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1. Introduction

This chapter considers an approach to distributed tre¢Bponsive signal control
using Learning Classifier Systems (Holland, 1976). Thentide is to accommodate
realistic kinds of detector data and wide ranges of careljgrformance criteria for
traffic management in a fully flexible manner. The ajgtoto achieving this is to use
evolutionary computing (eg Holland, 1975) and reinforcemerhiag (eg Sutton and
Barto, 1998) with performance fed back from microscopiffie¢raimulations: this
approach has the advantage that it is not specificytarticular objective or form of
primary data. The purpose of this work is to develop an apgprdo distributed
optimisation that can achieve good traffic performafteoably according to any on a
range of possible criteria using data from existing twafétectors. Here each junction
in a road network is controlled by a Learning Classigstem using only locally
available input and performance data; a multi-agent appiisauioposed.

Learning Classifier Systems (LCS) can be used fomugdtion in a way that
offers substantial promise for application in traffesponsive signal control systems
where the way in which the control responds to vemat in traffic flows can be
adapted according to measured conditions. This is impartamtier to achieve traffic
control that is sufficiently flexible to respond rapiéien traffic conditions change in
a fundamental way, as occurs at the start of a peakdperithout being unduly
sensitive to short-term variations in flow. The expéon is that this will be possible
by their use of both reinforcement learning and evahaiy computing techniques.
Furthermore, they offer the automated rule developmentofal networks together
with the transparency of production system rules.

The importance of this approach for traffic contrelthat it offers a means by
which signal control strategies can be developed direatigording to their
performance, evaluated using detailed microscopic simula®ropposed to that
estimated from formulae that have been adopted on gro@iadsiytical convenience.
This closed-loop approach to development of control egfies offers several
advantages over the use of traditional explicit optinosatformulations. These
include flexibility in respect of objectives so that mple and varying needs can be



accommodated, ability to use various different kinds afatet data according to their
availability, and freedom from dependence on a singleakpiialuation formula that
is intended to embody the whole of a traffic model.sTirial point has been found to
be especially important in recent research work whoemtain fine details of the
models used have been found to have an unexpectedly strdngn@e on
performance.

2. Road Traffic Junction Control

Strategies for signal control of road traffic have dgved from fixed-time, with the
possibility of selection between various precalculatethgl to responsive, in which
the signal timings that are implemented vary accordinatific flows at the time of
implementation. Substantial benefits have been aetiiby progressing on each of the
two fronts of enhancing the responsiveness of traffictrol systems and extending
advanced optimisation approaches from isolated road jumsctioroad networks with
a high density of signal-controlled junctions. The appmeacthat have been
developed successfully for responsive control at isolptections include heuristics
such as rule-based approaches (Van Zuylen, 1976), optimisgtpmoaches such as
MOVA (Vincent and Peirce, 1988), and more flexible approadhat respect the
uncertainties inherent in the data and models of ¢raéhaviour by using fuzzy logic
(Chiu, 1992; Mieden et al, 1996). Mikami and Kakazu (1993) have sfigthgs
developed a hierarchical combination of junction-baseghrning using a
reinforcement method with network-wide search by a tenealgorithm
(GA)(Holland, 1975). Here the reinforcement learning isdu® generate a single set
of rules to control traffic at each of the individuaingtions, while the genetic
algorithm optimises rules across the network using tiesdical junction controllers.
Sayers et al (1999) have used a genetic algorithm to defietap logic rules to
operate signals at individual junctions in accordance withltiple objectives.
Montana and Czerwinski (1996) used genetic programming (Koza, i®@iplve a
mobile computational agent/program for the control sinaple network. The evolved
solution is a LISP tree that indicates whether or arotalteration is appropriate at
each traffic signal.

Early investigations of traffic responsive systemsrbad networks (Holroyd and
Hillier, 1969; 1971) demonstrated the difficulty in improvingtbe performance that
could be achieved by good fixed-time control systems saCHRANSYT (Robertson,
1969; Vincent et al, 1980). Since then, research has b tdevelopment of various
successful responsive systems that have now becomtdigstd. These include the
SCOOQT system (Hunt et al, 1981) which uses a feed-forwgrrbach to plan for the
arrival at a junction of traffic that is detected adeaves an upstream junction,
SCATS (Lowrie, 1982) which uses feed-back from stop-linealets to inform on
queue exhaustion, and OPAC (Gartner et al, 1983, 1991) whicl uskisig horizon
approach to dynamic optimisation. In this contributidre tutility of LCS in
controlling junctions in a distributed framework, using yorbcal performance
metrics, will be examined.



3. Learning Classifier Systems

A number of investigators have examined the use of L@S multi-agent
environments. Bull et al (1995) describe the use of flassiystems for the control of
simulated robots, where each wheel/leg is representadségarate system. Carse et al
(1995) have used fuzzy classifier systems for routing ath eaode of a
telecommunications network. In Potter et al (1995) an tagemepresented by a
number of classifier systems and a speciation-like psoée included to improve
performance. Multiple classifier systems have been bgedorigo and Schnepf (eg
1992) to control an autonomous robot. Seredynski et al (19@Bhiered the use of
local reward sharing in a simple iterated game, and Wsgad Bull (2002)
incorporated rule sharing between controllers for sitedlanobile robot control. After
(Arthur, 1990) and (Holland and Miller, 1991), a number of neseas have used
classifier systems to represent traders in artifigiatkets. Marimon et al (1990) use
classifier agents exchanging and consuming goods to examminentergence of
equilibria in a well-known triangular market. Palmer k{1®94) describe the use of
classifier systems to simulate agents creating partfolby predicting the value of a
stock. Dwormann (1994) has investigated coalition formatio a three-player
game/market and Morengo and Tordjman (1996) used a clasbifised system to
model belief formation in a market place. Bull (1999) repnésd traders in an
artificial continuous double-auction market using LCS.

In this work we begin by using the ZCS (Wilson, 1994) eyst The default
parameters presented for ZCS, and unless otherwisel $tatéhis paper, areN =
400, $=20,=0.2,y=0.71,1=0.1,x=0.5,u=0.01,p = 0.25.

4. Simple Road Traffic Network Simulator

The initial simulator that was used in the present stagyesents a small network of
four crossroads junctions, each controlled by a sepseataf traffic signals (Figure 1).
For convenient reference, we suppose that the roadsiarged north-south and east-
west. Traffic arrives stochastically with specifiecdan rate at the points of entry to
the network, whilst traffic flows within the netwosdce profiled by upstream signals.
This enables a number of development tests to be catoct the LCS for this
application area. Vehicle behaviour is specified accgrttircertain simple rules:

0 All vehicles are standard cars.
0 All cars have the same desired speed.
o0 All cars travel straight ahead at junctions.

The signals at each of the four junctions in this testvork are arranged with two
stages, one permitting north-south and the other ea$timevements. This means
that for each junction, the controller decisions r@guired to determine the duration
of each of the two stages. Each junction is contlobg an LCS that receives as
stimulus a 10-bit binary string, which is split into twomponents of equal length.



Each of these 5-bit components is used to represenorigest queue., associated

with a stage . For the present tests, the maximum detectable quegth leas taken

to be 31; longer queues may occur but the detectors wilttrépgam as being of length
31. The motivation for this is that in practice, thetaince between a sensor and the
junction is limited: in a single lane, a queue of 31 statiy vehicles would extend
over about 200m. Four bits are used to represent actidhststhere are four possible
durations for each of the two stages. After some experiation, these were set at 5,
18, 31 and 45 seconds; further work reported later in the prpaper explored the
use of other combinations. The rewdRdo an individual junction controller at the
end of each cycle was then determined as follows:

L= min(16, miaxfi)
rR=al6-Lf (1)

Thus rewards are scaled to lie between 0 and 1024, in keejtingach of the work
using ZCS (eg Wilson, 1994). A large number of test cases leen investigated but
two representative ones are considered here, eachctbrdsed by the mean arrival
rate of traffic on each approach to the junction. Bitthese cases have balanced flow
on all approaches: 720 vehicles/hour, which can be caorside be moderate, and
1440 vehicles/hour, which is quite high. Each junction imeated to its neighbours
by roads of length 250m and to the perimeter of the nktlproads of length 125m;
vehicles travel at a maximum speed of 54km/h. Therefogeutidelayed network
traversal time for a vehicle is about 33 seconds.

We now present the results from using independent idéirigtances of ZCS to
control each of the four junctions in these two testes.
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Figure 1: 4-junction network simulation (inset is blow-up of local junction controller signal flow)



5. ZCS Reaults

Bull and Hurst (2002) showed how ZCS performance can chaggiicantly with
different parameters to control size of the rule-basks discovery component and
reinforcement component. We now report the effectanfing these main parameters
of ZCS on the junction control task.

5.1 Rule-base Size

As presented in the original literature (Wilson, 1994) stemdard rule-base size for
ZCS is 400 rules. The present environmental interfaceide® over 4000 possible
state/action pairs, so we investigated whether aneased population size was
beneficial to performance. The ZCS controller perfance, measured as mean
network traversal time in seconds, was evaluated witibvases of 400, 800 and 1600
rules. All other parameters were kept as Section 3. Resate averaged over 10 tests
of 10,000 trials during which the last 2000 trials are evalnati@ls with rule
discovery mechanisms disabled after Bull and Hurst (2002).fighres in the tables,
which represent resultant performance at the end o$ithalation, are the average
delays experienced by the cars of the last 2000 evaluatiogasmportant to note that
this is a global metric that is often used as a measuperformance in transport
studies but that in practice is not available to thetjon controllers.

Table 1. Mean travel time under ZCS with rule-bases of vaygizes (seconds).

Size of rule baseN (rules)

Mean arrival rate

(cars / hour) 400 800 1600
720 54.0 55.1 53.8
1440 55.8 54.9 56.2

These results suggest that there is no benefit irafiplcation in increasing the rule-
base size of the ZCS. In the remainder of the prewssts, the rule-base size was
therefore maintained at 400 rules.

5.2 Rule Discovery Component

The rate of activation of the GA determines the edtevhich new genetic material is
introduced to the system. In a multi-agent environmaoh ss the present one, it is
possible that adjustments to the GA rate or mutatide maay yield some benefits
(Bull, 1998). Hence the ZCS was tested with a higher GAdfiratep and a higher
mutation rateu (Table 2).



Table 2: Performance of ZCS with increased GA/mutation régesonds).

Parameter values

Mean arrival rate Standard

(cars / hour) (p=0.25, p=0.5 p=0.04
u=0.01)

720 54.0 54.0 52.1

1440 55.8 58.4 545

Although increasing the GA ratp from 0.25 to 0.50 does not appear to vyield,
increasing the mutation ratgg from 0.01 to 0.04 made slight performance
improvements in both test cases. Further increasesdigield any further benefits
(not shown) so the ZCS controller was set to opesiéttethe standard GA rate but an
increased mutation probability @f = 0.04 per gene hereafter.

5.3 Reinforcement Component

Bull and Hurst (2002) showed the importance of the learnatg ¥ in ZCS. An
increased learning rate allows the system to adjustfitnkess more rapidly which is
important in ZCS because fithess varies due to the oncypd the choice set [A] as
well as the external reward received. Bull (1998) also sHothat an increased
learning rate can allow individuals in multi-agent systdmrespond more rapidly to
the dynamics of their environment.

Table 3. Performance of ZCS with increased learning rate(sis).

Learning ratef3

Mean arrival rate

(cars / hour) 0.2 0.5 08
720 52.1 54.0 52.1
1440 545 56.2 53.5

The results in Table 3 suggest that the performance 8ft#Defits little if at all from
an increased learning rate in these single-step tadkis. résult contrasts with
experience in the delayed reward tasks examined in (Bull, 1B@8)ever, this may
be explained by the more direct effect of external revear rule fitness in the present
application.

In summary, ZCS appears able to learn coherent gieatevhen operating as part
of a decentralised control architecture for road trgéfinctions. Cao et al (2001) have



also examined the use of ZCS under a similar applicatieporting improved
performance over a fuzzy logic approach. Use of the regpbisticated XCS is now
presented.

6. XCS

A significant proportion of LCS research is now usinglséfi's accuracy-based
system — XCS (Wilson, 1995; Butz and Wilson, 2001). A numbestudies have
found XCCS capable of optimal performance in complex dosaimd hence the
system was investigated here. The default parametemnpedsfor XCS, which were
used in the present experiments except where stated atbeaneN = 800,E,=10, 3
=0.2,y=0.71,x = 0.8,u = 0.01,9 = 0.5, pp=10, 0=0.1, R=0.5,6 = 0.1, E;=0,
F1=0.01,p1=10.

6.1 Rule-base Size
The original rule-base sizd for XCS was 800 rules (Wilson, 1995) but subsequent
research regularly expands this (eg, Lanzi and Wilson, 20@1pbserve the effects

of increased rule-base size XCS was tested with sfz830 and 1600 rules (Table 4)
with all other parameter values as specified above.

Table 4: Performance of XCS with different rule-base sizesdnds).

Size of rule baseN (rules)

Mean arrival rate

(cars / hour) 800 1600
720 46.8 445
1440 48.2 46.0

Clearly XCS benefits from an increase in rule-bage and it will be set at 1600
hereafter (larger rule-sets did not appear to help - mois). It is also important to
note that for each of the tasks that we investiga¥&§ performs better than ZCS.

6.2 Rule Discovery Component

Since the results with ZCS in Section 5.2 showed afibdn@m an increase in the
mutation rate, the corresponding paramgt&ras examined with XCS. Table 5 shows
how an increase in the value |pfappears to help XCS to some degree. Results from
further increasing the mutation rate gave no further avgment in performance (not
shown), so the XCS controller was set to operatédn Mlite increased mutation
probability of 4 = 0.04 per gene hereafter.



Table 5. Performance of XCS with different mutation ratescnds).

Mutation ratep

Mean arrival rate

(cars / hour) 0.01 0.04
720 44.5 44.2
1440 46.0 45.5

6.3 Reinfor cement Component
Table 6 shows the effects of increasing the learning¥ of the XCS. It can be seen

that no change in performance is obtained from aljetive learning rate from the
typical value of 0.2.

Table 6: Performance of XCS with increased learning ratesofsds).

Learning ratf3

Mean arrival rate

(cars / hour) 0.2 0.5 08
720 44.2 44.3 445
1440 45.5 45.3 45.0

In summary, XCS has been found to perform better th@8 id all cases tested here.
However, by its nature, the task is potentially ambigumeause the payoff received
for taking an action in given circumstances depends updnthetbehaviour of the
traffic and the previous actions taken. Neither ZCS K@&S contain explicit
mechanisms by which to consider the context of theeatirstimulus. In view of this,
we examined the utility of incorporating two mechanisaimeed at enabling XCS to
maintain internal memory - rule-linkage and the menregjster - in the distributed
road traffic junction control task to further improve foemance.

7. Internal Memory
7.1 Memory Register

Some environments are not completely observabladyearning entity. That is, with
respect to the learner’'s sensory input, environmesatsbe only partially observable



leading to the same sensory input for different enviremal states; this is termed
non-Markov. Without internal state LCS cannot perform optimahysuch cases.
Wilson (1994) proposed a simplified version of Holland’s ragedist (Holland et al,
1986): an internal memory register whose state is camsidand altered by the rules
of the LCS. CIiff and Ross (1994) implemented Wilson's magism in ZCS,
resulting in a system denoted as ZCSM, which finds good rmit optimal
performance in non-Markov mazes. Tomlinson and Bull (198&mined the
performance of ZCSM in a range of mazes of increasimgplexity. They found that
for tasks containing numerous ambiguous states benefit beubbtained by adopting
a memory register that was bigger than they expected, sungg#sat redundancy is
required for it to work effectively. Lanzi and Wilson (200fjesented optimal
performance with XCS incorporating the memory register number of mazes. They
also found that for more complex mazes seemingly superfintermal memory states
were beneficial.

The rules of XCS are extended to consider not onlexternal conditiond bits)
but also the state of the internal memory registebifs). Similarly, rule actions are
extended to provide the external actiam kjts) and an internal actiomrm(bits).
Wildcards are allowed for internal actions that lethee state of the corresponding bit
in the memory register unchanged, otherwise the redigeare updated to the value
defined in the internal action. Hence rules are oflémgthc + 2m + a bits and an
action set consists of rules proposing the same exteandl internal actions.
Furthermore, Lanzi and Wilson restrict internal upd&besccur only when a change
in external state results from the chosen extern@racthe internal action on each
cycle is always chosen deterministically from withén given [M] based on the
expected payoff of rules, regardless of the external asl@ttion scheme.

Previous work has used the memory register in envirotsnwith a restart at
which point the memory register is set to all zektmwever, in the road traffic control
task, the contents of the memory register are nesat explicitly.

Table 7: Performance of XCS with the memory register (sdspn

Version
'(\:':Zf‘: /ahrgl‘jf;' rate XCS XCSMH2 XCSMH4
720 44.2 58.9 59.0
1440 45.5 59.5 57.5

Table 7 shows the performance of XCS with the memegjster applied to the same
test cases as before with the parameters determirma.abollowing (Lanzi and
Wilson, 2001), the system with a memory register ofthit®is labelled XCSMH2 and
that with four bits XCSMHA4. It can be seen that thdiional mechanism has been
detrimental to the performance of the system, redudiegoerformance of the XCS



down to the levels obtained with the simpler ZCS. Tisathe ability to create and
consider the context of external stimuli using the memegyster does not appear to
be beneficial in the present application. In the ndta/that were investigated here, at
least half of the junction approaches have randomidraffival patterns, and our
results suggest that the memory mechanism is inefeictithese circumstances.

7.2 Rule-linkage: Corporations

Wilson and Goldberg (1989) suggested that, by allowing ruliskido others to form
new evolutionary units termed rule corporations, inductihi@ins can be formed
without the use of a common memory space. An initigdlementation of this idea in
ZCS (Tomlinson and Bull, 1998) found this to be the casih wignificant
improvements in performance in (multiple) ambiguous mamkst The system
employs linkage between rules in the rule-base to foempobral rule-chains,
implemented as doubly linked lists of rules. Each rulehim LCS is equipped with
two, initially inactive, link parameters. When actied, either or both of these links
may reference another rule in the rule-base symmadliricThe result of such
associations is a rule-base of arbitrarily long rilaies, whose members are treated
as collective units by the learning mechanisms. & baen noted that this has
parallels with a type of symbiosis found in nature (Tiosdn and Bull, 2001).

The aim of corporate classifier systems (CCS) ieroourage corporations to
encapsulate temporal chains of inference. Hence, inkage acts across subsequent
time steps, choosing unlinked candidates from those thia active on the previous
time-step to join with (unlinked) active rules on thereut time step. It has also been
found beneficial to allow a set of linked rules to exeautgl completion (after Smith,
1992), provided that each rule's conditions remain satidfieslis termedcorporate
persistence. Thus by evaluating completely a strategy that consfstslinked set of
rules, the full worth of the temporal logic they reprdsean be estimated more
effectively.

It can be noted that the structure of CCS is simitarthat of the dynamic
programming approach introduced by Robertson and Brethé®#v), which has
recently been re-examined (Heydecker and Boardman, 1999)edindlnamic
programming with a rolling horizon (Gartner, 1983) can &ensas similar to CCS
because each corporation represents a series ofsathiahare planned for the future,
with each rule indicating the worth of that temporaleseof actions.

A number of developments have recently been madeetortginal CCS concept,
including the use of XCS as the basis (Tomlinson and, B0D1; 2002): link
inhibition, which reduces the chances of useful corpmmat growing too large;
different linking strategies, such as using fitness-biassddction between niches;
parallel persistence, whereby all active corporatiares maintained over successive
time-steps; and direct payoff updates, under which the bubkigiade is executed
down a corporation on each system cycle to incrdaseate of flow of information
down the rule chain. We have applied this system tqthsent road traffic control
task.



Table 8: Performance of XCS with rule-linkage (seconds).

Version
e s
720 44.2 53.4
1440 45.5 54.2

Table 8 shows the performance of the corporate XCt®8raysn the same test cases as
above. It can be seen that, just as with the memsgyigter, the extra mechanisms do
not aid performance, rather performance drops, althougasnmuch (Table 7). These
results have been repeated under a number of test casparameter settings.

These investigations make it clear that the standa@® >éystem, with an
appropriate rule-base size, gives the best performane idistributed traffic control
tasks examined. The XCS system was then implementednwithmore detailed
micro-simulator and comparisons in performance made avitimber of well-known
junction control approaches, as described below.

8. Evaluation using a Microscopic Traffic Simulation

In order to investigate a range of possibilities fa tise of the LCS approach to the
signal control of road traffic, a detailed microscopiowdation of road traffic under
signal control was required. This development and evaluatimrk was undertaken
using the SIGSIM 2.0 (Sha’Aban, 2003a; b) microscopic trafinulator, which is
based upon the Gipps (1981, 1986) car following and lane-changidglspn@and
includes detailed representation of traffic signals ardcle: detectors. The LCS was
integrated into this simulation by extracting stimulus algnom the SIGSIM vehicle
detectors, scheduling calls to the LCS optimiser withiasimulation framework, and
implementing the LCS decisions as signal timings. Tiseltieg combined software
provided the main technology for the investigation andeldgwment of an LCS
approach to signal control of road traffic and for italeation. For this investigation,
we adopted the XCS form of the LCS system.

Within this broad framework, various choices wereilabe for several key
components. These included:

o0 the choice of stimulus, the choice of reward for tig&Sl including both the

quantity and its transformation,

o0 the choice of policy objective for optimisation, and

o the choice of control action for the LCS rules.
We discuss these in turn below, and present the re$@kperimentation with them.



8.1 Choice of Stimulusfor the LCS

Several possibilities exist for the form in whichffi@information is extracted from
the simulation to provide a stimulus to the LCS for infauits rules: this represents
the output of traffic detectors. Many kinds of trafficetgbr are available in practice,
each with its own characteristics and properties.dagh of these, the data that they
provide can be processed in various ways before beingmieesto the LCS as
stimulus. The kinds of detectors that are currently in inskide various kinds of
point detectors, microwave based detectors, and videatlokdectors.

Point traffic detectors, such as inductive loops, adely used to provide traffic
information for signal control. They are usually placgdtream of the stopline, where
they provide information about the imminent arrival w@fhicles at the junction.
Detectors of this kind can also be placed at or immelgiatownstream of the stop-
line, where they provide information about the flowtrafffic through the signals. By
integrating over time the difference between detectpuds at these locations, one
can estimate the number of vehicles in the vicioftihe junction, though this method
is prone to accumulated errors and so requires that tineaéss be reinitialised from
time to time.

Above-ground detectors such as Doppler effect microwave ddeo-based
systems have several advantages over inductive loopse $6 these arise from
reduced installation and maintenance costs, whilstrothdse from their operating
characteristics. A typical microwave detector wilspend to the presence of any
traffic in a region of the approach to the junctionenf(but not always) starting at the
stop-line and extending upstream. The output is binary, itidgcaone or other of
presence of at least one approaching vehicle or abséaog, and is devoid of spatial
information within the detection region.

Video image analysis detection systems offer the peobspe more detailed
information capture. A suitably mounted video cameraawotirable circumstances
can acquire a view of several hundred metres of appraaahunction. The level of
detail in the data extracted from a video image dependbheosdphistication of the
image processing that is undertaken, and can range frotifickgion of presence of
traffic to reporting of positions and speeds of approacthéicles.

The possibilities for data extraction from these aasikinds of detector system
include the times at which vehicles had arrived regeatl vehicle detectors, the
presence (or absence) of vehicles in a region betavakziector and the stop-line, and
the number of vehicles in this region. The last afsth— the number of vehicles
between a detector and the stop-line - provides a pahctieans for this transfer of
information. We consider that this could be achievediimciple by the kinds of
detection systems that are either currently in uselbbe in the foreseeable future.



8.2 Choice of Reward for the LCS (including transfor mations)

During the learning phase, the LCS receives a rewRrdalculated according to the
traffic performance resulting from implementation ofedt of rules: high values of this
reward lead the LCS to favour the rules that give sk tOur initial tests used the

maximum of the queue lengthk on streams at the end of their respective red
indications as the basis for this reward. Clearlis th a positive quantity that would
ideally be minimised, so that some decreasing mapping fiasitive real numbers to
positive real numbers is required. We investigated usedi ef A linear (2), two
piecewise quadratic (3), (4), hyperbolic (5), and logisticti&sformations and their
associated parameters.

R=max{0,1-aL) @)
R=max0,a-L?) 3)
R= (o -min(a, C))° 4
R= min{l (a_i‘)[[))“;ﬂ_} )
= ot 5.]) v

This investigation led us to adopt the second quadratic {d@)mvith the parameter
valuea = 16 . We also investigated use of the same quantityaflgimean rate of
delay, corresponding to time-averaged queue length) as wabjeative for the basis
of this reward calculation. However, we found that usthe maximum value of the
instantaneous queue lengths at the end of red led to petfermance of the LCS.

8.3 Choice of Evaluation Objective (cf policy objective of traffic management)

We investigated use of the LCS approach to minimise efach
0 the mean rate of delay and
0 the mean rate of fuel usage
associated with a junction. We calculated the meanafadelay D for the junction

according to
D= ZQi d,

where ¢ isthe mean arrival rate in stream

d; is the mean delay in streaim
and the summation is over all streanis that are controlled by the signals at that
junction. We estimated the mean rate of fuel usdge according to the method
proposed by Robertson, Lucas and Baker (1980):



F :Zqi(addi +as3)

where s is the mean rate at which vehicles in strearstop,
a4 is the mean amount of fuel used during idling for unit t{adeout 1.15
litres/pcu-h), and
as is the mean additional amount of fuel used during act¢eleriiom rest
to cruising speed (about 0.0063 litres/pcu).

We found that we could not improve the performance impadsof the second
objective (fuel usage) beyond that achieved when thennrate of delay was
minimised: this is due in part to the strong interrelahip between these quantities
at signal-controlled road junctions, and in part to fifectveness of using maximum
queue length rather than the evaluation objective itselfeward during the learning
phase.

8.4 Choice of Control Actionsfor the Rules (stage durations, incremental greens)

We investigated the way in which the output of the LGIBg is translated into signal
control actions. The first approach that we considénedetail for use with this
microscopic simulation was to select between predeternipossibilities for the
durations of each stage. The calculations for this weréormed at the end of the
minimum green period for each stage (typically 7s duratien)that the values
implemented correspond to extensions beyond this minimusengrwhich was
therefore respected automatically in this process;ithgementation was symmetric
between stages. An important issue in this caseeéstam of an appropriate values in
the choice set for the green time extensions; we fahat by tailoring this choice,
performance could be improved. The results of some testg a simple cross-roads
junction with flows of 400 vehicles per hour on eachhaf tour approaches, and also
with 600 per hour on each approach are shown in Tablei8.shbws that there was
little variation in performance between the differecticice sets of green time
extensions of (0, 2, 4, 8) seconds, (0, 5, 10, 15) seconds((rid, 20, 30) seconds.
For this reason, we investigated both the set (0,8) 4, of short and the set
(0, 5, 10, 15) s of medium extensions for further testingarlefurther investigation
of the choice set could lead to an improvement beyoeskthevels.

The second approach that we developed corresponds taraméntal extension
strategy, in which a binary decision of whether or toccontinue running the current
stage was considered frequently (typically at 0.5 s int®neuring green, starting at
the end of the minimum green period. This has the adgardfnot requiring a pre-
determined choice set of stage durations, but the disadyardf requiring more
intensive computation. We found that this extension agpréed to rules that gave
slightly better (typically in the range 1 — 2 % per cen€an rates of delay. Results of
example runs for the LCS with the extension strateggiaen in Table 9.



Table 9: Performance of LCS strategies with short-term fl@siability (vehicles)

Extension choice set (seconds)

Mean arrival
rate on each (0, 2, 4, 8) (0, 5,10, 15) (0, 10, 20, 30) Extension
approach strategy

(cars / hour)

400 49.73 49.92 49.33 48.92

600 81.57 81.67 85.10 82.21

9. Reaultsfrom Detailed Microsmulation

We evaluated the performance of the rule bases thalteg@srom a wide range of
LCS formulations according to the nominated evaluatidjeative. In these
evaluations, our comparators were fixed-time sighal ognand System D vehicle-
actuated control (DoT, 1991); we optimised the performahtieese comparators by
direct search over green and (respectively) maximum duogaf@ the signal stages.
In each case, we calculated the mean rate of deldlgeajunction averaged over
several (generally 10) mutually independent runs using distimctom number seeds.
Each run had a 900 second run-in period followed by a 3600 segahdtion period.

We considered and simulated three different kinds of biitiaof traffic flows to
investigate the capability of the rules generated bylLtB® to accommodate them.
These were:

0 Short-term variability due to random fluctuations around a constant mean
arrival rate ,

0 Systematic variations over a timescale of many minutes, as occurs within a
morning peak period, and

o0 Long-term development in mean arrival rates of the kind that lead to ageing
of signal plans

The results of each of these experiments are givemwbelo

9.1 Short-term Variability

In order to investigate the relative performance efuarious control strategies in the
presence of short-term random variability in traffiows, we generated vehicular

arrivals at the entries to the simulated road sectimosording to the shifted
exponential distribution with appropriate mean flow. Tkired of variability is typical



of road traffic even when the long-term mean floncastant, and gives rise to
possibilities for varying signal indications in a mantieat is beneficial to traffic —

typically by truncating green indications when they aot being used heavily in
favour of advancing the start of other green indicatiomhis kind of variability was

included in all the other tests that are reported here.

The results of this experiment are shown in Table 16.ddhsidered a simple
cross-roads junction with flows of 400 vehicles per houor each of the four
approaches, and also with 600 per hour on each. We iddribifielirect search the
timings for fixed-time and system D control that providied best performance. The
LCS method was used with a rule-base learnt using tle¢ dé¥flows to be controlled
in each case.

Table 10: Performance of LCS strategies with short-term flaniability (vehicles)

Control strategy

Mean arrival LCS
rate on each Fixed time System D LCS Extension
approach strategy

(cars / hour)

400 48.79 48.67 49.92 48.92

600 80.92 80.42 81.67 82.21

We found that the LCS could produce performance that & ¢t but slightly worse
than, optimised fixed time and optimised System D veldcteated signal control at
each of a range of traffic flows: the matched mednf® 10 mutually independent
runs showed greater mean rate of delay than that achisvVA control of ¥4 - %2 per
cent for FT and % - 1 per cent for LCS control.

9.2 Systematic Variations

We investigated performance of each of the controlhott during a synthesised
morning peak profile during which the flows increase framinitial value of 200

vehicles per hour up to 600 and then reduced to 400 per hour loagawmach. The

synthesised profile of mean arrival rate is showRigure 2.

In order to make fair comparison, we searched fob#st timings for the FT and
vehicle-actuated control, and for the best constamhlag flows for the LCS. A graph
showing variations in the mean rate of delay agairegrgtime settings for fixed time
and vehicle-actuated control is shown in Figure 3. Fitus) the settings that achieve
minimum mean rate of delay can be seen to be 9sxied fime, and 11s (maximum
green) for vehicle actuated. The LCS rules were leasittg constant mean arrival
rates, and we investigated the sensitivity of the gestormance to the value of this
constant learning flow.
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Figure 2: Synthesized peak period flow profile.

The results of this test of the LCS are shown inlgdld. These show that the
optimised FT (60.05 vehicles) performed about 0.6 per centewloas did VA control
(59.68 vehicles), and that the extension strategy LCS (6@Hitles) performed about
0.9 per cent worse than did VA. However, the LCS witbrsbxtensions (@, 4, 8)
seconds when the rule base was learnt with a mearalarate of 540 vehicles per
hour produced mean rate of delay over 10 runs of 57.63 vehidiad) is about 3 per
cent better than VA. Investigation of the individual sisihowed that the mean rate of
delay varied between them, with standard deviation legtwans of 2.89 vehicles so
that the standard error of estimation of the mean avédittle under 1 vehicle. We
therefore undertook a series of 100 runs with this ruleaset established a mean rate
of delay of 58.84 vehicles with standard deviation of 1.4dcled1 this is about 1.4
per cent better than VA control, though substantiabtdity in performance between
runs remains. When the longer choice set of green ¢itensions of ((,10,15) s
was used, performance was worse at 59.91 vehicles (disved with learning flows
of 540 vehicles per hour), which is about slightly wolsmntVA control.

We found that for the extension strategy LCS contrethod, performance was
robust with respect to the value of flows for whicke ttontrol was optimised, ranging
between 60.21 and 60.93 vehicles as the flows used during théntephase were
varied from 300 to 650 vehicles per hour (using incremen® afehicles per hour).
However, the LCS strategy with choice of extensidhs2(4, 8) seconds produced
results that varied substantially with learning flowstlhe same range, ranging from
57.63 to 61.16 vehicles.
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Figure 3: Variation in mean rate of delay for profiled flows.

Table 11: Mean (and standard deviation) of performance of sigoatrol strategies
with profiled arrival rates (vehicles).

Control strategy

Fixed time System D
(9 second %;;(:’:Sr?wd LCS LCS Exlt_;ssion
stage (0,2,4,8) (0,5,10,15)
duration) stage strategy
duration)
60.05 59.68 57.63 59.91 60.21
(0.770) (0.721) (2.892) (3.592) (0.951)

9.3 Long-term Development in Mean Arrival Rates

We investigated the performance of each of the cordn@tegies as flows vary
substantially from those for which the strategiesengptimised. This test represents
the effect of ageing of signal plans on performancegchviairises because the flows
that are controlled change over time from those foickvthe timings were calculated.
This phenomenon is known to lead to degradation in pedioce of fixed-time plans



of about 3 per cent each year (Bell and Bretherton, 1386)found differences in
performance between the strategies that were sntaflerthe differences between the
various flow levels: there was almost no differeneveen fixed-time and VA control
when both used 11s stage durations. At high flows, thewi@Bthe medium choice
set of extensions (0, 5, 10, 15) s performed best, largebube the optimisation of
the other strategies for lower flows led them to hianege limited traffic capacity. By
contrast, the LCS extension strategy performed poorlyigtt flows. The results of
this test are shown graphically in Figure 4.

Sensitivity of delay to flow
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Figure 4: Variation in performance with flows.

10. Conclusions

In this chapter, the practical value of Learning CfegsiSystems for road traffic
junction control has been examined. This has showh X@S version of LCS
outperforms the ZCS in all of the test cases invetiaand that no further
improvement in performance can be obtained by theisiamh of either rule-linkage or
the memory register. The advantages of the LCS apprioatide its flexibility in
respect of the form of data and the objectives of dpétion. When tested with a
detailed simulation of signal controlled road traffiongimplementations of the LCS
methodology outperformed standard control methods in necages. This indicates
that the LCS approach has potential for applicatiomaal itraffic control.

It is possible that both CXCS and XCSMH require furthdaptation before they
are suitable for this application. It is also possthit none of these systems is able to
pick up temporal patterns in the traffic flow that candsploited so the memory



mechanisms have nothing to work with. In the innet paan urban road network,
most major approaches to controlled junctions will inecdélow from neighbouring
junctions and so traffic will be platooned. This effedt result in junctions receiving
traffic according to the policies and timings at theghbburing junctions. This could
well lead to patterns of traffic flow that could be wdlgfinterpreted by systems such
as CXCS and XCSMH. However, in the networks that Wwevestigated in the present
paper, at least half of the approaches have randorit taaffval patterns. The present
results suggest that these variants of the LCS coatradinnot operate effectively with
this degree of randomness, resulting in poor performance.

More detailed evaluation of the XCS controller was utaden at individual road
junctions using the SIGSIM traffic simulation, whichnaaodel traffic behaviour and
signal control in detail. This enabled us to considerious aspects of the
implementation of LCS for signal control of road tiafin particular, we considered
the way in which traffic data are presented to the &8Stimulus for the rules, the
form of the LCS reward for performance of its rulessaage of objectives for the
control policy, and the choice of control action fbe LCS rules to vary the signal
control. Each of these was found to affect the perdoree of the LCS system to some
extent.

We undertook a series of tests to investigate the npeafoce of the LCS in the
presence of different kinds of variability in traffiods. These ranged from random
variability around a constant mean arrival rate, tigtoprofiled flows representing a
peak period, to long-term development of mean arrivasrate

The results of this part of the investigation showeat some implementations of
the LCS could outperform standard control methods in icedathese tests. Our
investigations considered several elements of theinvawhich the LCS is configured
for the signal control task. We found that the perforoeanf the LCS approach varied
according to

o the way in which the LCS rules are interpreted asrobattions,

o the choice of measure of traffic conditions that isduas stimulus for the

LCS rules,

o0 the corresponding choice for feedback as the basi® okthard, and

o0 the mathematical function that is adopted to transtoaffic measures to

rewards.

Because there is substantial choice in each of tlespects, further investigation
could well lead to further improved performance. Our resoi#tge established the
potential for LCS using current detector technology tavdelimprovements beyond
what can be achieved using current control methodsfuthiee availability of further
detector technologies and the range of possible develaprwethe implementation of
the LCS to the signal control task offer scope forHfertimprovements.
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