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Abstract

Two-electron relativistic corrections to the ground-state electronic energy of water
are determined at over 300 geometries. The corrections include the two-electron Darwin
term of the Coulomb—Pauli Hamiltonian, and the Gaunt and Breit corrections, calculated
perturbationally using four-component variational Dirac-Hartree-Fock wavefunctions.
Fitted relativistic correction surfaces are constructed and used with an accurate ab ini-
tio nonrelativistic Born—-Oppenheimer potential to calculate vibrational and rotational
levels for Hy*%O. The calculations suggest that these two-electron relativistic corrections,
which have so far been neglected in rovibrational calculations on light molecules, have
a substantial influence on the levels of water. The effects considered have markedly

different characteristics for the stretching and bending levels.



1 Introduction

Many decades of work have been performed measuring, analyzing, and modelling the
rovibrational spectrum of water (see, for example, [1, 2, 3, 4] and references therein).
Despite this considerable effort, much further work remains to be done. For example,
Polyansky et al. [3, 5] recently assigned 1687 features in the spectrum of sunspots
recorded in the 10 — 20 um region to transitions in water. These transitions represent
only about 15% of the clearly resolved features observed in sunspots in this spectral
region, and it is likely that nearly all of the unassigned features are also due to water.
Further significant progress in assigning these features requires corresponding theoretical
developments. In particular, it is now essential that the techniques of ab initio computa-
tional methods be extended to consider the many small physical effects which are usually
neglected, but which may influence the measured transition frequencies of water.

The major factor determining the accuracy of a variationally calculated vibration-
rotation spectrum is the potential energy surface (PES) employed. State-of-the-art ab
initio electronic structure calculations are now capable [2, 6, 7] of predicting vibrational
band origins (VBOs) and other spectroscopic properties of water with an accuracy of
~ 0.1%. To achieve this accuracy several physically significant factors, tacitly neglected
in most works in computational molecular spectroscopy, must be considered: core-valence
electron correlation, relativistic corrections, and coupling between electronic and nuclear
motion, part of which is considered in the so-called Born-Oppenheimer diagonal correc-
tion (BODC) [8]. The validity of the Born-Oppenheimer approximation when calculat-
ing vibration-rotation spectra of water has been explored [2, 9, 10]. Relativistic effects
[11, 12, 13] have also been attracting considerable attention [7, 14, 15]. The effect of
the so-called scalar relativistic correction, comprising the one-electron mass-velocity and
Darwin corrections (MVD1), has been investigated in detail for the VBOs and rotational
term values of water [14]. It has been assumed in the past that for a molecule such as
water, the absolute relativistic energy correction may be significant but its variation with
geometry is too small to be important. The most notable result of Ref. [14], however,
was the demonstration of the sensitivity of the results to the inclusion of the dominant
relativistic MVD1 correction to the PES of a light closed-shell molecular system. This
should be contrasted with inclusion of the BODC, which only has a minor influence [9].
In general, addition of the MVD1 relativistic correction lowers the band origins of the
stretching states but raises the band origins of the bending modes, as expected from the
increased barrier to linearity of water found upon inclusion of relativistic effects [16, 17].

After the dominant one-electron mass-velocity and Darwin corrections, the next most



significant spin-independent relativistic effect is the two-electron Darwin (D2) term; the
sum of these terms, MVD2 = MVD1 + D2, defines the Coulomb-Pauli approximation.
Spin-orbit interactions can be neglected for light closed-shell molecules and it is gener-
ally assumed that the Coulomb—Pauli Hamiltonian [11] yields good approximations to
results obtained from variational four-component solutions of the many-electron rela-
tivistic Dirac-Coulomb equation [11, 18]. For example, at the grid points of this study
(vide infra) the maximum relative deviation between the MVD2 and Dirac-Hartree-Fock
(DHF) energies is only 0.76 cm™" [18].

In order to improve significantly on the description provided by the Dirac—Coulomb
equation, or by the Coulomb-Pauli approximation to it, the instantaneous charge-charge
interaction defining the Coulomb interaction must be supplemented by interactions be-
tween electronic currents, and Lorentz covariance must be restored to within some spec-
ified approximation by the inclusion of retardation effects. The covariant frequency-
dependent transverse Coulomb-gauge interaction is rather complicated in form, but is
nevertheless used routinely in high-precision atomic structure studies. The low-frequency
form of the Dirac-Coulomb-Breit Hamiltonian contains the leading-order quantum elec-
trodynamic (QED) correction to the Coulomb interaction [13]. It offers a tractable
approximation for detailed molecular studies, and incorporates all electronic terms cor-
rect to O((Zca)?). From this may be derived the two-component Pauli approximation,
introducing spin-dependent interactions in addition to the operators which define the
scalar Coulomb—Pauli theory. The Dirac-Coulomb-Gaunt Hamiltonian includes only the
magnetic interactions between pairs of electronic currents, neglecting certain O((Za)?)
contributions [13, 19, 20]. Quiney et al. [20] have already probed the Gaunt and Breit
energy corrections for water; their work and simple physical arguments suggest that the
inclusion of the geometry dependence of the Breit correction in the ground-state PES
of water should have a noticable effect on the calculated VBOs and rotational term val-
ues. It is this possibility which we principally address in this letter. At this point it
should be noted that an even smaller correction due to the leading QED effect requir-
ing renormalization of divergences, the one-electron Lamb-shift effect (self-energy and
vacuum polarization [19]), has been investigated for the ground-state PES of water [15].
Estimates of the one-electron Lamb-shift in the PES yield corrections of up to 1 cm™
in magnitude for the rovibrational states of water. Inclusion of the two-electron Lamb-
shift effect in the PES has, on the other hand, negligible influence on the rovibrational
states [15]. Similarly, a recent calculation has shown that spin-orbit interactions make a
negligible contribution to the shape of the water ground state potential energy surface
[18].



2 Computational Techniques

The energy correction due to the two-electron Darwin term, D2, has been computed with
cc-pVQZ CCSD(T) [21, 22] wave functions, at the same level as the previous calculations
of MVD1 correction energies [14].

Relativistic energy corrections due to the Gaunt and Breit interactions were ob-
tained in first order of perturbation theory using the four-component Dirac-Hartree-Fock
(DHF) wave function [13], the recommended exponent factors for the Gaussian nuclear
charge distribution [23], and the following [O, H] basis sets: basis A = [11s6p, 6s] and
basis B = [11s6p3d, 6s3p] for the large component. The restricted kinetic balance pre-
scription [13] was used to generate the small-component basis functions from the large
component set in a one-to-one mapping. The calculations have been repeated at over
300 structures comprising the data set 1.47 < distance < 2.79 ay and 41 deg < angle
< 172deg. The computer codes DIRCCR12 [24], MOLFDIR [25, 26], and BERTHA
[13, 27] have been employed for the electronic structure calculations involving the D2,
Gaunt, and Breit terms, respectively. Values for each energy correction obtained with
basis set B have been placed on our web site, see below.

The absolute values of the (Gaunt,Breit) energy correction on the PES of water is
about (7.8,7.6) mEy, while the maximum difference within the region covered by our
grid is (46,42) cm~'. The D2 effect is smaller, being 3.3 mF}, and 6.5 cm ™!, respectively.
Figure 1 shows how the two-electron Darwin, Gaunt, and the Breit corrections vary as
a function of bond angle and the symmetric stretching coordinate.

In order to use the calculated relativistic corrections in nuclear motion calculations we
have fitted them to an analytic functional form which is the same as the one used in Ref.
[14]. The computer algebra package Mathematica [28, 29] was used for the fitting and
for the automatic generation of the PES subroutines in FORTRAN. The 55 coefficients
obtained from a least-squares fit to our data points can be downloaded from the web site
ftp://ftp.tampa.phys.ucl.ac.uk /pub/vr/potentials/H20.rel, and are incorporated within
FORTRAN routines representing the PESs. The fit gives an accurate representation of
the data and has a standard deviation of only 0.02 cm™! or better.

Nuclear motion calculations were performed using the DVR3D program suite [30]
and previously optimized basis sets [31]. Calculations were only performed for the H*O
isotopomer of water. All calculations presented here used a hydrogen mass midway

between the atomic and nuclear value, as recommended by Zobov et al. [9].



3 Discussion

Tables 1 and 2 summarize calculations for selected vibrational and rotational term values
of water, respectively. These calculations were all performed with PESs being a sum of
non-relativistic and relativistic correction surfaces, where the nonrelativistic surface is
the ab initio Born-Oppenheimer (BO) surface of Partridge and Schwenke [2] ! corrected
with the mass-dependent BODC correction of Zobov et al. [9]. To maintain consistency,
the non-relativistic results are the same as given in Ref. [14].

Relativistic corrections to the PES can either raise or lower the rovibrational bands.
To understand the observed relativistic shifts in the bending band origins it is worth dis-
cussing relativistic effects on the barrier to linearity of water and on the one-dimensional
bending functions. Recent studies [7, 14, 15, 18, 20], as well as the present, one, indicate
that the one-electron kinetic relativistic effect (MVD1) raises the barrier by about 55
cm™!, while the D2 term raises the barrier by 2.5 cm™!. Both the MVD1 and the D2
bending curves show monotonic behavior. Beyond these scalar relativistic effects, the
Gaunt correction raises the barrier by 6 cm™!, the correction to it in the Breit operator
compensates this effect by 2 cm !, and consequently the Breit correction raises the bar-
rier by 4 cm!. The approximation to the Lamb-shift correction [15] lowers the barrier

by almost 4 cm™!.

As seen below, these changes in the PES mostly translate directly
into shifts of the computed bending band origins.

Our results clearly indicate that the two-electron relativistic corrections considered in
this study have a significant influence on the calculated behavior of both the vibrational
and rotational states of water. However, these results are fairly insensitive to the level of
sophistication of the calculation. The mean deviation between the changes in the Gaunt
VBOs determined with basis A and basis B is only 0.05 cm™!, or approximately 2%,
with the larger basis B corrections giving slightly larger values. The results for the Breit
correction are similar, indicating that their effects are strongly localized near the nuclei.

The MVDL1 relativistic corrections [14] for the pure bending levels grow faster than
linearly, a good approximate formula for them is 1.221 +0.024n3, where n, is the bending
quantum number. The linear formula +1.4n, is a good approximation up to ns = 3.
There is a rapid linear increase in the stretching corrections, which is well approximated
by —2.8(ny + n3), where n; and n3 are stretching quantum numbers. Additivity of the
stretch and bend corrections seems to hold to better than 95%.

The average effect of inclusion of the relativistic two-electron correction terms in the

!Here we used the Partidge and Schwenke’s best fit to their ab initio data as defined by the parameter
(3%, cbasis ceore (fit) — (1.0, —1,0) in their potential.



PES on the VBOs of water is not particularly large, considerably smaller than the effect
arising from the inclusion of the MVD1 term, but appears to be significant.

The correction from D2 for the pure stretching VBOs is smaller than 0.2 cm ™! for
the region covered here, and can be approximated well, up to ny + ng = 5, by the
relation —0.01 — 0.04(ny + n3). The D2 correction increases for the bending modes
with increasing excitation, it reaches the substantial value of +0.8 cm™ for ny = 7
and can be represented with the simple linear form —0.07 4+ 0.12n,. For stretch-bend
combination levels the stretching and bending corrections seem to be additive to a good
approximation; for example, the corrections for (100), (020), and (120) are +0.05, —0.17,
and -0.12 cm !, respectively.

The Gaunt correction for the bending VBOs does not seem to follow a simple pattern.

L at

First it increases, peaks at about ny = 3 at +0.21 cm ™!, and decreases to —0.15 cm ™
ne = 6. The Gaunt correction is much larger for the stretching levels, grows linearly with
excitation, and is well approximated as —0.8(n; + n3) cm™!. Similarly to the behavior
of the D2 correction, there seems to be an additivity of stretching and bending Gaunt
correction for the stretch-bend combination levels.

The Breit corrections are always smaller, except for the pure bending VBOs, than the
Gaunt corrections, in most cases by some 20-30%. The retardation correction, defined
as Breit — Gaunt, is linear for the stretching modes, 0.15(n; + n3). The retardation
correction for the bending modes varies, up to n, = 3, as —0.02n,, and it seems to
decrease faster than linear after this.

Table 2 shows the J = 20 rotational term values for the vibrational ground state
calculated using the same models analysed above for the VBOs. The effect of the inclu-
sion of two-electron relativistic corrections on the rotational term values is interestingly
rather small as it would appear that the three contributions we consider here: D2, Gaunt,

and Breit — Gaunt, approximately cancel each other out.

4 Conclusions

In this letter we have calculated ab initio the contribution of various two-electron rela-
tivistic correction terms to the potential energy surface of water and their consequence on
the vibration-rotation energy levels. Using this information it is possible to quantify the
contributions of various terms which are neglected in a standard non-relativistic Born—
Oppenheimer Schrodinger treatment of the electronic structure problem. For water the
largest contribution to the vibrational band origins that have been assigned arises from

the scalar one-electron relativistic correction, given by the one-electron mass-velocity



plus Darwin (MVD1) terms, and it is —19 ¢m ™!, while the two-electron Darwin term
(D2) contributes only +0.8 cm™!, the Gaunt term contributes —5 cm™, and the Breit
(= Gaunt + retardation) term contributes —4 cm ™. These can be compared with Lamb
shift effects which contribute a maximum of +1.3 cm ! [15], the adiabatic correction
(or BODC) which contributes +5 cm™" and the non-adiabatic correction contributes —4
cm™!. In considering these numbers it should be remembered that lack of convergence
of the best non-relativistic Born-Oppenheimer electronic structure calculations give an
error of up to 30 cm~! in the vibrational band origins.

Some important points should be noted about the above contributions. First, the
maximum contribution does not distinguish between the behaviour of the bending and
stretching modes, although for nearly all cases the magnitude and the sign of the contri-
bution is mode dependent. For example, the error in the electronic structure calculation
is predominantly in the bending mode [2]. Second, the corresponding contributions to
the pure rotational energies are rather small so that the net effect is that two-electron
relativistic effects contribute little. Finally, the differing signs of the various contribu-
tions may lead to a fortuitous cancellation of errors, and results whose agreement with
the observations is superficial, and possibly misleading with respect to the accuracy of

the individual contributions.
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Table 1
Vibrational band origins, in cm™', for HO. Absolute values are given for the
observed (Obs) VBOs and for the ab initio PES corresponding to the Born-
Oppenheimer (BO) + Born—Oppenheimer Diagonal Correction (AV,q4) surface, and
increments are given for the relativistic one-electron mass-velocity and Darwin
(MVD1, +AV;a), the two-electron Darwin (+D2), the Gaunt (+Gaunt), and the
retardation (+Retard., Breit — Gaunt) surface corrections. Increments are given as

individual contributions.

Obs* BO+AV,y + AVia +D2 +Gaunt +Retard.

(010)  1594.75  1596.90 128 009 —0.10 —0.01
(020) 3151.63  3155.77 272 018  —0.18 —0.03
(100) 3657.05  3660.48 —2.80 —0.05  —0.78 0.15
(030)  4666.80  4672.84 438 028  —0.21 —0.07
(110) 5235.00  5240.67 —1.56 0.04  —0.89 0.15
(040)  6134.03  6141.91 6.38 040  —0.20 —0.13
(120) 6775.10  6782.80 —0.20 0.13  —0.96 0.12
(200) 720154  7207.84 —560 —0.09  —1.56 0.29
(002) 7445.07  7450.15 —5.79 —0.09  —1.65 0.32
(050)  7542.39  7552.13 896 054  —0.10 ~0.19
(130) 8273.98  8283.66 138 023 —101 0.09
(210) 876159  8770.17 —4.42 —0.01  —1.66 0.29
(060) 8870.50  8881.89  12.62  0.73 0.16 —0.27
(012)  9000.14  9007.43 —4.73 —0.01  —1.77 0.32
(220) 10284.37  10294.93 —3.16 0.07 —1.75 0.28
(300) 10599.69  10607.86 —8.38 —0.14  —2.32 0.44
(102) 10868.88  10877.70  —8.50 —0.14  —2.37 0.45
(310) 12139.20 12149.75 —7.29 —0.06  —2.44 0.44
(112) 12407.64 1241882 —6.81  0.07  —1.97 0.27
(400) 1382828  13837.75 —11.06 —0.18  —3.06 0.58
(122) 13910.90 13924.10 —6.22  0.02  —2.57 0.44
(202) 14221.16  14233.05 —11.19 —0.18  —3.10 0.58
(004) 14537.50  14547.06 —11.59 —0.19  —3.25 0.62
(330) 15108.24 1512247 —5.03 0.10  —2.62 0.40
(410) 15344.50 15356.30 —9.92 —0.10  —3.17 0.58
(212) 15742.80 15757.01 —10.12 —0.11  —3.20 0.59
(302) 17458.35 1747162 —13.88 —0.23  —3.84 0.73
(510) 18392.97  18405.23 —12.11 -0.12  —3.83 0.71
(034) 18977.30  18993.66 —9.27  0.00  —3.63 0.61
(520) 19864.10  19877.85 —11.82 —0.07  —4.01 0.72
(610) 21221.57 2123542 —14.30 —0.11  —4.48 0.77




Table 1, continued

Obs* BO+AV, + AVia +D2 +4+Gaunt +Retard.

(001)  3755.93 3758.30 —-2.90 —0.05 —0.84 0.16
(011)  5331.27 3335.77 —-1.73 0.04 —0.95 0.16
(021)  6871.52 6878.15 —0.45 0.12 —1.04 0.14
(101)  7249.80 7255.19 —-5.68 —0.09 —1.60 0.30
(031)  8373.80 8382.57 1.03 0.22 —1.09 0.11
(111)  8807.00 8814.62 —4.56 —0.02 —-1.71 0.30
(041)  9833.60 9844.25 2.80 0.32 -1.10 0.06
(121) 10328.70  10338.35 =-3.37  0.07 —1.80 0.29
(201) 10613.40  10621.12 —8.42 —-0.14 —2.34 0.44
(003) 11032.40  11039.71 —-8.70 —0.14 —2.46 0.47
(131) 11813.20  11824.90 —2.01 0.15 —1.87 0.26
(211) 12151.30  12161.28 —7.36 —0.06 —2.46 0.44
(301) 13830.94  13840.36 —11.06 —0.18 -3.07 0.58
(071) 13835.37  13852.00 12.46 0.82 —0.52 —0.16
(023) 14066.19  14078.00 —6.75 0.00 —2.70 0.46
(103) 14318.81 14329.06 —-11.38 —-0.19 -3.17 0.60
(231) 15119.03  15132.98 —5.10 0.09 —2.64 0.41
(311) 15347.96  15359.55 —10.06 —0.11 -3.19 0.59
(033) 15534.71 15548.74 —5.60 0.08 —2.78 0.44
(113) 15832.76  15845.33 —10.43 —0.11 -3.29 0.61
(321) 16821.63  16834.24 -9.93 -0.08 -3.39 0.60
(203) 16898.84  16909.48 —12.98 —0.20 -3.71 0.70
(123) 17312.54  17326.99 —-9.48 —0.04 —3.40 0.60
(401) 17495.53  17507.93 —13.97 —0.23 —3.87 0.74
(331) 18265.82  18280.83 —8.66 0.01 —3.46 0.58
(411) 18393.30  18405.78 —12.02 —0.12 —3.82 0.71
(213) 18989.96  19004.62 —13.03 —0.16 -3.99 0.75
(501) 19781.10  19791.80 —15.80 —0.25 —4.43 0.84
(511) 21221.83  21235.74 —14.32 —0.15 —4.48 0.83

® Observed fundamentals are taken from ref [32]. All two-electron corrections are
referenced to the Born-Oppenheimer (BO) + Born-Oppenheimer Diagonal Correction
(AV,q) + relativistic MVD1 (AV,q) surface result.



Table 2
Rotational term values (J=20), in cm™', for the vibrational ground state of H,'®O.

Obs* BO+AV, + AVia +D2 +Gaunt +Retard.

20020 4048.252  4048.396 —1.264 0.884 —1.060 0.175
20119 4412316 4412458 —1.363 0.963 —1.154 0.190
20915 4738.620  4738.806 —1.356 1.021 —1.226 0.201
2037  5031.798  5032.044 —1.260 1.065 —1.280 0.207
2046 5292.107  5292.440 —-1.014 1.089 —1.313 0.208
20515 5513.235  5513.708 —0.399 1.073 —1.301 0.196
20614 5680.793  5681.431 0.575 1.015 —1.243 0.171
20713 5812.071  5812.728 0.551 1.040 —1.272 0.175
20512 95966.826  5967.311 —0.838 1.189  —1.440 0.223
209;; 6170.841  6171.179  —2.281 1.353 —1.622 0.273
201010 6407.447  6407.716 —3.398 1.490 —1.778 0.314
20119 6664.173  6664.418 —4.417 1.623 —1.927 0.352
20108 6935.419  6935.671 —5.397 1.749 —-2.074 0.390
20137 7217573  7217.850 —6.377 1.880 —2.221 0.427
20146 7507.580  7507.923 —7.336 2.003 —2.367 0.464
20155 7802.714  7803.154 —8.311 2.133 —2.511 0.501
20164 8100.284  8100.871 —9.262 2.250 —2.654 0.538
20173 8397.645  8398.419 -—10.241 2.376 —2.795 0.574
20152 8691.921  8692.929 —11.204 2.488 —2.933 0.610
20191 8979.884  8981.191 —-12.204 2.607 —3.069 0.646
20900 9257.451  9259.161 —-13.223 2.717 —3.202 0.681

® Observed rotational term values are taken from ref. [32]. For explanation of column
headings see Table 1.



Figure captions

Figure 1

Contour plot of two-electron relativistic correction surfaces as a function of the bond
angle (in degrees) and the symmetric stretching (in A) coordinates. (a) Two-electron
Darwin (D2) surface. The contour lines are separated by 1 cm™! with a maximum at the
top of the figure. (b) Gaunt interaction surface. The contour lines are separated by 2.5
cm !, decreasing from left to right. (c¢) Breit — Gaunt interaction surface. The contour

1

lines are separated by 1 cm ™!, increasing from left to right. (d) Breit interaction surface.

The contour lines are separated by 2.5 cm™', decreasing from left to right.



