 6 patients who seroconverted to anti-HBe (Group 1) were investigated to 

determine whether reduction in serum HBV-DNA levels or HBeAg loss lead to 

changes in the four memory phenotypes. At baseline(T1), there was a significant 

direct correlation between frequency of HBc-specific central memory phenotype and 

PD-1 expression as assessed either by MFI on total CD8+cell population (r=0.988, 

p=0.012) or by the combined frequency of HBc and HBs specific pentamer positive 

PD-1+T-cells (r=0.985, p=0015)(Figure 28A). There was also a direct correlation, at 

baseline, between effector memory phenotype and PD-1 expression as assessed by 

MFI on total CD8+ cell population (r=0.995, p=0.005) (Figure 28B). In parallel, there 

was a strong inverse correlation between HBcAg-specific effector phenotype and 

PD-1 expression at baseline (r=-0.999, p=0.0005; Figure 28C). A similar, but not 

significant relationship, was seen in HBsAg-specific cells. 
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Figure 28: Correlations between PD-1 expression and memory phenotypes at 

baseline 

 

(A) A significant direct correlation was observed between frequency of HBc-specific central 
memory phenotype (CM) and PD-1 expression as assessed either by MFI on total CD8+cell 
population (r=0.988,p=0.012) or frequency of HBc & HBs-specific pentamer positive cells 
(r=0.985,p=0015) at baseline.  

(B) A direct correlation was observed between effector memory phenotype (EM) and PD-1 
expression as assessed by MFI on total CD8+ cell population (r=0.995,p=0.005) at baseline.  

(C) An inverse correlation between HBcAg-specific effector phenotype (E) and PD-1 expression 
was observed at baseline (r=-0.999,p=0.0005). 
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Any change in the frequency of subsets of various memory phenotypes in this 

subgroup of patients over the three defined time points was also examined. The 

frequency of differential memory phenotypes did not significantly change during anti-

viral therapy over time (see Figure 29).  
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Figure 29: Frequency of memory subsets over a course of anti-viral therapy  

 

 

 

 

(In a subgroup of patients analysed, there was no significant change  observed in the 

frequency of central memory, effector memory and effector subsets in: A) Total CD4+ 

population, B) Total CD8+ population, C) HBcAg-specific CD8+ cell population, D) HBsAg-

specific CD8+ cell population; over a course of anti-viral therapy (T1-T3).) 
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4.4. Summary of Results: 

The present study demonstrates that viremia levels directly correlate with PD-1 

expression on total CD8+, virus-specific CD8+ and CD3+ve/CD8-ve (CD4+) T-cells 

in chronic HBV infection and that treatment-induced suppression of viral replication, 

manifested by a marked reduction in serum HBV-DNA levels, results in a significant 

decrease in PD-1 expression on the T-cell surface, as well as PD-1 mRNA 

transcription.  

 

The significant reduction in PD-1 expression on antiviral treatment is accompanied 

by improved virus-specific T-cell reactivity with increased IFNγ production. In 

addition, these results show that serum HBeAg loss is associated with a decrease in 

PD-1 expression that is independent of viral load, and is accompanied by a further 

improvement in virus specific T-cell reactivity.  

 

There was no observed relationship between baseline ALT and PD-1 expression in 

this cohort of patients. 

 

There was no significant relationship between frequency of different memory 

phenotypes of CD4+ and CD8+T-cells expressed at different time points, and HBV-

DNA levels, HBeAg status and PD-1 expression. However, at baseline elevated PD-

1 levels are associated with a decrease in effector cells and an increase in central 

memory and effector memory phenotypes in HBcAg-specific T-cells. 
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In conclusion, treatment-induced suppression of HBV replication resulted in 

significant reduction of PD-1 expression on the T-cell surface and PD-1 transcription, 

thus reducing its negative impact on T-cell activation and function. However, these 

results indicate that to completely restore anti-viral T-cell function a combination of 

potent suppression of HBV replication plus the use of an immunotherapeutic strategy 

that amplifies virus-specific T-cell reactivity may result in sustained control of HBV 

replication and resolution of liver disease (Bertoletti et al 2003). 
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Chapter 5 

 

The role of the PD-1 pathway in defining the 

differential effector function commitments of 

virus-specific CD8+ T-cells to cytolytic and 

non-cytolytic mechanisms 
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5. The role of the PD-1 pathway in defining the differential effector function 
commitments of virus-specific CD8+ T-cells to cytolytic and non-cytolytic 
mechanisms. 

 

5.1. Background to study 

Chronic viral hepatitis is primarily the result of a complex interaction between a 

replicating non-cytopathic virus and an impaired antiviral host immune response.The 

importance of a vigorous CD8+ T-cell host response directed against multiple 

epitopes in the successful clearance of acute hepatitis B infection is well established 

(Rehermann et al 1995,1996 & 2005, Ferrari et al 1990, Webster et al 2004). These 

virus-specific CD8+T-cells display dual effector functions in vivo; cytolysis of infected 

cells mediated through FasL and perforin, and the production of anti-viral cytokines 

(e.g. IFNγ, TNFα) which purge HBV from infected hepatocytes through antiviral 

intracellular mechanisms (Guidotti et al 1996).  

 

The successful control of HBV replication in immunocompetent adults exposed to 

hepatitis B virus occurs, in the majority of cases, in the absence of overwhelming 

immune-mediated cytolysis and fulminant hepatitis. Whilst both cytolytic (destructive) 

and non-cytolytic (curative) CD8+T-cell effector functions have been shown to be 

critical in the control of infection in animal models of hepatitis B virus infection 

(Guidotti et al 1996 & 1999), the relative importance of these different effector 

functions are poorly understood.  
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Moreover, the mechanisms which determine the balance between these cytolytic 

(destructive) and non-cytolytic (curative) virus-specific-CD8+T-cell functions and 

dictate which of these effector functions are dominant during resolution/chronicity of 

infection are poorly understood. Of possible importance in the maintenance of this 

balance is the “Programmed Death” pathway (PD-1 pathway) which has recently 

been identified as an immuno-inhibitory pathway, belonging to the B7 family of 

immune regulators, that is involved in the development of T-cell tolerance and has 

been implicated in the persistence of a variety of chronic viral infections including 

LCMV, HIV, HBV and HCV (Barber et al 2006, Trautmann et al 2006, Velu et al 

2009, Day et al 2006, Golden-Mason et al 2007, Urbani et al 2006, Penna et al 2007, 

Boni et al 2007, Evans et al 2008). 
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5.2. Materials and Methods 

Cell lines and T cell clone generation and co-cultures. HepG2.2.15 cells and 

HBV-specific CD8+ T-cells were propagated and co-cultured as described in chapter 

2 (see Figure 15). This cell co-culture model was used to specifically dissect and 

evaluate the cytolytic and non-cytolytic effector virus-specific CD8 T-cell and target 

cell interactions. 

 

Real-Time PCR. HBV replication in 2.2.15 cells was assessed by quantitation of 

core-associated HBV-DNA (cytoplasmic DNA) and HBV-DNA from the viral particles 

secreted in the supernatants of these co-culture experiments (secreted DNA) as 

previously described (see Chapter 3). 

 

Flow Cytometry of cell co-cultures  

Flow Cytometry was performed as previously described (see Chapter 3). In all 

samples containing both T-cells and hepatocytes, these different cell populations 

were easily distinguishable through physical characteristics using FSC and SSC 

properties, allowing gating and analysis of each cell population individually. 
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5.3. Results 

5.3.1 Both cytolytic and non-cytolytic CD8+ T-cell effector functions are 

important in the control of HBV replication 

To evaluate the relative role of cytolytic and non-cytolytic CD8+ T-cell effector 

functions in the control of HBV replication, core-associated HBV-DNA (cytoplasmic) 

and HBV-DNA in the supernatant from the secreted viral particles was quantitated in 

the direct and indirect cell co-culture systems (Figure 15,  Chapter 3). The addition of 

effector virus-specific CD8+ T-cells to target 2.2.15 cells resulted in a significant 

decrease in both cytoplasmic (p=0.01, p=0.02) and secreted HBV-DNA (p=0.03, 

p=0.03) in both direct and indirect co-culture models respectively (Figure 30). This 

data confirms for the first time in a model of human hepatitis B virus infection, the 

importance of non-cytolytic control of infection through the production of anti-viral 

cytokines by virus-specific CD8+ effector T-cells, complementing recent data 

confirming the importance of non-cytolytic control of viral replication in chronic 

hepatitis C infection in a similar model of human HCV infection (Jo et al 2009). To 

establish whether antiviral cytokines IFNγ and TNFα, which are central for the control 

of HBV replication in animal models (Guidotti et al 1996 & 1999), are also important 

in this model of human infection virus-specific CD8+T-cells were co-cultured with 

target hepatocytes in the presence / absence of neutralising antibodies to IFNγ 

and/or TNFα. The addition of neutralising antibodies to IFNγ and TNFα abrogated 

this non-cytolytic control of viral replication (p=0.05) (Figure 30).  This confirms an 

important role in non-cytolytic “purging” of infected hepatocytes for these anti-viral 

cytokines in addition to the established cytolytic mediated mechanisms of viral 

eradication. There was a lower level of HBV-DNA present in the indirect cell co-
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culture model compared to the direct co-culture model, and this represents leakage 

of HBV-DNA into the supernatant from cytolysis of infected cells in the direct model. 

This observation was further supported by dilutional experiments with decreased 

number of effector T-cells (5,000 vs 50,000). No increase was observed in the rate of 

cells undergoing apoptosis in the indirect cell co-cultures, suggesting that these anti-

viral cytokines do not induce apoptosis of infected cells as a means of control of viral 

replication (see Chapter 6). 
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Figure 30: Intracellular HBV-DNA levels in target HepG2.2.15 cells 

 

Each panel represents the mean of at least 3 separate experiments. Statistical 

significance was observed between different co-culture conditions; ‡ p=0.01, ** 

p=0.03,† p=0.01, * p=0.04, ◊ p=0.04. Error bars represent mean ± s.e.m. 
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5.3.2. Upregulation of PDL1 on hepatocytes following direct and indirect cell 

co-culture with HBV-specific CD8+T-cell clone 

In order to establish whether cross talk between effector and target cells involved the 

PD-1/PDL1 pathway, PDL1 expression was assessed on HepG2.2.15 cells in the 

presence/absence of activated HBV-specific CD8+ T-cells. A significant increase in 

PDL1 expression was observed on HepG2.2.15 cells in the direct co-culture 

systems, compared to hepatocytes cultured alone (p=0.01) (Figure 31). This 

increase in PDL1 expression was dependent on the number of T-cells present with a 

higher concentration of T-cells (E:T ratio 1:6) resulting in increased  PDL1 

expression (Figure 31).  
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Figure 31: PDL1 expression on HepG2.2.15 cells in the presence of HBVc18-27 

specific CD8+ T-cell clone in a direct co-culture model 

 

 

 

Representative FACS dot plots demonstrate upregulation of PDL1 expression on the 

cell surface of HepG2.2.15 cells (target cells) in the presence of HBV-specific CD8+ 

T-cell clone in a direct co-culture model. This upregulation was confirmed at an 

mRNA level. Each panel is representative of at least 3 separate experiments. Error 

bars represent mean ± s.e.m. 
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Upregulation of PDL1 was also observed on hepatocytes despite physical separation 

from effector CD8+ T-cells in the indirect model (see Figure 32). This suggests the 

involvement of a soluble factor or factors produced by T-cells which mediate 

changes in PDL1 expression altering the “cross talk” that occurs between effector 

and target cells in this system. These results demonstrate that PDL1 upregulation on 

HepG2.2.15 cells is driven by CD8+ T-cells via a soluble factor, most probably a 

cytokine, produced by activated virus-specific CD8+T-cells.  
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Figure 32: PDL1 expression on HepG2.2.15 cells in the presence of HBVc18-27 

specific CD8+ T-cell clone in an indirect co-culture model 

 

 

 

 

Representative FACS dot plots demonstrate upregulation of PDL1 expression on the 

cell surface of HepG2.2.15 cells (target cells) in the presence of HBV-specific CD8+ 

T-cell clone in an indirect co-culture model. This upregulation was confirmed at an 

mRNA level. Each panel is representative of at least 3 separate experiments. Error 

bars represent mean ± s.e.m. 
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5.4. Summary of Results 

This study demonstrates that both cytolytic and non-cytolytic CD8+ T-cell effector 

functions are important in the effective control of HBV replication in this model of 

human HBV infection. In animal models of HBV infection IFNγ has been shown to 

carry out “purging” of infected hepatocytes, and these results suggest that this 

mechanism remains central in the control of viral replication in human HBV infection.  

This study reports that virus-specific CD8+ T-cells, engage in cross talk with infected 

hepatocytes via regulation of the expression of the PDL1 ligand on the surface of 

hepatocytes through the production of a soluble factor (probably a cytokine).  

 

These results demonstrate that co-culturing activated virus-specific CD8+ T-cells 

with their target cells (infected hepatocytes) results in upregulation of PDL1 on the 

hepatocyte cell surface. This suggests that there is cross-talk between HBV-specific 

CD8+ effector T-cells and their target hepatocytes, and as this effect is dependent on 

the number of T-cells present and also seen in an indirect co-culture system, it 

appears to be driven by an as yet unidentified soluble factor that is produced by 

activated CD8+ T-cells. 
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The subsequent study (Chapter 6) of this thesis focused on the identification of this 

soluble factor(s), important in the elucidation of mechanisms involved in the cross-

talk between hepatocytes and effector T-cells. In this study the functional 

consequences of manipulation of the PD-1/PDL1 pathway through the use of 

blocking antibodies on the balance between cytolytic and non-cytolytic CD8+ T-cell 

effector functions were also assessed. 
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Chapter 6 

 

Characterisation of a soluble factor that allows 

cross-talk between target cells (HepG2.2.15 

cells) and effector cells (virus-specific CD8+ 

T-cells) and the role of the PD-1 pathway in 

determining the differential effector functions 

of virus-specific CD8+ T-cells in a model of 

Hepatitis B virus infection 
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6) Characterisation of a soluble factor that allows cross-talk between target 

cells (HepG2.2.15 cells) and effector cells (virus-specific CD8+ T-cells) and the 

role of the PD-1 pathway in determining the differential effector functions of 

virus-specific CD8+ T-cells in a model of Hepatitis B virus infection. 

 

6.1. Background to study 

Both cytolytic and non-cytolytic HBV-specific CD8+ T-cell effector functions play an 

important role in the effective control of viral replication in this purposely designed 

tissue culture model of human HBV infection. Although the importance of these 

effector mechanisms has been established in animal models of chronic infection, 

little is known of the factors which regulate the differential effector mechanisms of 

CD8+ T-cells. 

 

We have also shown that activated HBV-specific CD8+ T-cells upregulate PDL1 

expression on their target cells (HepG2.2.15 cells) through the production of a 

soluble factor(s). 

 

This study reports a novel role for the PD-1 pathway as one of the key mechanisms 

by which CD8+T-cells engage in cross-talk with the target cells (infected 

hepatocytes) to programme their effector functions. These results report a novel 

homeostatic and immunomodulatory role for IFNγ produced by HBV-specific CD8+ 

T-cells in regulating PDL1 expression on infected hepatocytes and therefore 
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impacting on the balance between cytolytic and non-cytolytic control of viral 

replication. This data challenges the existing dogma that infected hepatocytes are 

passive “targets” of the adaptive immune response to chronic hepatitis infection, and 

has profound implications for future immunotherapeutic approaches targeting the 

PD-1/PDL1 synapse.   
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6.2. Materials and Methods 

Cell lines and T cell clone generation and co-cultures. HepG2.2.15 cells and 

HBV-specific CD8+ T-cells were propagated and co-cultured as described in Chapter 

3 (See figure in Chapter 15).  

 

Cytokine Bead Array (CBA) (BD Biosciences, Oxford) was performed to assess the 

level of a panel of 16 candidate cytokines in indirect and direct cell co-culture 

supernatants (TNFα/IFNγ/IL-10/IL-6/IL-8/IL-12/IL-5/IL-7/ IL-12p70/IP-10/MIP-

1B/RANTES/MCP-1/MIP-1A) . CBA was also performed on supernatants of the 

cytokine neutralization co-cultures to confirm complete abolition of target cytokines 

by anti-IFNγ and anti-TNFα antibodies. 

 

Real-Time PCR. HBV replication in 2.2.15 cells was assessed by quantitation of 

core-associated HBV-DNA (cytoplasmic DNA) and HBV-DNA from the viral particles 

secreted in the supernatants of these co-culture experiments (secreted DNA) as 

previously described (see Chapter 3). 

 

 Cytotoxicity. The proportion of apoptotic 2.2.15 cells was assessed using the 

TACSTM Annexin V-FITC Apoptosis detection kit (R&D Systems, Abingdon, UK). The 

degree of cytotoxicity was also evaluated through the measurement of ALT levels in 

the supernatants of cell co-cultures (as described in Chapter 3). 
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6.3. Results 

6.3.1 Upregulation of PDL1 expression on hepatocytes correlates with IFNγ, 

and TNFα levels produced by HBV-specific CD8+T-cell clone 

In order to further elucidate the mechanisms by which PDL1 was upregulated and to 

determine which soluble factors/cytokines produced by activated HBV-specific CD8+ 

T-cells correlated with PDL1 expression on hepatocytes, exploratory analysis of 17 

candidate cytokines/chemokines performed by cytometric bead array was performed 

on supernatants from co-cultures. Analysis was performed on supernatants of both 

direct and indirect co-cultures in the presence/ absence of neutralising antibodies to 

IFNγ/TNFα/PD-1. Significant correlations were observed between PDL1 and IFNγ 

(r=0.99, p=0.00006) and PDL1 and TNFα(r=0.80, p=0.02) (Figure 33). These 

correlations suggested a significant role for anti-viral cytokines, produced by HBV 

specific effector T-cells, in mediating cross-talk between effector and target cells.  

 

To confirm the role of IFNγ and/or TNFα, in mediating an increase in PDL1 

expression, virus-specific CD8+ T-cells and target hepatocytes (HepG2.2.15) cells 

were co-cultured in the presence of neutralising antibodies to IFNγ and/or TNFα in 

the indirect co-culture system. The upregulation of PDL1 previously observed in the 

presence of HBV-specific CD8+ T-cells was significantly attenuated in the presence 

of anti-IFNγ Ab. (p=0.01) (Figure 34). TNFα neutralisation did not decrease PDL1 

expression. As well as inhibiting the observed upregulation in PDL1 expression, 

these neutralising antibodies also abrogated the observed suppression of viral load 

(Figure 30 – Chapter 5). These results suggest a dual role for IFNγ whereby it 
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functions not only as an anti-viral cytokine “purging” infected hepatocytes, but also 

plays a key role in limiting the extent of immune-mediated target cell lysis through 

the upregulation of the co-inhibitory ligand PDL1.  

 

Incubation of HepG2 and HepG2.2.15 cells with recombinant IFNγ revealed a dose 

dependent increase in PDL1 expression (Figure 35). The concentrations of cytokines 

used reflects those levels detected in the supernatants of the cell co-culture 

experiments by CBA. Recombinant TNFα did not result in an increase in PDL1 

expression when cultured alone with HepG2.2.15 cells.  
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Figure 33: Correlations between PDL1 expression and IFNγ/TNFα levels 

 

 

 

 

 

A direct correlation was observed between relative PDL1 expression as assessed by 

qt-PCR, and IFNγ levels (r=0.99, p=0.00006). A further direct correlation was 

observed between PDL1 expression and TNFα levels (r=0.80, p=0.02). 
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Figure 34: PDL1 expression on HepG2.2.15 cells in the presence of HBVc18-27 

specific CD8+ T-cell clone in an indirect co-culture model, in the presence / 

absence of neutralising antibodies to IFNγ/TNFα 

 

 

Representative FACS dot plots demonstrate that the increase in PDL1 expression 

observed on HepG2.2.15 cells in the presence of HBV-specific CD8+ T-cell clone is 

strongly attenuated in the presence of neutralising antibodies to IFNγ. This decrease 

was confirmed at an mRNA level. There is no change in PDL1 expression in the 

presence of anti-TNFα antibodies alone. Each panel is representative of at least 3 

separate experiments. Error bars represent mean ± s.e.m.  
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Figure 35: PDL1 expression on HepG2.2.15 & HepG2 cells following culture 

with rIFNγ 

 

 

 

A dose dependent increase in PDL1 expression was observed on HepG2.2.15 cells 

(Figure 6a) and HepG2 cells (Figure 6b) in the presence of rIFNγ. Hepatoma cell 

lines were cultured alone (A) or with 4 different concentrations of IFNγ (B)=100pg/ml, 

(C)=1000pg/ml, (D)= 5000pg/ml & (E)=10,000pg/ml. Each panel is representative of 

at least 3 separate experiments. 
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6.3.2. Blockade of the PD-1/PDL1 pathway resulted in an increase in the 

percentage of target cells (hepatocytes) undergoing apoptosis 

 

To ascertain the impact of PD-1/PDL1 binding on the degree of cytolysis and anti-

viral cytokine production by HBV-specific CD8+ effector T-cells these T-cells were 

co-cultured with their target hepatocytes (HepG2.2.15 cells) in the presence/absence 

of neutralising antibody to PD-1 in a direct co-culture model.  Target cell apoptosis, 

anti-viral cytokine levels and HBV-DNA levels were assessed. A 54% increase in the 

percentage of hepatocytes, (gated on according to physical characteristics using 

forward and side scatter) undergoing apoptosis was observed in the presence of 

neutralising antibody to PD-1 (Figure 36a).  

 

To further assess the degree of hepatocyte cytolysis in the presence of anti-PD-1 

antibodies,  ALT, a surrogate marker of hepatocyte apoptosis, was measured in the 

supernatants of these cell co-cultures. Blockade of PD-1 resulted in an elevation in 

ALT levels, suggestive of an increased rate of hepatocyte cytolysis (p=0.03). (Figure 

36b). 
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There were no significant changes in the secretion of IFNγ or TNFα in the presence 

of neutralising antibody to PD-1 at either 24 or 48 hours (Figure 36c). Despite this 

shift in the balance between cytolytic and non-cytolytic CD8+ T-cell effector 

functions, significant changes in total levels of intracellular HBV-DNA in the presence 

of neutralising antibodies to PD-1 were not seen (Figure 36d). This suggests that 

activation of the PD-1 pathway, whilst decreasing the cytolytic arm of the immune 

response, does not initially impair the ability of the CD8+T-cells to clear infection 

through antiviral cytokine production (IFNγ & TNFα). 
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Figure 36: Impact of PD-1 blockade on cytolytic and non-cytolytic CD8+ T-cell 

effector functions and on viral load 

 

In the presence of anti-PD-1 antibodies there is an increase in the percentage of 

cells undergoing apoptosis following co-culture of HepG2.2.15 cells with virus-

specific CD8+ T-cell clone for 24 hours as assessed by Annexin V and PI staining 

(Figure 36a) Hepatocytes were gated onto according to physical characteristics. 

Similarly, blockade of the PD-1 pathway resulted in an increase in ALT levels (a 

surrogate marker of hepatocyte apoptosis) (Figure 36b). Conversely there were no 

changes in IFNγ and TNFα production following blockade of the PD-1 pathway as 

assessed via cytokine bead array.(Figure 36c). These changes in the balance 

between cytolytic and non-cytolytic CD8+ T-cell effector functions did not result in a 

change in control of HBV-DNA replication (Figure 36d). Each panel is representative 

of at least 3 separate experiments. Error bars represent mean ± s.e.m. 
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6.4. Summary of Results 

This study demonstrates that in this tissue culture model of human HBV infection, 

upregulation of PDL1 expression on hepatocytes correlates with IFNγ, and TNFα 

levels produced by HBV-specific CD8+T-cell clone.  

 

This upregulation of PDL1 on target hepatocytes observed in direct and indirect 

effector/target cell co-cultures was significantly attenuated in the presence of 

neutralising antibodies to IFNγ.  

 

Incubation of HepG2 and HepG2.2.15 hepatoma cells with recombinant IFNγ 

revealed a dose dependent increase in PDL1 expression. This data taken together 

demonstrates that virus-specific CD8+ T-cells, through IFNγ production, engage in 

cross talk with infected hepatocytes via regulation of the expression of the PDL1 

ligand on the surface of hepatocytes.  

 

These results provide evidence that the PDL1 pathway plays a central role in 

dictating the balance between cytolytic and non-cytolytic CD8+T-cell effector 

functions, initially preserving non-cytolytic cytokine driven control of viral replication, 

whilst curtailing cytolytic functions, thereby limiting liver cell injury. Blockade of the 

PD-1 pathway in the direct co-culture model resulted in an increase in the number of 

cells undergoing apoptosis as assessed both by ALT measurements and by Annexin 

V/PI FACS analysis. There was no impact on anti-viral cytokine production observed 
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for 48hrs following blockade of the PD-1 pathway and no difference in viraemia 

levels was observed.  

The results of this study show that hepatocytes are active participants in 

bidirectional, tissue-specific regulation of T-cell functions influencing the definition of 

the differential effector function commitment of HBV-specific CD8+ T-cells via the 

PD-1/PDL1 pathway, promoting effective viral control without extensive liver injury. 
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Chapter 7 

 

Hepatitis B virus upregulates hepatocyte 

expression of PDL1 to evade hepatotoxic 

adaptive immune responses 
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7) Hepatitis B virus upregulates hepatocyte expression of PDL1 to evade  

hepatotoxic adaptive immune responses 

 

7.1. Background to study 

There is a growing body of evidence suggesting the hepatitis B virus employs a 

variety of strategies aimed at overwhelming, evading or neutralising the host immune 

response to infection resulting in chronicity of infection (see Chapter 1).  

 

Previous chapters of this thesis have demonstrated that infected hepatocytes can 

pre-programme differential effector functions of virus-specific CD8+T-cells through 

their cell surface expression of PDL1 (see Chapter 6). In this way target hepatocytes 

can themselves impact on the balance between CD8+T-cell cytolytic and non-

cytolytic effector functions.  

 

This study investigates whether HBV infection can itself impact on hepatocyte PDL1 

expression. Through this potential manipulation of the PD-1 pathway, Hepatitis B 

virus may specifically target cells of the adaptive immune response,  inhibiting 

components of CD8+ T-cell effector functions leading to virus-specific T-cell 

exhaustion and subsequent persistence of infection. 

 

The impact of HBV infection on hepatocytic PDL1 expression was assessed through 

the transfection of a human hepatoma cell line (Huh-7) with Hepatitis B virus.  
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The varying levels of PDL1 expression on human hepatoma cell lines that 

constitutively express Hepatitis B virus compared to their parent cell lines was also 

assessed.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



217 

 

7.2. Results 

 

7.2.1. Increased PDL1 expression following transfection of Huh7 cells with 

Hepatitis B virus 

There was a significant increase in both intracellular and secreted HBV-DNA levels 

following transfection of Huh7 cells with HBV via a plasmid vector, confirming 

successful transfection of Hepatitis B virus (Figure 37). This increase in HBV-DNA 

levels was associated with a relative increase in PDL1 expression on transfected 

hepatocytes (Figure 37). There was no observed increase in PDL1 expression 

following transfection of hepatocytes with an empty vector, suggesting this 

observation was virus-specific. Following transfection there was no observed 

increase in PD-1 or PDL2 expression on target hepatocytes (remained 

undetectable). 

 

7.2.2. Correlation between PDL1 expression and HBV-DNA levels following 

transfection of Huh7 cells with Hepatitis B virus 

There was a significant correlation between PDL1 expression on hepatocytes and 

HBV-DNA levels quantified both intracellularly (cytoplasmic HBV-DNA) (r=0.98, 

p=0.01) and HBV-DNA secreted in the supernatants (r=0.908, p=0.048), following 

transfection of Huh7 cells with hepatitis B virus (Figure 38). 
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Figure 37: HBV-DNA levels and PDL1 expression on Huh7 cells following 

transfection with Hepatitis B virus infection 

 

Extracellular (Figure 37a) and Intracellular (Figure 37b) HBV-DNA levels were 

elevated following transfection of Huh7 cells with Hepatitis B virus. Each panel is 

representative of at least 3 separate experiments. 
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Figure 38: Correlations between HBV-DNA levels and PDL1 expression 

following transfection of Huh7 cells with Hepatitis B virus 

 

 

A close correlation was observed between both extracellular (secreted)(Figure 38a) 

& intracellular (cytoplasmic)(Figure 38b) HBV-DNA levels and relative expression of 

PDL1.   
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7.2.3. Increased PDL1 expression in hepatoma cell lines which constitutively 

express live virions (HepG2215 cell line) compared with HepG2 parent cell line 

The relative expression of PDL1 on the cell surface of HepG2.2.15 cells (which 

constitutively express Hepatitis B virus) and HepG2 cells (the parent cell line for the 

HepG2.2.15 cells) was assessed. PDL1 expression was also assessed in a 

controlled tissue culture setting to ascertain whether it was constant over time. 

Neither of these cell lines were found to constitutively express detectable levels of 

PD-1 or PDL2 in culture.  

 

Both cell lines expressed stable levels of PDL1, which did not significantly change 

over time. A higher level of basal PDL1 expression was observed on HepG2.2.15 

cells compared with HepG2 cells (Figure 39).  
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Figure 39: HepG2215 have constitutively higher levels of expression of PDL1 

than parent HepG2 cells 

 

 

HepG2.2.15 cells constitiutively have greater expression of PDL1 on the cell surface 

than their parent HepG2 cells. 
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7.2.4. Activation of HBV-DNA expression in an AD38 cell line via a tetracycline 

inhibited promoter region resulted in concurrent upregulation of PDL1 

expression 

Dynamic changes in PDL1 expression following activation of HBV-DNA expression 

in an AD38 cell line, through a tetracycline-dependent promoter region, were 

assessed. Activation of hepatitis B virus genome transcription in the AD38 cell line 

(by incubating in the absence of tetracycline) resulted in an increase in both HBV-

DNA levels and PDL1 expression on the cell surface of these hepatoma cells (Figure 

40). There was a close correlation between HBV-DNA levels and PDL1 expression 

in this “activated” AD38 cell line.    
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Figure 40: Activation of AD38 cell line resulted in an increase in HBV-DNA 

production, which correlated with an increased cell surface expression of 

PDL1 

 

HBV DNA and PDL1 expression in AD38. (a) Activation of AD38 cell line with Tet resulted in 

an increase in HBV-DNA production, which correlated with an increase in expression of 

PDL1. (b) Switching HBV DNA production off from day 1 resulted in a decrease in PDL1 

expression. Switching HBV DNA production back on from day 8 resulted in a subsequent 

increase in PDL1. There was a strong correlation between PDL1 and HBV DNA levels (c).  

R = 0.83, p = 0.006 



224 

 

7.3. Summary of Results 

This study demonstrates that following transfection of Huh7 human hepatoma cells 

with Hepatitis B virus, there is a significant increase in the expression of PDL1 by 

these cells which was not observed following transfection with an empty vector. 

 

A close correlation between PDL1 expression by Huh7 cells following transfection 

with hepatitis B virus and HBV-DNA levels (both excreted and intracellular) was 

observed over time. 

 

An increased expression of PDL1 on hepatoma cell lines which constitutively 

express live virions compared with their parent hepatoma cell lines was observed, 

and activation of HBV-DNA expression in an AD38 cell line via a tetracycline switch 

resulted in concurrent upregulation of PDL1 expression. 

 

These results suggest a novel mechanism that Hepatitis B virus may employ to 

evade immune responses, through the upregulation of PDL1 expression on host 

cells (infected hepatocytes). 
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Chapter 8 

 

Discussion 
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8) Discussion 

It is estimated that 2 billion people worldwide have been exposed to the hepatitis B 

virus and there are over 400 million people chronically infected with this virus. With 

the exception of interferon therapy, all currently available treatments directly target 

the HBV polymerase enzyme. Whilst these agents may control viral replication for a 

period of time there are significant short-comings in these therapies, principally 

relating to concerns over long-term usage with the resulting emergence of 

resistance, together with the cost of these therapeutics and the potential side effects 

of indefinite use of these agents. Furthermore, it is well established that a broad, 

strong immune response to infection is central to effective control of viral replication.  

 

To this end there has been much interest in the immunopathogenesis of hepatitis B 

virus infection, specifically investigating which cells of the innate and adaptive 

immune response are central in the successful resolution of infection. Although these 

investigations have been hampered by a deficit of studies which have recruited 

patients with an acute HBV infection (due to the difficulty in recruiting this patient 

cohort), there is a growing body of evidence which points to the importance of a 

robust CD8+ virus specific T-cell response targetting multiple viral epitopes in 

dictating whether there is resolution or chronicity of infection following exposure to 

HBV.  

 

It has also been demonstrated that the level of virus-specific CD8+ T-cell responses 

in terms of cytokine production, cytotoxicity and proliferation, depends on a balance 
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of stimulatory and inhibitory T-cell pathways. Barber et al. first described the 

potential importance of the Programmed Cell Death (PD-1/PDL1) pathway (one of 

the inhibitory T-cell costimulatory pathways) in a mouse model of Chronic 

Lymphocytic Choriomeningitis Virus (LCMV) infection. This group demonstrated, in a 

genome wide microarray, that PD-1 was upregulated on “exhausted” virus-specific T-

cells compared with “functional” T-cells. Furthermore, it was shown that blockade of 

the PD-1 pathway resulted in restoration of T-cell functions with increased 

cytotoxicity, cytokine production and proliferation, and perhaps most importantly of 

all, reduction of viral load, with clearance of the virus from the spleen and blood of 

these mice. Further work in HIV (Day et al, Trautmann et al) demonstrated a similar 

role of reversible virus-specific T-cell dysfunction in HIV infection. 

 

In this thesis the role of the PD-1 pathway in the immunopathogenesis of hepatitis B 

virus infection was investigated through several different approaches. Firstly, 

longitudinal changes in PD-1 expression in patients with chronic hepatitis B virus 

infection undergoing oral antiviral therapy was investigated. This provided the 

opportunity to analyse the relationship between viral load and PD-1 expression at 

both transcriptional and translational levels. Next, through the employment of a 

purposely-designed in vitro cell co-culture model of Hepatitis B virus infection the 

interactions between HBV-producing hepatocytes (target cells) and CD8+ T-cells 

(effector cells) was investigated. In addition, through the transfection of a human 

hepatoma cell line with hepatitis B virus and the analysis of various hepatoma cell 

lines that differentially express Hepatitis B virus, the impact of the Hepatitis B virus 
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on subsequent hepatocytic expression of PDL1 (the major ligand for PD-1) was 

investigated. 

 

Although cell culture techniques are useful tools in investigating the 

immunopathogenesis of chronic hepatitis B infection, it should be remembered that 

there are limitations to these techniques. The most obvious short fall in the use of 

these co-culture models is the absence of other cells of the innate and adaptive 

immune responses that are so important in shaping immune responses and dictating 

host and immune interactions (e.g. dendritic cells etc). The other important limitation 

of these studies is the lack of the unique micro-environment and architecture of the 

liver.  These co-culture models use cloned T-cell lines and hepatoma cell lines which 

leads to several concerns. Firstly, it is known that in-vivo a wide T-cell response 

targeting multiple epitopes is important in viral clearance and this model only has 

one T-cell clone in vitro. Furthermore, hepatoma cell lines are known to produce 

elevated levels of PDL1 compared to primary human hepatocytes, although 

examination of how this expression is modulated is of value and appears to transfer 

from hepatoma lines to primary human hepatocytes.  

 

The interpretation of statistical correlations that arise from these co-cultures need to 

be performed with caution. The use of cell clones in tightly controlled conditions lead 

to highly reproducible results and subsequent statistical analysis can therefore 

suggest extremely close correlations between measured variables (e.g. stated 

correlations between IFNγ and PDL1 expression in cell culture models – see chapter 
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6). It should be remembered that these controlled cell culture techniques, whilst 

useful in the assessment of specific relationships, do not approximate what is 

happening in vivo and apparently strong causal relationships in these controlled 

experiments are almost certainly of less significance in vivo where multiple dynamic 

and variable factors may be involved. 

 

The programmed cell death pathway in patients with chronic hepatitis B undergoing 

anti-viral therapy: 

These studies have demonstrated that there is a direct correlation between viral load 

and PD-1 expression on effector virus-specific CD8+ T-cells, in a cohort of patients 

with CHB undergoing a course of oral anti-viral treatment. Furthermore, treatment-

induced suppression of viraemia resulted in a significant decrease in PD-1 

expression on virus-specific CD8+ T-cells both at a transcriptional level (mRNA 

expression by RT-PCR) and at a translational level (cell surface protein expression 

by flow cytometry). 

 

 Another important finding of this study was that the decrease in HBV-DNA with 

antiviral treatment and a concomittant decrease in PD-1 expression was associated 

with improvement in virus specific T-cell reactivity. Furthermore, HBeAg 

seroconversion was associated with a further decrease in PD-1 expression. 
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These findings extend recent observations in patients with acute hepatitis B showing 

decreased PD-1 expression on CD8+T-cells of patients with spontaneous resolution 

of HBV infection, while in those with persistent HBV replication both PD-1 and HBV-

DNA levels remained high (Boettler et al 2006, Boni et al 2007).  Serial testing of 

seven patients with anti-HBe positive chronic hepatitis B infection, having 

spontaneous reactivation of the disease, demonstrated that viral load can directly 

influence HBV-specific T-cell repertoire (Boni et al 2007). The advantage of the 

present study design is that by monitoring longitudinally the impact of treatment-

induced suppression of HBV replication with direct antivirals Telbivudine or 

Lamivudine, the cause-effect relationship between viral load, PD-1 expression and 

CD8+ T-cell function could be defined. 

 

In this study cohort a close positive correlation between HBV-DNA levels and PD-1 

expression on total & HBV-specific CD8+T-cells as well as on CD4+T-cells was 

demonstrated. A number of studies have demonstrated in a mouse model with 

LCMV infection and in humans infected with HIV, HBV or HCV, that blockade of PD-

1 binding to its ligands results in functional restoration of virus-specific T-cells 

(Barber et al 2006, Trautmann et al 2006, Day et al 2006, Urbani et al 2006, Boni et 

al 2007, Penna et al 2007, Golden-Mason et al 2007). This has led to speculation 

that blockade of the PD-1/PD L-1 pathway may be a possible immunomodulatory 

approach for enhancing immune control of viral replication. However, the PD-1 

pathway has potential harmful effects, such as precipitating autoimmunity or 

immunopathology and these should be considered before embarking on blockade of 

this pathway as a therapeutic approach.(Martinic et al 2008). Moreover, as 
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discussed later, manipulation of this pathway has a significant impact on the 

differential effector commitments of CD8+ T-cells potentially resulting in increased 

cytolysis, which in vivo could lead to fulminant liver damage. Indeed, it was 

demonstrated by Barber et al. 2006 that mice with knock out of the PD-1 gene    

(PD-1-/- ) succumbed early to fatal immunopathogenesis.  In order to avoid immune-

mediated damage to the host, selective targeting of PD-1 on virus-specific T-cells 

may be a pre-requisite to achieving an acceptable risk/benefit balance with this 

approach to the control of viral replication. 

 

It is recognised that high ALT levels are associated with an increased rate of HBeAg 

seroconversion, both during the natural history of the disease and with antiviral 

treatment (Perrillo et al 2002). If ALT is a surrogate marker of an ongoing “immune 

response” to HBV then a relationship between ALT at baseline and PD-1 expression 

might have been expected. However this study revealed no such relationship. This 

was in part due to the fact that PD-1 levels were significantly different at baseline 

between individual patients and although a relative decrease in PD-1 expression was 

observed over time, some patients had higher absolute PD-1 levels at timepoint 3 

than other patients at baseline. It may also reflect that ALT is a marker of hepatocyte 

necrosis rather than the degree of inflammation per se. ALT levels in these patients 

are known to fluctuate and are affected by diverse factors. Analyses of HBV-specific 

CD8+T-cells in patients with both HBeAg positive and negative chronic hepatitis B 

showed lack of association between disease exacerbations and the frequency of 

circulating virus-specific T-cells (Webster et al 2004, Boni et al 2007). The present 

study extends the findings by Webster et al that whilst the repertoire of HBV-specific 
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CD8+T-cells is inversely proportional to the level of HBV replication, there is no 

direct correlation with the degree of liver damage (Webster et al 2004).  

 

Treatment-induced suppression of HBV replication results in significant decrease in 

PD-1 expression in all patients – those with HBeAg seroconversion and patients 

remaining HBeAg positive. It has been demonstrated that HBeAg loss during 

treatment with adefovir dipivoxil is associated with both profound reduction of HBV-

DNA levels, and an increase in CD4+T-cell reactivity, while patients with moderate 

reduction in serum HBV-DNA and no changes in CD4+T-cell responses remained 

HBeAg positive (Cooksley et al 2007). Thus, reduction of PD-1 expression, as a 

result of profound reduction of HBV viral load does not appear enough to fully restore 

CD4+ and CD8+T-cell response and to achieve HBeAg seroconversion in all treated 

patients. 

 

The difference in PD-1 expression and the percentage of various memory subsets 

seen at baseline merits further comment. Analysis of the correlations between PD-1 

expression and central memory, effector memory and effector phenotypes in core 

specific cells at baseline suggest that elevated PD-1 levels are associated with a 

decrease in effector cells and an increase in central memory and effector memory 

phenotypes. This adds support to the concept that PD-1 plays a central role in T-cell 

exhaustion and viral persistence. However, there was no significant relationship 

between frequency of different memory phenotypes of CD4+ and CD8+T-cells 

expressed at different time points, and HBV-DNA levels, e antigen status and PD-1 
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expression observed in this cohort of patients. It may be that PD-1 expression does 

not impact memory phenotypes as it is more a marker of CD8+ T-cell functionality 

and is dynamically responsive to the environmental factors (e.g. HBV-DNA levels – 

see later).  

 

Nucleoside analogues are thought to interfere with viral replication, lowering HBV-

DNA levels, but have not been proven to influence the development of effective 

memory T-cell differentiation and function, hence the need for long term therapy to 

control viral load (Marinos et al 1996). This study did not show any difference in the 

frequency of different memory phenotypes on CD4+ or CD8+T-cells expressed at 

different time points. It did however show a significant increase in the frequency of 

IFNγ producing CD4+ and CD8+T-cells over time, as well as a decrease in the 

frequency of IL-10 producing T-cells. This suggests that there may indeed by a shift 

in the cytokine profile of T-cells as HBV-DNA and PD-1 expression decrease with 

anti-viral therapy. Given the mechanism of action of Telbivudine or Lamivudine, 

which directly block viral replication, it seems likely that therapy results in a fall in 

HBV-DNA levels, and that this in turn leads to a decrease in PD-1 expression, which 

results in an improvement in cytokine production by HBV-specific T-cells. This is 

similar to what is reported in infection with HIV (Trautmann et al 2006, Day et al 

2006). 
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Overall, these experiments highlighted the closely related mechanisms linking HBV 

replication and impaired T-cell functions in chronic hepatitis B. The data revealed 

strong correlation between HBV viremia and hyperexpression of PD-1 on all T-cells.  

 

The physiological role of PD-1 pathway in dictating the balance of cytolytic and non-

cytolytic effector T-cell function: 

In order to further evaluate the dynamic interaction between virus-specific CD8+ T-

cells and their target cells (infected hepatocytes) and the role of the PD-1 pathway in 

this interaction, a purpose designed in-vitro model with a HBV-specific CD8+ T-cell 

clone derived from a patient who had recovered from acute hepatitis B infection and 

a human hepatoma cell line that constitutively expresses fully infectious Dane 

particles (the HepG2215 cell line) was developed. 

 

These studies revealed that both cytolytic and non-cytolytic CD8+ T-cell effector 

functions play an important role in the effective control of viral replication in this 

model of human hepatitis B virus infection and demonstrates the importance of non-

cytolytic anti-viral cytokines in “purging” hepatitis B virus from infected hepatocytes.  

This data is further supported by an observed correlation between IFNγ production 

and reduction in serum and liver HBV-DNA in murine and chimpanzee models of 

acute HBV infection (Guidotti et al 1996 & 1999). Furthermore an inverse correlation 

between HBV-DNA levels and the frequency of IFNγ producing CD4+ T-cells was 

observed in patients with chronic hepatitis B undergoing treatment with recombinant 

interleukin-12 which is a potent inducer of IFNγ production (Rigopoulou et al 2005). 
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This data is supported by the observation by Jung et al (1999) that HBV-specific T-

cells in patients with chronic hepatitis B had weak or absent antigen-specific IFNγ 

production, in contrast to a more robust IFNγ production from HBV-specific T-cells in 

acute resolving hepatitis B infection. 

 

The importance of some degree of a cytolytic response should not, however, be 

underestimated. Perforin-deficient mice are unable to clear LCMV infection (Kagi et 

al 1994) and patients with an elevated ALT during acute hepatitis B are more likely to 

successfully resolve their infection. 

 

These experiments also reveal that co-culturing activated virus-specific CD8+ T-cells 

with their target cells (infected hepatocytes) results in upregulation of PDL1 on the 

hepatocyte cell surface. This would suggest that there is cross-talk between HBV-

specific CD8+ effector T-cells and their target hepatocytes, and as this effect is 

dependent on the number of T-cells present and also seen in an indirect co-culture 

system, it appears to be driven by a soluble factor that is produced by activated 

CD8+ T-cells. Subsequent studies reported in Chapter 6 demonstrated that the 

soluble factor responsible for this observed upregulation of PDL1 was IFNγ. 

 

Following an acute hepatitis B virus infection, Type 1 interferons are produced by 

several cell types, including infected hepatocytes, which both directly inhibit HBV 

replication (Caselmann et al 1992) and stimulate CCL3 production from Kupffer cells, 

resulting in the recruitment of NK and NKT cells (Crispe 2003). Once activated these 
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NK cells produce IFNγ in significant quantities, resulting in a substantial increase in 

intrahepatic IFNγ levels during acute HBV infection (Hodgson et al 2001). Indeed, 

the number of NK cells simultaneously peaks with HBV replication, before the 

appearance of a virus-specific T-cell infiltrate in the liver 2-4 weeks later (Webster et 

al 2000).  

 

These results suggest that in the context of a hepatitis B virus infection, IFNγ 

production by cells of the innate immune response may result in upregulation of 

PDL1 on hepatocytes. Subsequently, when CD8+ T-cells are exposed to direct 

contact with their target cells (infected hepatocytes), this upregulation of PDL1 

results in attenuation of the destructive adaptive immune response, limiting CD8+T-

cell driven cytolytic liver damage with initial preservation of non-cytolytic cytokine-

mediated control of viral replication. This “priming” of hepatocytes, with upregulation 

of PDL1 may explain why virally infected hepatocytes show resistance to perforin/ 

granzyme-mediated killing (Kafrouni et al 2001) whilst remaining sensitive to anti-

viral cytokine mediated control of viral replication. 

 

In parallel to this suppression of cytolysis through upregulation of PDL1 on target 

cells, IFNγ carries out a vital anti-viral “purging” of infected hepatocytes as 

demonstrated by our data with neutralizing antibodies to IFNγ (see chapter 5).  

 

Whilst it has been demonstrated previously that IFNγ applied directly to primary 

human hepatocytes results in upregulation of PDL1 (Muhlbauer et al 2006) for the 



237 

 

first time this study demonstrates that this upregulation is dose dependent, can be 

driven at concentrations of IFNγ produced by virus-specific T-cells, and crucially that 

this upregulation has functional consequences on the balance between cytolytic and 

non-cytolytic CD8+ T-cell effector functions. 

 

Adoptive transfer of an HBV-specific CD8+ T-cell clone into a transgenic mouse 

model of HBV infection resulted in severe necroinflammatory liver disease that 

resembled an acute viral hepatitis (Ando et al 1994, Moriyama et al 1990). Of 

interest, repeated infusions of these HBV-specific T-cells did not result in further 

episodes of hepatitis, if they were readministered within 3-4 weeks of first infusion 

(Wirth et al 1995). Our model suggests that the intrahepatic IFNγ production from the 

initial infusion upregulates PDL1 on hepatocytes, priming them, and leaving them 

resistant to further CD8+ T-cell cytolysis. 

 

There is already some data suggesting that manipulation of the PD-1/PDL1 pathway 

has consequences for the delicate balance between cytolytic and non-cytolytic CD8+ 

effector T-cell functions. Blockade of this synapse with a monoclonal antibody in 

transgenic murine models of herpes stromal keratitis significantly exacerbated the 

keratitis (Jun et al 2005) and blockade in a further model which expresses OVA as a 

self-antigen throughout the small bowel, resulted in a highly specific CD8+ T-cell 

mediated fatal auto-immune enteritis (Reynoso et al 2009). 
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Previous reports examining the role of the programmed death pathway during 

established chronic viral infections, have implicated hyperexpression of PD-1 in the 

observed exhaustion of virus-specific CD8+ T-cells.  Moreover, PD-1 blockade has 

resulted in restoration of both cytolytic and non-cytolytic CD8+ T cell effector 

functions (Barber et al 2006, Trautmann et al 2006, Golden-Mason et al 2007). 

 

Taken together, these observations suggest a possible temporal difference whereby 

PD-1 engagement during acute viral infection initially limits immunopathogenesis, 

whilst anti-viral cytokine production is at first preserved and indeed drives the further 

predominance of this pathway through the upregulation of PDL1 on target cells. 

Preservation of cytokine-mediated control of viral replication is also seen in a 

transgenic mouse model of chronic hepatitis B infection where antibody mediated 

blockade of the PD-1/PDL1 pathway does not result in a significant difference in 

IFNγ production by intrahepatic lymphocytes 5 days after adoptive transfer of virus-

specific CD8+ T-cells (Maier et al 2007). In contrast, once chronic infection with 

hepatitis B has been established, virus-specific CD8+ T-cells are phenotypically 

exhausted, with impairment of both curative and destructive effector functions as a 

consequence of ongoing viral replication.     

 

These results suggest a physiological homeostatic role of IFNγ in maintaining the 

balance between antiviral suppression of viral replication through the activation of 

intracellular antiviral pathways, and suppression of CD8+ T cell cytolytic effector 

functions through a negative feedback loop via the upregulation of PDL1 on target 
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hepatocytes and may in turn explain the apparent ineffectiveness of IFNγ as a 

therapeutic approach to the treatment of chronic viral hepatitis (Kakumu et al 1991, 

Lau et al 1991). 

 

Overall these findings provide evidence of an important mechanism by which 

hepatocytes, in response to IFNγ produced by cells of the immune system, play an 

active role in the tight regulation of CD8+ T cell effector function delivery through 

upregulation of PDL1 expression. This role is pivotal in maintaining the fine 

equilibrium between effective control of viral replication, and avoiding excessive 

tissue injury. 

 

HBV hijacks PD-1 pathway 

The Hepatitis B virus has evolved effective strategies for resisting immune 

responses through overwhelming, neutralising or evading innate and adaptive 

immune responses to infection (see Chapter 1 Section 1.3.3.1). 

 

These studies have demonstrated that hepatoma cell lines which constitutively 

express HBV, have higher levels of PDL1 expression than their parent cell lines. 

Furthermore, activation of HBV-DNA transcription in an AD38 cell line through a 

tetracycline on/off switch results in an increase in PDL1 expression. Finally, 

transfection of a human hepatoma cell line (Huh7 cell line) with HBV-DNA via a 

plasmid, results in upregulation of PDL1 expression which increased from 6 hours 
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post transfection through to 72 hours. This increase in PDL1 expression directly 

correlated with both intracellular and excreted HBV-DNA levels, suggesting that viral 

load predicts the degree of upregulation of PDL1. Cell surface PDL1 expression was 

assessed with flow cytometry in this transfection model, but no upregulation of PDL1 

expression was observed, despite those changes observed at an mRNA level. This 

may reflect differences in the effective translation and translocation of PDL1 by Huh7 

cells. This phenomenon has also been observed in iNOS expression following IFNγ 

treatment of Huh7 cells (Proto et al 2008). 

 

These results suggest that Hepatitis B virus replication can itself result in 

upregulation of PDL1 on infected hepatocytes and this phenomena may in turn result 

in skewing of the balance between cytolytic and non-cytolytic immune responses, 

contributing to viral persistence. 

 

In conclusion, these studies demonstrate that the PD-1 pathway plays an important 

role in the immunopathogenesis of chronic hepatitis B virus infection. The main 

findings of this thesis are summarised in Figure 41 and represent a possible model 

by which the PD-1 pathway is involved in the establishment of chronic HBV infection.  

 

In patients with chronic hepatitis B on anti-viral therapy, viral load directly correlates 

with PD-1 expression on CD8+ and CD4+ T-cells in vivo. Furthermore the Hepatitis 

B virus itself upregulates PDL1 expression on infected hepatocytes in vitro. Both 

cytolytic and non-cytolytic CD8+ T-cell effector functions are important in effective 
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control of viral replication, and blockade of the PD-1 pathway distorts the balance 

between these differential effector functions in vitro. The PD-1 pathway has evolved 

along with other co-inhibitory pathways as an evolutionary break on the adaptive 

immune response, and the Hepatitis B virus has probably evolved to take advantage 

of this inhibitory T-cell pathway allowing it to persist with chronicity. 

 

Future areas of study will undoubtedly include clinical trials of fully humanised anti-

PD-1 antibody and may also involve neutralising antibodies to other co-inhibitory T-

cell pathways (e.g. CTLA-4 etc). Indeed there is currently an ongoing clinical trial 

with a fully humanised anti-PD-1 antibody in 34 patients with chronic hepatitis C virus 

infection, who have failed standard treatment strategies. These trials must be 

conducted with caution as the risk of excessive immune-mediated host damage is 

well recognised. These studies will need to encompass other chronic viral infections 

(e.g. HIV/HCV). 

 

It is also crucial to establish the intracellular mechanisms by which Hepatitis B virus 

infection upregulates PDL1 expression on hepatocytes as this may lead to the 

development of further immunotherapeutic targets.   
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 Figure 41: The role of PD-1 pathway in the immunopathogenesis of chronic 

hepatitis B infection 
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This figure summarises the main findings of this thesis and represents a possible model by which the 

PD1 pathway is involved in the establishment of chrnoic HBV infection. 

Finding 1. PD-1 hyperexpression is associated with dysfunctional CD8+ T-cells. These studies in 

patients with CHB undergoing a course of oral antiviral therapy confirmed that the observed paralysis 

of T-cell function was reversible and associated with HBV-DNA levels and hyperexpression of PD-1. 

Finding 2. PD-1 engagement impacts on differential effector functions of HBV-specific CD8+ T-cells. 

These studies in a purposely-designed model of human hepatitis B virus infection demonstrated that 

engagement of the PD-1/PDL1 pathway resulted in a decrease in cytolytic CD8+ T-cell function, with 

initial preservation of non-cytolytic cytokine production. 

Finding 3. Hepatitis B virus exploits the PD-1 pathway which may favour viral persistence. These 

studies on human hepatoma cell lines which express components of HBV and transfection of 

hepatoma cell lines with HBV demonstrate that HBV infection results in upregulation of PDL1 

expression on the cell surface of infected hepatocytes, with subsequent functional impairment of T-

cell reactivity, possibly favouring chronicity of infection. 
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