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Abstract—Multimedia systems must deal with multiple data
streams. Each data stream usually contains significant volume
of redundant noisy data. In many real-time applications, it is
essential to focus the computing resources on a relevant subset of
data streams at any given time instant and use it to build the model
of the environment. We formulate this problem as an experiential
sampling problem and propose an approach to utilize computing
resources efficiently on the most informative subset of data
streams. In this paper, we generalize our experiential sampling
framework to multiple data streams and provide an evaluation
measure for this technique. We have successfully applied this
framework to the problems of traffic monitoring, face detection
and monologue detection.

Index Terms—Dynamical systems, experiential computing, ex-
periential sampling, sampling, visual attention.

I. INTRODUCTION

ULTIMEDIA information processing usually deals with
M spatio-temporal data which have the following attributes.
e It consists of a multiplicity of usually correlated data
streams. Thus, it does not exist in isolation—it exists in
its context with other data. For instance, visual data comes
along with audio, music, text, etc.
* They possess a tremendous amount of redundancy.
* The data is dynamic with temporal variations with the re-
sultant history.
However, many current approaches towards multimedia anal-
ysis do not fully consider the above attributes which lead to two
main drawbacks—Iack of efficiency and lack of adaptability.
Therefore, to tackle these two problems, in [1], we articu-
late the following goal for multimedia systems: “system should
sense the data from the environment. Based on the observations
and experiences, the system should collate the relevant data and
information of interest related to the task. Thus, the system inter-
acts naturally with all of the available data based on its interests
in light of the past states in order to achieve its designed task.”
To achieve this, we proposed a sampling-based dynamic at-
tention model. The current environment is first sensed by uni-
form random sensor samples and based on experiences so far,
compute the attention samples to discard the irrelevant data.
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Higher attended samples will be given more weight and tem-
porally, attention is controlled by the total number of attention
samples. Hence, the multimedia analysis task at hand can select
its data of interest while immediately discarding the irrelevant
data to achieve efficiency and adaptability.

In this paper, we continue our discussion and generalize the
theoretical framework of experiential sampling on a single data
stream to multiple data streams and provide an evaluation mea-
sure for this technique. We then apply this framework to the
problems of traffic monitoring, face detection. and monologue
detection to show the effectiveness of our framework.

II. RELATED WORK

Since human perception is greatly aided by the ability to
probe the environment through various sensors along with the
use of the situated context, it has inspired context aware com-
puting in the human computer interaction research community
[10]. The basic idea there is to help the computer respond
more intuitively to the human user based on the context. A
comprehensive review of context aware computing can be
found in [10], [11]. Our thrust is towards making multimedia
analysis systems interact naturally with multiple data streams
by considering the current context and past history.

The ability to “focus” the “consciousness” in human visual
perception has inspired research in non-uniform representation
of visual data. The basic idea is to do adaptive sampling which
is basically the selection of the most informative samples in a
data stream. Visual attention in human brains allows a small part
of incoming visual information to reach the short-term memory
and visual awareness, consequently providing the ability to in-
vestigate more closely. There is a growing interest in the study
of the visual attention phenomenon by psychologists [2], [4].
The phenomenon of inattentional blindness is particularly in-
teresting in which human subjects have been found not to ob-
serve major objects when paying attention to some other objects
[4]. It has been found to be a useful aid in finding evidence for
resolving the controversy between the conflicting spotlight and
object models of visual attention. The spotlight model hypothe-
sizes that visual attention is concentrated in a small contiguous
region (“spotlight” or “zoom lens”) which can move around in
the field of vision. In contrast, the object model states that at-
tention can be focused on spatially discontinuous objects (or
a group of disparate objects). Experimental evidence seems to
suggest that the human visual attention mechanism appears to
be a combination of both models [2]. Computational modeling
of visual attention has been investigated for potential usages in
planning and motor control [9], video summarization [6] and
object recognition [7]. The computational model of visual at-
tention maintains a two-dimensional topographic saliency map
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by employing a bottom-up reasoning methodology [5]. Refer-
ence [8] attempts to model the influence of high-level task de-
mands on the focal visual attention in humans. There is also
the foveation technique [13], [15] for maintaining a high-reso-
lution area of interest in an image. A uniform-resolution image
can be foveated to transform into a spatially varying resolution
image by either a log-polar [13] or a wavelet approach [14]. All
these approaches recognize the need for doing adaptive sam-
pling. But their approach is usually static. However, in humans,
attention varies with the nature of task. In addition, visual at-
tention is adaptive. This means it will vary depending on the vi-
sual environment and has a self-corrective mechanism utilizing
experiences. Interestingly enough, psychologists have observed
that unexpected objects have a lower probability of being ob-
served when attending other objects [2]. This strongly suggests
the human perceptual system has a concrete notion of history
which is encoded as a priori probabilities. Thus, attention will
vary over time. Unfortunately, the above saliency map based vi-
sual attention models and foveation approaches are image based
that do not provide a mechanism to evolve and adapt atten-
tion dynamically. In contrast, our sampling framework natu-
rally expresses the dynamics of attention of a system. What is
particularly appealing is that the attention states as well as the
state-transitions are captured as a closed-loop feedback system.
Moreover, the earlier adaptive sampling approaches consider
only a single data stream. Our framework explicitly considers
multimedia which consists of a multiplicity of correlated data
streams. These streams need not be audio or video—it can be
any type of multimedia data including data not perceived by
human sensors like infrared or motion sensors.

The sampling importance resampling (SIR) method which
can be used for modeling evolution of distributions was pro-
posed in [17]. The dynamics aspects were developed in [18].
In a SIR filter, a set of particles, which move according to the
state model, multiply or die depending on their “fitness” as
determined by the likelihood function [21]. A general impor-
tance-sampling framework that elegantly unifies many of these
methods has been developed in [16]. A special case of this
framework has been used for the purpose of visual tracking in
[12]. Though we also utilize the sampling method, we use it
to maintain the generalized notion of attention. To the best of
our knowledge, this is the first use of the sampling technique to
maintain the dynamically evolving attention. Thus, unlike [12],
the number of samples dynamically changes for the purpose
of adaptively representing the temporal visual attention. This
is in tune with the growing realization that computing systems
will increasingly need to move from processing information
and communication to the next step: dealing with insight and
experience [3]. One of the key technical challenges in experien-
tial computing is information assimilation, i.e., how to process
in real time the disparate data received by multiple sensors.
Our research in this paper aims to provide a sampling based
dynamical framework to tackle this problem in the multimedia
domain.

III. HANDLING MULTIPLE DATA STREAMS

Let us assume that we are given S1, Ss ... .S, synchronized
data streams belong to the space of multimedia data streams M.
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These data streams have K types of data in the form of image
sequence, audio stream, motion detector, annotations, symbolic
streams, and any other type that may be relevant and available.
Also, metadata for each of the streams M D1, M D> ..., MD,
is available in the context of the environment. This metadata
may include things like location and type of the sensor, view-
point, angles, camera calibration parameters or any other sim-
ilar parameters relevant to the data stream. Since a data stream
is usually not directly very useful, some feature detectors must
be applied to each data stream to obtain features that are rele-
vant in the current environment. We assume that the multimedia
system is a discrete time (or a sampled continuous time) dynam-
ical system. When features are based on time intervals, they will
be considered as detected at the end of interval, which is denoted
ast,wheret =1,...,T.

Given the above data environment, there are now many very
interesting problems that one faces, including the following that
are directly relevant to the main theme that we wish to address
in this paper.

* How to focus on the most relevant data in a particular data

stream?

* How to focus on the most relevant data in multiple corre-

lated data streams?

* For the given task, what is the minimum number of data

streams required?

* How does one sample the data streams? How can one min-

imize sampling for maximizing the efficiency?

* Can one use alternate data streams to perform the same task

with different costs?

* Given that M streams are necessary for a given task, how

does one combine the information from the data streams?

We believe that this issue of determining which data streams
are relevant and even among those streams which ones provide
most relevant information at any given moment is a very impor-
tant problem that needs to be addressed and has been ignored in
the current literature. Current multimedia systems, usually start
with the assumption that there is a given set of n data streams,
unfortunately in most cases, n = 1 making it a signal analysis
rather than a multimedia problem, and one must deduce or ex-
tract all information from there to build the schema representing
the environment. There are other issues related to semantics and
indexing that we do not wish to address here. Now we are ready
to define what experiential sampling is and then address this in
the remaining part of the paper.

A. Optimal Selection of Data Streams

We have seen in the earlier section that for a single media
stream case (which could have multiple local feature streams),
the goal-oriented attention-driven analysis can be succinctly de-
scribed by

SID = SJM(fL, ac;) = arg H%X P(H|fL/ ag)
. SID = argmgxP(HUL) - Plag|E).
We will now extend this scenario to the real multimedia case
when multiple correlated media streams are considered. Our

work adopts an approach similar to that of [20] and generalizes
their ideas for multimedia systems. As described earlier, there
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are n media data streams Si,S,...Sn. These data streams
consist of K types of data such as image sequence, audio
stream, motion detector, annotations, symbolic streams, and
any other type that may be relevant. We assume that these
streams are synchronized. Further, we assume that metadata
MD;,MDs,...MD, for each stream is available from the
original sources that helps in interpreting the data stream in the
context of the environment. And since in most cases feature
detectors will be applied to each data stream in the context
of the corresponding metadata for each data stream, we can
represent the multimedia data as a (possibly) correlated features
stream set F' = {f;}, where f; is the jth feature stream where
1 < 5 < N such that N > n and there is at least one feature
stream derived from every multimedia data stream. So, now
our (7) can be modified to include the multiple correlated
multimedia data streams scenario to

SID = fx(F,ag) = argmfz}xP(HF, ag)

oo SID = argnlg,xP(H|F)~P(ag|E). )
Clearly, there is some amount of noise in every data stream
f; and also there is a tremendous amount of redundancy among
them. The questions raised earlier in Section III boil down to
the question of selection of appropriate features stream set for
the goal to be achieved. More formally, let us assume that a set
of F feature streams allows the system to achieve goal G. We
also assume that each feature stream contains only partial infor-
mation to achieve the goal and there is redundancy (overlap) of
information among the various feature streams. Let us also as-
sume that there is a cost function associated with the use of each
subset of F. Our problem now can be defined as
a) to identify a lowest cost subset of feature streams ®* C F
such that the goal G can be accomplished;
b) to develop an optimal procedure for determining this
subset ®*.
Assume that when the full set of data streams F is available,
we have

Pr(GIH, fj) > a, 1<j<N 2)
where P(G|H, f;) denotes the probability that the goal of cor-
rectly identifying the hypothesis of the symbolic identity when
it is actually true, given the N feature streams information and
0 < a < 1 denotes the confidence level. Our problem can now
be restated as

a) identify a lowest cost subset ®* of feature streams such

that

Po-(G|H, f;) > a, 1 < j < N. 3)

b) determine the optimal procedure to identify the feature
stream subset ®* assuming we have a method to deter-
mine whether an arbitrary subset & C F satisfies

Pe(G|H, fj) >, 1 <j <N, 4)
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Note that the total cost is normally related to the total com-
putation cost of the feature streams subset or perhaps can be the
hardware cost of obtaining the feature streams or could be re-
lated to the energy consumption of obtaining the feature streams
(particularly in case of low power appliances). Let us quantify
the cost of using a subset of feature streams ® by cg and let us
assume an a priori probability pg that this subset can achieve
the goal G. The idea of having these probabilities is that it allows
for an identification strategy to be developed to obtain the lowest
cost feature stream set. So we can not only identify which subset
that can achieve the goal but also provides a mechanism to de-
termine how to identify this optimal subset. This optimization
problem is posed as a Markovian decision process. We also try
to provide a set of assumptions under which this optimal strategy
can be developed. Of course, by changing these assumptions,
we can better study the structure of this problem and can lead to
better identification algorithms for different problem instances.

B. The General Multiple Stream Problem

We will first present the results in a general setting and then
narrow down some specific instances of the problem. In the
general case, let us assume that we are given a multimedia
system with a set of F feature streams. We make the following
assumptions.

1) The goal G can be achieved when the full set of N fea-
ture data streams F is available. If we do not have this
assumption, there is no optimization problem to solve.
Any combination of ¢ feature streams (¢ < N) has a
lower cost than any combination of ¢ 4+ 1 feature data
streams. This allows for the fact that for any specific
combination of ¢ data streams to be of less cost than that
of any other set of 7 data streams. Note that this may not
be a realistic assumption. Relaxing this assumption is an
open problem.

If the a priori probability that the multimedia system can
achieve goal G using a combination of 7 feature streams
is p;, then we have

2)

3)

O=po<pi<p2<...<pyo1<py=1L &)
What this essentially states is all feature data streams
have an equal capability of providing information for
achieving goal G. We will modify this assumption later
on for a specific instance of the general problem.

If a combination of feature data streams ® 4 cannot
achieve the goal G, the probability p p| remains the
same for all sets of feature data streams B O A.
Moreover, if a combination of feature data streams ® 4
achieves the goal G, the probability p|c| remains the
same for all sets of feature data streams C' C A.

The cost of finding out whether a subset of feature data
streams can help achieve the system goal or not is a con-
stant equal to c. This assumption basically states that
there is a constant cost procedure to determine whether
the given subset @ is sufficient to achieve the system goal
G. One can conceivably have a benchmark data set with
ground truth to perform this test.

4)

5)
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Fig. 1. Directed graph for three feature data streams case.

We can now cast the feature stream subset selection problem
as a decision problem on a directed graph. The nodes of the
directed graph are the elements of the power-set of F. Each node
of the graph represents a combination of feature data streams.
Two vertices A and B are connected by an edge directed from
B to Aiff |[B] = |A| + 1 and A C B. Node ¢ of the graph
is the empty node which corresponds to the use of zero feature
data streams. An example of a directed graph for a multimedia
system with three feature data streams is shown in Fig. 1.

We note that the directed graph provides the combinations of
possible feature data streams. The idea of the identification pro-
cedure is to quickly identify the node with the least cost which
allows for the multimedia system to achieve goal G. Each subset
of feature data streams (corresponding to a node) can be tested
as to whether it achieves the goal G or not. Note that the node
containing F i.e. containing all the feature data streams does
achieve goal G (from assumption 1). The node ¢ cannot achieve
the goal G. If a node A can achieve the goal G, thennode B D A
can also achieve the goal G. Conversely, if a node A cannot
achieve the goal G, then node B D A also cannot achieve the
goal G. These are fairly obvious statements. We now need a set
of definitions.

1) Node B of the directed graph is a child of node C in the
graph iff there exists a directed path from C to B.

2) Node B of the directed graph is a parent of node C iff
there exists a directed path from B to C.

3) Let & be aset of nodes with A € ¢. A reachable set from
¢ conditioned on the fact that A can achieve goal G, is
a set composed of all nodes in £ whose cost is less than
that of A.

4) Let¢ be aset of nodes with A € €. A reachable set from
¢ conditioned on the fact that A cannot achieve goal G,
is a set composed of all nodes in & except node A and its
children in £.

5) A reachable set is a set that results from applying an
arbitrary sequence of tests (for testing whether a node
can achieve goal G) according to the definitions 3 and 4
above.

Now, we are ready to pose the problem as a Markovian de-
cision problem with perfect observations. The information state
of the process is the set of nodes of the directed graph which
have not yet been checked whether they can achieve goal G and
could potentially correspond to a least cost combination of fea-
ture data streams. Therefore, an information state is a reachable
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set. Let V(Q) denote the minimum expected cost (of testing)
when the state is Q. Then V(Q) satisfies the optimality equation

V(@) = min {e+pixV (NF) + (1= p) =V (NF) .
K3
(6)

Note that G denotes that the system goal is achievable and
G denotes that the system goal is not achievable. We will now
provide a solution to the above equation under the assumptions
stated at the beginning of this section.

Theorem 1: If py + pyy1 > 1forl = 1,...,N — 2, then
an optimal test strategy for identifying the feature stream subset
®* is to test the combinations of feature data streams in an in-
creasing order of feature data stream cost.

Proof: The proof for this theorem is structurally similar to
the proof of Theorem 3.1 of [20].

What this theorem states is that if one tests the combination
of feature data streams in this manner, an optimal feature stream
subset ®* is guaranteed to be identified with the least cost. What
is a more interesting result is the following corollary which pre-
cisely computes the value of V(Q) for the optimal subset.

Theorem 2: Let Q be a reachable set. Then the minimum
expected cost associated with Q is

n;—1
V(Q)=cx Z (I=p)" + (1 =p)™
n=0
nl+171
> (L=py)" + ...+ (L—p)™
n=0
(1= pry) ™

nh—l

x> (1—pn)". )
n=0
Proof: This proof is similar to the proof of [20, Coroll. 3.1].
We will now examine a special instance of the above gener-
alized setting.

LK (1 - ph_l)n]'_l

C. Analysis of the Constant Fusion Probability Instance

Let us now examine the generalized setting under a more con-
strained assumption 3 of Section IV-B. If we assume the fol-
lowing modified assumption.

3’) The a priori probability that the multimedia system
can achieve goal G when a combination of 7 feature data
streams is utilized for 1 < ¢ < N —1, is equal to a constant
probability p.

The earlier assumption is constrained to consider the fact that
any subset of feature data stream set has equal probability of
achieving the system goal. This may not be a very realistic as-
sumption but it is a practical assumption to make when no prior
empirical evidence is available in which case it is fair to assume
p = p; = 1/2 for all subsets . This essentially means that any
subset is equally like to achieve the system goal and we would
like to identify the subset with the minimum cost.

Theorem 3: Let Q be an information state with ¢ and j being
two elements of Q. If p > 1/2, then:

D I [QF] +1QF] < 1QF| +1QF and [QF] < QF| <
Q1. 1QF] < 1QF| < 1QF] then Vi(Q) < V;(Q)

where V;(Q) denotes the expected cost of testing all k& €
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@ when the information state is Q and follow the optimal
test strategy afterwards.

2) An optimal test strategy is to test combinations of fea-
ture stream sets in an increasing order of their cost. The
minimum expected cost associated with Q is

Q-1

V@ =cx Y (1-p)"

n=0

®

Proof: This proof is structurally similar to that of Theorem
3.2 of [38].
What is interesting is the above theorem provides an upper-
bound of V(Q) as ¢/p.

D. Attention Saturation for Multiple Data Streams

If we have multiple data streams, we need to be able to decide
how many sensor and attention samples to allocate to each data
stream. The case of sensor samples is quite straightforward. For
one data stream, we had Ng sensor sample. If we have |®*| data
streams, then we can allocated a fixed Ns(7) number of sensor
samples for sensing the environment for each data stream, where
1 < 4 < |®*|. Again, the notion of attention saturation can also
be used with generalization. For one data stream case, we had
N 4 attention samples. We now define attention saturation for a
single feature stream F; as follows:

ASatti(t) = fx /P(a(t)|E’(t)) )

fi

Then, for all the data streams, we have the total amount of
attention saturation as

ASat(t) = ASat/i(t).
f:

Now we can easily compute the number of attention samples
for each individual data stream using
Nmax ® ASat?i(t)
ASat(t)

(10)

fi
Ny (t) =

Thus, we can compute the number of attention samples re-
quired for each data stream in way which proportional to the
amount of attention required for that stream normalized over
the total attention saturation.

E. Evaluation

We use ideas from foraging theory to evaluate the efficacy of
the experiential sampling technique. When people explore data
and assimilate information, people try to maximize their rate
of gaining valuable information over cost. In the information
foraging theory [19], it has been formulated as maximizing the
rate of gain of valuable information per unit cost R

G

R= ———
Tp + Tw

(1)
where G is the total net amount of valuable information gained
(the attended samples), T'p is the total amount of time spent be-
tween information patches (time to sense the environment using
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Frame 203 N, =345 Frame 212 N, =238 Frame 243 N, =0

Fig. 2. Traffic monitoring sequence. This figure illustrates the both spatial
and temporal visual attention inferred from motion experience. Blue points are
sensor samples while yellow points are attention samples. Red bar shows the
spatial attention in @ direction. It evolves according to the spatial experience.
Ns number of sensor samples is set to 200. N4 number of attention samples
changes each time based on the temporal experience.

sensor samples and compute the context) and 7Ty is the time
within the information patches (time to obtain the attention sam-
ples and to perform analysis time on them). Therefore a “good”
method should have the ability to maximize R at any given time.
The intuitive idea is that the amount of computation required for
determining attention should be small enough so that the savings
obtaining by doing the task only on the attended samples clearly
dominates this factor. Thus, we can obtain an overall gain.

Our attention samples are used to collect the relevant informa-
tion. If the attention model is accurate, the attention saturation
ASat(t) intuitively measures the relevant information regarding
the goal in a given time slice. We can define G = ASat(t)
(When ASat(t) # 0). The cost of obtaining the sensor samples
Cg can be treated as T'p while the cost of obtaining attention
samples C'4 and performing local analysis (1) on attention sam-
ples Cp, can be treated as Tyy .

Based on the above, the rate of gain of valuable information
per unit cost of our approach R is equal to

B ASat(t)
NAo(Ca+ Cp,) + NsCs’

Rg(t) (12)

Since the cost of obtaining both sensor samples C's and at-
tention samples C 4 is much smaller than the cost of performing
local analysis C, , the second part of the denominator in (12)
(NgCs as well as C'4) can be removed. Consequently, by re-
placing N 4 from (26), (30) becomes

Re(t) ~ ASat(t) 1
BN N ASat(t)Cr,  NyaxCr,

(13)

From (32), we can see our algorithm is adaptive to the expe-
riential environment and keeps maximizing the rate of gaining
valuable information over cost. When there is more relevant in-
formation (increasing the attention saturation in the numerator),
the number of attention samples will be larger and consequently
the cost increases (as the increase in the denominator) and vice
versa. This keeps the valuable information gain per unit cost
near the maximal value.
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Fig. 3. Traffic monitoring by attention saturation.

In contrast, the rate of gain of valuable information per unit
cost for the local feature centered approach Rp, (if we only use
(1) for content analysis) is equal to

ASat(t)

Rp, (1) = MCp

(14)
where M is number of times that the local analysis needs to
be performed. M is much bigger than the maximum number of
attention samples Np,... Especially when there is less relevant
information, there still will be a constant local analysis cost.
Therefore, it is not efficient compared to our approach.

IV. EXPERIMENTS

In this section, we present results from the three test exam-
ples. The resulting videos are available for viewing at http://
www.comp.nus.edu.sg/~mohan/ebs/.

A. Activity Monitoring

We test our method for the traffic monitoring sequences
(Fig. 2). There are 200 sensor samples randomly scattered
spatially to sense the motion experience. Based on the sensor
output, attention samples are created. Their numbers and spatial
distribution are all determined by the motion experience. Fig. 2
shows that, unlike the saliency map based attention model,
only about two hundreds of attention samples and 200 sensor
samples are sufficient to maintain the motion attention.

The weight of each attention sample is drawn using red bars
along with the x direction to visualize the spatial attention in x
direction. We can see that our experiential sampling technique
can model multi-modal motion attention quite well without
maintaining the saliency map

Fig. 3 shows that the temporal attention (attention saturation),
calculated from [1, eq. (24)], evolves according to the motion
activity in a traffic monitoring sequence. N4 roughly reflects
the traffic status at each time step. Therefore, our method here

can be used for monitoring the traffic also. It also shows that
the temporal attention is aroused only when the cars pass by. At
other times, when N4 is zero, there are no attention samples.
During this time, the only processing and analysis done is the
sensor sampling. It should be understood that all the results are
obtained by only processing a few samples in the visual data.
There is no need to process the entire data. It fulfills our aims of
providing analysis and having the ability to select the data to be
processed.

B. Audio-Visual Face Detection

We use our experiential sampling technique to solve the face
detection problem. Sensor samples are employed to obtain the
current environment from the skin color, motion and audio cues.
The face attention is maintained by the attention samples.

Fig. 4 shows the face detection by using the audio-visual data
from the two different streams. Fig. 4(a) shows the initial status:
there is no face detection working in the visual stream. The only
processing is in the audio stream for the purpose of detecting
the sound volume. In Fig. 4(b), when a chair enters, it alerts the
volume sensor in the audio stream and triggers the face detection
module in the visual stream. Thus, sensors in the visual streams
start to work: 200 sensor samples are uniformed randomly sam-
pled and sense the visual scene. Based on this, 117 motion at-
tention samples are aroused to follow the moving object (chair).
Face detection is performed on those attention samples. But the
face detector verifies that there is no face there. In Fig. 4(c), the
chair stops. It causes the volume in audio stream becomes zero
and the attention samples vanish. If this state remains for a short
period of time, the face detection module in the visual stream
is shut down again as shown in Fig. 4(d). In Fig. 4(e)—(f), the
volume sensor arouses the face detection module again when a
person enters. Attention samples are aroused by both the spatial
cues in the visual stream (motion/skin color) and the temporal
cue in audio stream (volume). The attention samples come on
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(2) (h)

Fig. 4. Audio-visual face detection by experiential sampling. (a) Frame 13.
(b) Frame 68. (c) Frame 104. (d) Frame 114. (¢) Frame 511. (f) Frame 618.
(g) Frame 698. (h) Frame 700.
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Fig. 5. Comparison of the computation speed.

with the face until the face vanishes and audio stream become
silent again [in Fig. 4(g)]. If the system is in this state for a while,
face detection is shut down again due to the no activity in both
the audio and visual streams. Only the sensor sampling of the
audio-visual environment continues to take place.

1) Computation Speed: We use a USB web camera to per-
form real time face detection on a Pentium III 1-GHz laptop.
The graph of the computation load, indicated by sec/frame, in
this real-time scenario is shown in Fig. 5. Note that our abso-
lute speed (with frame capturing, rendering, recording results
(saving to disks), etc.) is constrained by the capture speed of the
USB camera. However, we intend to show the adaptability of
our computational load rather than the absolute speed. In Fig. 5,
curve 1 shows the computation load of the adaboost face detec-
tion [22], while curve 2 indicates the computation load of our
experiential sampling with adaboost face detector. This figure
shows that by using our experiential sampling technique, com-
putation complexity can be significantly reduced. In addition,
in order to show the adaptability, we also depict the value of
attention saturation in the graph. It shows that the computation
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Fig. 6. Our Adaptive Model that adapts to the environment.

Fig.7. Sample frames for monologue detection results. (a.1) Sound in the audio
stream triggers the lip motion detector in C'1. (a.2) C'2 focuses on the speaker’s
region detected by lip motion detector.

complexity varies according to the difficulty of the current task,
which is measured by the attention saturation. This is the ex-
pected behavior as deduced in [1, eq. (32)].

2) Past Experiences: Based on the discussion in [1, Section
II-C.7], we have implemented the use of the past experience
for building the dynamic skin color model. The experimental
results are shown in Fig. 6. We change the luminance of our
visual scene. This consequently causes the global visual envi-
ronment to vary, which is indicated by the curve 1 (luminance)
and curve 2 (Max bin in hue), as shown in Fig. 6. By constantly
updating the skin color model from the previous analysis, our
skin color model can dynamically adapt to the changed visual
environment.

C. Monologue Detection

For the monologue detection, we intend to show our approach
for integrated analysis on multiple streams and subtasks rather
than giving quantitative test results. The results of the mono-
logue detection are shown in Fig. 7. Fig. 7(a) shows the pro-
cedure. When there is a sound in the audio stream as shown in
Fig. 7(a.1), the lip motion detector starts up and speaker is found
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in camera 1. Then, camera 2 starts to focus on the speaker’s re-
gion which is detected by the lip motion detector in Camera
1. Detected faces are marked as yellow regions while lip re-
gions are marked as red regions. Face detector and lip motion
detector perform measurements on the camera 1, which is in-
dicated in the bottom-right of the frame. Camera 2 zooms in to
the speaker’s region, which allows further visual analysis to be
performed on the output of camera 2 in order to obtain more
accurate results. Fig. 7(b) shows the detection results for a se-
quence in which two different speakers speak at different times.
Therefore, the second camera focuses on a different person de-
pending on who is speaking.

V. CONCLUSIONS

In this paper and [1], we describe a novel sampling-based
framework for multimedia analysis called experiential sam-
pling. Based on this framework, we can utilize the context of
the experiential environment for efficient and adaptive compu-
tations. Inferring from this environment, the multimedia system
can select its data of interest while immediately discarding the
irrelevant data. As examples, we utilize this framework for the
activity monitoring, face detection and monologue detection
problems. The results establish the efficacy of the sampling
based technique. In the future, other applications like adaptive
streaming and surveillance with more sources of different
modalities will be further investigated.

What we have essentially done is to formulate the problem of
identifying the optimal feature stream subset ®* of a multimedia
system to accomplish its task. We have formalized the problem
to cast it as a Markovian decision problem and have provided an
optimal procedure to identify this subset as well as to estimate
the cost of identifying this optimal subset. However, much more
remains to be done.

* Given this optimal subset ®*, how do we best fuse the
information from the various feature streams for a par-
ticular problem? One possibility is a linear fusion frame-
work. Another possibility is a dynamical system based ap-
proach. Model predictive controllers [43] seem to be an at-
tractive option. Or some energy minimization [39] or an
MDL-based approach [40] might turn out to be useful.
These are fruitful avenues for future investigations.

* How do we combine continuous feature streams with sym-
bolic feature streams? For example, text stream is often
available with video streams. How can the text stream be
effectively exploited for video analysis in this case?

e Having identified ®*, how do we distribute the attention
samples among the various streams belonging to ®*? We
have suggested one method based on attention saturation.
Can it be done in a more efficient manner?

* How off are we from the optimal condition if a particular
feature stream from ®* drops off? The idea is to gracefully
degrade any system and to have a quantitative notion about
it. This can have practical implications for handling sensor
failures and run-time maintenance of multimedia systems.

* How exactly do we trade one feature stream of ®* versus
a subset others? The directed graph model will help along
with the cost of each feature stream. This can help select
different subset of sensors depending on other criteria.
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* Our main contribution is the introduction of generalized
goal-oriented attention for multiple sensor data streams
which are not necessarily biological sensors. Moreover,
this attention function has been identified as dynamically
varying phenomenon which is continuously updated based
on past experience and current context. We have used the
sampling framework to mathematically model this phe-
nomenon. Can some other more economical mathematical
model be developed for capturing this phenomenon?

* Though we have been inspired by the human phenomenon
of attention, we have adopted an engineering approach to
solve the problem. However, it may be worthwhile to com-
putationally mimic the biological phenomenon. Building
biologically plausible models of attention would be an in-
teresting challenge. Some of the findings by cognitive sci-
entists [6], [8] would be extremely useful for this purpose.
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