Commentary/Mitchell et al.: The propositional nature of human associative learning

Rational models of conditioning
doi:10.1017/S0140525X09000922

Nick Chater

Division of Psychology and Language Sciences, University College London,
London WCT1E 6BT, United Kingdom.

n.chater@ucl.ac.uk
http://www.psychol.ucl.ac.uk/people/profiles/chater_nick.htm

Abstract: Mitchell et al. argue that conditioning phenomena may be
better explained by high-level, rational processes, rather than by non-
cognitive associative mechanisms. This commentary argues that this
viewpoint is compatible with neuroscientific data, may extend to
nonhuman animals, and casts computational models of reinforcement
learning in a new light.

Mitchell et al. provide an important critical challenge to the pre-
suppositions underlying current theories of human conditioning,
both in psychology and the neurosciences. They suggest that
human contingency learning results from reasoning processes
over propositional knowledge, rather than from an elementary
process of forming associations. This commentary focuses on
three questions raised by this analysis, and concludes with a per-
spective on the origin of contradictory forces in the control of
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behavior which does not invoke a clash between a cognitive
and associative system.

Multiple neural systems for decision making? Mitchell et al.
argue that behavioral evidence makes a case against a distinct
associative learning system. Yet the idea that there are multiple,
competing, neural systems underpinning decision making is very
widespread within neuroscience. One line of evidence for mul-
tiple systems comes from double dissociations in human neurop-
sychology, and, perhaps most strikingly, from animal lesion
studies (see, e.g., Coutureau & Killcross 2003; Killcross & Cou-
tureau 2003). Yet such studies provide only tentative evidence
for functionally distinct systems, rather than differential engage-
ment of a single system (Chater 2003; Shallice 1988). Consider an
analogy with allergies: Some people cannot eat prawns, but can
eat pine nuts; other people can eat pine nuts, but not prawns.
But we cannot, of course, conclude that there are two distinct
digestive systems that process these different foods. Instead, a
single digestive system deals almost uniformly with all foods,
but exhibits two biochemical “quirks” leading to the selective
allergies. Thus, a single processing system can in principle yield
striking double dissociations of function (Chater, in press).
Hence, double dissociations in humans, and animal lesion
studies yielding double dissociations, are weak evidence for dis-
tinct processing systems. The same caveats apply to studies in
which reinforcement learning is selectively impaired not by a
lesion, but by a pharmacological intervention (e.g., a dopamine
agonist, Pizzagalli et al. 2008). Similar issues arise, too, with neu-
roimaging studies. Such studies reveal differential neural activity
under different task conditions. But such differential activity may
nonetheless be entirely compatible with the existence of a single,
unitary, decision-making system.

Is animal conditioning associative? Mitchell et al.’s account
may be correct with regard to people. But perhaps rats really
do use dedicated associative learning mechanisms. Indeed, this
latter assumption is widespread in the comparative literature
(e.g., Mackintosh 1983). Nonetheless, there are at least three
reasons to doubt this. (1) Many aspects of animal cognition are
highly sophisticated and seem to go far beyond the scope of
purely associative mechanisms (e.g., Wasserman & Zentall
2006). (2) Associative theories of learning typically assume
gradual modifications; yet actual behavior is roughly all-or-none
(Gallistel et al. 2004), just as though the animal is adopting or
rejecting a hypothesis about possible environmental contingen-
cies. The familiar smooth learning curves arise only from data
averaging. (3) Putative conditioning phenomena in animals
appear to be highly sensitive to rational factors (Courville et al.
2006). So, for example, blocking (Kamin 1969) can be rationally
understood in terms of “explaining away” (Pear] 1988); the slower
rate of extinction from partially reinforced contingencies has a
natural statistical explanation; and so on.

The role of computational models of reinforcement
learning. There have been remarkable recent developments in
computational models of reinforcement learning (Dayan &
Abbott 2001) — often implicitly or explicitly viewed as capturing
the computational principles of a distinct, striatal, non-cognitive,
learning system (Jog et al. 1999). If Mitchell et al. are right, then
such computational models should perhaps be interpreted differ-
ently: as providing an account of rational inferences that can be
drawn from data concerning actions and rewards, given
minimal background knowledge. But where background knowl-
edge is available (e.g., about likely causal connections between
actions, events, and rewards), we should expect that such knowl-
edge will be incorporated appropriately (Gopnik & Schulz 2007).
According to this perspective, computational models of
reinforcement learning apply to a narrow class of situations, in
which background causal knowledge is restricted, rather than
describing the operation of a particular neural system that
drives behavior.

Clash of reasons, not clash of mechanisms. One intuitive
appeal of the idea of a split between associative and cognitive
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systems, competing for the control of behavior, is a potential
explanation for many paradoxical aspects of human behavior,
both in laboratory studies of, for example, time-discounting and
weakness-of-will and in real-world phenomena of addiction,
depression, or phobias (Epstein 1994; McClure et al. 2004).

If, following Mitchell et al., we reject evidence for a distinct
associative system, how are we to explain the origin of internal cog-
nitive conflict? One straightforward approach (Chater, in press) is
to propose that internal conflict arises from a “clash of reasons”
rather than a clash of systems. In almost all nontrivial reasoning
problems, different lines of argument appear to favour different
conclusions. One source of reasons, among many, may be past
experience (including the “reinforcement history”). Moreover,
reasons are often not equally persuasive; nor are they equally
easy to evaluate. When paying close attention and given sufficient
time, it may become evident one reason is valid, whereas another
reason is weak. But when attention is reduced, the weaker reason
may nonetheless prevail. Therefore, to choose a classic example
from probabilistic reasoning, the reasoner may decide that,
given information about, say, Linda’s intellectual and political
background, it is more likely that Linda is a feminist bank teller,
than that she is a feminist (Tversky & Kahneman’s [1983] conjunc-
tion fallacy), because there is a better overall match with the
former description (for which at least the first part matches),
than the second description (which seems entirely incongruous).
Considered reflection on probability may, or may not, lead the
reasoner to draw the opposite conclusion.

More generally, it seems entirely possible that there will be
systematic differences between responses when time and atten-
tion are limited and responses when time and attention are plen-
tiful (see Cunningham & Zelazo [2007] for a similar perspective
on apparent dissociations between two putative routes underpin-
ning social cognition, as exemplified by, e.g., Bargh & Chartrand
1999); and concomitant differences in the degree to which brain
areas are activated in the contemplation of different reasons. In
summary, observing battles for control of the behavioral “steering
wheel,” and evidence for different behavioral and neural bases
for the competitors, need not be interpreted as indicating a
clash between distinct mechanisms (e.g., associative vs. cogni-
tive), but might equally arise from a clash of reasons within a
unified cognitive system.
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