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Abstract. The scaling of displacement as a function of length 
is important for a variety of applications which depend on the 
mechanical and hydraulic properties of faults and fractures. 
Recently it has been suggested that the power-law exponent v 
which has been found to characterise this relationship may 
change significantly at a characteristic length for a variety of 
reasons, for example when cracks begin to interact, or when 
faults grow to a length comparable to a characteristic size in 
the brittle layer. Such a break of slope requires a second 
straight line, requiring two extra model parameters. Here we 
present a new method for analysing such data, which 
penalises the extra parameters using a modified form of 
Schwarz's Information Criterion, and a Bayesian approach 
which represents uncertainty in the unknown parameters. We 
apply the method to data from the Krafla fissure zone in the 
north of Iceland, and find a significant break of slope, from 
v=3/2 to v=2/3, at a characteristic length of 12 m. 

Introduction 

This paper addresses the general question of the 
appropriate degree of the complexity of a statistical model in 
geology and geophysics. It is well known that adding extra 
parameters to a model will improve any curve fit to data, in 
the sense that the sum of squares of the residuals between the 
best-fitting curve and the data points will be reduced. It is 
therefore necessary to introduce an appropriate penalty for the 
extra degrees of freedom in a more complex model. Here we 
examine the specific case of breaks in slope for power-law 
scaling, using as an example data for fracture opening 
displacement u as a function of length I for the Krafla fissure 
swarm in northern Iceland. The questions to be addressed 
are: (1) Is there a significant break of slope in the data set?, 
and if so (2) where is it most likely to be?, and (3) what are 
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the best fitting slopes for the two lines, and their associated 
uncertainties? The main constraints are that the data sets be 

comprised of pairs of observations (xi, YO, where the 
dependent variable y• is assumed to be normally distributed, 
given x•, and that the two best fit straight lines are continuous 
at the changepoint x*. 

Fault and fracture scaling 

The scaling properties of faults and fractures is of general 
interest for a host of applications, including the mechanics of 
fault and fracture growth, fluid flow and contaminant 
transport in the subsurface, and for understanding the 
mechanics of earthquakes (Cowie et al., 1996). In general the 
scaling of maximum displacement u as a function of length l 
takes the power-law form, u = k I v, where k and v are 
constants. For example, for scale-invariant crack growth v =1 
(Scholz & Cowie, 1990). 

The exponent itself may also be scale-dependent. For 
example Hatton et al. (1994) suggested a systematic change in 
the scaling of crack opening displacement as a function of 
length in the Krafla fissure zone in northern Iceland. In their 
study crack opening displacement and length were measured 
in a single field season by the same observers, over a 
bandwith in fracture length of 5 orders of magnitude. The 
fractures result from ongoing tensile stresses applied to a 
basalt deposit laid down following an eruptive period from 
1975-1989, and grow through an earlier set of cooling joints 
with a characteristic size of 30 cm. Previously a change in 
exponent, from v=2 to v--l, at a characteristic fracture length 
of 3 m or so, had been inferred from fitting two independent 
straight lines through the data plotted on log-log axes. This 
break of slope may be attributed either to the effect of the 
characteristic scale length of the cooling joints on the crack 
tip process zone (Hatton et al., 1994), or to a critical crack 
size where the stress field generated by individual cracks 
begins to interact strongly with that of its neighbours, leading 
to co-operative behaviour in the form of scale-invariant crack 
growth associated with localisation of the deformation 
(Renshaw & Park, 1997). 
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Despite their importance, systematic changes in scaling are 
often difficult to demonstrate unequivocally, given the 
available data. This is mainly due to the inherent order-of- 
magnitude scatter in the data (ui, l.O, not only due to measuring 
uncertainty, but also to an irreducible stochastic element in 
the physics of fracture nucleation and interaction (Cowie et 
al., 1996). It is also not sufficient to fit two straight lines 
without penalising the additional two parameters 
appropriately. Here we re-examine the data of Hatton et al. 
(1994), using a new method which takes this explicitly into 
account. 

Statistical method 

The general formulation of the linear statistical model is 
given in Draper & Smith (1998). Here we consider a special 
case of the form 

yi--y(xi) + Ei, for i= 1 ..... n, : (1) 

¾(x'O = a + bo [Xi I(Xi <X :•) '4' X*l(Xi _•X*)] + bl (Xi- X:•)I(Xi-•-Xv•), 

where E i are the independently normally-distributed error 
terms, each having zero mean and unknown variance 02, n is 
the sample size, and I is the indicator function (I=1 when the 
inequality in the brackets holds, and I=0 otherwise). The five 
model parameters are the intercept a, the slopes bo and bl, the 
changepoint x*, and the variance 02. Here xi=ln(l.O and 
yi=ln(uO, so the slopes bo and bl are equivalent to the power- 
law exponents Vo and Vl. We compare the changepoint model 
with a simple linear regression model, with intercept aR and 
slope bR, and no changepoint. 

The likelihood function of the unknown parameters, a, bo 
and bl and 0 2, given y = [Yl, Y2 ....... Yn], when x* is fixed, is 
denoted by 

œ(a, bo,bl,0.21Y, X *) o• (0.2) • exp - n [Yi -- •/(Xi)] 2 20.2 ' 

-oo<a, bo,b1 <oo ; 0<0. 2 <oo. (2) 

BIC(x*) = L(y,x*) --• pln (4) 
with respect to x*. Here p=5 is the number of unknown 
parameters in the model. (The modification to Schwarz's 
criterion is the factor 2•). For the straight line model with 
unknown variance p=3, and the appropriate formula is 

BIC• = L(y)--•pln (5) 
where L(y) is defined as in equation (3), based on the residual 
sum of squares for the linear model. By comparing (4) and 
(5), we can quantitatively infer situations where a double- 
slope assumption is better statistically than a single-slope 
assumption, while taking into account an extra penalty for the 
increase in the complexity of the model. Specifically, the data 
do not justify a changepoint when BICR>BICma•. 

The BIC criterion provides an alternative to Akaike's 
(1978) Information Criterion AIC, which uses an empirical 
factor 2 instead of ln[n/(2r0] in (4) & (5). For cases where 
n>46, computer simulations have shown that BIC is superior 
(e.g. Koehler & Murphree, 1988). Here n=80. 

So far we have followed a maximum likelihood approach 
similar to that of Quandt (1958) but where our information 
criterion first clarifies whether or not a changepoint exists. 
However, in order to more fully represent the uncertainty in 
the data regarding x*, we can now proceed to follow a fully 
Bayesian appro_ach by constructing a prior distribution on the 
unknown parameters. In the prior assessment, we assume that 
x*, a, b0, bl, and ln((52) are independent, where x* is 
uniformly distributed on some bounded interval [Xm•, Xn•], 
and the other parameters are uniformly distributed on the 
whole real line. At this stage, any additional prior information 
could also be included in a straightforward way. 

Under the above assumptions, the posterior density of the 
changepoint x* is 

r(x, ly ) o• Zi z 
-1/2 

(SR2)-(n-3)/2 . Xmin --•-Xva• XInax , (6) 

Taking the natural log of (2), and maximising with respect to 
the unknown parameters, gives the maximised log likelihood 

n ln(S•2). S•2 = •[Yi - •(xi )]2 (3) L(y,x*) = --• . i=1 

Sn 2 is the residual sum of squares, and the hat symbol denotes 
the corresponding maximum likelihood estimate, given fixed 
x*, of y(xi). Confidence intervals for the two slopes, 
conditionally on x*, can be obtained using standard multiple 
regression theory as 

[•o ---tn-3(o• / 2)u0; /•1 -----tn-3(O• / 2)U•, 

where u0 and u• are the estimated standard errors of b0 and bl 
(Draper & Smith, 1998, p142), and tn_3(a/2) is the upper a/2 
point of the tn-3 distribution. 

A selection of the changepoint x*, if it exists, is made by 
maximising a modified version of Schwarz's Information 
Criterion proposed by Leonard & Hsu (1999, p8). For the 
changepoint model (1), this information criterion, denoted 
BICn•, maximises 

where Z i ---- (1, Xi,(X i --X*)I[x i >__ X*]) r . 
To avoid practical problems with the tails, we make the 

pragmatic choices that Xm• is the third smallest distinct value 
of xi, and Xn• is the third largest. Conditional on x*, the 
posterior densities of 

(bo-[•o)/U o and (bl-•l)/gg 1 

are respectively Student's t on n-3 degrees of freedom. 
Consequently, the unconditional posterior densities of b0 and 
bl can be computed by appropriate numerical integrations 
with respect to the posterior density of x*. One novelty of our 
techniques, with respect to the Statistics literature (e.g. Choy 
& Broemeling, 1980), relates to the use of the modified 
version of BIC (equation 4), rather than more complex prior 
assumptions. 

Results 

The results of applying BIC for equation (1) to the 
Kelduhverfi data set of Hatton et al. (1994: fig 3a) are shown 
in Figure 1. For completeness we have also added BIC for a 
linear (dashed line) and a quadratic model (solid line), both of 
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Figure 1. Plot of BiC, as defined in equation (4), as a 
function of the postulated changepoint x* for the double-slope 
distribution, compared to a linear (horizontal dashed line) and 
a quadratic fit (horizontal solid line), for the Kelduhverfi area 
of the Krafla fissure swarm, (data from fig. 3a of Hatton et al., 
1994). 

Figure 3. Posterior density function for the changepoint x*. 
The posterior mean is indicated by the solid vertical line, and 
the previous estimate of x* from Hatton et al., (1994) is 
indicated by the dashed vertical line. The 95% Bayesian 
interval for the changepoint is shown by the outer vertical 
dotted lines. 

which are independent of x*, and plot as horizontal lines. The 
quadratic fit is better than the linear fit, but the peak value 
BICm• outperforms both significantly. 

When we apply the value of x* which maximises BIC in 
Figure 1, we obtain the best fit solution to equation (1) as 
shown by the piecewise linear curve in Figure 2. The 
maximum likelihood estimate of the associated break of slope 
occurs at a value of x*= 2.48, corresponding to /*=12.0 
compared to /*=3.0 m found by Hatton et al. (1994). The 
posterior density function defined by equation (6), shown on 
Figure 3, has a peaked distribution, with an appropriate 95% 
Bayesian interval for x* in the range (0.912, 4.23) or l* in the 
range (2.49, 68.9 m). This range only just includes the 

previous estimate of Hatton et al. (1994), also shown on the 
diagram for reference. The complete solution, with 95% 
limits (based on the unconditional posterior probability 
distribution with x* unspecified) is a=-4.91+0.29, 
b0=1.49+0.29, b• =0.644+0.407. Thus the two slopes b0, b• are 
distinguishable in statistical terms. The resolving power of 
the method for this data set is illustrated in Figure 4, which 
shows the conditional posterior densities of the slopes, given 
(a) our optimal x*, (dashed lines), or (b) unconditional upon 
x* (solid lines). 

Our analysis is based upon the assumption that the error 
terms ei are normally distributed with constant variance. We 
checked this assumption by an analysis of residuals as 

, ß 

8 o: øø * 
ß .%/.ø , 

... ,, 
I I I ! I I 
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Figure 2. Fracture width (opening displacement) u versus 
length 1 for the same data as in Figure 1. The data are shown 
on log-log scales using natural logarithms. The best fitting 
lines using the Bayesian method described in the main text are 
shown. The location of the best fitting break of slope is 
indicated by the vertical dashed line. 

-1 0 I 2 3 

slopes 

Figure 4. Posterior density function for the two best fitting 
slopes b0 (right-hand peak) and b• (left-hand peak). Dashed 
lines show the conditional posterior density corresponding to 
the changepoint with the highest posterior probability, and the 
solid lines show the unconditional posterior density whe n 
integrated over our designated range of changepoints. 
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described in Draper & Smith (1998, pp 59-70), and found that 
the normal assumption is quite reasonable for this data set, 
although more complex models with changing variances may 
be required in other cases. 

Finally, our method applies strictly to measured data pairs, 
xi,yi, and not to frequency data, despite the importance of this 
type of data for other forms of characteristic size effects 
involving a break of slope in rock and earthquake physics 
(e.g. Sornette et al., 1996). Accordingly, a separate (entropy- 
based) method is being developed to tackle this problem 
explicitly. 

Conclusion 

A new general method for estimating the existence and 
location of a break in slope in data pairs is proposed, based on 
a modified version of Schwarz's Information Criterion, BIC. 
When applied to the specific case of displacement-length data 
for the Kelduhverfi data from the Krafla fissure swarm in 

north Iceland, the method first confirms the existence of a 
significant break of slope, despite the penalty for the extra 
two parameters required. The location of the changepoint is 
between 2.49 and 68.9 m, with a median at a length of around 
12 m. At this point, the slope changes from b0=1.49_+0.29 
below this length to b1=0.644_+0.407 for greater lengths, 
where the stated ranges represent 95% Bayesian intervals. 
The best estimate for the characteristic length l* is more 
consistent with the physical model of Renshaw & Park 
(1997), involving crack-crack interactions, rather than the 
trapped process zone model of Hatton et al (1994), although 
neither explanation can be ruled out within the uncertainties 
specified by the available data. 
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