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Abstract 
 

We propose that the emergent phenomenon know as “desakota”, the rapid 
urbanization of densely populated rural populations in the newly 
developed world, particularly China, can be simulated using agent-based 
models which combine both local and global features. We argue that 
deskota represents a surprising and unusual form of urbanization well-
matched to processes of land development that are driven from the bottom 
up but moderated by the higher-level macro economy. We develop a 
simple logic which links local household reform to global urban reform, 
translating these ideas into a model structure which reflects these two 
scales. Our model first determines the rate of growth of different spatial 
aggregates using linear statistical analysis. It then allocates this growth to 
the local level using developer agents who determine the transformation or 
mutation of rural households to urban pursuits based on local land costs, 
accessibilities, and growth management practices. The model is applied to 
desakota development in the Suzhou region between 1990 and 2000. We 
show how the global rates of change predicted at the township level in the 
Wuxian City region surrounding Suzhou are tempered by local 
transformations of rural to urban land uses which we predict using cellular 
automata rules. The model, which is implemented in the RePast 3 
software, is validated using a blend of data taken from remote sensing and 
government statistical sources. It represents an example of generative 
social science that fuses plausible behavior with formalized logics matched 
against empirical evidence, essential in showing how novel patterns of 
urbanization such as desakota emerge.  
 
Keywords: emergence, desakota, rural-urbanization, agent-based 
modeling, lower Yangtze River Delta  
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Emergence and Desakota 
 

Rapid urban change often leads to patterns of morphology which are surprising in that 

they are unanticipated, often counter to what is expected. Recent regeneration and 

redistribution taking place in the industrial city has led to increasing specialization 

manifesting itself in phenomena such as the “edge city” while patterns of segregation, 

particularly with respect to the concentration of ethnic groups appear under regimes 

where different populations are quite content to live side by side, notwithstanding a 

mild preference towards their own kind (Ormerod 2005). These patterns are often 

described as “emergent”, reflecting processes which act from the bottom up, 

producing growth and change which is organic and unplanned in its genesis. A 

particularly clear example of these phenomena is associated with urbanization in 

some newly developed countries, particularly in East Asia. There, rural landscapes 

usually within the hinterlands of large cities, are rapidly urbanizing, not through rural 

depopulation to the cities with their subsequent outward growth, but through a process 

of spontaneous change in which a majority of the rural population are transforming 

their lifestyles and activities into urban pursuits in situ. In these situations, the 

longstanding migration of the population to large cities which has historically marked 

third world urbanization is less significant than the transformations that are taking 

place as the rural population becomes urban without substantial movement to the 

cities. This phenomenon is called “desakota”. 

 

Desakota is a pattern of settlement characterized by an intensive mixture of 

agricultural and non-agricultural activities which reveals itself as a close 

“interlocking” of villages and small towns (Lin 2001). These patterns are neither 

urban nor rural, but demonstrate features of both. The term desakota was first used by 

McGee (1989, 1991) who identified these morphologies with the Bahasa Indonesian 

word “desakota” from the words for village “desa” and town “kota”. In one sense, it is 

easy to see why this pattern of growth characterizes rapid urbanization in places like 

China. Rural life has formed the bed rock of Chinese society for many thousands of 

years revealing itself in a dense polynucleated quilt of villages and small towns with 

close economic links to the larger cities. Unlike the wholesale movement from the 

countryside to the towns in places like Britain in the 19th century, modern 
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technologies now make it possible to urbanize in situ, so to speak, with the network of 

social and economic connections associated with an urban society already largely in 

place. Some argue that understanding this rural-urban nexus and its new landscape is 

a key to understanding China’s tremendous social and economic transformation (Tang 

and Chung 2000). Somehow the patterns are representative of China’s extraordinary 

economic vitality and provide clues to its continuing social and political stability in 

the face of great economic upheavals (Lieberthal 1995). Indeed, the phenomena is by 

no means confined to China; an equivalent of desakota has existed in parts of urban 

Europe for the last half century as urban growth has put flesh on the polycentric 

network of towns and cities established over 500 years ago (Kloosterman and Musterd 

2001). 

 

Emergence is a much more difficult concept to explain than to illustrate but one way 

of proceeding is to build models of such phenomena whose fundamental entities or 

objects, sometimes called “agents”, interact with one another from the bottom up 

(Parker et al. 2003). The key to understanding emergent phenomena which results 

from such interactions is to fully understand the way the model’s agents influence one 

another, usually over multiple time periods and across extended spaces, where 

surprising patterns often emerge as a consequence of nonlinear interactions between 

agent behavior, the results of positive feedback. This is the conventional wisdom 

underlying the rationale for complex systems modeling. Once a satisfactory 

understanding of such emergence has been gleaned, then it is an open question as to 

whether or not the phenomenon is still to be called emergent. In terms of urban 

growth and form, purely bottom-up explanations are unlikely to reflect the range of 

processes and agents that generate such spatial organization (Urry 2003). In the case 

of desakota for example, efforts to explain such phenomenon are reflected in at least 

two schools of thought. 

 

The first emphasizes the role of rural areas as the locations for development and gives 

priority to rural urbanization. Since Deng Xiaoping’s “reform and opening-up”, 

central government control of rural areas has been relaxed and local cadres have 

assumed responsibility for many resources and institutions in the countryside. 

Townships and village officials have sought to replace declining state revenues with 

taxes and fees on local industries and have promoted and subsidized collective and 
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commercial enterprises, an approach that has been widely adopted since the 1980s. 

This school argues that, while large metropolitan cities may provide markets and new 

technologies, much of the energy and drive for production is not demand-driven but 

comes from rural peasants and local cadres seeking to improve their lives. This is 

truly a bottom-up process reflecting local action (Tang and Chung 2000). 

 

In contrast, the top-down approach highlights the contributions of China’s largest 

cities and coastal trade zones which appear to have reinvigorated and 

internationalized China’s economy, culminating in its recent entry into the World 

Trade Organization (Li and Yeh 1998). This school argues that it is only the 

metropolitan regions that have supported the conditions for China’s social and 

economic transformation to a modern economy consistent with relaxed labor markets, 

high worker mobility, and free trade (Yeung and Zhou 1991; Yao 1992). In fact, 

McGee’s (1991, 1998) model of desakota is a hybrid, drawing on elements from both 

approaches where he implies that the resultant landscapes are based on 

industrialization in rural areas but consistent with a “friction of space” that privileges 

certain locations up to 200 kilometers beyond the largest cities or between adjacent 

metropolitan areas (Oi 1999).  

 

Desakota has been quite widely studied in a qualitative sense but to date, the 

phenomenon has been mainly identified and analyzed in descriptive terms, focusing 

on how the transformation of China in terms of the global economy and its internal 

restructuring has forced the pace of this variety of urbanization. There have been 

attempts to simulate incremental urban change in rural areas using mainly physical 

models such as those based on cellular automata and developed by Li and Yeh (2000) 

for the Pearl River Delta. There have been attempts at measuring the resultant 

morphologies which show particular patterns of fragmentation (see Sui and Zeng 

2000) and there are approaches to detecting differences between rural and urban in 

urbanizing regions using ideas from fuzzy sets (Heikkala, et al. 2003). Xie, Yu, Bai, 

and Xing (2005) and Xie, Mei, Guangjin, and Xuerong (2005) have explored how 

these processes have resulted in the loss of agricultural land and changes to the 

ecological balance. However to date, there have been no attempts to simulate the way 

in which developers and entrepreneurs engage in the process of land development 

which is central to the way rural activities are transformed to urban. We will redress 
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this here through explaining the evolution of desakota using an agent-based model 

which is embedded within a land development process that is driven both from the top 

down and bottom up. We will argue that desakota regions emerge from a combination 

of behaviors towards the land and housing markets that reflect State and City policies 

which are instituted from the top down, and developer, entrepreneur, and consumer 

behavior which responds to local conditions from the bottom up. Indeed like Li et al. 

(2005), agent-based modeling should not be restricted to processes simulating growth 

and change from the bottom up.  

 

In the next section, we will describe how the processes which lead to desakota can be 

simulated by a spatial logic that meets both local and global conditions and 

constraints in the particular area of China we develop the application for: the City of 

Wuxian which surrounds Suzhou City in the lower Yangtze Delta about 100 

kilometers north west of Shanghai. We will then outline the formal structure of the 

model used to transform the landscape surrounding big cities into desakota, 

emphasizing the way top-down processes of social and economic development 

interact with developer-agent behavior which operates from the bottom up, initiating 

various feedback effects that determine the spontaneous transformation of land uses. 

We then describe the data we have for 5 year periods from 1990 to 2000, showing 

how this data can be used to estimate rates of urban change for 27 townships that 

comprise the region and which determine the controls on overall growth that take 

place over the observed period. We outline the way the model works at a fine spatial 

scale, in the cells that agents occupy in making the transformation from rural to urban. 

We show how well this model simulates the observed trajectories of urban change 

from 1990 to 2000 and then indicate how we can use the model to make forecasts for 

the middle range until 2010 and thence beyond. Our emphasis on using the model in 

prediction is to show how agents operating spontaneously at the fine spatial scale are 

influenced by and influence policy at the global level which is governed by the 

actions of policy makers in the townships. We then conclude with ideas for further 

research and a brief commentary on the suitability of this approach for explaining 

unusual spatial patterns such as desakota. 
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A Logic for Modeling Spontaneous Urban Change in China 
 

Urban development everywhere is influenced by decision-making at multiple levels 

and scales. But for desakota in China in general, and development in the Suzhou City 

region in particular over the period from 1990 to 2000, we simplify the chain of 

development decisions to two levels which we call ‘local’ and ‘global’. The global 

level is reflected in aggregate social and economic factors which pertain to districts or 

townships within the region, and which are used to define instruments that steer 

development to favorable locations consistent with regional and national economic 

policy. The local level involves the decisions which households in rural villages and 

small towns make to realize local scale economies through the transformation of their 

activities from rural to urban pursuits or to a mix of these. We call this “two-front 

growth” which combines two different policy-making levels which both contribute to 

the simultaneous development of urban and rural areas by fusing “city-leading-

county” initiatives in the cities with the “household responsibility system” that has 

been introduced in the countryside. City-leading-county initiatives are geared to 

transforming decaying state-owned enterprises into private but often State sponsored 

investments that reflect China’s growing international trade and investment through 

the gateway cities. These new developments are initiated by local enterprises adjacent 

to large cities with foreign investment, often appearing in what was once farming land 

like “flying intruders” (Wei 2002).  

 

In contrast at the more local level, since the early 1980s, the introduction of a 

“household responsibility system” (HRS) has dramatically changed rural areas 

through the decollectivization of agriculture and a return to family-centered crop 

production. HRS has provided strong incentives for rural towns and villages to 

diversify and grow their economies by developing non-agricultural enterprises. In 

general, this kind of rural urbanization often involves small-scale, individual, private-

owned non-agricultural land use, which is termed “rural construction” in official 

Chinese statistical yearbooks (Wuxian City Statistical Bureau 2001) with most 

construction registered as housing. But the functional uses of such rural construction 

are diverse; many individual houses are in mixed use, based on small factories, craft 

and other retail shops, restaurants, and related privately-owned and operated 
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businesses. It has been argued that this bottom-up impetus is core to China’s 

economic vitality and is a primary factor sustaining China’s continued economic 

miracle (Marton 2000). Agent-based modeling is an ideal way of encapsulating this 

kind of institutional policy-making with local physical responses in terms of land 

development and we will fashion our model around this logic. 

 

 
Figure 1: The Logic of Deskota 

 

We have abstracted this process in Figure 1 where we show the key feedbacks that 

appear to be plausible drivers of the processes that determine the transformation of the 

rural landscape into desakota in the Lower Yangtze Delta. At this point, we must 

digress to justify our approach to understanding desakota using agent-based models. 

As Page (2003) so cogently argues: “… our models become better, more accurate, if 

they make assumptions that more closely match the behavior of real people…” and to 

this end, we consider the processes embodied in Figure 1 to be close to those we 

observe, albeit in a somewhat aggregate manner. We will further translate this by 

approximating the outputs of these processes by data when we come to validate the 

model in a later section but in terms of verifying the model structure, we consider this 

to be consistent with the wide literature on desakota that has appeared so far. Before 

we specify the model formally, we need to describe its structure in somewhat more 

detail. 
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In abstracting in this manner, we assume that distinct objects of interest can be 

defined as agents whether literally such as individuals and/or households, or 

somewhat more metaphorically as townships, districts, policy instruments and the 

like. We also assume that the canvas or landscape on which and about which agents 

make their decisions is geographical in the traditional sense of the map. Agent-based 

models essentially simulate processes in which agents interact with each other but 

also with the landscape, where the assumption is that all possible feedbacks between 

landscape and agent can, in principle, take place (Batty 2005a). In this context, we 

have already define two levels – the local and the global and we can thus define two 

types of agent and two types of landscapes associated with each of these levels. In 

terms of agents, we define developer agents who might be households, foreign 

investors or even the State at the local level, while at the global level, we assume that 

the agents are townships. The associated landscapes are both geographical with the 

global being the area of each of 27, in this case, townships that exhaust the space of 

the Suzhou region while at the local level, the landscape is a regular grid of cells 

which is the most neutral way of defining a geography where each individual location 

has no a priori advantage over any other.  

 

These definitions map onto Figure 1 in the following manner. In general, the socio-

economic drivers of change are determined at the global township level where various 

policy instruments are exercised in terms of urban reform. At the township level, 

regional and national policies are determined and in general this fixes the rate of 

growth, at least in the medium term. At the local level, household reform enables 

individuals and families to transform their lives by adopting urban pursuits, both to 

attract development and to initiate it themselves. In this sense, households are 

developer agents and respond to more local conditions such as the costs and benefits 

of various types of accessibility as well as the cost of land and top-down policies for 

growth management. The interactions between these levels are of course critical and 

Figure 1 implies a degree of asymmetry in the processes just explained. Essentially 

the outer loop in Figure 1 represents a process in which socio-economic conditions 

slowly determine urban policy which in turn provides the conditions for development 

that households in the rural areas respond to. In turn, these households initiate urban 

development on a much shorter cycle than the outer loop implies. This means that at 
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the local level, development takes place in a stable context of wider global policy and 

economic conditions but can be much more volatile due to feedbacks posed by local 

conditions. The development that occurs then changes the socio-economic conditions 

which policy will respond to in the longer term. Flow charts such as Figure 1 could 

imply that everything is connected to everything else but in this context, it stresses 

that the global level responds more slowly than the local. We will incorporate this 

feature somewhat bluntly in our model by computing rates of change at the global 

level over longer time periods than are those used to initiate urban development at the 

local cellular level. 

 

 

A Formal Statement of the Model 
 

There are two kinds of agents in the model: the set of townships kZ  which are 

indexed spatially by location as Kk ...,,2,1=  and the set of developer agents which 

we index as Jj ...,,2,1= . The developer agents move on a landscape of cells which 

we index as Ii ...,,2,1=  while the township agents are immobile and are directly 

associated with their equivalent geographical space: that is each township k  occupies 

an equivalent space k  where the number of townships is much less than the number 

of cells, that is IK << . There is also a strict nesting of cells within townships, that is 

∑ ∑∈
=

k Zi k
Ii#  where the hash symbol simply indicates that we count i as 1 if it is 

part of the township k. Just as cells are nested in townships, the micro-time periods 

over which development takes place from t  to 1+t …., are nested within more 

macro-time periods denoted from time T, to 1+T , … such that τ=−+=∆ ][]1[ TTT . 

τ  is a number of micro-time instants which are associated with the change between t 

and τ+t  used to simulate local land development. 

 

The model is specified at two levels. The key driver at the global level is a function 

that determine the rates of change in each of the townships measured by changes in 

households which can be converted into developable units. The rate of change in k , 

)( TRk ∆  is defined from the function )(•f  which is specified as  
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 { }...),(),()( 21 TXTXfTR kkk =∆       (1) 

 

where LTX k ...,,2,1),( =ll  are socio-economic drivers associated with economic 

development and regional policy appropriate to the township level. This need not 

delay us here but equation (1) is the basis for the estimation of the importance of 

exogenous variables to the rates of change which are fitted using linear regression in a 

later section. These rates in fact determine the amount of growth over the macro-time 

period T∆ . To generate a total for the end of such a time period, they are applied 

straightforwardly to the total households (as developable units) in k , )(TPk , as 

 

[ ] )()(1)1( TPTRTP kkk ∆+=+  .     (2) 

 

To anticipate the lower-level local allocation, then the total households allocated at 

time 1+T  will always sum to those at the lower level, that is ∑∈
=+

kZi ik TpTP )()1(  

where the households have already been aggregated over the number of time periods 

τ  at this lower level. 

 

From equations (1) and (2), total households can be counted at any scale and over any 

time period but in the model, the rates of change are in fact applied at the local level 

where all allocation takes place. If we define the cumulative rate from equation (2) as 

 

 
)(

)1(
)(1

TP
TP

TR
k

k
k

+
=+   ,      (3) 

 

then we can factor this rate into a rate per unit time period ][]1[ ttt −+=∆  by 

discounting the cumulative rate as 

 

 )(1
)(

)1(
)(~

1

tr
TP

TP
tr k

k

k
k +=

⎭
⎬
⎫

⎩
⎨
⎧ +

=
τ

 .     (4) 
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When applied cumulatively to the population )()( TPtP kk = , equation (4) updates the 

totals at each time period t  to meet the constraint that )1()( +=+ TPtP kk τ . 

 

In each macro-time period T∆ , the total change )()1( TPTPP kkk −+=∆  is broken 

into its finer temporal parts using equation (4) and each subtotal )(tPk∆ , )1( +∆ tPk , 

…, )( τ+∆ tPk  forms the control for the detailed urban development process at the 

cellular level. At this level, the variables that determine location are quite different 

from the global level in that it is accessibilities, land cost reflected through suitability, 

and growth management policies that determine the allocations. At this stage, we will 

define land suitability in the fine cell i as )(tCik , accessibility to economic centers as 

)(tEik , and accessibility to transportation facilities as )(tTik . We also define a policy 

index )(tSk  which is related to the rate of change in k , tik TR ,),( ∀ . This tempers the 

effects of accessibility and suitability with respect to the growth management and 

economic policies set at the township level. This index is set in proportion to the rate 

of growth of each township (see Xie, Mei, Guangjin, and Xuerong 2005). We will 

specify these variables in more detail when we validate the model but in general, 

these factors are used to determine a probability for development )(tikρ  which is a 

form of utility given as  

 

 { })(),(),()( tStEtTgt kikikik =ρ   .    (5) 

 

In general, land is converted to urban uses by the developer agent j  who for each cell 

i  in township k  evaluates the probability of development, subject to the suitability of 

the land in question as reflected in the measure )(tCik . In principle, what each agent is 

doing is converting the land in question to an urban use, to )(tpik  by maximizing 

)(tikρ  subject to the constraint posed by the land suitability )(tCik .  

 

Because this process is implemented algorithmically in sequential form, the details 

differ from a pure optimization. As we will explain below, at the start of each macro-

time period T  in the first micro-time period t , we set up a series of master agents 

which effectively seed the development process in the periphery of existing urban 
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development. We define )(tPk  such agents and we locate these so that they occupy 

)(tPk  cells i  which have the highest probability for development )(tikρ  using the 

standard random (Monte Carlo) mechanism used in such modeling (see Batty 2005a). 

In fact, during this process because land suitability is taken into account, developers 

will not develop a cell if the land suitability is less than a certain threshold )(TkΞ , 

that is, if )()( TtC kik Ξ< . The reasons for this initial allocation step which is different 

from the subsequent steps within the macro-time period, rests on the fact that there 

was a strong shift in policy between 1995 and 2000 in this region and this needs to be 

reflected in the initial placement as we will recount in the discussion below. We call 

this first process random allocation but in subsequent time periods, the master 

developer agents are used to “spawn” additional agents which add to up to the total 

required in subsequent micro-time periods. These agents begin by considering 

development in the cellular neighborhood of each master agent activating a process 

we call neighborhood allocation. It is at this point that the probabilities define in 

equation (5) are considered in neighborhood order: that is, the developer begins by 

considering cells in the immediate band of eight cells around the master agent – in the 

Moore neighborhood – and if no suitable cell is found, then the agent considers the 

next band of cells, and so on until a suitable cell is located. The reason for this 

somewhat convoluted process is to ensure that development remains “close” to 

existing development which reflects the need for connectivity in the urbanizing 

system. 

Once the process is concluded at the end of each micro-time period, new development 

changes the accessibility to transport infrastructure and economic centers as well as 

land suitability. In short, there are positive feedbacks initiated at this lower level from 

each time period to time period as reflected in the direct feedback loop between 

developers and households in Figure 1. Formally, then  

 

{ }

{ }

{ }⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

+=+

+=+

+=+

)1(),()1(

)1(),()1(

)1(),()1(

tptChtC

tptEqtE

tptTztT

ikikik

ikikik

ikikik

      (6) 
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Feedbacks at the higher level of course exist although we have not implemented any 

so far due to the nature of the estimation that we will describe in the next section. 

Moreover there are many extensions that we might make to this model with respect to 

increasing the connectivity between the various elements. Nevertheless we consider 

that this captures enough of the desakota process to mirror the process of spontaneous 

development. In Figure 2, we illustrate the crucial steps in this simulation from which 

it will be clear to the reader how we might make additional connections and 

extensions to the model structure. 

 

 

Estimating Global Rates of Urban Change 
 

The data for this model was derived from diverse sources. As population, household 

and related socio-economic data was not available at a scale equivalent to land parcels 

or even census blocks, data on urban and rural construction (which we assume 

proportional to household change) was generated from remote sensed imagery using 

Landsat Thematic Mapper (TM) images for 1990, 1995 and 2000. These images were 

classified into a dozen or so land use categories which were then used to derive the 

transition matrices indicating the amount of each land use which was converted to any 

other during the two periods in question: 1990 to 1995 and 1995 to 2000: 1+→ TT  

and 21 +→+ TT . These images were used to extract land parcel data which was 

then converted to vector data sets, complemented by data associated with topography, 

geomorphology, vegetation, precipitation and temperature used as the ancillary data in 

the interpretation process. Further details are given in (Liu et al. 2002). There are 

many methods for detecting land cover changes available based on image differencing 

through various transforms (Almeida, et al. 2005). The method adopted here to extract 

dynamic changes in the vector land use datasets was based on post-classification 

image comparison complemented by field sampling to ensure quality control in the 

resulting classifications. Control was executed by checking the identities and the 

boundaries of sample land use patches with manual adjustment to decrease the 

incidence of major errors. In fact over both time periods comparing 1990 with 2000 

data, the percentage accuracy of measured areas is about 97% (Liu et al. 2002) which 
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gives us a high level of confidence in the extracted change data and its allocation into 

land use categories. 

 

 

 
Figure 2: Sequence of Operations in the Model 

 

We will not show the complete transition matrix between each of the 13 categories of 

land use that we have extracted at these three dates for our focus is not on how 

particular land uses are transformed into one another per se but on the impact of urban 

development on the range of land cover types. In Table 1, we have extracted the 

changes from an aggregated set of classes to urban and rural construction (which we 

take to be urban/household unit development in this context). Although there is a 

sharp increase in land use being converted from paddy fields and a consequent drop in 

conversions from drylands between the first and second time periods, these two land 

use categories completely dominate the process forming some 98 percent of the entire 

land use change in the first period and some 88 percent in the second period. As 

conversion from paddy fields is the largest category in both periods, we can also 
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examine the extent to which paddy fields are converted to other land uses which we 

show in Table 2. Urban and rural construction still dominate taking some 77 percent 

and 74 percent of paddy field land in the two respective time periods with factory and 

transportation uses taking 4 percent and 7 percent. The only other substantial 

transition is from paddy field to reservoirs and ponds which simply indicate 

traditional changes in this kind of wetland agriculture with no real significance for 

urbanization. 

 

Table 1: Percent Conversion of Land Use to Urban and Rural Construction  
over the Two Macro-Time Periods 

 
 
Land Use Cover Type 
 

 
1990-1995 

 

 
1995-2000 

 
   
Dense Forest 1.01 3.42 
Shrub and Loose Forest 0.09 2.08 
Other Forest including Orchards  0.2 3.37 
Highly-Covered Grassland  0 1.24 
Lake, Reservoir and Pond  1.17 1.88 
Shoal 0 0.03 
Hill and Plain Paddy Field  50.84 77.13 
Hill and Plain Drylands  
 

46.69 
 

10.85 
 

 
 

It is not very meaningful in such a large region to examine absolute volumes of 

change. Suffice it to say that Shuzhou City’s population in 1990 was some 0.84m 

(million) and this grew 1.11m in 2000 with Wuxian City, the surrounding region 

falling from 1.12m to 0.96m people during this time. In fact in 1995, due to boundary 

changes Suzhou incorporated three townships from Wuxian but the key point is that 

the entire region grew only slowly from 1.97m in 1990 to 2.03m in 1995 to 2.07m in 

2000. Nevertheless, there has been dramatic urbanization of Wuxian during this 

period which is quite evident from analysis of the imagery. In terms of land area, 

however, some 60 percent of Wuxian is permanent lake but paddy field is the next 

largest use at around 25 percent of the area in 1990. Paddy fields have reduced by 5 

percent in each of the five year periods (roughly dropping by 1 percent per year) and 

now constitute some 22 percent of the region. This loss has been taken up by rural 
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construction which was 3 percent of the region’s area in 1990 and 4 percent in 2000, 

growing by some 25 percent in the first period and 46 percent in the second. Urban 

construction (within Wuxian) grew even more dramatically by some 18 percent in the 

first period and a staggering 240 percent in the second. The scale of this growth is 

quite characteristic of desakota with the boundary between what is defined as rural 

and urban entirely blurred (Heikkala et al. 2003). In Figure 3, we show the location of 

the region centered on Suzhou City with the 27 townships within Wuxian. In Figure 4, 

we show the distribution of land uses taken from the remote imagery for 1990, 1995 

and 2000, the differences between each of these dates, and the difference from 1990 

to 2000 which indicates the degree of overall change. It is from these difference maps 

that we compute the urban change used to drive the model from the township level. 

 

Table 2: Percent Conversion of Paddy Fields to Other Land Uses  
over the Two Macro-Time Periods 

 
 
Land Use Cover Type 
 

 
1990-1995 

 

 
1995-2000 

 
   
Dense Forest 0.12 0.00 
Shrub Forest 0.03 0.00 
Sparse Forest 0.19 0.00 
Orchard 0.14 0.48 
Dense Grassland 0.05 0.83 
River 0.12 0.00 
Lake 2.66 0.00 
Reservoir and Pond 14.02 17.73 
Shoal 0.01 0.00 
Urban Construction 39.33 32.96 
Rural Construction 38.10 40.91 
Large Factory and Transportation 3.51 6.93 
Plain Dry Land 
 

1.72 
 

0.16 
 

 
 
 
The rates of change at the township level which are applied to the total land use 

change extracted from the remote imagery at 1990 and 1995 are generated from a 

linear statistical model whose independent variables are based on socio-economic data 

reflecting economic conditions and policy imperatives. Two rather different models 
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resulted from the estimations in each macro-time period, the first being based on 

simple demographic variables, the second on new data reflecting income and tax. This 

is simply due to the stepwise procedure used to identify significant independent 

variables in the model rather any differences in data. The fact that the models from the 

two periods are different in structure reflects quite distinct differences between the 

political and economic regimes dominating development in the Suzhou region over 

the last decade. During this period, there was a strong shift to economic issues 

associated with income and taxation in contrast to the earlier period when 

demographic factors appeared stronger. In making forecasts, we will use the rate 

model from the second period for this has variables that can be more directly 

associated with policy. 

 

 
Figure 3: Suzhou, Wuxian, and the Township Level 

 

In general the rate of urban change in township k , )( TRk ∆ , defined above in equation 

(1), can be estimated from the following linear form 

 

 ∑ ++=∆
l

ll
l )()()()( TTXTTR kkk εβα  ,    (7)

       

where l
kβ  are weights on LTX k ...,,2,1),( =ll , the L  independent socio-economic  
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Observed Land Uses 1990=T  
 

Changes in Urban (red) and Non-Urban 
(gray) Land Uses 19901995 −=∆T  

1995=T  19952000 −=∆T  

2000=T  19902000 −=∆T  

 
 Urban Construction  Paddy Land  Dryland  Forest 
 Grasslands  Reservoir/Ponds  Other Land Types 

 
Figure 4: Land Use Types at 1990, 1995 and 2000 and First Differences Associated 

with Modeling Urban Change 
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variables defined at the township level k , )(Tα  is a constant, and )(Tzkε  are the 

associated error terms. In the period 1990 to 1995, a stepwise regression using the 

large data set described below which includes a series of population and employment-

labor force variables, resulted in the following equation being judged to be the most 

parsimonious with the best fit: 

 

⎪
⎪
⎭

⎪
⎪
⎬

⎫

−

++=→

)(                               
)1990(02.5                             

)(                     )(   )(                                
)1990(69.7)1990( 0.62715.68)19951990(

-3.49

4.542.480.89

k

kkk

E

PRPR

 . (8) 

 

)1990(kRP  is the rural (non-urban population), )1990(kP  the urban population, and 

)1990(kE  the employment (labor force) total, all at 1990. The t statistics (bold) under 

each weight and variable make clear that the parameters l
kβ  are all significantly 

different from zero at the 5 percent level. The amount of variance explained by this 

equation is 72 percent which is acceptable for driving the simulation from its start 

point. 

 

In the second period from 1995 to 2000, other variables from the data base based on 

the same 20 key economic and demographic variables used in the 1990 to 1995 

calibration, appeared. The data set included output by employment sector, fixed asset 

values, incomes in different sectors, revenue, and taxable receipts. As in the first time 

period, we cycled through a stepwise regression procedure which ultimately 

converged on an equation with a larger and very different set of independent 

variables, more related to policy instruments such as taxation. The form of this 

equation is 

 

⎪
⎪
⎭

⎪
⎪
⎬

⎫

+−+
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  )(                   )(                       )(                               
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    )(                     )(   )(                               
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 (9) 
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)1995(kTAX  is the total tax levied in the township, )1995(kINA  income in the non-

agricultural sectors, and )1995(kGDP  gross domestic product in the township, 

)1995(kFA  the net value of fixed total assets, and )1995(kRE  the expenditure in the 

rural economy, all at 1995. The t statistics (bold) under each variable imply that the 
l
kβ  parameters are all significantly different from zero at the 5 percent level. The 

variance explained by this equation is 88 percent which is particularly high, given the 

aggregation and uncertainties posed by the quality of the data. 

 

Equations (8) and (9) are those used in the global model which in terms of the 

simulation provide the parameters determining the overall rates of change from 1990 

to 1995 and 1995 to 2000 in the 27 townships. These are used to compute the rates 

which are input to equation (2) which in turn is used to factor the total urban change 

into its constituent components which are allocated to the cells by the lower-level 

agent model. Note that the calibration of the global model is accomplished outside the 

overall model framework as represented in Figure 2. 

 

 

Agents in a Cellular Landscape:  
Simulating Growth and Change in Wuxian City 

 

The cellular level used to allocate urban change generated at the global level is based 

on defining probabilities of transition from whatever use the cell has at the start of the 

simulation at time t  to urban use at time 1+t . These probabilities were defined 

generically in equation (5) above where it was argued that they depend on 

accessibility to economic activity in town centers )(tEik , and accessibility to transport 

infrastructure )(tTik . There is another factor which we call a policy index )(tSk  that is 

related to the rate of growth at the township level, thus cementing the local and global 

levels together not only through controlling the amount of growth but inputting the 

influence of the township on the local level. We will now detail how these factors are 

used to define the probabilities of urban change. 

 

Economic accessibility is based on distance to town centers. It is determined through 

a GIS operation, buffering the town centers at 5 successive distances 0.5km, 1.0km, 
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1.5km, …, from their physical centroids and then recoding the distances as 1 (< 

0.5km), 2 (0.5–1.0km), 3 (1.0–1.5km), and so on. We refer to the zones that are 

created as economic opportunity zones. In the same way, transportation accessibility 

to the main roads is computed by buffering at the same ranges of distance and then 

scoring the successive buffers in the same way. These simplifications are required so 

that the hundreds of thousands of interactions between cells in the model can be 

computed efficiently. The way this works in the model is as follows. When an agent 

considers accessibility to transport or to town centers, in the absence of any detailed 

information at the cellular level, it assumes that with increasing distance to the town 

center, more and more economic opportunities are accumulated, and this is then 

weighted against the index score so that an opportunity surface is established. This is 

similar to gravitational notions in terms of intervening opportunities weighted against 

distance and it enables an accessibility score to be computed for each of the 

accessibilities in question. The policy index is also computed by transforming 

township attributes into scores. Townships are sorted from high to low according to 

how many urban agents are associated with the urban change predicted for the 

township in question. We simply order the towns in terms of the growth rates from 

largest to smallest and assign priority orders of 1 to the townships ranked from 1 to 5, 

2 from 6 to 10, 3, from 11 to 15, 4 from 16 to 20 and 5 above 20. The elements then 

used to compute the probabilities are dimensionless. The probability equation is then 

set up in linear form as  

 

)()()()( tStEtTt ikikikik ψλµρ ++=   ,   (10) 

 

where each variable ranges from 1 to 5 with the entire range being between 1 and 15. 

The parameters ,, λµ and ψ  are those which enable the model to be calibrated at the 

local level, a process that we will describe below. One last feature of the local 

allocation needs to be established before we briefly describe how we calibrate the 

model and then consider it for use in forecasting. This involves land suitability which 

we earlier formalized as a constraint on the optimization of the probability of urban 

development. In fact, we use a strict priority ordering for the transition of land to 

urban use. The urban agents will try to occupy dryland first, then paddy fields, forest, 

reservoirs and ponds, and finally grassland.  
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The land suitability process is initiated in the first micro-time period when the random 

allocation of master agents to locations is made. We outlined this process earlier but 

at this point we need to be crystal clear about how the whole micro-simulation is 

implemented. This is at the heart of the process of generating spontaneous urban 

growth in the countryside which is the essence of the way desakota emerges. Each 

cell is 100 meters x 100 meters and there are roughly 687,000 cells in total allocated 

to the 27 townships. In each macro-time period of the simulation from 1+→ TT , 

there are about 50,000 to 60,000 urban developer agents }{ j  that roam the cellular 

landscape }{i  looking for cells to transform from rural to urban. These of course are 

discounted back to around 9,000 to 12,000 for each micro-time period 1+→ tt . The 

transformation process that they initiate is different from the usual cellular automata 

model structure in which cells change state from rural to urban dependent on land 

suitability and accessibility rules for the urban developer agents are essentially 

mobile. Strictly speaking for a model to be agent-based, it must contain agents that 

can move, for if the agents are passive and simply in one-one correspondence with 

cells, then the agent layer is redundant (Batty 2005a). In this case at the micro-cellular 

level, the agents act as “probes” searching the landscape for cells which are suitable 

for transformation from rural to urban and their movement on the landscape reflects 

the process of searching for suitable sites (cells).  

 

As noted earlier, the process of allocation consists in first randomly allocating the first 

round of agents to cells which have the highest probability of development based on 

equation (10) subject to the land suitability ordering, when Tt =  or 11 +=++ Tt τ , 

i.e. in the time period from 1990 to 1991 or from 1995 to 1996. These agents are the 

master agents which then seed all subsequent allocation of agents using the 

neighborhood allocation rules in the remaining time periods of the micro simulation, 

from 1992 to 1993, from 1993 to 1994 and so on, up until the end of the second 

macro-time period in 2000. In the second micro-time period, an appropriate number 

of new urban agents associated with the master agents in each township area but at the 

cellular level, are generated and then allocated using the neighborhood allocation 

rules. This involves these new agents assessing the suitability and probability of land 

for urban development in the neighborhood of the master agents. If these agents are 
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unable to find suitable land for conversion in these immediate neighborhoods (which 

will always be the case because the number of agents being generated is likely to far 

exceed the available cells in these restricted Moore neighborhoods, the search is 

widened and the agents move to the next band of cells, continuing in this way until all 

the agents associated with township in that micro-time period are allocated. At this 

point, these new agents become master agents seeding the next round of conversions 

in the next micro-time period until all the urban agents associated with that macro-

time period have been allocated. This process is akin to a process of continual 

mutation of land uses until enough urban development has been generated to meet the 

control totals consistent with the rates of change which are simulated at the township 

level using the linear model. 

 

The local level model which is essentially the structure pictured in Figure 2 is 

implemented in the open source modeling language RePast 3 (Collier, Howe, and 

North 2003; and http://repast.sourceforge.net/). Our implementation is unusual in that 

we have a very large cellular landscape and thousands of agents and is one of the first 

“realistic” implementations of RePast for spatial agent-based simulation as the results 

below will show.  The details of the simulation process need not concern us, other that 

noting that there is another layer of time within the operation of the simulation, which 

is referenced as ticks. These ticks do not match the real times t  and T  for they are 

essentially used to track the movement of agents across the space as they search for 

suitable cells to transform and as such, reflect the various iterations that are used to 

achieve the control totals from the global level. It is also important to note that the 

search process for an urban agent is not confined to the cells associated with a 

particular township but agents are free to search over the entire space and one major 

measure of fit that we will use is to compute how many units of development are 

generated in each township.  

 

We have run the model in two ways: first calibrating the model from 1990 to 2000 in 

terms of the local parameters ,, λµ and ψ  associated with the probability of 

development in equation (10); and second having chosen these best parameter values, 

running the model from 2000 to 2010 using the global parameters from the regression 

model in equation (9). What we should do in terms of calibrating the local level model 
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is to choose a range of values for each parameter and run the model over all 

significant combinations of values in these ranges. For each combination, we compute 

the goodness of fit of the model in terms of the number and location of cell 

conversions from rural to urban land, and then choose that combination of values 

which is closest to what we observe in the overall period from 1990 to 2000. The 

values of the three parameters ,, λµ and ψ  are arbitrary as the scoring used in 

forming their variables makes them comparable and thus it is their relative values that 

are important. This is a very standard method of searching for best fit parameters in 

intrinsically nonlinear models which goes back many years (see Batty 1976) although 

what we have actually done is to sample the phase space in a systematic way rather 

than sweeping the entire space in comprehensive fashion. In extensions to this model, 

we will selectively sample and search the space hierarchically as we have done in 

other agent-based models we have been working with (Batty 2005a, 2005b).  

 

The goodness of fit criterion that we are currently using is based on the difference 

between the urban cells that have been converted from rural predicted by the model 

with respect to those observed from the remote imagery maps shown earlier in Figure 

4. This is for the entire period from 1990 to 2000 but aggregated to the 27 townships. 

Although the townships act as the control on total growth at the global level, urban 

development at the local, cellular level is not restricted to particular townships as we 

noted earlier: that is agents are free to search the entire space. Formally this criterion 

is  
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where the temporal summations are over the period from 1990 to 2000 and the spatial 

summations over the number of cells in each township. 

 

To get the best parameter values, we first developed a very crude sweep of the phase 

space choosing 4 values of each parameter and focusing in on the area of the space 

that seemed to yield the lowest goodness of fit. This was the area around 
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,101,3525 ≤≤≤≤ λµ and 101 ≤≤ψ . We searched one dimensionally across each 

of these parameters, that is computing the goodness of fit ( )ψλµ ,,Φ  varying ,µ , then 

λ , then ψ  with the respective other two parameters held constant in each case. We 

show variations in the goodness of fit in Figure 5, which represent transects through 

the three-dimensional phase space. The best values ultimately identified were 

,5~,30~ λµ and  5~ψ  and Figure 5 shows that these give a point of minimum 

difference between predictions and observations with respect to this local area of the 

phase space. Short of sweeping the entire phase space at this level of detail which 

would involve running the model thousands of times, we consider this to be as good 

as we are likely to get at this initial stage. This is may not be the optimum optimorum 

but we are also certain that these are no such global optima within phase spaces 

associated with models of this kind. Nevertheless we are confident that the parameters 

values identified produce good simulations for these reveal patterns of growth close to 

those that we observe over the calibration period 1990 to 2000.  

 
Figure 5: Optimizing the Goodness of Fit within the Search Space defined by Local 

Parameter Values 
 

It is important to examine these spatial results directly as statistics such as those in 

equation (11) are not spatially weighted in any way. When we look at the predictions 

from 1990 to 1995 and 1995 to 2000 as we do in Figure 6, we see that the model 

produces rather plausible patterns of desakota, quite consistent with what we have  
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Observed Land Uses 1990=T  Predicted Changes 19901995 −=∆T  

Predicted Land Uses 1995=T  Predicted Changes 19902000 −=∆T   

Change Legend (above figures)
 

1990 Development  
1990- 1995 Development  
1990-2000 Development   

Predicted Land Uses 2000=T  

Land Use Legend (left figures) 
 

X Urban Construction X Paddy Land 
X Dryland X Forest 
X Grasslands X Reservoir 
X Other   

 
Figure 6: Predicted Land Use and Changes in Land Use 1990 – 2000 
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1997=t  2002=t  2007=t  
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1994=t  

 

1999=t  2004=t  2009=t  

1995=t  

 

2000=t  2005=t  2010=t  

 
Figure 7: An Animation of Urban Development Through the  

Micro-Time Periods 1991 to 2010 
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extracted as observed urban development from the remote imagery. The patterns show 

that there is spontaneous growth into the hinterland of Suzhou in all townships as land 

is converted to urban. In fact, a much clearer picture of what is happening and the 

ability of the model to generate in situ growth and change is given in the animation 

that is shown in Figure 7 where we plot the actual change in urban development from 

1990 to 2000. This is then extended as a forecast to 2010 using the 1995 to 2000 

global parameters in fixing the amount of urban change over this future 10 year 

period. These figures speak for themselves in illustrating how urban development 

pops up all over the region, notwithstanding the modest population growth in the area 

which was very close to only 1 percent per annum through the decade from 1990 to 

2000. If you log onto http://www.casa.ucl.ac.uk/desakota/ you can load an animation 

of this process from which these snapshots are taken. 

 

 

Conclusions: Next Steps 

 
We have illustrated a number of features about both agent-based models and desakota 

in China in this article. First we have designed a relatively large scale model of urban 

growth and change which is agent-based in terms of its local simulation, with the 

agents being used a probes to convert land use from rural to urban development. 

Agents are used as devices to search the space and in future versions, we will give 

these objects a more realistic form by dividing them into urban 

entrepreneurs/developers and farmers, elaborating the search process as one of profit 

maximizing where the various accessibility and land suitability attributes are 

considered as relevant to the market process (Xie and Batty 2005). Second, our use of 

agents in this fashion is rather innovative as they are designed to be “change agents” 

rather than literal households or individuals, thus enabling the dynamics of the agent-

based software we have used to be configured not only for temporal change but for 

change which is associated with search and optimization within the model structure. 

Third, to our knowledge this is one of the first applications of agent-based modeling 

which uses large data sets fusing remotely sensed imagery with socio-economic data. 

Fourth, we are firm in our belief that agent-based models do not simply apply to 

disaggregate system but can be used to integrate different levels and scales essential 
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to simulating what at first sight appears to be bottom-up phenomenon such as 

desakota. 

 

There are many features of our simulations which are rough around the edges and 

require considerable refinement. Moreover we are also aware that in calibrating such 

models to match real data, we are hardly testing the model in its widest sense. But this 

is little different from the movement in science and social science to embed plausible 

behavioral assumptions into our models which we consider to be important to 

explanation but are often, indeed usually, absent from more parsimonious model 

structures. The new quest for generative modeling in the social sciences is illustrated 

rather well in the model developed here (Epstein 1999). The idea that we need to 

demonstrate how our assumptions can generate plausible outputs is encapsulated in 

the idea of growing our systems through various forms of dynamics, temporal and 

otherwise. As Page (2003) notes: “ … the generative claim that ‘if you didn’t grow it, 

you didn’t show it’ should be ignored at our peril …”. The example of desakota is 

rather a good test bed on which to illustrate this argument. 

 

We are planning a number of extensions of this model. We need to develop a much 

stronger link from the global to the local and vice versa is based on strengthening the 

feedback loop between development and socio-economic drivers which we illustrated 

in Figure 1. We need to generate different types of agents for the rural and urban 

regimes in our model and we need to consider transitions other than those between 

rural and urban. In this way, we plan to extend our model to examine the impacts on 

the environment and the extent to which the kind of desakota appearing in China is 

sustainable. We intend to calibrate the model at the fine cellular scale and to develop 

strategies for multi-level calibration which is a relatively new feature of agent-based 

modeling occasioned by our use of more than one scale of agent. And last but not 

least, we intend to improve the detailed measurement and simulation of accessibilities 

in the model relating the allocation process to capacities on land as well as its 

suitability. These are all extensions which will be reported in future articles. 
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