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ABSTRACT 
 
Most analyses on dynamic system optimal (DSO) assignment are done by using the 
control theory with an outflow traffic model. On the one hand, this control theoretical 
formulation provides some attractive mathematical properties for analysis. On the 
other hand, however, this kind of formulation often ignores the importance of 
ensuring proper flow propagation. Moreover, the outflow models have also been 
extensively criticized for their implausible traffic behaviour. This paper aims to 
provide another framework for analysing a DSO assignment problem based upon 
sound traffic models. The assignment problem we considered aims to minimize the 
total system cost in a network by seeking an optimal inflow profile within a fixed 
planning horizon. This paper first summarizes the requirements on a plausible traffic 
model and reviews three common traffic models. The necessary conditions for the 
optimization problem are then derived using a calculus of variations technique. 
Finally, a simple working example and some concluding remarks are given.  
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1. INTRODUCTION  
 
Dynamic traffic assignment (DTA) models are used to determine the network traffic 
pattern over time. A DTA model comprises two components: a traffic model and a 
travel choice model. The traffic model represents the propagation of traffic through 
the network. In general, traffic models can be classified into two different categories: 
outflow models and travel time models. A key difference between an outflow model 
and a travel time model is that the outflow model first determines the link outflow 
profile according to the given outflow function and the current traffic conditions, and 
then back calculates the corresponding link travel time. In contrast, the travel time 
model first determines the link travel time according to the given travel time function 
and the current traffic conditions, and then calculates the outflow profile.  
 
The travel choice model determines the route choice and the departure time choice of 
each traveller in a road network. This is done based upon two principles: dynamic 
user equilibrium (DUE) assignment and dynamic system optimal (DSO) assignment. 
Under DUE assignment, travellers are assigned such that for each origin-destination 
(O-D) pair in the network, the total travel costs experienced by travellers, no matter 
which combination of travel routes and departure times they choose, are equal and 
minimal. DSO assignment assumes that travellers will cooperate in making their 
travel choices for the overall benefit of the whole system instead of their own 
individual benefits. Although the traffic pattern under DSO assignment may be 
regarded as unrealistic, it can provide a useful benchmark to evaluate various traffic 
management strategies.  
 
Most DSO analyses are done by using the control theory with an outflow traffic 
model. On the one hand, this control theoretical formulation provides some attractive 
mathematical properties for analysis. On the other hand, however, this kind of 
formulation often ignores the importance of ensuring proper flow propagation. In 
addition, the outflow models have also been widely criticized for their implausible 
traffic behaviour. This paper aims to provide another framework for analysing a DSO 
problem, based upon sound traffic models. In the next section, we first summarize the 
requirements on a plausible traffic model. In section three, we give a brief review on 
three different traffic models: the outflow models; the deterministic queue model and 
the linear travel time model. In section four, we derive the necessary conditions for a 
DSO assignment problem. The assignment problem aims to minimize the total system 
cost in a network by seeking an optimal inflow profile within a fixed planning 
horizon. Different from the conventional control theoretical approach, we explicitly 
add a constraint to ensure proper flow propagation and adopt a calculus of variations 
technique to solve for the optimal solution. Finally a simple working example is 
illustrated in section five and concluding remarks are given in section six.  
 
 
2. DESIRABLE PROPERTIES OF TRAFFIC MODELS 
 
A traffic model is considered to be plausible if it satisfies the following five 
requirements.  
 
1. Positivity - If we input a non-negative inflow profile, )(se , into a traffic model, the 
corresponding state variables, include the outflow profile, )(sg , the amount of link 
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traffic,  x(s), and hence the link travel time, given by this traffic model should also be 
non-negative.   
 
2. First-in-first-out (FIFO) - If a traveller departs from the origin earlier, then he/she 
can expect he/she should be able to arrive at the destination earlier. In other words, 
the arrival time of a traveller should be always positively proportional to his/her 
corresponding departure time. This principle can be represented by 0)( >sτ& , where 

)(sτ  is the corresponding time of exit for a traveller enters the link at time s and the 
dot superscript refers to the derivative of a function with respect to time.  
 
3. Flow Conservation - The rate of change of amount of link traffic, x(s), at any time s 
should be always equal to the difference between the inflow rate and the outflow rate 
of the link at that time. This can be described by the differential equation 

)()()( sgsesx −=& . 
 
4. Flow Propagation - The cumulative traffic enters up to time s must has exited from 
the link by exactly time )(sτ . This can also be expressed as [ ])()( sGsE τ= , where 

)(sE  and [ ])(sG τ  correspond to the cumulative inflow by s and the cumulative 
outflow by )(sτ  respectively. Differentiate both sides with respect to time s, we have 

[ ] )()()( ssgse ττ &= . The relationship shows the rate of flow along a vehicle trajectory 
should accord to )(sτ& . 
 
5. Causality - Causality states that traffic behaviour should be affected by local 
conditions and conditions downstream only, but not by conditions upstream. In other 
words, the exit time and corresponding instantaneous outflow for an inflow at time s, 
should only depend on the inflow at or before time s but not after. 
 
 
3. ANALYSIS OF TRAFFIC MODELS  
 
3.1 Outflow models 
 
Outflow models were first introduced by Merchant and Nemhauser (1978). Outflow 
rate from each link is considered to be a non-decreasing function of the amount of 
whole link traffic x(s). The evolution of the state variable x(s) is governed by the state 
equation )]([)()( sxgsesx −=&  as flow conservation.  
 
Outflow models, on the one hand, provide a linear and continuous state equation for 
analysis. On the other hand, they have also been extensively criticized for their 
implausible traffic propagation. For example, the models may lead to zero travel time 
for some travellers and infinitely long ones for the others (Astarita, 1996). 
Furthermore, Heydecker and Addison (1998) showed that the outflow models 
structurally violate causality. Given )()()( sGsEsx −=  and )]([)( sGsE τ= , it follows 

that [ ] [ ] )()()( sEsEsx −= ττ . The instantaneous outflow [ ])(sg τ  depends on [ ])(sx τ  
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and hence on the inflow profile during )](,( ss τ . That is, the outflow [ ])(sg τ  depends 
on the inflow after the departure time s, and this is an obvious violation of causality1. 
 
3.2 Travel time models  
 
In principle, a link travel time model can depend on any state variables such as link 
inflow rate, link outflow rate and amount of link traffic. However, Daganzo (1995) 
recognized that the travel time model should only depend on the amount of link traffic 
in order to ensure FIFO. Although Carey et al. (2003) have proposed another travel 
time model, which depends on the link inflow and outflow rates and is shown to be 
satisfying causality and FIFO, this paper will still focus on the former.       
 
3.2.1 Deterministic queue model  
 
The deterministic queue model, which is also known as the bottleneck model 
(Vickrey, 1969), satisfies all requirements in section two. This model corresponds to a 
freely flowing link with a flow-invariant travel time φ  together with a deterministic 
queue at its downstream end. The capacity of the link is denoted as Q, which refers to 
the maximum service rate of the queue. The deterministic queue model states that 
when a queue exists, the link outflow is equal to the capacity and all travellers arrive 
before the queue dissipates will incur travel delay. Otherwise, when the queue length 
is zero, the outflow is taken as the inflow at the time of entry and the travellers are 
unimpeded. The outflow for each link thus can be expressed as  

( ) ( ) ( ) ( )( ) <=
=+

otherwise

,0

Q

QsesLse
sg φ                                         (1) 

The state variable ( )sL  refers to the amount of traffic that will be encountered in the 
queue by a traveller who enters the link at time s. The state variable is developed 
according to the state equation )()()( φ+−= sgsesL& . Using (1), the state equation 
can be also written as  

( ) ( ) ( )( )
( ) −

<=
=

otherwise

,00

Qse

QsesL
sL&                                         (2) 

Finally, the time of exit is given by QsLss /)()( ++= φτ . We should point out that 

this model can be difficult to analyse as L(s) is not differentiable at ( )se =Q. This may 
also cause the optimisation problem become non-convex. 
 
3.2.2 Linear Travel Time Model 
 

                                                        
1 The cell transmission model (CTM) proposed by Daganzo (1994) is also a kind of outflow 
model. However, causality is observed in CTM. CTM discretizes each travel link into shorter 
segments or “cells”. The outflow rate gi is considered to be a function of the amount of traffic 
xi(s) in each cell i. This model differs from the other conventional outflow models by looking 
at  gi at one time step forward (s+ s∆ ), rather than at the current time s,  and it turns out that 
causality is satisfied. The problem of causality violation in outflow models may be bypassed 
using this discretization technique. Since the discretization of outflow models and its 
application to the DSO assignment are out of the scope here, we have a more detail discussion 
in another working paper.  
 



Analysis of Dynamic System Optimal Assignment with Departure Time Choice Andy H.F. Chow 

Friesz et al. (1993) introduced another satisfactory travel time model that can be used 
in place of the deterministic queue model. The model considers the delay component 
of the link travel time to be a linear function of the amount of whole-link traffic x(s) at 
the time of entry s to the link. In this case we have the state equation 

)()()( sgsesx −=& . The functional form for the time of exit is given by 
Qsxss /)()( ++= φτ  as before but with the present state variable. The outflow 

experienced by traffic that enters at time s can be established according to correct 
flow propagation (Heydecker and Addison, 1998) as  

[ ]
)()(

)(
)(

sgseQ

sQe
sg

−+
=τ                                                   (3) 

which depends on outflows at time s and hence on inflows at earlier times. The state 
equation can then be re-written as  

[ ]
[ ] [ ])()(

)(
)()(

sgseQ

sQe
sesx

σσ
σ

−+
−=&                                            (4) 

where )(sσ  satisfies [ ] Qsxss /)()( σφσ ++= , and it is regarded as an inverse 
function of )(sτ . This travel model is more suitable for analysis as the state variable 
is smooth and continuously differentiable with time.  
 
 
4. ANALYSIS OF DYNAMIC SYSTEM OPTIMAL  
 
We seek an optimal inflow profile e(s) that minimizes the total travel cost in the 
network within a fixed planning period T. In this study, we consider three distinct 
components of the total travel cost associated with the chosen departure time. The 
first component is the travel time associated with amount of link traffic at the 
departure time s, which we denote as )]([ sxψ . This travel time is determined by the 
travel time models specified in section three. Then, we add to this a time-specific cost 
associated with arrival time at the destination ( )sτ , which we denote as ( )][ sf τ . 
Finally, we further extend this by adding a time-specific cost associated with 
departure from the origin at time s, which we denote as )(sh . Possible choices of the 
departure and arrival time-specific cost functions are investigated by Heydecker and 
Addison (2004). In addition to their specifications, we further require that the sum of 

( ) ][ φ++ sfsh  is a convex function of s, such that the overall objective function will 
be convex with respect to e(s), as the travel time models considered in this paper are 
also convex. This construction means that any stationary point will be a minimum 
point of the objective function. 
 
To enhance analytical tractability and facilitate understanding, we consider a simple 
network with only one route with one O-D pair. The objective function for the 
optimization problem is formulated as 

 ( ) ( ){ } dssesfsxshZ
T

se
)(][)]([min

0
)(

τψ ++= ∫                                       (5) 

and is subject to the following set of constraints 
)()()( sgsesx −=&                                                               (6) 

[ ] )()()( sessg =ττ &                                                             (7) 

)()( sesE =&                                                                         (8) 
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0)( ≥se                                                                              (9) 
0)( ≥sg                                                                            (10) 
0)( ≥sx                                                                            (11) 

ETE =)(                                                                          (12) 
Equations (6), (7) and (8) are the state equations for )(sx , )(sτ  and )(sE  
correspondingly. They actually also represent the flow conservation, the flow 
propagation and the evolution of cumulative inflow. Conditions (9) – (11) ensure the 
positivity of the traffic flow variables. Finally, (12) defines the total throughput for 
the whole study period2. Note that we do not add an explicit constraint for FIFO as 
Carey (1992) showed that adding FIFO constraint will affect the structure of the 
formulation and cause the problem become non-convex. Indeed, our travel time 
models can satisfy FIFO structurally without any explicit constraint (Mun, 2001). 
 
The optimization problem involves finding a temporal inflow profile rather than a 
fixed value for the inflow. The problem thus is a dynamic optimization problem. To 
derive the optimality conditions, we first augment the objective function Z with the 
constraints to obtain  

( ) ( ){ } [ ]{ }
[ ]{ }

[ ]
[ ]

ds

sxssgssesTEET

sEses

ssgses

sxsgsessesfsxsh

Z
T  +++−+

−+
−+

−−+++

= ∫
)()()()()()()()(        

)()()(        

)()()()(        

)()()()()(][)]([

0

*

ζκρν
µ

ττγ
λτψ & & &

           (13) 

where )( and )(),( sss µγλ  are called the multipliers or costate variables for the state 
equations (6), (7) and (8). )( and )(),(),( Tsss νζκρ  are the Lagrange multipliers for 
constraints (9), (10), (11) and (12). 
 
We then define H as the Hamiltonian function in which  

( ) ( ){ } [ ]

[ ] )()()()()()()()(        

)()()()(        

)()()()(][)]([

sxssgssesTEET

sesses

sgsessesfsxshH

ζκρν
µγ

λτψ

+++−+
++

−+++=
                          (14) 

and substitute H into Z* to obtain  

[ ]{ }dssEsssgssxsHZ
T

)()()()()()()(
0

* &&& µττγλ −−−= ∫                          (15) 

We now derive the total variation of Z*  with respect to all its arguments as 

[ ]
ds

sEsssgssxs

sE
sE

H
s

s

H
sx

sx

H
sg

sg

H
se

se

H

Z
T  −−−

∂
∂+

∂
∂+

∂
∂+

∂
∂+

∂
∂

= ∫
)()()()()()()(                                   

)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

0

* &&& δµτδτγδλ

δδτ
τ

δδδ
δ    (16) 

Using integration by parts, the last three terms in the integrand can be re-written as 

 dssxsTxTsxdsdssxs
TTT

)()()()()()()()(
000

δλδλδλδλ && ∫∫∫ −==             (17) 

                                                        
2 To be more generic, we adopt linear travel time model in the present analysis. However, this 
analysis can also apply for deterministic queue model. To do this, we can replace the flow 
conservation condition (6) by (2); replace the flow propagation condition (7) by (1); and 
change the notation x(s) to L(s).  
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[ ] [ ]

[ ] [ ]{ } [ ] [ ]{ } dssssgssgsgTTgT

sdsgsdsssgs

T

TT

)()()(')()()()0()0()0()()()(         

)()()()()()(

0

00

δτττγτγδττγδττγ

δττγτδτγ &&&
+−−=

= ∫∫∫
(18) 

dssEssEdsdssEs
TTT

)()()()()()(
000

δµδµδµ && ∫∫∫ −==                          (19) 

Note that x(0) is fixed at zero and hence 0)0( =xδ ; E(0) is fixed at zero and E(T) is 

fixed at E  so that 0)0( =Eδ  and 0)( =TEδ . The prime superscript in the expressions 
denotes the derivate of a function with respect to its own argument. Finally, the 
expression for *Zδ  can be re-expressed as   
 

[ ] [ ]{ }

[ ] [ ]
ds

sEs
sE

H
sssgssgs

s

H

sxs
sx

H
sg

sg

H
se

se

H

gTTgTTxTZ

T   +
∂
∂+ ++

∂
∂+

 +
∂
∂+

∂
∂+

∂
∂

+

−+= ∫
)()(

)(
)()()(')()()(

)(
  

)()(
)(

)(
)(

)(
)(

                    

)0()0()0()()()()()(

0

*

δµδτττγτγ
τ

δλδδ

δττγδττγδλδ &&& &
  (20) 

The optimality is achieved when Z* is stationary, i.e. *Zδ  equals zero for all 
variations in arguments of Z*. This is ensured by setting the coefficients of all 
independent variations to zero, which leads to the following necessary conditions 

0
)(

=
∂
∂

se

H
                                                                        (21) 

0
)(

=
∂
∂

sg

H
                                                                       (22) 

  
0)( =Tλ                                                                          (23) 

)(
)(

sx

H
s

∂
∂=− λ&                                                                    (24) 

 
[ ] [ ] 0)0()0()0()()()( =− δττγδττγ gTTgT                                (25) 

[ ] [ ]{ }
)(

)()(')()()(
s

H
ssgssgs

τ
ττγτγ

∂
∂=+− &&                                   (26) 

0
)(

)( =
∂
∂=−

sE

H
sµ&                                                            (27) 

Equations (21) and (22) are called the optimality conditions for the DSO assignment. 
Equations (24), (26) and (27) represent the costate equations for )(sλ , )(sγ  and )(sµ  
at optimality. Finally Equations (23) and (25) stand for the transversality or terminal 
conditions for )(sλ  and )(sγ . We can first deduce from (21) and (22) that  
  

( ) ( ){ } 0)()()()(][)]([ =++++++ sssssfsxsh ρµγλτψ          (28) 
 

0)()( =+− ss κλ                                                                        (29) 
 



Analysis of Dynamic System Optimal Assignment with Departure Time Choice Andy H.F. Chow 

Furthermore, )(sλ  and )(sγ  can be solved by the following costate equations deduced 
from (24) and (26) 

)()()]([')( ssesxs ζψλ +=− &                                                       (30) 

 
[ ] [ ]{ }

[ ] )()('                                                     

)(
)()(')()()(

sesf

s

H
ssgssgs

τ
τ

ττγτγ

=
∂
∂=+− &&

                                 (31) 

Dividing both sides on (31) by [ ])(sgτ−  gets  

[ ]
[ ] [ ] )()(')()(

)(

)('
)( ssfss

sg

sg
s ττγτ

τ
τγ &&& −=+                                        (32) 

which is a first-order non-homogenous differential equation and it can be solved as  

[ ] [ ] [ ]∫−=
s

dtttftg
sg

s
0

)()(')(
)(

1
)( τττ

τ
γ &                                           (33) 

Finally, the following complementary slackness conditions hold  

0)(     ;0)()( ≥= sses ρρ                                                        (34) 
0)(     ;0)()( ≥= ssgs κκ                                                        (35) 
0)(     ;0)()( ≥= ssxs ζζ                                                        (36) 

For positive e(s), g(s) and x(s), )( and )(),( sss ζκρ  will all equal zero. When these 
necessary conditions are solved simultaneously, we expect to obtain an optimal inflow 
profile that equates the marginal total costs for all departure time s at system optimal.  
 
 
5. A SIMPLE EXAMPLE 
 
To understand how the equations derived in section four work, we consider a simple 
example in which the deterministic queue model is adopted and the origin-specific 
cost is considered to be constant, i.e. h’( s) = 0. The study period ],0[ T  is large enough 

so that all traffic can be cleared by the end of the time period, i.e. QTE < . 
Heydecker and Addison (2004) showed that there will be three distinct intervals when 
this single bottleneck is at equilibrium: ],0[ 1s , ],[ 21 ss  and ],[ 2 Ts , which corresponds 
to when 0)( =se , 0)( >se  and 0)( =se . The bottleneck will be congested throughout 

],[ 21 ss  and hence g(s) = Q for ],[ 21 sss ∈ . A constant outflow profile means 0)(' =sg , 

conditions (22) and hence (29) vanish, and (33) is reduced to [ ] )()(')( ssfs ττγ && −= .  
 
Moreover, )( and )(),( sss ζκρ  are equal to zero since e(s), g(s) and x(s) are positive. 

Equation (30) thus becomes )()]([')( sesxs ψλ =− & . Finally, differentiate (28) with 

respect to time s, and substitute expressions for )(sλ& , )(sγ&  and )(sµ&  leads to  
 

  

( ) ( ){ }

0)](['    

      0)](['

0)()()(][')()](['

=⇒ =−⇒ =++++

sx

Qsx

sssssfsxsx

ψ
ψ

µγλττψ &&&&&
                      (37) 

 
It indicates that the travel time is constant with respect to the amount of link traffic at 
DSO condition, which implies that the queue length should be constant and hence 
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0)( =sx& . This also says )(sx  should remain at its initial value which is zero. As a 

result, the optimal inflow Qse =)(  for all time s within ],[ 21 ss . Moreover, 

0)]([' =sxψ  means 0)()]([')( =−= sesxs ψλ&  and thus )(sλ  is constant. From the 

transversality condition (23) we can deduce that 0)( =sλ  for all ],[ 21 sss ∈ .  
 
In addition, [ ] )()(')( ssfs ττγ && −=  implies that [ ])()( sfKs τγ −=  for ],[ 21 sss ∈ , where K 
is constant. Equation (27) shows that the costate variable )(sµ  is constant throughout 
the planning period. The interpretation for this is that )(sµ−  corresponds to the 

constant equilibrium cost *C  at equilibrium with departure time choice. Finally, 
replace the constant origin-specific cost by h  and the constant travel time )]([ sxψ  by 
the free flow travel time φ , (28) can be re-expressed as  

( ){ } [ ]{ } *)(][ CsfKsfh =−+++ ττφ                                  (38) 
 
for ],[ 21 sss ∈ . We can determine from (38) that ( )φ+−= hCK * . The costate 

variable ( ) [ ])()( * sfhCs τφγ −+−=  can be interpreted as an external cost that 

transforms the system from equilibrium to a system optimal. For intervals ],0[ 1s  and 

],[ 2 Ts , we have 0)()( 21 == ss γγ . Since 0)( =se , hence 0)( =sτ&  and thus 0)( =sγ&  

for all s within ],0[ 1s  and ],[ 2 Ts . Consequently,  0)( =sγ  and thus no external cost 
should be added to the system in the two intervals.  
 
 
6 CONCLUDING REMARKS 
 
In this paper we have provided an analysis framework for dynamic system optimal 
assignment with departure time choice based upon sound traffic models. First, we 
summarize all requirements on a traffic model and review three different traffic 
models. We particularly point out that the outflow models are widely used for 
analysis, however, these models do not give plausible traffic propagation and violate 
causality. Thus, outflow models should not be avoided. The travel time models are 
satisfactory. Nevertheless, we still have to note that the deterministic queue model can 
be difficult to analyse, as its state variable is not continuously differentiable with time.  
 
We then derive the necessary conditions for a DSO assignment based upon the travel 
time models. The assignment problem aims to minimize the total system cost in a 
network by seeking an optimal inflow profile within a fixed planning horizon. 
Different from the conventional control theoretical approach, we have explicitly 
added a constraint to ensure proper flow propagation and adopted a calculus of 
variations technique to solve for the optimality conditions. It is then followed by a 
simple working example in which we consider a single bottleneck with constant 
origin-specific cost. The result agrees with traditional analysis on the same problem.  
 
Traditional analysis tends to presume zero queuing at DSO. However, will it still be 
true if the origin-specific cost considered is time-varying instead of constant? Will it 
be possible that a traveller would rather encounter congestion in order to stay longer 
at origin for an overall net benefit? Furthermore, will it be better off if we tolerate 
congestion at some times to shorten the overall congested period? In particular, if we 
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consider an oversaturated period, i.e. QTE > , in which congestion must exist, the 
problem then becomes how we can manage this congestion rather than how to 
eliminate it. The answers to these questions are not straightforward. In fact, we expect 
congestion will exist at DSO condition under certain conditions, for example, when 
travellers with a highly negative origin-specific cost are considered; or a different 
traffic model such as the linear traffic model is adopted. The analysis work proposed 
here can facilitate us to understand these questions. Future work will also include 
extending the present work to multi-route and multi-commodity networks. 
Developing an efficient solution algorithm is also an important topic and is an area of 
our future research.  
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