
Methods and Metrics for Selective Regression Testing

Rami Bahsoon +* and Nashat Mansour*
'Department of Computer Science, University College London, Gower Street,

London, WClE 6BT, UK. E-mail: r.bahsoon @cs.ucl.ac.uk
"Computer Science Prozram, Lebanese American University, P. 0. Box 13-5053,

Beirut, Lebanon. E-mail:

Abstract

In corrective maintenance, selective regression testing
includes test selection from previously run test suite and
test coverage identification. We propose three reduction-
based regression test selection methods and two coverage
McCabe-based identification metrics. We empirically
compare these methods with other three reduction and
precision-oriented methods using 60 test-problems. The
comparison shows that our proposed methods yield
favourable results.

1. Introduction

Let TS={tl, tz, . . ., tN} be the set of N test cases used in
the initial development of a program P. Selective
regression testing addresses two major problems: test
selection and coverage identification. Test selection
problem requires a subset of test cases, R, be selected
from TS for rerunning on the modified program P'. The
objective is to provide confidence that no adverse effects
have been caused by the modification. The coverage
identification problem identifies portions of P' that
require additional testing. This might require creating R',
a set of new tests for P', and updating TS. This paper
addresses both problems.

A number of selective regression testing methods have
been proposed for guiding the test selection. In particular,
Mansour and El-Fakih [4] have proposed using an
optimization formulation of the selective retesting
problem and a Simulated Annealing (SA) algorithm for
minimizing the number of selected test cases. Harrold,
Gupta, and Soffa [3] have suggested a Reduction
methodology (RED) for managing a test suite, which can
be used for reducing the number of selected test cases.
Agrawal, Horgan, and Krauser [2] have proposed slicing
algorithms (SLI) that select test cases whose output may
be affected by the modification made to the program.

To address the test selection problem, we propose three
reduction-based selective regression testing methods.
These are Modification-Based Reduction version 1
(MBRl), Modification-Based Reduction version 2
(MBR2), and Precise Reduction (PR). MBRl improves
the RED algorithm by accounting for the location of the
modification made and its effects. MBR2 improves
MBRl by selecting only test cases that execute the

nmansour@luu.edu. lb

modification. PR uses slicing in a similar way to the SLI
algorithm to determine the useful test cases and applies a
reduction procedure to reduce the final number of selected
retests. We use 60 test-problems to empirically evaluate
MBR1, MBR2, and PR and compare them with SA, RED,
and SLL

We approach the coverage identification problem by
suggesting two McCabe-based regression test coverage
metrics. These are Reachability regression Test selection
McCabe-based metric (RTM), and data-flow Slices
regression Test McCabe-based metric (STM). RTM
provides an upper-bound indication of the number of
paths that must be tested. STM is a data-flow McCabe-
based variable-dependent metric. It computes two bounds:
an upper and a lower bound of the regression tests
required for covering the affected definition-use pairs.

The rest of the paper is organized as follows. Section 2
describes the program modelling used. Section 3 presents
the reduction-based methods. Section 4 presents the
regression test coverage metrics. Section 5 gives the
experimental results. Section 6 contains our conclusions.

2. Program modelling

A subject program is modelled by a control-flow graph
G with n nodes. Each node represents a control statement
or a contiguous sequence of assignment statements. The
nodes stands for requirements {TI, rZ, ..., rn} to regression
test for. The graph edges represent control/data flow. TS =
{tl, t2, ..., tN} can be expressed as a union of non-disjoint
subsets T1 U TZ U ... U To , where Ti={til, tiz, ..., ki}is a
subset of TS used to cover requirement ri. the cardinality
of Ti is Ci. To perform slicing and data-flow based
analysis, we extend the model to keep variables
definitions and uses information in relevant
segmentdnodes.

3. Reduction-based methods

We propose three reduction-based methods that
improve RED algorithm by accounting for the
modification made and its effects. These are MBRl,
MBR2, and PR. We only present the motivations of these
methods due to space limitation.

MBRl reduces the number of selected regression tests
by eliminating tests that cover requirements impacted by

0-7695-1165-1/01 $10.00 0 2001 IEEE 463

mailto:cs.ucl.ac.uk
mailto:nmansour@luu.edu

the change and those that are redundant [3]. Our approach
to determine the requirements potentially impacted by the
change uses reachability information derived from the
subject program’s control-flow graph. Reachability
information characterizes requirements that reach or are
reachable from the modified one as potentially affected.
MBRl only tests for such. It selects a subset R of test
cases from TS. R must contain at least one test case from
each Ti associated with the affected ri to secure an
adequate coverage of the changed and potentially affected
requirements.

MBR2 improves MBRl by eliminating tests that cover
a requirement characterized as potentially affected and do
not reveal any modification. MBR2 uses these
observations, derived from MBR1, to eliminate such tests:
(i) not every test tk E Ti exercising a requirement, which
reaches or is reachable from the modified requirement,
does necessarily cover the modification; (ii) if a
requirement, say the modified one, is not executed by a
test case, it can not affect the program output for that test;
(iii) a requirement that reaches or is reachable from the
modified requiremenvsegment does not necessarily affect
the program output of the modification-related part of the
subject p r o g r a For example, a control node initially
characterized as potentially impacted by the change,
might evaluate to unaffected requirements. Tests
covering these paths might not reach the modification.
MBR2 eliminates such cases.

PR uses modification and computed relevant slices [2]
information. PR is motivated by the following
observations: (i) not all requirements in the program are
executed under a test case; (ii) if a requirement is not
executed under a test case, it can not affect the program
output for that test case; and (iii) even if a requirement is
executed under a test case, it does not always affect the
program output for that test case. These observations are
used to orient the reduction process to only select tests
with relevant slices that contain modified requirement(s)
and affect the output for the considered modification(s).
Such orientation ensures that only modification-revealing
tests are the selected, all non-modification-revealing tests
are omitted. Thus, the method is said to be precise [11. PR
also eliminates all redundant tests.

4. McCabe-based identification metrics

We suggest two McCabe-based [7] test selection
coverage identification metrics. The metrics quantify the
retesting effort; monitor retesting coverage adequacy;
suggest bounds on regression tests; assist in generating
tests to rerun for testing the change; and identify where
additional tests may be required. The Cyclomatic
complexity [7] is given by v (G) for a control-graph G.

The Reachability regression Test selection McCabe-
based metric (RTM) provide an upper bound of the
number of selected regression tests that guarantee the
coverage of requirements potentially affected by the
modification at least once. Given that segmenunode I has
been modified in G, The RTM upper bound, denoted by
RU (l), computes as follows. First, remove all control

464

segments that do not reach and are not reachable from 1.
This yields a reduced flow graph GI with the same entry
and exit nodes as those of G. RU (1)- (GI) provides an
upper bound of the number of linearly independent paths
that must be retested and hence the number of tests that
must be rerun to guarantee coverage of all ‘e .; g ments
potentially affected by the change in.1 at least once.

In Data-flow Slices Regression Test McCabe-Based
Metric (STM), we extend McCabe complexity to deal
with datdvariable modifications. STM has two bounds:
upper and lower numbers of regression tests to cover the
affected definition-use pairs due to data modification.

STM upper bound, denoted a SU (A), assumes that the
set of affected definitions-use pairs is identified using
backwardforward algorithms of [6] due to the
modification of variable x in segment 1 of G. Removing
from G all paths with control segments not leading to the
identified affected def-use pairs, we obtain a reduced
graph GI. SU (A)=v (GI) gives the number of all possible
independent paths from the entry node to the exit node of
the subject program that cover the affected def-use pairs.
Hence, the number of tests to rerun upon the modification
of variable x in segment 1.

To find a STM lower bound, we adjust the entry and
exit points of the reduced program’s graph, without losing
affected def-use testing coverage. We suggest backward
and forward adjustment of entries.

When a definition variable x is modified in
segmenthode 1, we use forward adjustment: we set the
node containing the modified variable as an adjusted
virtual entry point. A forward-walk algorithm [6] is then
performed to locate the uses of the variables x along all
paths. To find an adjusted virtual exit node, we examine
the number of returned affected def-use pairs of the
modified variable x edited at 1. If the returned number by
the walk is one, then we set the node containing the only
use as an adjusted virtual exit point. Else (if it exceeds
one), we find a node to which the obtained uses converge.
To determine such a node, the obtained uses are marked.
Depth-first search is then performed from the marked uses
to the first node at which searched paths converge. This
node is marked as the adjusted virtual exit node.

When a use is modified, we perform backward
adjustment. Backward adjustment follows the same
concept of that of forward. But, it sets the node containing
the modified use variable as an adjusted virtual exit node.
It uses backward-walk of [6] to locate the definitions of
the variables x along all paths and reverse-depth-first
instead to converge to a virtual entry node.

STM lower bound computes as SL (A)=v (GI), where
GI is a reduced graph with virtual entry and exit nodes.
This gives the number of all possible subpaths that must
be tested to ensure the coverage of affected def-use pairs
(from the virtual entry node to the virtual exit node). The
STM lower bound suggests rerunning SL (A) as the
minimum number of tests.

RTM and STM bounds can be employed to guide the
test selection process for coverage-based regression
testing methods. For example, data-flow methods of [6]
tends to include all redundant tests in the regression suite

satisfymg the affected def-use pairs and, in some cases,
leads to a high number of selected tests. This fact has
been experimentally observed [5]. To select a reduced
regression test suite with redundant tests eliminated, we
recommend using STM bounds to guide the test selection
process.

Inclusiveness
Lowest
Inclusiveness

5. Empirical results for test selection methods

68% 54% 18% 37% 46% 21%

We have generated 60 test problems from 17 program
modules to empirically compare MBR1, MBR2 and PR
with three reduction and precisionaiented methods.
These are SA, RED, and S U We base our comparison on
the following four quantitative criteria. (i) Percentage
number of selected tests, # R (ii) Execution time of the
code implementing the method, bxec; (iii) Precision to
measure the methods ability to omit non-modification-
revealing tests [l]; and (iv) Inclusiveness to measure the
extent a method selects modification-revealing tests [11.
In Tables 1 and 2, we present aggregate results for the 60
test problems.

Table 1 shows that the PR algorithm yields the least #R
72% of the time. This is because PR omits all non
modification-revealing and redundant tests. PR is the
fastest (kXec). MBRl shows slight improvement in #R
over RED. Because most of the modules used exhibit
strong inter-segment dependency, MBRl tends to test for
almost all segments in a similar way to RED. The results
show that MBRl’s #R varies with the location of the
modified segment and its degree of reachability to other
segments. MBR2 selects fewer tests when compared to
h4BRl due to its ability to omit tests that do not reach the
modification.

Table 1. Aggregate results for #R and taeC

Table 2. Inclusiveness and precision aggregate results

Highest

Table 2 shows that PR (like SLI) is fully precise. This
is due to its ability to omit all non-modification revealing
test cases and select only ones that are modification
revealing. The inclusiveness of PR depends on the
selected test cases with relevant slice containing a
modified requirement and is generally low; if there are
several redundant test cases with relevant slices traversing

a modified segment, PR attempts to select only one of
them MBR2 omits tests that fail to execute the
modification and shows improved precision over MBRl
and RED. When testing for programs with segments
exhibiting low reachability to the modified one, MBRl
tends to give higher precision values than that reported by
RED. The inclusiveness of SA, RED, MBR1, and MBR2
is low, since: (i) RED does not explicitly target
modification revealing test cases due to its independence
of the location of the modified segment, and (ii) if several
modification revealing test cases traverse a particular
segment, RED, MBR1, MBR2 and SA attempt to select
only one of them.

6. Conclusions
We have proposed three reduction-based regression

test selection methods (MBR1, MBR2, and PR) and two
McCabe-based metrics (RTM and STM) for regression
test coverage identification. We have empirically
compared MBR1, MBR2, and PR to three reduction
methods: SA, RED, and SLL The results show that three
methods offer reduction in the test suite. In contrast with
RED, they are dependent on the modification made to the
subject program PR selects the least number of tests for
most the test problems with full precision. MBR2 selects
fewer tests than RED and MBRl most of the time. PR
selects fewer tests than SLI while maintaining full
precision like SLL

The RTM metric is an upper bound metric. It provides
an indication of the number of potentially affected paths
that must be retested. The STM metric yields an upper
and a lower bound on the number of tests to rerun for
testing the affected definition-use pairs.

References

[l] G. Rothermel, and M.J. Harrold, “Analyzing regression test
selection techniques”, IEEE Tram. Software Engineering, 22(8),
August 1996, pp. 529-551.

[2] H. Agrawal, J.R. Horgan, and E.W., Krauser, ‘%memental
regression testing”, In: Proc. Conference on Sofnare
Maintenance, 1993, pp. 348-357.

[3] M.J. Harrold R. Gupta, and M.L. Soffa, “A methodology for
controlling the size of a test suite”, ACM Transaction on
Software Engineering and Methodology, July 1993, pp. 270-285.

[4] N. Mansour, and K. El-Fakih, “Simulated annealing and
genetic algorithms for optimal regression testing”, Journal of
Sofnare Maintenance, 1999, Vol. 11, pp. 19-34.

[SI N. Mansour, R. Bahsoon, and G. Baradhi, “Empirical
comparison of regression test selection algorithms”. Accepted, to
appear in: Joumal of Systems and Software, 2001.

[6] R Gupta, M.J. Harrold and M.L. Soffa, “An approach to
regression testing using slicing”. In: Proc. Conference on
Software Maintenance, 1992, pp. 299-308.

[7] T. McCabe, “A complexity measure”, ZEEE Trans. On
Software Engineering, 1976,2(3), pp. 308-319.

465

