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ABSTRACT

Most analyses on dynamic system optimal (DSO) assighare done by using the
control theory with an outflow traffic model. On thee hand, this control theoretical
formulation provides some attractive mathematical ptagserfor analysis. On the
other hand, however, this kind of formulation often iggsothe importance of
ensuring proper flow propagation. Moreover, the outflow nwodmve also been
extensively criticized for their implausible traffic Hmeviour. This paper aims to
provide another framework for analysing a DSO assignmestilggn based upon
sound traffic models. The assignment problem we considenesl to minimize the
total system cost in a network by seeking an optimal infloafile within a fixed
planning horizon. This paper first summarizes the req@rgsnon a plausible traffic
model and reviews three common traffic models. The sseg conditions for the
optimization problem are then derived using a calculus asfations technique.
Finally, a simple working example and some concluding riesrare given.
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1. INTRODUCTION

Dynamic traffic assignment (DTA) models are used temieine the network traffic
pattern over time. A DTA model comprises two componeatgaffic model and a
travel choice model. The traffic model representspitopagation of traffic through
the network. In general, traffic models can be cfegkinto two different categories:
outflow models and travel time models. A key differebeéween an outflow model
and a travel time model is that the outflow modedtfidetermines the link outflow
profile according to the given outflow function and therent traffic conditions, and
then back calculates the corresponding link travel timecontrast, the travel time
model first determines the link travel time accordinghi given travel time function
and the current traffic conditions, and then calcsléte outflow profile.

The travel choice model determines the route chaidetlae departure time choice of
each traveller in a road network. This is done based tyworprinciples: dynamic
user equilibrium (DUE) assignment and dynamic system apiipSO) assignment.
Under DUE assignment, travellers are assigned sucHahatch origin-destination
(O-D) pair in the network, the total travel costs expexenby travellers, no matter
which combination of travel routes and departure times thepse, are equal and
minimal. DSO assignment assumes that travellers aviiperate in making their
travel choices for the overall benefit of the whalgstem instead of their own
individual benefits. Although the traffic pattern under M&ssignment may be
regarded as unrealistic, it can provide a useful benchroagkaluate various traffic
management strategies.

Most DSO analyses are done by using the control thedty an outflow traffic
model. On the one hand, this control theoretical foatmh provides some attractive
mathematical properties for analysis. On the otherdhdmowever, this kind of
formulation often ignores the importance of ensuringpproflow propagation. In
addition, the outflow models have also been widelticized for their implausible
traffic behaviour. This paper aims to provide anothen&aork for analysing a DSO
problem, based upon sound traffic models. In the nextoseatie first summarize the
requirements on a plausible traffic model. In sectloee, we give a brief review on
three different traffic models: the outflow modelse theterministic queue model and
the linear travel time model. In section four, we detiive necessary conditions for a
DSO assignment problem. The assignment problem aims tmininthe total system
cost in a network by seeking an optimal inflow profilidhm a fixed planning
horizon. Different from the conventional control thetizal approach, we explicitly
add a constraint to ensure proper flow propagation and adigitwdus of variations
technique to solve for the optimal solution. Finallysimple working example is
illustrated in section five and concluding remarks arerginesection six.

2. DESIRABLE PROPERTIES OF TRAFFIC MODELS

A traffic model is considered to be plausible if ittisiees the following five
requirements.

1. Positivity - If we input a non-negative inflow profile(s) , into a traffic model, the
corresponding state variables, include the outfiefile, g(s), the amount of link
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traffic, x(s), and hence the link travel time, given by this trafficdal should also be
non-negative.

2. First-in-first-out (FIFO) - If a traveller deparftem the origin earlier, then he/she
can expect he/she should be able to arrive at the destirgarlier. In other words,
the arrival time of a traveller should be always pesly proportional to his/her
corresponding departure time. This principle can be repexbday 7(s) >0, where
7(s) is the corresponding time of exit for a travekerters the link at time and the

dot superscript refers to the derivative of a fiorctvith respect to time.

3. Flow Conservation - The rate of change of amaditink traffic, x(s), at any times
should be always equal to the difference betweenmnffow rate and the outflow rate
of the link at that time. This can be described tibne differential equation

X(s) = &(s) — 9(9) -

4. Flow Propagation - The cumulative traffic entgpsto times must has exited from
the link by exactly timer(s ) This can also be expressed &s) = G[r(s)|, where

E(s) and G[r(s)] correspond to the cumulative inflow ksyand the cumulative
outflow by 7(s) respectively. Differentiate both sides with regdectimes, we have

&(s) = g[r(9)]#(s) . The relationship shows the rate of flow alongehigle trajectory
should accord to(s .)

5. Causality - Causality states that traffic bebawishould be affected by local
conditions and conditions downstream only, butlmotonditions upstream. In other
words, the exit time and corresponding instantasexuflow for an inflow at times,
should only depend on the inflow at or before tmieit not after.

3. ANALYSISOF TRAFFIC MODELS
3.1 Outflow models

Outflow models were first introduced by Merchant ddemhauser (1978). Outflow
rate from each link is considered to be a non-deing function of the amount of
whole link trafficx(s). The evolution of the state variabds) is governed by the state
equationx(s) = &(s) — g[x(s )]as flow conservation.

Outflow models, on the one hand, provide a lingat eontinuous state equation for
analysis. On the other hand, they have also be&ensixely criticized for their
implausible traffic propagation. For example, thedels may lead to zero travel time
for some travellers and infinitely long ones foretlothers (Astarita, 1996).
Furthermore, Heydecker and Addison (1998) showeat the outflow models
structurally violate causality. Givex(s) = E(s) - G(s. gnd E(s) = G[7(s)], it follows

that X[7(s)] = E[r(s)] - E(s). The instantaneous outflow[r(s)] depends onqz(s)|
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and hence on the inflow profile durir,7(s)]. That is, the outflowg[r(s)] depends
on the inflow after the departure tirgeand this is an obvious violation of causdlity

3.2 Travel time modds

In principle, a link travel time model can deperu any state variables such as link
inflow rate, link outflow rate and amount of linkaffic. However, Daganzo (1995)

recognized that the travel time model should orlgehd on the amount of link traffic

in order to ensure FIFO. Although Carey et al. @0Bave proposed another travel
time model, which depends on the link inflow andflow rates and is shown to be
satisfying causality and FIFO, this paper willldbicus on the former.

3.2.1 Deterministic queue model

The deterministic queue model, which is also knoam the bottleneck model
(Vickrey, 1969), satisfies all requirements in sattwo. This model corresponds to a
freely flowing link with a flow-invariant travel the ¢ together with a deterministic

gueue at its downstream end. The capacity of tikeidi denoted a®, which refers to
the maximum service rate of the queue. The detétiinqueue model states that
when a queue exists, the link outflow is equalie® ¢apacity and all travellers arrive
before the queue dissipates will incur travel de@sherwise, when the queue length
is zero, the outflow is taken as the inflow at time of entry and the travellers are
unimpeded. The outflow for each link thus can bgressed as

_[ds) (Lig=0ds)<Q)
g(s+g)= . (1)
Q otherwise
The state variable.(s) refers to the amount of traffic that will be enntared in the
gueue by a traveller who enters the link at tsndhe state variable is developed
according to the state equatidr(s) =e(s) - g(s+¢ . Using (1), the state equation
can be also written as
9! 0 (E=0d9<q)
L(s)= . (2)
es)-Q otherwise
Finally, the time of exit is given by(s) =s+ ¢+ L(s)/Q. We should point out that
this model can be difficult to analysel&s) is not differentiable ag(s)=Q. This may
also cause the optimisation problem become noneconv

3.2.2Linear Travel Time Modd

! The cell transmission model (CTM) proposed by Daganzo (1i8%is0 a kind of outflow
model. However, causality is observed in CTM. CTM discestigach travel link into shorter
segments or “cells”. The outflow rageis considered to be a function of the amount of traffic
x(s) in each cell. This model differs from the other conventional outflow model$obking

at g at one time step forward{As), rather than at the current tirge and it turns out that
causality is satisfied. The problem of causality violafiowutflow models may be bypassed
using this discretization technique. Since the discretizatibroutflow models and its
application to the DSO assignment are out of the scopevirettgave a more detail discussion
in another working paper.
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Friesz et al. (1993) introduced another satisfactory ktawe model that can be used
in place of the deterministic queue model. The model corssitierdelay component
of the link travel time to be a linear function of a@ount of whole-link traffix(s) at

the time of entrys to the link. In this case we have the state equation
X(s) =e(s)—g(s). The functional form for the time of exit is giveby

7(s)=s+¢+x(s)/Q as before but with the present state variable. dutlow

experienced by traffic that enters at timean be established according to correct
flow propagation (Heydecker and Addison, 1998) as

Qe(s)
olr(9)]= 3)(
Q+e(s) —g(s)
which depends on outflows at tirseand hence on inflows at earlier times. The state
equation can then be re-written as
Qdo(s)]

GRS 7)) @
where o(s) satisfies s=o(s)+ @+ Xo(s)]/Q, and it is regarded as an inverse
function of 7(s). This travel model is more suitable for analysslse state variable
is smooth and continuously differentiable with time

4. ANALYSISOF DYNAMIC SYSTEM OPTIMAL

We seek an optimal inflow profile(s) that minimizes the total travel cost in the
network within a fixed planning period@. In this study, we consider three distinct
components of the total travel cost associated téhchosen departure time. The
first component is the travel time associated wathount of link traffic at the
departure times, which we denote ag[x(s .)[This travel time is determined by the
travel time models specified in section three. Thes add to this a time-specific cost
associated with arrival time at the destinatinfs), which we denote as [(s)] .
Finally, we further extend this by adding a timedfic cost associated with
departure from the origin at ting which we denote ak(s . )Possible choices of the
departure and arrival time-specific cost functi@ns investigated by Heydecker and
Addison (2004). In addition to their specificatiomge further require that the sum of
h(s)+ f[s+¢] is a convex function of, such that the overall objective function will
be convex with respect &s), as the travel time models considered in thisepape
also convex. This construction means that anyostaty point will be a minimum
point of the objective function.

To enhance analytical tractability and facilitatedarstanding, we consider a simple
network with only one route with one O-D pair. Thejective function for the
optimization problem is formulated as

minZ = [ {hls)+ g1 + FLr(Setoies (5)
and is subject to the following set of constraints
X(s) = &(s) - g(s) (6)
olr(9)li(s) = e(s) (7

E(s) = &(s) (8)
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&s)20 9)
g(s)=0 (20)
x(s) =0 (11)
EM)=E (12)

Equations (6), (7) and (8) are the state equations X& , 7(s) and E(s)
correspondingly. They actually also represent the floenservation, the flow
propagation and the evolution of cumulative inflow. Gtiads (9) — (11) ensure the
positivity of the traffic flow variables. Finally, (12) fiees the total throughput for
the whole study peridd Note that we do not add an explicit constraint fdf@Flas
Carey (1992) showed that adding FIFO constraint will aftee structure of the
formulation and cause the problem become non-convadeeth our travel time
models can satisfy FIFO structurally without any expt@onstraint (Mun, 2001).

The optimization problem involves finding a temporal inflovofge rather than a
fixed value for the inflow. The problem thus is a dynamptimization problem. To
derive the optimality conditions, we first augment tgective functionZ with the
constraints to obtain

{n(s)+¢ixo1+ flz(s)e(s) + A(s){[e(s) - 9(9)] - (o)}
r=fo y(s{e(s) - glr(9)]r(9)}
D1 s u)ee -EO)
+V(M)[E - EM)]|+ p(s)e(s) + £(9)9(5) + £ (9X(S)
where A(s),y(s)andu(s ) are called the multipliers or costate variablestfe state
equations (6), (7) and (8)(s),x(s),{(s)andv(T are the Lagrange multipliers for
constraints (9), (10), (11) and (12).

ds (13)

We then definéd as the Hamiltonian function in which
={n(s)+¢ix(9)] + fr(s)l}e(s) + A(s)[e(s) — 9(3)]
+ (&9 + U(IE(S) (14)
+Y(T)[E - EM)]|+ p(9e(s) + k(9(S) + {(X(S)

and substituté! into Z' to obtain

Z' = [ {H-29%9) - 19dlr9r(9) - u(E()ds (15)
We now derive the total variation &f with respect to all its arguments as
oH oH
T — —d( +——0r
xa j Oe()ae() 09()59() 0x(s) © 07(s) o 0E(s) *E ds (16)

= MK(S) = Y[ (9)]07(5) — () E(9)
Using integration by parts, the last three ternthénintegrand can be re-written as

] A(s)d((s)ds:] A(9)d(9) = A(T)(T) —] A(9x(9)ds (17)

2 To be more generic, we adopt linear travel time modéigmptesent analysis. However, this
analysis can also apply for deterministic queue modeldd this, we can replace the flow
conservation condition (6) by (2); replace the flow propagationdition (7) by (1); and
change the notatiox(s) to L(s).
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[ nodr©)oi(9ds= | ndr(s]dsr(s)
0 0 ] ( 1 8)
={ymdrmorm) - O drO)orO} - {19dr9]+n9g[rslre}ornsds

0

| HOE(Sds= | u(8)ddE(s)=~[ [(E(Sds (19)

0
Note thatx(0) is fixed at zero and hena&(0) =0; E(0) is fixed at zero an#(T) is

fixed at E so thatdE(0) =0 and &(T) = 0. The prime superscript in the expressions
denotes the derivate of a function with respect toows argument. Finally, the
expression foldZ" can be re-expressed as

& = AM)3T) HyT)dz(N)]or(T) - O d[r 07O}

+A(9) [ox
R ae()dé() a()db() [ (S)j ()

° { e )+V(S)9[r(s)]+y(5)9 [r(s>]r(s>}5r(s)+[ o )+/J(s>]d€(s>

The optimality is achieved whe# is stationary, i.e.0Z" equals zero for all

variations in arguments of . This is ensured by setting the coefficients of all

independent variations to zero, which leads to the followewessary conditions
oH _

ox(9) (20)

oS 1)
o 22
A(T) = o (23)

SICE ax(s) (24)
y(d[rM)or(T) -y dr©)dr(0) =0 (25)
—{ﬂs)g[r(s)]+y(s)g'[r(s)]f(s)}=% (26)
-9 = % =0 (27)

Equations (21) and (22) are called the optimaldgditions for the DSO assignment.
Equationg24), (26) and (27) represent the costate equatiynd(s), y(s) and u(s)

at optimality. Finally Equations (23) and (25) stdar the transversality or terminal
conditions forA(s )and y(s). We can first deduce from (21) and (22) that

{h(s)+@ix(9] + fIz(s]}+ A() + (9 + () + p(5) =0 (28)

~X(9) +k(9 =0 (29)
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Furthermore A(s) and y(s) can be solved by the following costate equaticduded
from (24) and (26)

—A(S) = [x(s)]1e(s) +{ (9) (30)
. \ 1 _ OH
Ar9drl+n9glrsls}=5 o (31)
= [r(9)e9
Dividing both sides on (31) byd[r(s)] gets
y‘(s)+{M f(s)}y(s)=—f'[r(s)]f(s) (32)
o[r(s)
which is a first-order non-homogenous differengigliation and it can be solved as
I , :
M= ] j oz [zt (33)
Finally, the following complementary slackness atiads hold
P(s)E(s) =0;  p(s)z0 (34)
k(9a(s) =0 «(s)=0 (35)
{(IX(8) =0, {(9=0 (36)

For positivee(s), g(s) andx(s), o(s),«(s)and{(s) will all equal zero. When these

necessary conditions are solved simultaneouslgxpect to obtain an optimal inflow
profile that equates the marginal total costs fodeparture times at system optimal.

5.A SIMPLE EXAMPLE

To understand how the equations derived in sedtionwork, we consider a simple
example in which the deterministic queue modeldepaed and the origin-specific
cost is considered to be constant,hiés) = 0. The study periof0, T ik large enough

so that all traffic can be cleared by the end af thme period, i.e.E <QT.
Heydecker and Addison (2004) showed that therebeillhree distinct intervals when
this single bottleneck is at equilibriurfd,s, , [Is;,s,] and[s,, T ], which corresponds
to whene(s) = Q e(s) > 0 and g(s) = Q The bottleneck will be congested throughout
[s.,s,] and henceg(s) =Q for sU[s;,s,]. A constant outflow profile mearg(s) =0,
conditions (22) and hence (29) vanish, and (38dsiced toy(s) =—f'[1(9)|#(s).

Moreover, p(s),k(s)and{ (s ) are equal to zero sin@gs), g(s) andx(s) are positive.
Equation (30) thus becomesA(s) = ¢/'[x(s)]le(s . Finally, differentiate (28) with
respect to tims, and substitute expressions fofs , §)s) and z(s) leads to

{wIx@1xs) + f'[r(s)7(sh+A(s) + (s) + f2(s) = 0
= -/ [X(9)]Q=0 (37)
= Yx(9)]=0

It indicates that the travel time is constant wiébpect to the amount of link traffic at
DSO condition, which implies that the queue length shd@dconstant and hence
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X(s) =0. This also sayx(s yhould remain at its initial value which is zero. As a
result, the optimal inflowe(s)=Q for all time s within [s,,s,]. Moreover,
W'[x(s)] =0 meansA(s) = —¢/'[x(s)]e(s) = Oand thusA(s )is constant. From the
transversality condition (23) we can deduce the) = forGall sO[s,,s, ].

In addition, (s) =—f'[r(s)|#(s) implies that(s) =K - f[r(s)] for sO[s,,s,], whereK
is constant. Equation (27) shows that the costatiaie 4(s ) is constant throughout
the planning period. The interpretation for thistiat — x4(s) corresponds to the

constant equilibrium cosC” at equilibrium with departure time choice. Finally
replace the constant origin-specific costlpyand the constant travel timg x(s)] by
the free flow travel timeg, (28) can be re-expressed as

{h+ o+ fr(s+{K - f[r(9)) =’ (38)

for sO[s,,s,]. We can determine from (38) th& =C’ —(ﬁ+¢). The costate
variable y(9=C -(h+@-f[r(] can be interpreted as an external cost that
transforms the system from equilibrium to a systgsimal. For intervald0,s, hnd
[s,,T], we havey(s,) = y(s,) = 0Sincee(s) = Q hence7(s) = Oand thusp(s)= 0
for all s within [0,s,] and[s,,T ] Consequently,y(s) = @nd thus no external cost
should be added to the system in the two intervals.

6 CONCLUDING REMARKS

In this paper we have provided an analysis framkvior dynamic system optimal
assignment with departure time choice based upondsdraffic models. First, we
summarize all requirements on a traffic model aadiew three different traffic
models. We particularly point out that the outflamodels are widely used for
analysis, however, these models do not give plausibffic propagation and violate
causality. Thus, outflow models should not be asdidThe travel time models are
satisfactory. Nevertheless, we still have to nbi the deterministic queue model can
be difficult to analyse, as its state variableas econtinuously differentiable with time.

We then derive the necessary conditions for a DS&yament based upon the travel
time models. The assignment problem aims to mirentiee total system cost in a
network by seeking an optimal inflow profile withia fixed planning horizon.
Different from the conventional control theoreticabproach, we have explicitly
added a constraint to ensure proper flow propagatind adopted a calculus of
variations technique to solve for the optimalityndaions. It is then followed by a
simple working example in which we consider a sngbttleneck with constant
origin-specific cost. The result agrees with triadi&l analysis on the same problem.

Traditional analysis tends to presume zero queaingSO. However, will it still be
true if the origin-specific cost considered is tinaying instead of constant? Will it
be possible that a traveller would rather encoucbeigestion in order to stay longer
at origin for an overall net benefit? Furthermongl it be better off if we tolerate
congestion at some times to shorten the overatjested period? In particular, if we
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consider an oversaturated period, 2> QT, in which congestion must exist, the

problem then becomes how we can manage this congesticar tadn how to
eliminate it. The answers to these questions are raglistforward. In fact, we expect
congestion will exist at DSO condition under certeamditions, for example, when
travellers with a highly negative origin-specific cosé a&onsidered; or a different
traffic model such as the linear traffic model is a@dptThe analysis work proposed
here can facilitate us to understand these questions.eFwtank will also include
extending the present work to multi-route and multi-cadity networks.
Developing an efficient solution algorithm is also ampariant topic and is an area of
our future research.
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