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GTOBAS is a program for fitting Gaussian-type orbitals (GTOs) to Bessel
and Coulomb functions over a finite range. The exponents of the GTOs are
optimised using the method of Nestmann and Peyerimhoff (J. Phys. B, 23
(1990) L773). The appended module NUMCBAS provides the numerical
Bessel and Coulomb functions required as input for the program. The
use of GTO continuum basis sets is particularly important in electron-
molecule scattering calculations when polyatomic targets are involved.
Sample results for such calculations are also discussed.
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1. GTOBAS

Title of program: GTOBAS

Catalogue identifier: (supplied by Elsevier)

Program obtainable from: CPC Program Library, Queen’s University of Belfast, N.
Ireland

1 Email: j.tennyson@ucl.ac.uk

Preprint submitted to Elsevier Preprint 7 September 2001



Computer for which the program is designed and others on which it has been tested:
Compaq Alpha-DEC, IBM RS/6000

Operating systems or monitors under which the program has been tested: Digital

UNIX V5.0, IBM AIX 4.3.2.0

Programming language used: Fortran 90

Memory required to execute with typical data: less than 0.25 Mwords

No. of bits in a word: 32

No. of processors used: 1

Has the code been vectorised?: No

No. of bytes in distributed program, including test data,etc.: 29117

Distribution format: ASCII

Keywords: Gaussian basis sets, Bessel and Coulomb functions, R-matrix calculations

Nature of physical problem
Optimising GTO basis sets to represent continuum functions.

Method of solution
Numerical continuum functions are read from an external file and the GTOs set is
optimised using the method proposed by Nestmann and Peyerimhoff [1].



Restrictions on the complezity of the problem

The limitation for obtaining satisfactory fits is linked to the intrinsic difficulty of
representing a large number of nodes with nodeless Gaussian functions expanded
about a single centre.

Typical running time
1 to 10 minutes (depending on the number of needed GTOs) plus the time taken
by the subroutine used to generate the numerical functions.

Unusual features of the program
The program makes use of subroutines from Numerical Recipes [2]. We also append
a module, NUMCBAS, for generating Bessel and Coulomb functions (see below).

2. NUMCBAS

Title of program: NUMCBAS

Catalogue identifier: (supplied by Elsevier)

Program obtainable from: CPC Program Library, Queen’s University of Belfast, N.
Ireland

Computer for which the program is designed and others on which it has been tested:
Compaq Alpha-DEC, IBM RS/6000

Operating systems or monitors under which the program has been tested: Digital
UNIX V5.0, IBM AIX 4.3.2.0

Programming language used: Fortran 90



Memory required to execute with typical data: less than 0.1 Mwords

No. of bits in a word: 32

No. of processors used: 1

Has the code been vectorised?: No

No. of bytes in distributed program, including test data,etc.: 24133

Distribution format: ASCII

Keywords: Bessel and Coulomb functions

Nature of physical problem
Evaluation/calculation of Bessel and Coulomb functions. Provides input for GTO-
BAS.

Method of solution
Numerical integration of the Schrodinger equation from both boundaries and match-
ing using de Vogelaere’s algorithm.

Restrictions on the complexity of the problem
The program could in principle solve a model scattering problem with any kind of
potential, although in its present form, only Coulomb potentials can be input.

Typical running time
Typically, 0.03s.
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LONG WRITE-UP

1 Introduction

Standard quantum chemistry packages routinely use Gaussian-type orbitals (GTOs)
to describe the electronic structure of nonlinear molecules. Although Slater-type
orbitals (STOs) have the proper “cusp” near nuclei and the correct asymptotic
behaviour, their use is almost totally confined to atomic and linear molecule calcu-
lations because the multicenter integrals that arise in nonlinear calculations cannot
be performed efficiently (see e.g. [1]). In contrast, such integrals can routinely be
evaluated (in closed form) when GTOs are used. This fundamental advantage has
lead to the dominance of GTOs in molecular electronic structure calculations.

A huge number of GTO basis sets have been made available for bound-state cal-
culations [2]. On the other hand, few basis set generation procedures exist for the
representation of Rydberg and continuum orbitals [3]. These functions cover a large
spatial domain and their radial part is characterised by a great number of nodes.
In the context of electron-molecule scattering calculations, the use of numerical
functions to represent the continuum has proved very successful for both atomic
and linear targets [4]. For nonlinear molecules, however, there are at present no
adequate numerical procedures available. An alternative approach, explored origi-
nally in the context of R-matrix calculations, involves the use of GTOs to represent
both the continuum and target electrons. Nestmann & Peyerimhoff [5] developed
a method to fit GTO basis sets to Bessel functions within the finite region of an
R-matrix sphere. In spite of the intrinsic difficulty of representing a large number
of nodes with (nodeless) Gaussian functions expanded about a single centre, this
method was found to give excellent results for Bessel functions with eigenenergies
up to 16 €V. The method has been used to obtain a number of GTO continuum
basis sets, all for neutral targets and to be used in calculations with an R-matrix
radius of Ry,q:=10 ag [5-7]. A general discussion on approximating functions with
non-orthogonal basis sets can be found in [§].

The aim of this work is to provide a program which is able to construct adequate
GTO continuum basis sets for representing both Bessel and Coulomb functions us-
ing the procedure described by Nestmann & Peyerimhoff and to briefly discuss the
behaviour of these basis sets in actual calculations. We also append the module
NUMCBAS, based on a program by Salvini [9] and which is a cut-down version
of the module NUMBAS used in the UK molecular R-matrix codes [10] to gener-
ate the numerical continuum orbitals. The paper is organised as follows: Section
2 summarises the method used to optimise the Gaussian exponents while Section
3 reports and discusses sample results. The program organisation and input data
description are given in Section 4. Test data is given in Section 5.



2 Method

We summarise here the procedure used in GTOBAS to optimise the Gaussian ex-
ponents. A brief description of the module NUMCBAS, used to generate numerical
Bessel and Coulomb functions, is also given. It should be noted that any other user-
supplied program can be used to produce these functions, or indeed other functions
that one may wish to fit.

2.1 Generation of numerical continuum orbitals

The module NUMCBAS defines an adaptive grid of radial coordinates rj, to generate
numerical continuum orbitals uy;(ry) by solving the model, single channel scattering
equation:

d_2 B I(1+1)
dr,% 7‘]%

+2Vo + ki | up(re) = 0, (1)

where [ is the angular momentum quantum number, k7 are the eigenenergies and
Vo is a model potential, both in Rydbergs. This equation is solved subject to the
fixed boundary conditions:

uhl(O) =0 for ! 75 O,

1 [duhl (Tk) =0, (2)

up(re) L dry ] P =Riim

where Ry is the boundary radius in Bohrs (r; < Rym). For the special case [ = 0
the value of up;(0) is obtained by a two point Lagrange interpolation. Only those
eigenfunctions whose energy k,% is smaller than the parameter E,, (typically a
few Rydbergs) are evaluated. NUMCBAS finds solutions to Eq. 1 by integrating
functions from both boundaries and matching them using de Vogelaere’s algorithm
[11,12]. It has been found that, in practice, V; in Eq. 1 can be replaced by Z/ry
where Z is the effective charge of the target. In this case, the eigensolutions become
numerical representations of spherical Bessel (Z = 0) or Coulomb functions over a
finite range.

2.2 Optimusation procedure

The procedure used to obtain the Gaussian exponents was originally proposed by
Nestmann & Peyerimhoff [5]. The main idea of this scheme is to fit the continuum
functions up; () by a set of Gaussian functions with exponents «;. This is performed



by minimising the function:

2
N Yk [2?21 chirperp(—airy) — uhl(Tk)]

- h=1 >k [un(re)]

—|—D(a1,...,an), (3)

where N is the number of continuum functions and n is the number of Gaussian
exponents. The minimum of Fj y is obtained by Powell’s method [13] (prototype
of multidimensional direction-set methods) using In(«;) as variational parameters.
The coefficients cp,; are determined by a least-squares fit.

The term D(ay, ..., ay):

o

) : (4)

is added to avoid the convergence of two different o; towards the same value and
hence problems with linear dependence. In Eq. 4 the real number g has been set to
Riim, the boundary radius defined in NUMCBAS (see Eq. 2).

n i—1
D(ay,...,an) = Z Zexp (—g X

i=2 j=1

o o

It is important to note that the logarithmic boundary condition defined in Eq. 2
leads to an artificial constraint on the numerical continuum functions at 7, = Rjjm.
Employing the R-matrix technique, the continuum basis set must be able to describe
both maxima and nodes at the boundary radius of the R-matrix sphere, Ry;. As a
consequence, Ry, must be chosen larger than Rp,,¢. In practice, we found for Ryt
in the range 10—13 ag (the only values thoroughly tested) that Ry, = Rmat + 2 ag
is the best choice for both Bessel and Coulomb functions (see details in Section 3).

2.8 Initial selection of exponents

The minimisation problem is highly non-linear and characterised by having many lo-
cal minima. This makes the final fit sensitive to the starting point. In our procedure,
the initial Gaussian exponents «; can be read directly as input data. Alternatively,
we implemented two different methods of selection. In the first one, the initial expo-
nents are selected randomly within an appropriate range ([0.01, 0.5] is the default).
In the second, recommended method, a geometric series is used to generate the
initial, even-tempered [14], set of exponents:

ai:ﬁx'yi ;o 1=1,2,3,...,n. (5)

In the present work, the default values are § = 0.016 and v = 1.39 for both Bessel
and Coulomb functions. These values were obtained by fitting and averaging (over
the different ! values) typical final sets of exponents. The use of Eq. 5 as an initial
guess was found to minimise the required CPU time.



3 Sample results and discussion

In this section we present GTO basis sets optimised with GTOBAS for the repre-
sentation of Bessel and Coulomb functions. These continuum basis sets have been
employed in electron-molecule scattering calculations [15,16] using the UK R-matrix
polyatomic codes [10]. Bessel and Coulomb functions with values [=0, 1, ..., 4 were
generated with NUMCBAS. The main input parameters, namely Rjip,, Eyp, and the
number n of GTOs, have been determined by the needs of the molecular systems
studied and by the limitations of the computer resources. The radial mesh was
chosen to be finer at the shorter ranges. Sensible changes in the mesh have little
influence on the final value of the Gaussian exponents (typically less than 5%). The
value of Ry, is fixed by the value of the R-matrix radius (see 2.2). The upper
energy, E,,, then determines the number of numerical functions to be fitted and
therefore, the number of GTOs which must be bigger than or equal to the number
of numerical functions. Note that there are no restrictions on the upper values of
Ryim and Eyp other than the required computational time (e.g. up to 70 minutes
for Ryim=20 ag, Eyp=T7 Ryd and 17 GTOs).

Fig. 1 and Fig. 2 show, respectively, [=0 Bessel and Coulomb functions and their
corresponding fits. The region of best fit, 0 < rp < 3, is omitted from the figures
for clarity. Although functions with [=0 are the hardest to fit, it can be seen that,
in general, the agreement is very good. As expected, when the number of nodes
increases, the quality of the fit decreases. Besides, as r; increases, the quality of
the fit decreases too. A number of weighting procedures were tested to improve
the fits at large ry, without success. However, in R-matrix calculations, only the
region 7 < Rmat is considered; therefore, the quality of the fit for rp > Rpat is not
relevant. The accuracy of the fit can be assessed by checking the final value of the
minimisation function Fj x (see Eq. 3): for the fits presented in Figs. 1-2, F; x was
found to be smaller than 4 x 1073,

When using the R-matrix method, the set of continum functions has to be complete
within the finite region of the R-matrix sphere (0 < r; < Rpmat). A basic difficulty is
that this can cause problems of linear dependence with the functions representing
the target [4]. If the boundary radius Rjim defined in NUMCBAS is much larger than
the R-matrix sphere radius Ry, the continuum basis set can become overcomplete
in the inner region defined by this sphere, leading to strong linear dependence
problems. After several tests with Ry,,¢ in the range 10—13 ag, we concluded that
the best choice for the boundary radius (in terms of linear dependence) is Ry, =
Ruyat + 2 ag, for both neutral and singly charged targets. Using a smaller Ry,
would produce a poor fit for r; >~ Rjj,. In their paper, Nestmann and Peyerimhoff
suggested Rjjm=20 ag for Rmat=10 ag but we found that using this value lead to
severe linear dependence.

GTO basis sets for the representation of Bessel and Coulomb functions are given in
Tables 1-3. Using a much larger number of GTOs than numerical functions can lead
to some exponents being zero and/or more than one converged set. If the latter
is the case, the quality of the different converged sets is very similar, at least in



terms of its adequacy for scattering calculations. Finally, it should be noted that
the fitting procedure given here also provides contraction coefficients for the GTO
continuum basis. However, to maximise the flexibility of the basis in the R-matrix
calculations, our practice, and that of Nestmann and co-workers [5-7], has been to
leave these functions uncontracted.

3.1 Neutral targets

Table 1 compares our basis set for a neutral target and Rp,=10 a¢ with that
obtained by Sarpal et al. [6] who also used the method of Nestmann and Peyerimhoff
[5]. The differences between the two sets may arise from the use of a different
boundary condition. Besides, Sarpal et al. use the same E,, but do not specify
their value of Rjj,,. The most significant differences between the two sets are: i) for
[=0, our basis set has 3 exponents that are bigger than their biggest one; i) for the
other [ values, the smallest exponents in our basis set are smaller than in their basis
set.

In order to assess the validity of our basis set and how it compares with that of
Sarpal et al., we used both sets to study the electron-impact electronic excitation of
H,0 [16] and CFq [17]. Our basis set was found to give better eigenphases for both
systems, as seen for the electron-HsO collision in Fig. 3, where we have plotted the
eigenphase sum of symmetry 2A; (in a variational calculation, a higher eigenphase
indicates better results). The three plotted eigenphases are very similar in the energy
region 0< E <5 eV but differences increase at energies above the first excitation
threshold. Additionally, after performing several tests with different basis sets for
both targets, we found that Sarpal et al.’s is more prone to linear dependence with
the target basis set. This behaviour is, of course, target dependent.

Table 2 gives Gaussian exponents for the representation of Bessel functions gener-
ated with Rj;n=15 ag. To adapt the size of the basis set to the computational limits
imposed by the R-matrix code, we chose different E,, for different [ values. In this
way, we reduced the number of GTOs required for fitting the functions with higher
[. The exponents, with exception of the first ones for /=0 and /=1, are smaller than
those obtained with Rj;,=12 ag, as expected. This basis set has been used for HoO
calculations with an R-matrix radius of 13 ag [16]. The resulting eigenphase sum
and cross sections were found to be in very good agreement with those obtained for
Rat=10 ap using the basis set from Table 1 (see Fig. 3), thus proving the adequacy
of this basis set. The increasing discrepancies at higher energies are probably due
to the incompleteness of the basis set of Table 2 for Rmat=13 ap.

3.2 Ionic targets

Gaussian exponents for singly charged targets are listed in Table 3. It can be noticed
that for [=0 and /=1 some exponents are larger than unity. Such large values are
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consistent with the high amplitudes of [ = 0,1 Coulomb functions at short-range.
Note that in this case, an even-tempered initial selection is not the most appropriate.

The basis set presented in Table 3 has been used to study the electron-impact ro-
tational excitation of HCO™ [15] and H3 [18]. In contrast to Bessel functions, there
are no previous studies on the representation of Coulomb functions by GTOs. There
is, however, a study on the dissociative recombination of H§L by Orel and Kulander
[19], where the scattering calculations are based on the complex Kohn variational
method. In this approach, analytic Coulomb functions can be used. At the equilib-
rium geometry of the ion (for 24; symmetry), Orel and Kulander found that the
two first resonance energies (widths) are 9.1 (0.64) and 10.3 (0.18) eV. We com-
puted these resonances using the R-matrix method and we obtained, respectively,
9.2 (0.68) and 10.2 (0.18) eV. This very good agreement with the results of Orel
and Kulander indicates the reliability of our representation of the continuum. In
order to further illustrate the influence of the continuum basis set on a scattering
calculation, we have computed the eigenphase sum for the e—Hg' collision in 2A;
symmetry using our basis set (Table 3) and that of Sarpal et al. (1996), which was
optimised to represent Bessel functions. The results, plotted in Fig. 4, show that
our basis set gives better (higher) eigenphases, as expected. They also show that
Sarpal et al.’s basis set gives somewhat oscillatory behaviour at lower energies (not
plotted).

4 Programs organisation and data input

4.1  Organisation of GTOBAS

The subroutines in GTOBAS are mainly taken from Numerical Recipes [20]. Further
comments are given within the code.

READNUM reads the numerical continuum functions produced by NUMCBAS. It can
be user-adapted to read any other input continuum functions.

FUNCS computes a Gaussian-type function.
FUNCP computes the function F; y (Eq. 3) to minimise.

SVDFIT performs a least-square fit by use of a singular value decomposition technique
to obtain the coefficients cj; of the Gaussian expansion (see Section 2.2). It is taken
from Numerical Recipes [20].

SVBKSB and SVDCMP are used by SVDFIT to perform the singular value decomposition
[20].

POWELL performs the minimisation of the function F; x (Eq. 3). It is taken from
Numerical Recipes [20].
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LINMIN implements the one-dimensional line minimisation used by the POWELL sub-
routine [20].

MNBRAK is used by LINMIN to bracket a one-dimensional minimum [20].

4.2 Organisation of NUMCBAS

BASTIS performs the calculation of the numerical basis.

SEARCH is used by BASIS to search for the eigensolutions to the differential equations
(see Eq. 1).

BASFUN controls the numerical integration and normalises the resulting wavefunc-
tions.

DEVGL is a de Vogelaere integration routine [11] used by BASFUN.
FINDER locates the eigenvalue with a given number of nodes.

WRHEAD writes the header of file lunumb which will contain the numerical basis in
a form suitable for GTOBAS.

4.8 Input data for GTOBAS

Input data [with defaults in brackets] is read from standard input via a namelist
JFIT/. The data type is indicated in the following way: variables starting with
(a-h,0-z) are double precision and those starting with (i-n) are integers.

beta [1.6D-02]
Even-tempered 3 coefficient, see Eq. 5 (used if iguess=2).

expo Vector containing initial exponents. Only needed if iguess=0. Maximum
size is 20.

ftol [1.D-09]

Convergence parameter used in POWELL subroutine.

gamma [1.39D0]
Even-tempered «y coefficient, see Eq. 5 (used if iguess=2).

iguess 2]
Determines whether initial exponents will be read as input data (0),
generated randomly (1), or generated using an appropriate function (2)
(see Section 2.3).

12



iprint

iswmol3

lunumb

luplot

noexp

nplot

rdlow

rdup

[0]
Print flag for additional output. 1: all iteration data; 2: iteration data
plus mesh.

[18]

Logical unit for the output of final exponents. The format is that of the
Sweden-Molecule program [21,22] used by the UK molecular R-matrix
polyatomic code.

[13]

Logical unit for the input of numerical functions to be fitted.

[17]

Logical unit for the output fitted functions. Numerical functions are also
written to this file. The format allows plotting with xmgr.

[0]
Number of exponents to be used. Must be bigger or equal to the number
of numerical functions to be fitted. Only needed if iguess=1 or 2.

[0]
Print flag: no functions (0) / all functions (1) (numerical and fitted) are
saved to unit luplot.

[1.D-02]
Lower limit of the random selection (used if iguess=1).

[0.49D0)]
Upper limit of the random selection (used if iguess=1)

4.4 Input data for NUMCBAS

Input data is read from standard input via a namelist /INPUT/. The size of the
array parameters is indicated by the number of default values in brackets. The data
type is indicated in the same way as for GTOBAS.

charge

ecmax

hrx

ibug

[0.DO]
Effective charge of the target (see section 2.1).

[10.DO]
Eyp, upper bound for eigenvalues in Rydberg.

[0.01,0.02,0.02605,7*0.D0]
Vector of size nix containing the step length to be used in each subrange.

[3%0]
Vector containing switches for extra printed output: ibug(1)=1 potential

as a function of radial coordinate ry; ibug(2)=1 final eigensolutions as
function of ry; ibug(3)=1 brief summary of data written to lunumb.
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irx

lunumb

lval

nix

rlim

tiny

title

[30,120,500,7*0]

Vector of size nix defining the number of mesh points to end of each
subrange (must be divisible by 2).The program checks that the last point
in the last subrange is ~rlim. If it is not, a new irx(nix) is calculated.
[13]

Logical unit for output of numerical functions.

[0]

Angular momentum of the numerical functions to be calculated.

3]

Number of subranges with different step. Maximum value is 10.

[10.D0]
Rjim, radius where the boundary condition is applied.

[1.D-11]
Convergence threshold for eigenvalues calculation.

Character*80 variable containing title for output.

5 Test Data

Table 4 gives sample test data. Use of these data should give the exponents for [ = 0
presented in Tables 1 and 3.
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r{a,)

Fig. 1. Sample Bessel functions with [=0 (crosses) and their fit by a linear combina-
tion of 9 Gaussian functions (full curves) for Rjjm=12 ag and Eyp,=4 Ryd. k indicates
the specific function being plotted; the total number of nodes for each function is
h—1. The exponents of the GTOs are those in the first column in Table 1.
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(@)

Fig. 2. Sample Coulomb functions with /=0 (crosses) and their fit by a linear com-
bination of 12 Gaussian functions (full curves) for Rim=12 ag and E,p,=5 Ryd. A
and number of nodes as in Fig. 1. The exponents of the GTOs are those in the first
column in Table 3.
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Eigenphase sum

5 7 9 11 13 15

E(eV)

Fig. 3. Eigenphase sum of symmetry ?A; for electron-HyO collisions. Full line: cal-
culation for R,,,;=10 ag using basis set from Table 1; long-dashed line: R,,,4;=10 aq,
using Sarpal et al.’s basis set; dotted line: calculation for R,,,:=13 ay using basis
set from Table 2. For a detailed description of these calculations, see [16].
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Eigenphase sum

O L 1 L 1 L 1
5 7 9 11

E(eV)

Fig. 4. Eigenphase sum of symmetry ?A; for electron-HJ collisions. Full line: calcu-
lation for R,,,4+=10 ay using basis set from Table 3; dashed line: R,,,,+=10 ay, using
Sarpal et al.’s basis set. For a detailed description of these calculations, see [18].
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Table 1

Optimised GTO exponents for Bessel functions with Rjj,=12 ag and Ey,=4 Ryd. N
is the total number of Bessel functions for each [. Numbers in parentheses correspond

to the basis set obtained by Sarpal et al. [6].

s(1=0)  p(=1) d(=2) f1=3)  g(l=4)
i\ N 8 7 7 6 6
1 285726 .122916  .125926 172844  .109047
(.108108) (.130267) (.111252) (.170320) (.111363)
2 192361 .090430  .094783 125071  .083773
(.095095) (.102083) (.089412) (.130520) (.089501)
3 133124 067262 072171  .092858  .064982
(.078078) (.080605) (.072361) (.111586) (.072433)
4 092965  .049879  .054821  .069374  .050149
(.063430) (.063430) (.058496) (.089591) (.058555)
5 064850  .036582  .041223 051579  .038123
(.049698)  (.049698) (.047005) (.072505) (.047052)
6 044862  .026327  .030441  .037788  .028129
(.038336) (.038336) (.037397) (.058614) (.035035)
7 030582  .018347  .021766  .026876
(.029180) (.029180) (.029225) (.047099)
8 020403
(.021923)
9 013159
(.013013)
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Table 2

Optimised GTO exponents for Bessel functions for Rj,=15 ap, Eyp=5 Ryd for
[=0,1,2, E,,=4 Ryd for =3 and E,;,=2.4 Ryd fort /[=4. N is the total number of
Bessel functions for each /.

s(1=0) p(=1) d(=2) f(1=3) g(l=4)

N 11 10 10 8 6

1 .396150 .200280 .127610 .092326 .065228
2 282361 .151623 .101449 .073837 .051981
3 206334 .117236 .081731 .059756 .041790
4 152887 .091465 .066052 .048426 033499
5 .114144 071562 .053288 .039083 .026564
6  .085455 .055913 .042273 031270 .020594
7 063902 .043480 .034058 .024670

8  .047570 .033545 .026815 .018994

9 .035148 .025590 .020778

10 .025705 .019210 .015690

11 .018550 .014051

12 .013150

13 .009071
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Table 3

Optimised GTO exponents for Coulomb functions with Ryj;»=12 ag, E,p,=5 Ryd for
[=0, 1, 2, 3 and Ey,=3 Ryd for [=4. N is the total number of Coulomb functions

for each [.
s(1=0) p(=1) d(1=2) f(1=3) g(l=4)

AN 9 9 8 8 5
1 40.9539 4.73096 .186838 .176575 .096767
2 3.19022 .559667 .136427 .133689 .071821
3 460592 .381904 .101837 .102897 .053743
4 292295 .268948 .076389 .079368 .039814
5 194782 .193043 .057060 .060885 .028686
6 132316 .140037 .042150 .046164
7 090364 101932 .030561 .034350
8 061483 .073983 .021460 .024755
9 .041395 .053241
10 .027417 037780
11 017749  .026258
12 .011096 .017649

Table 4

Tests data input for the numerical functions and corresponding fits represented in
Figs. 1 and 2.

BESSEL functions

COULOMB functions

NUMCBAS &INPUT
title = 'Neutral target’,

GTOBAS

lval = 0,

ecmax = 4.00D0,

rlim = 12.0,

charge = 0.0D0, /

&FIT

expo = 6.0,3.0,0.7,0.3,0.1,0.07,0.05,0.02,0.01,

iguess = 0,
nplot = 1,
iprint = 0, /

&INPUT

title = ’Tonic target’,
lval = 0,

ecmax = 5.00D0,
rlim = 12.0D0,
charge = 1.0D0, /

&FIT
noexp = 12,
iguess = 2,
nplot = 1,
iprint = 0, /
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