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This paper considers the identification and estimation of hedonic
models. We establish that in an additive version of the hedonic model,
technology and preferences are generically nonparametrically iden-
tified from data on demand and supply in a single hedonic market.
The empirical literature that claims that hedonic models estimated
on data from a single market are fundamentally underidentified is
based on arbitrary linearizations that do not use all the information
in the model. The exact economic model that justifies linear approx-
imations is unappealing. Nonlinearities are generic features of equi-
librium in hedonic models and a fundamental and economically mo-
tivated source of identification.
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I. Introduction

Sherwin Rosen pioneered the analysis of hedonic markets in a perfectly
competitive setting. He also proposed an econometric identification
strategy for recovering preferences and technology from hedonic mar-
kets. His hedonic model characterizes markets for heterogeneous goods
(or characteristics or amenities) that implicitly price out the attributes
that characterize the goods (or characteristics or amenities).

Rosen’s (1974) fundamental paper has shaped the way economists
think about the pricing of heterogeneous characteristics or attributes.
Yet for two reasons, the full potential of his method remains to be
exploited. First, except for special cases, high-dimensional hedonic mod-
els with multiple characteristics require solutions of complicated partial
differential equations to fully characterize market equilibrium. This ren-
ders difficult theoretical analyses that require computation of nonlinear
implicit equations. Second, the method of identification of preferences
and technology proposed by Rosen has been severely criticized in the
literature. It is widely held that the preferences and technology gen-
erating hedonic models are identified only through arbitrary functional
form and exclusion assumptions, especially when they are estimated on
data from a single market.

This paper considers whether equilibrium in hedonic markets im-
poses any restrictions on estimating equations and whether it is possible
to identify technology and preferences from data on a single hedonic
market. We consider both parametric and nonparametric versions of
these questions.

We show that the hedonic model has empirical content even in a
single market. For very general parametric families, the hypothesis of
equilibrium imposes very tight restrictions on the data. This is true under
the assumption that the error term, representing unobserved hetero-
geneity in productivity or preferences, is statistically independent of
observed preference and productivity traits. It is also true under the
weaker assumption of mean independence. Preferences and technology
are generically identified from data on a single hedonic market. For
the nonparametric case, we establish generic identification of technol-
ogy and preference parameters up to affine transformations.

We establish that commonly used linearization strategies made to
simplify estimation problems produce identification problems. The he-
donic model is generically nonlinear. The nongeneric functional form
assumptions made in the applied literature give rise to the identification
problems that are widely thought to be fatal to Rosen’s empirical meth-
odology. We go on to show that the economic model that produces the
widely used linear estimating equations is implausible, so the approxi-
mation is doubly poor.
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Building on our identification analysis, we propose estimators that
can recover the parameters of a hedonic model in a single market. The
first is based on semiparametric transformation model methods and
requires estimation of conditional densities and their derivatives. This
method is valid when the error term is independent of the observed
exogenous variables. The second is based on instrumental variables tech-
niques and simply requires estimation of conditional mean functions.
This method is valid under the weaker assumption that the error term
is mean independent of the observed exogenous variables.

Our identification analysis also applies to a broader class of empirical
models of nonlinear pricing: models of the effects of taxes on behavior
when taxes are set optimally (Mirrlees 1971) and a model of monopoly
pricing (Mussa and Rosen 1978; Wilson 1993). It also applies to the
standard problem of taxes and labor supply (Heckman 1974; Hausman
1980) and to equilibrium models for local public goods such as those
developed in Epple and Sieg (1999) and Nesheim (2001). For specificity,
in this paper we focus on the hedonic model, briefly discussing other
applications in the conclusion.

This paper proceeds in the following way. In Section II, we present
the hedonic model and review an important special case, the linear-
quadratic-normal model due to Tinbergen (1956) and used by Epple
(1987) and Heckman (1999). This model gives rise to closed-form so-
lutions and justifies widely used linear estimating equations for hedonic
models as exact solutions.

In Section III, we discuss the peculiar properties of this model. While
it is widely recognized that this model has very special properties and
is too restrictive for most applications, much of the hedonic literature
focuses on linearized versions of more general hedonic models. These
linear approximations, however, are rarely justified. Unless the true
model is nearly linear or nearly additive, they cannot be justified. They
implicitly assume that the true model is nearly linear or nearly additive.
The influential criticism of Rosen’s estimating strategy by Brown and
Rosen (1982) is based on a linear-quadratic approximation of the es-
timating equations from some true model. This approximation is exact
when the true model is the Tinbergen model. However, when the Tin-
bergen model is slightly modified, the Brown-Rosen critique no longer
applies. In Section IV, we prove a theorem (theorem 1) that establishes
that, for a general class of models, the Brown-Rosen critique applies
only to a special, nongeneric, case.

In Section III we go on to review standard discussions of instrumental
variables methods applied to estimate preferences and technologies in
hedonic markets: (a) that sorting implies that within a single market,
there are no natural exclusion restrictions, so instrumental variables
methods cannot be applied (Epple 1987; Kahn and Lang 1988); and
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(b) that identification can be secured only by using multimarket data.
We challenge both assertions in this paper and question conventional
applications of the multimarket method.

In Section IV, we establish (a) the identifiability of the hedonic model
within a single market for a broad class of parametric models (poly-
nomials of any finite order or any model belonging to a finite-dimen-
sional vector space) and (b) the identification of the hedonic model up
to a scale parameter for a broad class of nonparametric models. We also
establish that using all the information from both sides of the hedonic
market together adds nothing to what can be identified analyzing the
supply side and demand side separately in conjunction with the hedonic
pricing function. We show how extra information on levels of outcomes,
rather than just pricing and demand equations, aids in identifying scale
parameters.

In Section V, we show that when the assumption of independence
that is used in Section IV is weakened to mean independence, the
identification result still holds for hedonic models in a single cross
section, as well as for a broad class of parametric models. Theorems 4
and 5 justify the application of instrumental variables in the general
parametric case. We briefly discuss instrumental variables estimation and
extensions of the existing literature to cover the nonparametric case.
Section VI presents some conclusions and suggestions for future
research.

II. The Hedonic Model: General Results and an Important Special
Case with a Closed-Form Solution

We first present a general statement of the hedonic model. For sim-
plicity, consider a labor market setting. The model is static. Consumers
(workers) match to single-worker firms. Let z be an attribute vector
characterizing jobs. The function is the earnings of workers sup-P(z)
plying attribute vector z, which is a disamenity. Let R be unearned in-
come. We define as the preferences of workers, where xU(c, z, x, e, A)
and e represent observable (to the econometrician) and unobservable
characteristics of workers that vary across persons, A represents pref-
erence parameters common across persons, and c is consumption, with

. Higher values of z lead to lower values of U. For ease ofc p P(z) � R
exposition, we assume . Given , a twice continuously differ-R p 0 P(z)
entiable price function, and assuming that the utility function is twice
differentiable,1 we obtain the following first- and second-order condi-
tions for a maximum:

U (c, z, x, e, A)P(z) � U (c, z, x, e, A) p 0 (1)c z z

1 For expositional convenience, we restrict our analysis to economies in which the equi-
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and

′U � U P � 2PU � PU (P) is negative definite. (2)′ ′ ′zz c zz z cz z cc z

These conditions characterize optimal job attribute choices for each
worker. For each location z in the attribute space, they characterize the
set of workers who choose that location.

Firms demand attribute z and maximize profits, which equal output
minus production costs , where y and h are observableG(z, y, h, B) P(z)

and unobservable vectors of technology parameters that vary across
firms, and B is a common technology parameter shared by all firms.
Observable and unobservable are defined with respect to what the econ-
ometrician observes. We assume that the production function is twice
differentiable. Profits are

P(z, y, h, B, P(z)) p G(z, y, h, B) � P(z),

and the first- and second-order conditions for a maximum are

G(z, y, h, B) � P(z) p 0 (3)z z

and

G � P is negative definite. (4)′ ′zz zz

Throughout we follow the classical hedonic literature and we assume
the regular case in which the second-order conditions hold as strict
inequalities, is positive definite, and is positive definite.G PU � U′ ′ ′zh z ce ze

These conditions guarantee positive sorting on unobservables in the
sense that in equilibrium and are positive definite.�h/�z �e/�z

Workers differ in their preference vectors x and e. Firms differ in their
productivity vectors y and h. Let the densities of and e be and andx f fx e

let x be independent of e. Variables x and e have supports and ,X E
respectively. The densities of y and h are and . Variable y is inde-f fy h

pendent of h, and y and h have supports and , respectively. WeY H
assume that x, e, y, and h are absolutely continuous random variables.
In this paper, we focus on the case in which dim (e) p dim (h) p

and in which there is no bunching in equilibrium. That is, indim (z)
equilibrium every bundle of characteristics has population measure zero
of demanders or suppliers. This is the classical case analyzed in Rosen
(1974) and the subsequent literature. For an analysis of equilibria with
bunching, see Heckman, Matzkin, and Nesheim (2002).

librium price function is smooth. Similar analyses can be done for economies in which
the equilibrium price function is not smooth. For an example of an economy with smooth
technologies and absolutely continuous distributions of consumer heterogeneity in which
the equilibrium price function is piecewise twice continuously differentiable, see Nesheim
(2001). For other examples of sorting problems with nonsmooth pricing functions, see
Wilson (1993).
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Given these assumptions, a local implicit function theorem applies,
and we can invert the first-order conditions (1) and (3) to obtain e and
h as functions of z and x and y, respectively. Inverting the first-order
condition (1) for the worker, we obtain

e p e(z, P , P(z), x, A).z

Similarly, inverting the first-order condition (3) for the firm, we obtain

h p h(z, P , y, B).z

Using these relationships, we use and to find the density of z suppliedf fx e

given , and we use and to find the density of z demanded givenP(z) f fy h

.P(z)
The supply density is

�e(z, P , P(z), x, A)zf (e(z, P , P(z), x, A)) det f (x)dx,� e z x′[ ]�zX

where the term following the density of e is the Jacobian determinant
of the mapping from z to e. This term includes the effects of z on all
arguments of e that depend on z. This is the density of the amenity
supplied as a function of the price function, preference parameters A,
and the densities of x and e.

The demand density is

�h(z, P , y, B)zf (h(z, P , y, B)) det f (y)dy.� h z y′[ ]�zY

The Jacobian determinant includes the effects of z on all arguments of
h that depend on z. This is the density of demand for a given price
function, vector of technology parameters B, and pair of densities of y
and h. From the second-order conditions (2) and (4), respectively, both
Jacobian terms are positive.

Equilibrium in hedonic markets requires that supply and demand be
equated at each point of the support of z. Hence, equilibrium prices

must satisfy the following second-order partial differential equation:P(z)

�e(z, P , P(z), x, A)zf (e(z, P , P(z), x, A)) det f (x)dx p� e z x′[ ]�zX

�h(z, P , y, B)zf (h(z, P , y, B)) det f (y)dy. (5)� h z y′[ ]�zY

The solution depends on U, the utility function of the workers; G, the
technology of firms; and the pairs of density functions and( f , f ) ( f ,x e y
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characterizing the population distributions of workers and firms,f )h

respectively. Additionally, we impose that workers and firms must receive
wages and profits above reservation levels in order to participate in the
market. This generates the boundary conditions that determine the
solution of the partial differential equation. This entry condition also
plays a role in the identification analysis. We examine the empirical
content of the restrictions imposed by the equilibrium equation and
these conditions in the rest of this paper.

When z is scalar and utility is quasi-linear so that U(c, z, x, e, A) p
, and . Sincec � V(z, x, e, A) de/dz p (P � V )/V dh/dz p (P � G )/Gzz zz ze zz zz zh

and , we can substitute these expressions into (5) to obtainV ! 0 G 1 0ze zh

an explicit expression for :Pzz

f f (V /�V )dx � f f (G /G )dy∫ ∫X Ye x zz ze h y zz zh
P p , (6)zz ( f f /G )dy � ( f f /�V )dx∫ ∫Y Xh y zh e x ze

where the arguments of the functions have been suppressed for ease
of exposition. In equilibrium, the curvature of the pricing function is
a weighted average of the average curvature of the workers’ utility and
the average curvature of the firms’ technology. The weights at any par-
ticular point in z space depend on the ratio of the densities of worker
and firm heterogeneity.

Hedonic equilibrium is illustrated in figure 1. The figure shows the
optimal job sorting choices of three firm-worker pairs. The solid line
depicts the equilibrium price function. The dotted lines depict firm
output as a function of job type for three different firms.2 Each firm
chooses the job type z at which the output function is tangent to the
price function. The dashed lines depict worker disutility as a function
of z for three different workers.3 Each worker chooses the job type at
which disutility is tangent to the price function. Each worker matches
with a firm so that the worker disutility function is tangent to the output
function of his matched firm. In each case the curvature of firm output
is less than the curvature of the price function, which is less than the
curvature of worker disutility. The curvature of the pricing function is
a weighted average of the curvature of firm profits and the curvature
of worker disutility. If this were not the case, then the firms and workers
would not both be choosing optimal job types. As discussed by Rosen
(1974), in the special cases in which all firms are alike or all consumers
are alike, the hedonic pricing function corresponds, respectively, to the
firm profit or worker disutility functions. Otherwise, the curvature of

2 For each firm, this output function has been shifted vertically by subtracting off each
firm’s equilibrium profits so that all three plots fit in the same figure.

3 Each worker’s disutility curve has been shifted vertically by subtracting off equilibrium
utility so that all three plots fit in the same figure.
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Fig. 1.—Optimal job choice for three worker-firm pairs

the hedonic function differs from the curvature of technology or pref-
erence functions. This difference in curvature, which is a fundamental
characteristic of the equilibrium, provides the basis for the econometric
identification results in this paper.

We next present a linear-quadratic model with normal heterogeneity
due to Tinbergen (1956) that has a closed-form expression. This is the
model that justifies widely used empirical approximations as exact de-
scriptions and provides an intuitive introduction to the hedonic model.

A. A Linear-Quadratic-Normal Example

Assume that preferences are quadratic in z and linear in c, unearned
income , and individual heterogeneity (x, e) affects utility onlyR p 0
through the single index , where .4 Work-v p m (x) � e dim (v) p dim (z)v

ers maximize

1′ ′U(c, z, v, A) p P(z) � v z � zAz.2

4 The model in this example was first analyzed by Tinbergen (1956) and has been used
by Epple (1987), Heckman (1999), and Tauchen and Witte (2001), among others.
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The conditions determining a worker’s maximum are

P � v � Az p 0,z

where is negative definite. On the firm side, assume that theP � A′zz

production function is quadratic in z and that firm heterogeneity affects
profits only through the single index , wheren p m (y) � h dim (n) pn

. Profits aredim (z)

1′ ′P(z, n, B, P(z)) p n z � z Bz � P(z),2

and the conditions determining a firm’s optimum are

n � Bz � P p 0,z

where is negative definite. The distributions of v and n in�(B � P )′zz

the population are normal. The distribution of v is , andv ∼ N(m , S )v v

the distribution of n is .n ∼ N(m , S )n n

An arbitrary price function induces a density of demand and a density
of supply at every location z. The equilibrium price function can be
found by equating these densities at every point z and solving the dif-
ferential equation (5). In the linear-quadratic-normal case, one can cor-
rectly guess that the solution to the problem is quadratic in z:

1′ ′P(z) p p � p z � z p z.0 1 22

One can then find the coefficients that satisfy the equilibrium(p , p , p )0 1 2

equation. When the price function is quadratic, the first-order condition
for a worker is

p � p z � v � Az p 0. (7)1 2

For a firm, it is

n � Bz � p � p z p 0. (8)1 2

The second-order conditions require that both and beA � p B � p2 2

positive definite. Thus we may solve for z from (7) to obtain
�1z p (A � p ) (v � p ) (9)2 1

and from (8) to obtain
�1z p (B � p ) (n � p ). (10)2 1

These equations define mappings from workers v and firms n to job
types z. These mappings determine the density of supply and demand
at every bundle of characteristics or attributes and the types of workers
and firms at every location. Equilibrium is characterized by a vector

and a square matrix that equate demand and supply at all z.p p1 2
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However, since both v and n are normally distributed, this requires
equating the mean and variance of supply and demand.

The mean supply is obtained from (9):SE (z)

S �1(average supply) E (z) p (A � p ) E(v � p ).2 1

The mean demand is obtained from (10):

D �1(average demand) E (z) p (B � p ) E(n � p ).2 1

Since and , the condition implies thatS Dm p E(v) m p E(n) E (z) p E (z)v n

�1 �1(equality of means) (A � p ) (m � p ) p (B � p ) (m � p ).2 v 1 2 n 1

Rearranging terms, we obtain an explicit expression for in terms ofp1

A, B, , , and :m m pv n 2

�1 �1 �1 �1 �1p p [(A � p ) � (B � p ) ] [�(A � p ) m � (B � p ) m ].1 2 2 2 v 2 n

To determine p2, compute the variances of supply and demand from
(9) and (10), respectively, to obtain

S �1 �1 ′S p (A � p ) S [(A � p ) ]z 2 v 2

and

D �1 �1 ′S p (B � p ) S [(B � p ) ] ,z 2 n 2

where is the variance of supply and is the variance of demand.S DS Sz z

From equality of variances of the demand and supply distributions we
obtain an implicit equation for p2:

�1 �1 ′(equality of variances) (A � p ) S [(A � p ) ] p2 v 2

�1 �1 ′(B � p ) S [(B � p ) ] .2 n 2

We pin down initial conditions using the restrictions that , a res-¯U ≥U
ervation value, and that profits are positive . After we take into(P ≥ 0)
account the equilibrium relationship between n and z, equilibrium prof-
its as a function of z are . Since is positive definite1 ′z (B � p )z � p B � p2 0 22
by the second-order conditions and we have to allow for the possibility
that , nonnegativity of profits implies . When the reser-z p 0 �p ≥ 00

vation utility is set equal to zero, a similar argument on the worker side
implies . Hence .p ≥ 0 p p 00 0

Once we have solved for and , (9) and (10) also define thep p1 2

equilibrium matching function linking the characteristics of suppliers
(v) to those of demanders (n). After we substitute out for z, this function
is

�1 �1(A � p ) (v � p ) p (B � p ) (n � p ),2 1 2 1
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so the equilibrium relationship between v and n is

�1v p (A � p )(B � p ) (n � p ) � p . (11)2 2 1 1

Because of sorting, equilibrium worker and firm characteristics are re-
lated. We discuss the implications of this relationship in Sections III and
IV.

In the separable case in which , , A, and B are diagonal, isS S pv n 2

diagonal. Effectively, this is a scalar case in which each attribute is priced
separately. In the scalar case, equality of variances implies that (A �

. The second-order conditions imply that2 2p ) S p (B � p ) S A �2 n 2 v

and . Define and . Using these1/2 1/2p 1 0 B � p 1 0 j p (S ) j p (S )2 2 v v n n

definitions,5 we obtain

Aj � Bjn v
p p2

j � jv n

and

�m j � m jv n n v
p p .1

j � jv n

The term p2, the curvature of the price function, is a weighted average
of the curvatures of workers’ and firms’ preference and technology
functions, and is a weighted average of the means of worker and firmp1

distributions of heterogeneity. In both expressions, the weights depend
on the relative variances of worker and firm heterogeneity. If workers
are much more heterogeneous than firms, , will approximatelyj 11 j pv n 2

equal B, the curvature of firms’ technology. If and ,j p j A p Bv n

is a solution and the equilibrium price function is linear in z. Ifp p 02

but , then . In the polar cases in whichj p j A ( B p p (A � B)/2v n 2

or , there is effectively only one type of consumer or onej p 0 j p 0v n

type of firm, respectively. If and , then andj p 0 j 1 0 p p A p pv n 2 1

. In this case, prices reveal the parameters of consumer preferences.�mv

If and , and . These two polar cases arej p 0 j 1 0 p p B p p mn v 2 1 n

discussed in Rosen (1974) and are the ones that dominate discussions
in the empirical literature on hedonic models. Only in these two polar
cases do prices directly reveal consumer preferences or firm productiv-
ities, respectively. Similar results hold when z, v, and n are vectors.

III. Identifying and Estimating The Model

Sherwin Rosen stressed the importance of taking theory to data. He
considered the problem of recovering technology and preferences from

5 The other root of the equation violates second-order conditions.
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data generated by hedonic markets and so framed the empirical ques-
tions about hedonic models that have occupied the attention of econ-
omists for the past 30 years.

He analyzed the problem of estimating parameters of preference and
technology functions using data on prices and characteristicsP(z)
choices of agents in hedonic markets. Using the first-order conditions
(1) and (3) ([7] and [8] in the linear-quadratic-normal example), he
proposed a two-step method for estimating both preference and tech-
nology parameters. He did not consider direct estimation of production,
profit, or preference functions, a source of information we consider in
Section IV. We simply note here that if there are no missing attributes,
we can recover the production function directly from data on inputs
and outputs using standard methods. Nevertheless, even if production
(or profit) data are available, data on utility are not, so the problem
considered by Rosen still remains for recovering the parameters of
worker preferences.

From our discussion of the linear-quadratic-normal case, the param-
eters and do not directly identify either preference or technologyp p1 2

parameters except when or , respectively. In general, theS p 0 S p 0v n

pricing function combines parameters of technology, preferences, and
distributions of heterogeneity, a result that is evident in equation (6).

The most direct approach to estimating the hedonic model would be
to solve equation (5) for in terms of the parameters of preferences,P(z)
technology, and the distributions of tastes and productivity and to jointly
estimate the demand functions and supply functions and distributions
of preference and technology parameters exploiting all the information
in the equilibrium conditions including data on demand, supply, and
the pricing function. That approach is computationally complicated and
does not transparently deliver identification of the deep structural
parameters.

Rosen suggested an intuitively plausible and computationally simpler
two-step estimation procedure that has been widely used and widely
criticized. In step 1 of his procedure, the analyst estimates fromP(z)
market data. In step 2, the analyst uses first-order conditions (1) and
(3) in conjunction with the marginal prices obtained from step 1 to
recover preferences and technology, respectively.

In the context of the linear-quadratic-normal example, the analyst
first estimates the pricing function and forms the marginal pricesP(z)
from estimates of and and then estimates the curvature parametersp p1 2

of technology and preferences using the estimated marginal prices in
(7) and (8), respectively. Specifically, this method estimates A, B,

, and from the system of equationsm (x) m (y)v n

ˆ ˆp � p z p �m (x) � Az � e (12)1 2 v
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and

ˆ ˆp � p z p m (y) � Bz � h, (13)1 2 n

where, as stated previously, , , and a “hat”v p m (x) � e n p m (y) � hv n

denotes an estimate.
In two influential papers, Brown and Rosen (1982) and Brown (1983)

analyze the regression method based on (12) and (13). These papers
contain most of the main ideas in the empirical literature on hedonics
that emerged following Rosen’s paper. They interpret (12) and (13) as
linearized approximations to (1) and (3). The linear-quadratic-normal
model of Section II is the framework for which these approximations
are exact.

In this approximation interpretation, the distributions of v and n

(determined by the distributions of (x, e) and (y, h), respectively) are
kept in the background. Standard linear econometric methods are ap-
plied to identify the parameters of (12) and (13), and connections
among the parameters of preferences, technology, and the distributions
of tastes and productivity are not made explicit. Issues of identification
are confused with issues of estimation. In common with an entire genre
of empirical economics, this literature focuses on finding “good instru-
ments” and misses basic sources of identification in hedonic models.

Starting from (12) and (13), Brown and Rosen (1982) and Brown
(1983) make three points that have frequently been reiterated in the
subsequent empirical literature.

Point 1. Identification can be obtained only through arbitrary func-
tional form assumptions.

Since z is on both sides of (12) and (13), by a property of least squares,
a regression using the constructed price as the depen-ˆ ˆ ˆP (z) p p � p zz 1 2

dent variable in (12) or (13) identifies only even if andp m (x) m (y)2 v n

are functions of regressors. This argument is not necessarily fatal. In
the special cases in which there is no preference or no technology
heterogeneity, the method identifies preference or technology param-
eters, respectively.

However, if the constructed price is a nonlinear function of z, this
argument no longer holds. The nonlinear variation in gives anP̂ (z)z

added piece of information that can help to identify technology and
preference parameters.6 This identification strategy rules out collinearity
between z and , but such nonlinearity is widely viewed as an artificialP̂ (z)z

source of identification that is thought to be “arbitrary.” In theorem 1
in Section IV, we prove that this nonlinearity is a generic feature of
equilibria in hedonic models. Generically, is not a linear functionP(z)z

6 See Fisher (1966) for an early discussion of the value of nonlinearities in identifying
econometric models.
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of z. More generally, we prove that as a property of hedonic equilibria,
generically, the curvature of z in is different from the curvature ofP(z)
z in both technology and preference parameters, a result that might be
anticipated from inspection of equation (6) characterizing the rela-
tionship between the curvature of technology, preference, and price
second partials.

Point 2. No instruments are available.
Even if such “arbitrary” assumptions are made, so that we can use the

nonlinearity in to help identify the parameters and circumventP̂ (z)z

point 1, we still face standard endogeneity problems. As a property of
sorting equilibria, z is correlated with e and h in (12) and (13), respec-
tively. Moreover, as discussed by Bartik (1987), Epple (1987), and Kahn
and Lang (1988), exclusion restrictions from the other side of the mar-
ket cannot be justified. In the notation of this section, the equilibrium
matching condition (11) of Section II implies that

�1m (x) � e p (A � p )(B � p ) [m (y) � h � p ] � p .v 2 2 n 1 1

In addition, conditional on z, the unobservable e (or h) becomes sto-
chastically dependent on the observables x and y, respectively, even if
they are independent in the underlying population.

Thus even if x is independent of e and y is independent of h, equi-
librium y is a function of e and equilibrium x is a function of h. So, x
is endogenous in the supply equation and y is endogenous in the de-
mand equation.

With data from a single market, one is forced to hunt for “clever”
instruments that lack a solid economic foundation. Thus, even if “ar-
bitrary” nonlinearities are invoked to surmount point 1, standard in-
struments appear to be lacking. In Sections IV and V, we show that the
economics of the model guarantees valid instruments even though there
are no exclusion restrictions.

Point 3. Multimarket data must be used.
Rosen (1974), Brown and Rosen (1982), Epple (1987), Kahn and

Lang (1988), and Tauchen and Witte (2001) consider estimation of the
first-order conditions using multimarket data either across different mar-
kets (or economic regions) or across time in the same market. In this
case, if we assume that preference parameters common across agents
remain constant across markets whereas distributions of individual het-
erogeneity vary across markets, we can use cross-market variation in
prices and location choices to estimate the common preference param-
eters. This identification strategy relies on assumptions that can be tested
if hedonic models can be identified in a single market. With the tech-
niques we develop in this paper, the structure of hedonic models can
be estimated and identified using data from a single market for a class
of additive parametric structures that includes as a special case the linear
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approximation version that has been the focus of nearly all empirical
applications of hedonic models.

A. Using All the Economics of the Model

These criticisms are symptoms of a deeper problem with the current
literature. The full economic content of the hedonic model is not being
exploited. We argue that when it is exploited, the model is generically
identified even within a single market without having to invoke as-
sumptions about arbitrary functional forms. We develop this point for-
mally in the next section. Here we develop the intuition for it using the
linear-quadratic model.

Consider the restrictive assumptions of the linear-quadratic-normal
model and its economic implications. Both consumer and firm heter-
ogeneity have normal distributions (not approximately normal, but ex-
actly normal). Reservation profits equal reservation utilities equal zero
identically so that all agents enter the market. Finally, a positive fraction
of the population chooses equilibrium attribute levels at which marginal
prices are negative, marginal products are negative, and marginal dis-
utilities are positive.7 Minor alterations of the model to relax any of
these restrictive features make the marginal pricing function nonlinear
in z and make point 1 irrelevant for the linear-quadratic example of
Section II.

The linear-quadratic-normal model of Section II results in an equi-
librium with a linear marginal price function. This equilibrium produces
an econometric system that is not identified except for special cases
(Brown and Rosen’s point 1). In this example, it would be incorrect to
impose that the marginal price function is nonlinear. However, the
model in Section II is very special. It belongs to a very small class of
models that produce an equilibrium marginal price function that is
linear in z. In the next section, we prove as a special case of a more
general theorem that most models “close” to the linear-quadratic models
of Section II do not produce linear marginal price functions. We define
“close” more precisely in the next section. In these models, it is not
arbitrary to impose nonlinear marginal price functions.

To see how fragile point 1 is, suppose that we change the scalar version
of the model to have nonnormal v and n. Worker preferences are

A 2U(z) p vz � z � P(z)
2

7 This last problem can be reduced by proper choice of parameters so that the fraction
choosing locations with negative marginal prices is made small. The marginal price is

. In equilibrium this is a normal random variable with meanP p p � p z E(P ) pz 1 2 z

and standard deviation .(Am � Bm )/(A � B) STD(P ) p FAj � Bj F/(A � B)n v z n v
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Fig. 2.—Slope of the price function: model 1

with first-order condition

v � Az � P(z) p 0.z

Profits are

B 2P(z) p nz � z � P(z)
2

with first-order condition

n � Bz � P(z) p 0.z

In contrast to the Tinbergen model, v and n are distributed as mixtures
of two normals. We call this model 1.

Using the parameter values reported in Section A of Appendix B, we
solve the equilibrium differential equation (5) for this model numeri-
cally for three cases. Figures 2a and 3a show the equilibrium marginal
price functions and curvatures of the price function for this model for
each of the three cases. Figures 2b and 3b show the population density
at every location z for each case. The weight (l) on the first component
of the mixtures of normal distributions is varied across cases.

In the first case, and n and v are normally distributed. In thisl p 1
case, the marginal price is linear in z and the curvature of the price
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Fig. 3.—Curvature of the price function: model 1

function is a constant. In the second case, and n and v are nowl p 0.9
distributed as mixtures of normals with weights on the firstl p 0.9
component and on the second component. With this minor1 � l p 0.1
perturbation, the marginal price function becomes nonlinear and the
curvature is not constant. When , the effect on the pricing equa-l p 0.5
tion is even more dramatic. The price function is nonlinear over a wide
interval in the domain of z, and the second derivative of the price
function is far from constant. This is true for a model that is very nearly
the normal-linear-quadratic model. In general, for models that are not
close to the nongeneric linear-quadratic-normal Tinbergen model,
Brown and Rosen’s point 1 does not apply.

These figures also reveal unattractive properties of the linear-quad-
ratic model. Negative and positive quantities of z are demanded and
supplied, and marginal prices are negative for a large portion of the
population. While the importance of these features can be reduced by
appropriate choice of parameter values, they are intrinsic features of
the linear-quadratic-normal model.

One model that imposes a set of restrictions that eliminates these
features is model 2 detailed in Section B of Appendix B. In this model,
we restrict marginal prices to be positive and restrict characteristics to
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Fig. 4.—Logarithm of the slope of the price function: model 2

be nonnegative ( ) by writing down a transformation of the linear-z 1 0
quadratic model. Firms’ profits are , and1�B[exp (n)z /(1 � B)] � P(z)
workers’ utility is , where n and v are dis-1�A�[exp (�v)z /(1 � A)] � P(z)
tributed as mixtures of normals. In this model, marginal prices are
positive, and only positive quantities of the characteristic are demanded
and supplied. These are desirable features in many economic contexts.

One might wonder whether the structural parameters can be iden-
tified in this transformed model. In this case, the first-order conditions
of the firms and workers are linear in logarithms. On the firm side,

, where y and h are independent and distributed as′n p n � n y � h0 1

mixtures of normals, and the firms’ first-order condition, after we take
logarithms, is . In this case, identifica-′ln [P(z)] p �B ln z � n � n y � hz 0 1

tion requires that not be a linear function of .ln P(z) ln zz

To see whether this condition is likely to be met in model 2, we
computed numerical solutions to the equilibrium differential equation
(5) using the parameter specifications in Section B of Appendix B.
Figures 4 and 5 display the results for three cases. Figure 4a displays

as a function of , and figure 5a displays the elasticity ofln P(z) ln zz

with respect to z. The solid lines in figures 4a and 5a show thatln P(z)z

there is a case in which is a linear function of and identifi-ln P(z) ln zz
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Fig. 5.—Elasticity of the slope of the price function with respect to z

cation fails, namely the case in which so that v and n are dis-l p 1.0
tributed as normal random variables. This is the Tinbergen case in which
worker and firm heterogeneity are both distributed normally. In fact,
figure 4a is identical to figure 2a since the specifications of heterogeneity
are identical and the model has been changed only by taking logarithmic
transformations. As in model 1, in the other two cases in which l p

or 0.5, however, is a nonlinear function of . The linearity0.9 ln P(z) ln zz

of the Tinbergen case is not robust to perturbations.
Other examples can be generated in the context of the linear-quad-

ratic-normal model by assuming that reservation utility does not equal
zero so that not all agents enter the market or by imposing restrictions
on the technology in other ways. By imposing economically plausible
restrictions, Brown and Rosen’s point 1 is shown to be less cogent. In
Section IV, we show that these examples are generic.

Even though point 1 is nongeneric, point 2 remains. There are ap-
parently no valid instruments for z on the right-hand sides of (12) and
(13). A strategy needs to be found to deal with the endogeneity of z.
In the next two sections, we discuss two such strategies and present
general results for a model with a single characteristic. We do not invoke
arbitrary functional form restrictions or distributional assumptions and



hedonic models S79

establish that the hedonic model is generically identified from data from
a single market. Even though there are no conventional exclusion re-
strictions that justify the use of demand-side variables as instrumental
variables in the supply equations (or vice versa), instrumental variables
that use nonlinear transformations of the functions of the exogenous
variables in each estimating equation are generically valid instruments.

IV. Parametric and Nonparametric Analyses of a One-Dimensional
Model with Additively Separable First-Order Conditions

This section analyzes a class of one-dimensional hedonic models with
additive separability in the first-order conditions but with no specific
functional form or distributional assumptions imposed. The one-
dimensional case allows us to abstract from a variety of problems that
we address in our other work: (a) questions of the existence of solutions
to partial differential equations and (b) questions about the proper
treatment of missing attributes in a multidimensional model.8 Both types
of questions are important, but they distract us from the basic questions
of identification and testability of the hedonic model posed in the In-
troduction to this paper.

We analyze a class of models in which z, e, and h are one-dimensional,
preferences are linear in consumption, and both preferences and tech-
nologies belong to a restricted class so that monotonic transformations
of consumer and firm first-order conditions are additively separable in
(z, x, e) and (z, y, h), respectively.

Rewrite the consumer and firm first-order conditions (1) and (3) as

′P (z) p �U (z, x, e)z

and

′P (z) p G(z, y, h),z

where , and we assume that utility is linear in consumption.′P (z) p P(z)z

The terms and are nonparametric functions. We assume the fol-U Gz z

lowing type of separability for and :U Gz z

�U (z, x, e) p M (J (z) � w (g (x) � e))z 1 1 1 1

and

G(z, y, h) p M (J (z) � w (h � g (y))),z 2 2 2 2

where , and , are known and are strictly2 2M M � C (�) w w � C (�)1 2 1 2

8 Existence conditions for ordinary differential equations are much easier to satisfy (see,
e.g., Zachmanoglou and Thoe 1986).
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monotonically increasing in their arguments.9 Linear-quadratic models
are an element of this class of models in which , , , and areM M w w1 2 1 2

identity functions and , , and′J (z) p Az J (z) p �Bz, g (x) p v x1 2 1

. The model in our second example in Section III is an el-′g (y) p n y2

ement of this class in which and are the exponential functionsM M1 2

and and are the identity functions.w w1 2

With these restrictions, we can rewrite the consumer first-order con-
ditions as

�1 �1 ′w (M (P (z)) � J (z)) p g (x) � e. (14)1 1 1 1

Similarly, we can rewrite the firms’ maximization conditions as

�1 �1 ′w (M (P (z)) � J (z)) p h � g (y). (15)2 2 2 2

For ease of exposition we assume that , , , and all equal theM M w w1 2 1 2

identity function, noting that the proofs presented in this section can
easily be extended to treat the more general case for other known
specifications of , , , and .10 We assume equilibrium prices soM M w w1 2 1 2

that equation (5) generates the hedonic price function. As in Section
II, is the density of x with support , is the density of e with supportf X fx e

, is the density of y with support , and is the density of h withE f Y fy h

support . Assume . Also, x is independent of e andH E p H p (��, �)
y is independent of h. We assume that , , and2 2J , J � C (�) g � C (X )1 2 1

.2g � C (Y )2

The first-order conditions define mappings from (x, e) to (x, z) and
from (y, h) to (y, z):

′e p J (z) � P (z) � g (x),1 1

x p x,

and

′h p P (z) � J (z) � g (y),2 2

y p y.

The associated Jacobian terms are and′ ′′dxde p [J (z) � P (z)]dxdz1

, respectively. From the second-order condi-′′ ′dydh p [P (z) � J (z)]dydz2

9 The term means that the functions are real valued and twice continuously2C (�)
differentiable.

10 These mappings cannot be identified. Thus (14) and (15) form an equivalence class
of models that are indistinguishable.
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tions, both terms in brackets are positive. Equilibrium condition (5)
can be written as

′ ′ ′′f (J (z) � P (z) � g (x))[J (z) � P (z)]f (x)dx p� e 1 1 1 x
X

′ ′′ ′f (P (z) � J (z) � g (y))[P (z) � J (z)]f (y)dy. (16)� h 2 2 2 y
Y

Initial conditions are provided by the requirements that andP ≥ 0
. We next state a genericity result for the hedonic model.¯U ≥U

A. A Genericity Property for the Hedonic Model

A property that characterizes parameter is called generic ifP (v) v � V

the set of values of the parameter for which the property holdsQ O V

true contains a countable intersection of open dense subsets. In our
context, v indexes parameters that generate different specifications of
a model. The property we are analyzing is identifiability of the model.
If V is a complete metric space, such a set Q will be dense in V, by
Baire’s theorem (see, e.g., Royden 1968). Moreover, the intersection of
two such sets will also be dense in V. In other words, if a property is
generic and does not hold for a certain value of the parameter, therev̄

will be in any neighborhood of some other value v of the parameterv̄

in which the property holds true.
Genericity is a useful concept in our context because it provides us

with a measure of the relative “density” of certain types of models, as
the following discussion shows. Consider a model m. Typically, such a
model depends on a set of parameters v, the values of which are to be
determined by the available data. Denoting by V the set of possible
values for the parameters, define a map that associates withv.m (v)
each the actual model to be used when the parameter values arev � V

v. The parameter space V can be finite-dimensional, v p (v , … ,1

. It can also be infinite-dimensional, for instance when v is anv ) � �n

function of a real variable, , .v p v(x) x � �

The most interesting properties of a model are those that are always
true, that is, that hold for all versions of the model irrespective of the
actual values of the parameters. Such a property is characterized formally
by introducing the following set,

A(P) p {vFP(v) is true},

and writing

A(P) p V,
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the entire set of all possible parameters. Such properties are rare. When
, it is natural to ask what kind of properties are true “in gen-A(P) ( V

eral,” where violations are “exceptional.” For instance, we think that a
“general” real number is irrational and a “general” function is nonlinear.
However, it is not so easy to give a precise mathematical content to this
intuition.

One approach to making these intuitive ideas precise appeals to Bayes-
ian notions. In this approach, one endows the parameter space V with
a positive measure m and says that a property P holds “in general” if it
holds m almost surely, that is, if

m[V � A(P)] p 0.

With this definition, taking V to be the real line, m to be the Lebesgue
measure, and to be the property “v is irrational,” we shall stateP(v)
(correctly) that real numbers are irrational in general.

The problem with this approach lies in choosing the measure m. In
the absence of a priori information, the Lebesgue measure may seem
an appropriate starting point because it is translation-invariant. Unfor-
tunately, it is not a probability, so that it will not fit easily into a Bayesian
framework. One may choose to overlook this problem and point out
that the measure m is not important; only the m-negligible subsets are.
One then runs into a second problem, namely, the fact that there is no
equivalent of Lebesgue measure in infinite-dimensional spaces such as
function spaces. On such spaces, there is no translation-invariant mea-
sure that one could use to define negligible sets without a priori
information.

If one does not ignore the problem that Lebesgue measure is not a
probability, then one has to choose a probability. If V is finite-dimen-
sional, one runs into the familiar problems of Bayesian theory. There
is no reason why two different observers should share the same prior,
or even why they should have priors that are absolutely continuous with
respect to each other. If V is infinite-dimensional, there is the added
difficulty that there are very few probabilities on such spaces; we have
already noted that there is no equivalent of the Lebesgue measure. In
fact, except for Dirac masses (point masses) and the like, the only known
probabilities on spaces of continuous functions are Gaussian and derive
from the Wiener measure (see Ito and McKean [1974] and Stroock
[1993] for comprehensive discussions). The Wiener measure is a very
sophisticated mathematical tool, of great usefulness in other contexts,
such as in the proper definition of Brownian motion; but there is no
reason why it should serve as a universal standard to decide which func-
tions are “general” and which are “exceptions.”

There is a second approach to the problem of assessing the density
of a property in a function space that we use in this paper, and that is
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due to René Thom (see Abraham and Robbin [1967] and Aubin and
Ekeland [1984] for discussions of this approach). It consists in endowing
the parameter space V, not with a positive measure, but with a complete
metric.11 This approach defines a property P to be generic if there is a
sequence of subsets such that is open and dense for all n,U O V Un n

, and defines a property as holding “in general” if it isA(P) o W Un n

generic.
This approach works nicely in our first example. The set of rational

numbers is countable, so the set of irrational numbers is the intersection
of a countable number of open dense sets. Let , , be the ra-r n � �n

tionals. Then the set of irrationals will be , where is the com-W U Un n n

plement of . This approach also works in our second example. De-{r }n

note the space of continuous functions on [0, 1] by , and let0C ([0, 1])
be true if f is affine. The subset of affine functions isP( f )

0A (P) p { f � C [0, 1]FP( f ) is true},f

where is closed and has an empty interior so that its complementA (P)f

is an open dense subset. Thus nonlinearity is a generic property in
.0C ([0, 1])

If two properties and are generic, so is . As a consequence,P P P # P1 2 1 2

if P is generic, then its negation cannot be generic. More generally,∼ P
if a sequence of properties are all generic, then so is . In otherP # Pn n n

words, generic properties behave in the same way as properties that are
true almost surely, although there is no underlying measure to support
them.

Thom’s approach has the great advantage that in many cases of in-
terest there is a natural metric on the parameter space V, even if there
is no natural probability measure on it. So people will agree on what is
generic or not, although they do not agree on which sets have measure
zero. We now apply the tool of genericity to the analysis of hedonic
models.

We first need a technical assumption to avoid some integrability prob-
lems. Assume that there are some continuous probability densities hx

and with on and on such that and areh h 1 0 X h 1 0 Y f /h f /hy x y x x y y

bounded away from zero and infinity on and . Note that this willX Y
always be the case if and are compact intervals. Set and0X Y f p f /hx x x

.0f p f /hy y y

The “parameters” of our model are the functions , ,(J , J ) (g , g )1 2 1 2

, and . We have the following theorem.0 0( f , f ) ( f , f )e h x y

Theorem 1. Generically with respect to any of the parameter pairs,
the equilibrium equations have no solution of the form ′P (z) p a �1

11 Meaning that all Cauchy sequences converge.
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, nor any solution of the form , where ,′b J (z) P (z) p a � b J (z) a1 1 2 2 2 1

, , and are constants.a b b2 1 2

Proof. See Appendix A.
The precise definitions of the parameter spaces and their respective

topologies are given in Appendix A, together with the proof of the
theorem. This theorem can easily be modified to prove that, generically,
the equilibrium equations have no solution that can be expressed′P (z)
as a polynomial in .(J , J )1 2

The idea motivating the proof is simple. Equilibrium equation (5)
(or [29] below in the notation of this section) is an infinite set of
equations, one equation for each value of z. If (for′P (z) p a � b J (z)1 1 1

some economy characterized by fixed values of the parameters), then
(5) must be satisfied at every value of z when is substituteda � b J (z)1 1 1

into the equation. But making the substitution gives an infinite set of
equations in two variables, and . While it is certainly possible thata b1 1

two variables can simultaneously satisfy an infinite set of equations (the
Tinbergen linear-quadratic-normal economy is one example), in gen-
eral, one would expect that the set of parameters , ,(J , J ) (g , g )1 2 1 2

, and that yields such cases is highly unlikely. In fact the0 0( f , f ) ( f , f )e h x y

set of parameters that yields such solutions is negligible relative to the
set of potential parameters. An analogous argument shows that param-
eter sets yielding marginal price functions of the form ′P (z) p a �2

are also negligible. The proof of the theorem formally establishesb J (z)2 2

this claim.12

As a consequence of this theorem, Brown and Rosen’s point 1 that
regressions of on or recover only the marginal price is′P (z) J (z) J (z)1 2

not generically correct. More generally, the curvature in z of the pricing
function is distinct from the curvature in z in the demand or supply
equations, a result that might have been anticipated from (6). The
hedonic model is intrinsically (generically) nonlinear. The examples
presented at the end of the Section III are prototypical, not special.
There is no arbitrariness in assuming that and do not lie in′P (z) J (z)1

the same linear space.

B. Can We Identify the Parameters of the Model from a Single Market?

Even if point 1 is not generic, point 2 remains. Within a single market,
there are no natural exclusion restrictions. The sorting condition rules
out use of shifter variables from the other side of the market from data
on matched pairs even if they are available. The larger question con-
sidered in this paper is whether we can identify ( , , , , , )J J g g f f1 2 1 2 e h

12 Mas-Colell (1985) discusses and illustrates the transversal theorem (pp. 42–45) and
genericity (chap. 8).
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from data on , z, x, and y from a single market. We focus on iden-P(z)
tifying from data on , z, and x since the analysis is sym-(J , g , f ) P(z)1 1 e

metric for using data on , z, and y. We later consider(J , g , f ) P(z)2 2 h

what information, if any, is available from the joint density of (z, x, y,
).P(z)

We present two methods for recovering these functions from data in
a single market. One is based on extensions of average derivative models
(Powell, Stock, and Stoker 1989) and closely related transformation
models (see Horowitz 1998). We develop these methods in this subsec-
tion. The other is based on nonlinear instrumental variables (Kelejian
1971; Amemiya 1975). We discuss the second method in Section V.

The trick in applying average derivative and transformation models
to the hedonic problem is to exploit the separability of z, x, and e. Define

′T (z) p J (z) � P (z).1 1

This function combines price and preference data. This kind of function
is called a transformation function, and its nonparametric identification
and estimation have received extensive theoretical attention (see Ho-
rowitz [1998] for a survey and new results). These models extend av-
erage derivative models (Powell et al. 1989) by considering nonlinear
transformations of dependent variables.

Let be the cumulative distribution function corresponding to den-Fe

sity , and let be the empirical cumulative distribution functionf F (z, x)e zFx

of z conditional on x. Distribution function can be estimatedF (z, x)zFx

directly from data on the joint distribution of (z, x). For the purposes
of our analysis, we assume that it is known. Our assumptions that pref-
erences and the equilibrium price function are smooth imply that

is twice continuously differentiable. Further, from the second-orderT (z)1

conditions, we have , and from the assumption that the support′T (z) 1 01

of e is , we have . From these facts, our as-(��, �) lim T (z) p �zr� 1

sumption that x is independent of e, and the first-order condition (14),
we may write

F (z, x) p F (T (z) � g (x)). (17)zFx e 1 1

This gives us an expression for the empirical distribution function of z
conditional on x in terms of our model parameters. While we have
already assumed that is twice continuously differentiable, for ease ofg1

exposition below, we further assume that has continuous cross partialsg1

of order .nx

Differentiating (17) with respect to z and , we havexi

�F (z, x)zFx ′p f (T (z) � g (x)) 7 T (z) (18)e 1 1 1
�z
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and

�F (z, x) �gzFx 1p f (T (z) � g (x)) 7 . (19)e 1 1
�x �xi i

From (19), with assumed for all j,�g (x)/�x ( 01 j

�F (z, x)/�x �g (x)/�xzFx i 1 ip for all i, j.
�F (z, x)/�x �g (x)/�xzFx j 1 j

This ratio determines the level sets of . More generally, taking theg (x)1

ratio of (18) to (19) for an arbitrary argument i, we obtain

′�F (z, x)/�z T (z)zFx 1p . (20)
�F (z, x)/�x �g (x)/�xzFx i 1 i

From (19), . Assume, without loss ofsign[�F (z, x)/�x ] p sign(�g /�x )zFx i 1 i

generality, that .13�g /�x 1 01 i

Then the left-hand side of (20) is positive and (recall that ′T (z) 1 01

from second-order conditions)

′′� �F (z, x)/�z T (z)zFx 1log p . (21)′[ ]�z �F (z, x)/�x T (z)zFx i 1

Define

�F (z, x)/�zzFxh (z, x) p log .i [ ]�F (z, x)/�xzFx i

Since satisfies equation (21), must have the formh (z, x) h (z, x)i i

h (z, x) p h � h (z) � h (x),i 0i 1 2i

where is a constant, and without loss of generality we make theh 0i

normalizations that and . The terms , , andh (0) p 0 h (0) p 0 h h (z)1 2i 0i 1

are known empirically. Further, equation (21) can be written ash (x)2i

′′dh (z) T (z)1 1p .′dz T (z)1

This equation has the solution

′T (z) p K exp [h (z)], (22)1 1 1

13 If is not strictly positive, then the arguments below can be carried out�g (x)/�x1 i

separately on each region in which it does not change sign.
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where is a constant of integration that must be positive since theK 1

second-order conditions imply that . This implies that′T (z) 1 01

z

′ ′T (z) p C � K exp [h (z )]dz ,1 1 1� 1
0

where is a new constant of integration. Thus, from data on the jointC 1

distribution of (z, x) alone, we can identify the function up to twoT (z)1

constants.
This solution enables us to solve for . Substituting (22) into (20),g (x)1

we get

�g1 exp [h � h (z) � h (x)] p K exp [h (z)], i p 1, … , n0i 1 2i 1 1 x
�xi

�g (x)1 p K exp [�h � h (x)], i p 1, … , n . (23)1 0i 2i x
�xi

Thus the partial derivative of with respect to each , ,g x i p 1, … , n1 i x

is identified. Further, this defines as the solution of a set of partialg (x)1

differential equations. The solution of this set of equations is

˜g (x) p R � K g (x),1 1 1 1

where is a constant of integration andR 1

xinx

′ ′g̃ (x , … , x ) p exp [�h � h (x , … , x , … , x )]dx�1 1 n � 0i 2i 1 i n ix x
ip1 0

nx

k�1� (�1) H (x , … , x ), (24)� k 1 n
kp2

where

H (x , … , x ) pk 1 n

x xi i1�n �k 2�n �k n 1 kx x x ′ ′� exp [�h � h (x , … ,x , … ,x , … ,x )]0i 2i 1 i i n1 1 1 k ′ ′… … …dx dx .� � � � � i i1 k…{ }�x �xi p1 i pi �1 i pi �11 2 1 k k�1 0 0 i i2 k

For the case in which , this impliesn p dim (x) p 1x

x

′ ′g (x) p R � K exp [�h � h (x )]dx .1 1 1� 0 2
0
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For the case in which ,n p 2x

xi2

′ ′g (x , x ) p R � K exp [�h � h (x , x )]dx�1 1 2 1 1 � 0i 2i i �i i
ip1 0

x x2 1 ′ ′� exp [�h � h (x , x )]01 21 1 2 ′ ′� K dx dx .1� � 1 2
�x0 0 2

Thus we can identify

g (x) � R1 1g̃ (x) p1 K 1

and
z

T (z) � C1 1 ′ ′T̃ (z) p p exp [h (z )]dz , (25)1 � 1K 1 0

where is given in (24) and the right-hand sides of (24) and (25)g̃ (x)1

are constructed entirely from the data.
In this notation,

˜ ˜e p T (z) � g (x) p (C � R ) � K [T (z) � g (x)].1 1 1 1 1 1 1

If we substitute this into (17), we obtain

˜ ˜F (z, x) p F (C � R � K [T (z) � g (x)]). (26)zFx e 1 1 1 1 1

This identifies the distribution function up to the unknown param-Fe

eters , , and . Using a normalization such as setting the medianC R K1 1 1

or the mean of e to zero, we can identify the constant up toC � R1 1

scale . Finally, since can be estimated nonparametrically from′K P (z)1

data on , for the purposes of our identification argument, we(z, P(z))
can treat it as known. Hence, we can identify ˜J (z) p C � K T (z) �1 1 1 1

up to the unknown constants and .′P (z) C K1 1

Separability plays an important role in this proof. Because of sepa-
rability, is separable in z and x, meaning that one more derivativeh (z, x)i

(with respect to z or x) depends only on z or x, and we can integrate
back to recover and each up to two constants (a location andJ(z) g (x)i i

scale parameter). Recall that is itself formed from the ratio ofh (z, x)i

derivatives.
In summary, the joint distribution of in conjunction with(z, x, P(z))

the additive structure contains enough information to identify the struc-
ture of preferences and the distribution of preferences in the population
up to the three constants , , and . An algorithm for implementingC R K1 1 1



hedonic models S89

this procedure when is as follows. First form the estimates ,ˆn p 1 P(z)x

, and nonparametrically. Then calculate′ˆ ˆP (z) F (z, x)zFx

ˆ ˆ ˆ ˆh(z, x) p h � h (z) � h (x)i 0i 1 2i

ˆ�F (z, x)/�zzFxp log .[ ]ˆ�F (z, x)/�xzFx i

Use this to form the estimate and usingzˆ ′ ′ˆ˜ ˆ̃T (z) p exp [h (z )]dz g (x)∫01 1 1

equation (24). Then fix a value of , say . Also, fix , sayK K p 1 R1 1 1

, since and are not separately identified. Then using (26),R p 0 C R1 1 1

for each fixed we can trace out an estimator of by varyingC F1 e

Doing this, we can fix so that the median (or mean)˜ ˜T (z) � g (x). C1 1 1

of e is zero. Finally, estimators of and are ˆJ g J (z) p C �1 1 1 1

and .ˆ ′ˆ˜ ˆˆ ˜K T (z) � P (z) g (x) p R � K g (x)1 1 1 1 1 1

Analogous arguments on the demand side can be used to identify
the structure of technology and the distribution of productivities using
data on . In particular, if we define(z, y, P(z))

′T (z) p P (z) � J (z),2 2

we can identify , , and up to a set of constants so thatJ g f J (z) p2 2 h 2

, , satisfies an equation anal-′ ˜ ˜P (z) � C � K T (z) g (y) p R � K g (y) F2 2 2 2 2 2 2 h

ogous to (26), and and are defined like and , re-˜ ˜˜ ˜T (z) g (y) T (z) g (x)2 2 1 1

spectively. In these expressions, from the second-order condition.K 1 02

C. Using Output and Profit Information

The lack of identification of the scale of the utility function arises be-
cause we do not observe utility, so we can identify only level sets con-
nected with utility. If we observe utility or output or profits on the
production side, we can determine the missing scale parameters by using
direct analysis of the utility or production or profit functions. Suppose
that profit is observed directly and that profit associated with the first-
order conditions (15) is

P(z, y) p F (z) � z[h � g (y)] � P(z), (27)2 2

where . Direct estimation of (27) taking into accountz ′ ′F (z) p J (z )dz∫02 2

that characteristic level z is chosen by a firm with observable and unob-
servable characteristics y and h entails identification of a correlated
random coefficient model in a semiparametric setting.14 Using (15) as
a replacement function in the sense of Heckman and Robb (1985) or

14 See Heckman and Vytlacil (1998) for a discussion of correlated random coefficient
models.
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as a control function in the sense of Blundell and Powell (2003), we
may solve for h and substitute in (27) to obtain

′P(z, y, h) p F (z) � zP (z) � zJ (z)2 2

so

z

′ ′ ′w(z) p P(z, y, h) � zP (z) p J (z )dz � zJ (z).� 2 2
0

But since profits and prices are observed, is observed. We mayw(z)
estimate the derivative of the right-hand side

�w(z) ′p �zJ (z).2
�z

Integrating up, we obtain

z ′1 �w(z ) ′C � � dz p J (z),0 � 2′[ ]z �z0

so we determine up to an additive constant. Combining this withJ (z)2

the information that provides determina-′ ˜J (z) p P (z) � C � K T (z)2 2 2 2

tion of .K 2

D. A General Parametric Approach

With additional (weak) parametric structure, we can determine the scal-
ing constants without using the output data. Using only demand, supply,
and pricing data, we can stay within the Rosen program, which does
not contemplate using output data. We now assume that there is a finite-
dimensional vector space V that contains both and and that isJ J1 2

known ex ante. In other words, both and can be described by aJ J1 2

finite set of parameters and that enter linearly.(a , … , a ) (b , … , b )1 M 1 M

That is, and , whereM M
J (z) p � a J̄ (z) J (z) p � b J̄ (z) J̄ (z) p 11 k k 2 k k 0kp0 kp0

and the , , are known functions and M is known.1J̄ (z) k p 1, … , M Ck

For example, V could be the set of polynomials of degree less than or
equal to M, where M is a known integer.

To see how this restriction can be used to determine the scaling
constants, consider the supply side of the market. From the arguments
above, and are functions of the data alone. In large samples′ ˜P (z) T (z)1
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we can treat them as known. Then, using the definition of andT (z)1

the restriction , we can writeM
J (z) p � a J̄ (z)1 k kkp0

MC 1 11 ′T̃ (z) p � � P (z) � a J̄ (z)�1 k kK K K kp01 1 1

Ma � C 1 10 1 ′p � P (z) � a J̄ (z). (28)� k kK K K kp11 1 1

This equation has unknown parameters ( , , ,M � 3 C K a k p 0,1 1 k

). If we consider values of z, we have equations. Can… , M M � 3 M � 3
this system be inverted to solve for the parameters? The parameters

and are not independently identified since . If is′C a J̄ (z) p 1 P (z)1 0 0

an element of V, then the system of equations has rank sinceM � 1
is then linearly dependent on the functions . This is precisely′P (z) J̄k

the problem that worried Brown and Rosen (1982). However, if ′P (z)
is not an element of V, then is linearly independent of the functions′P (z)

. In this case, the system of equations has rank and is iden-J̄ M � 2 Kk 1

tified. Theorem 2 proves that generically is not an element of V,′P (z)
and thus the , , and are identified. Thus the Browna k p 1, … , M Kk 1

and Rosen point is generically irrelevant within this flexible class of
parametric models.

Theorem 2. Generically with respect to any of the parameter pairs
in theorem 1, no solution of the equilibrium equation belongs to V,′P
and and are identified up to additive constants.J J1 2

Proof. As shown above, we have
′P (z) C J (z)1 1T̃ (z) p � � �1 K K K1 1 1

and
′P (z) C J (z)2 2T̃ (z) p � � .2 K K K2 2 2

Arguing as in theorem 1, we can show that generically . As a′P � V
consequence, there must be some continuous function f such that

for all , but . Applying such a func-′f(z)h(z)dz p 0 h � V f(z)P (z)dz ( 0∫ ∫Z Z

tion to both sides of the preceding equations, we obtain

1 ′T̃ (z)f(z)dz p � P (z)f(z)dz� 1 �KZ 1 Z

and

1 ′T̃ (z)f(z)dz p P (z)f(z)dz,� 2 �KZ 2 Z
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which determines and . Plugging back into the equations, we findK K1 2

that and are determined up to the additive constants and .J J C C1 2 1 2

Q.E.D.
This theorem suggests an estimation strategy for recovering (orK 1

) when it is known that or belongs to a finite-dimensional space.K J J2 1 2

First estimate and by nonparametric methods. Then estimate′ ′˜P (z) T (z)1

the sample analogue of equation (28). Thus, for a very general class of
finite-dimensional models including polynomial models, we obtain iden-
tification of the functions from single-market data.(J , J )1 2

Thus far we have considered identification using only data from one
side of the market or the other. Sometimes information on the equi-
librium pairs is available. We next consider the information available in
the joint densities.

E. Is There Identifying Information in the Joint Densities?

So far we have considered identification using data from only one side
of the market. We have used information on the densities of (x, z) and
(y, z) and have shown how to identify everything except and . WeK K1 2

obtain by a normalization of the errors to mean or median(C � R )/Ki i i

zero but cannot separately identify and . In the parametricC /K R /Ki i i i

case covered by theorem 2, we identify and . There is one poten-K K1 2

tially powerful piece of information that we have not yet used: the joint
distribution of (x, y, z). We now consider whether additional identifying
information can be extracted from this joint density. This joint distri-
bution may have identifying power because the distribution of z con-
ditional on x is not the same as the distribution of z conditional on x
and y. Where there is sorting on both sides of the market, this full joint
density contains information that might be exploited.15 We show that
there is no more identifying information available beyond what is in
the marginal densities.

Recall the first-order conditions from the previous section. On the
worker side we have , and on the firm side we havee p T (z) � g (x)1 1

. The joint density of (x, y, e, h) is ,h p T (z) � g (y) f (x)f (y)f (e)f (h)2 2 x y e h

since by assumption x, y, e, and h are jointly independent. Note that
this independence does not hold conditional on characteristic z. The
hedonic equilibrium maps the joint distribution of (x, y, e, h) to the
joint distribution of (x, y, e, h, z). This mapping does not change the
distribution of (x, y, e, h). These random variables are exogenous.16

To derive the restrictions that equilibrium places on the observable

15 Epple (1987) discusses the potential importance of using the full joint density, but
his discussion is not complete.

16 A more complete dynamic analysis would model how this marginal distribution
changes over time.
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data, that is, the joint distribution of (x, y, z), note that the dimension
of random vector (x, y, e, h) is , where is the dimensionn � n � 2 nx y x

of x, is the dimension of y, and e and h are each of dimension one.ny

The equilibrium maps this random vector into the observable random
vector (x, y, z).

Suppose that we ignore equilibrium and assume that worker and firm
choices are made independently of each other. Let be the choice ofz 1

workers and the choice of firms. Then the joint density without equi-z 2

librium being imposed is
′ ′f (x)f (y)f (T (z ) � g (x))f (T (z ) � g (y))T (z )T (z ),x y e 1 1 1 h 2 2 2 1 1 2 2

where and are the Jacobians of transformation for and′ ′T (z ) T (z ) z1 1 2 2 1

, respectively.z 2

Imposing the equilibrium condition determines the(z p z p z)1 2

density of (x, y) conditional on z:

f (x, y, z)x,yFz

′ ′f (x)f (y)f (T (z) � g (x))f (T (z) � g (y))T (z)T (z)yx e 1 1 h 2 2 1 2p ′ ′ ′ ′ ′ ′ ′ ′[ f (x )f (T (z) � g (x ))T (z)dx ][ f (y )f (T (z) � g (y ))T (z)dy ]∫ ∫X Yx e 1 1 1 y h 2 2 2

′ ′f (x)f (y)f (T (z) � g (x))f (T (z) � g (y))T (z)T (z)yx e 1 1 h 2 2 1 2p ,2[ f (z)]z

where is the marginal density of z, and by the equilibrium conditionf (z)z

(5) we have

′ ′ ′ ′f (z) p f (x )f (T (z) � g (x ))T (z)dxz � x e 1 1 1
X

′ ′ ′ ′p f (y )f (T (z) � g (y ))T (z)dy . (29)� y h 2 2 2
Y

When we multiply through by the marginal density, the joint density of
(x, y, z) is

′ ′f (x)f (y)f (T (z) � g (x))f (T (z) � g (y))T (z)T (z)yx e 1 1 h 2 2 1 2f (x, y, z) p . (30)x,y,z f (z)z

In Appendix A, we prove that there is no more identifying information
in the joint densities than in the marginal densities.

Theorem 3. Joint density (30) provides no more identifying infor-
mation than the marginal densities and .f (x, z) f (y, z)x,z y,z

Proof. See Appendix A.
Note, however, that these conditions can be used to improve the

efficiency of estimation. Define and , and define˜ ˜e p e/K h p h/K f˜1 2 e
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and to be the respective densities of the scaled error terms as in thefh̃

proof of theorem 3. From the arguments in the previous section, andfẽ

are identified. If we substitute all identified parameters into (29), wefh̃

can write the equilibrium condition in terms of them. We obtain

′ ′ ′ ′˜ ˜˜f (x )f (t � T (z) � g (x ))T (z)dx p˜� x e 1 1 1 1
X

′ ′ ′ ′˜ ˜˜f (y )f (t � T (z) � g (y ))T (z)dy , (31)˜� y h 2 2 2 2

Y

where, as in Appendix A, we define andt p (C � R )/K t p (C �1 1 1 1 2 2

. In empirical applications, each of the parameters denoted byR )/K2 2

a tilde can be estimated, and this equation establishes a functional re-
lationship between the supply- and demand-side parameter estimates,
which can be used to improve the efficiency of estimated parameters.
Since the slope of the equilibrium price generally must also be′P (z)
estimated from data on , a similar argument can be used to(z, P(z))
improve efficiency in estimating it since its estimate must “fit” the data
and satisfy the equilibrium equation (29). We develop these efficiency
gains in another paper.

V. Instrumental Variables

Theorems 1 and 2 and the arguments in Section IV show how separa-
bility and the independence between x and e can be used to identify
the structure of the hedonic model. The nonlinearity inherent in the
model and weak parametric structure were then used to recover the
parameter . Much of the argument does not rely on the independenceK 1

assumption. In this section, we relax the independence assumption and
show that when and we impose general parametric structureE(eFx) p 0
on and , then the parameters of the model can be identified byJ g1 1

the method of instrumental variables. Nonlinearity in the equilibrium
hedonic model is crucial for this identification result. Theorem 5 below
justifies the application of instrumental variables for general parametric
versions of model (14). Instrumental variables are generically valid. The
exclusion restrictions we exploit to show this identification do not use
variables from the other side of the market, which are endogenous
because of the sorting condition. Rather, the exclusion restrictions we
exploit arise naturally from the parametric structure of the model and
the nonlinearity emerging from the equilibrium pricing equation.
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We analyze the supply-side first-order condition

′P (z) p J (z) � g (x) � e (32)1 1

under the conditions stated in Section IV but with , where(x, e) ∼ f (x, e)x,e

is a strictly positive density. We assume that andf E(eFx) p 0x,e

. We also assume that .2E(g (x)) ! � (y, h) ∼ f (y, h)1 y,h

The literature reviewed in Section III establishes that in a single-
market setting there are no exclusion restrictions that justify the use of
demand-side variables (y) as instrumental variables in estimating this
equation. Variables from the demand side of the market are stochasti-
cally dependent on e given z. However, instruments for are stillJ (z)1

available. If is not collinear with , then it is possible toE(J (z)Fx) g (x)1 1

construct and use it as an instrument for in (32). KahnE(J (z)Fx) J (z)1 1

and Lang (1988) make this point by way of an example for a particular
functional form. In this section, we establish that generically

is a valid instrument for any arbitrary parametric functionalE(J (z)Fx)1

form that satisfies the conditions required to prove theorem 5. This
result highlights the main themes of our paper: that the hedonic model
is intrinsically nonlinear, that nonlinearity is an important source of
identifying information, and that intuitions developed in linear econ-
ometrics when applied to a nonlinear model are misleading. We can
use our result to justify the choice of parametric nonlinear instrumental
variables as in Amemiya (1975).

Theorem 4. Generically with respect to any of the parameter pairs
, , and , the equilibrium equations have no so-(J , J ) (g , g ) ( f , f )1 2 1 2 x,e y,h

lution of the form nor any solution of the form′P (z) p a � b J (z)1 1 1

, where , , , and are constants.′P (z) p a � b J (z) a a b b2 2 2 1 2 1 2

Proof. See Appendix A.
This theorem extends theorem 1 to the case in which e is not inde-

pendent of x. Using this result, we can prove the following theorem.
Theorem 5. Generically with respect to any parameter pairs in the-

orem 4, cannot be collinear with .E(J (z)Fx) g (x)1 1

Proof. See Appendix A.
As a consequence of this theorem, we can use as an instru-E(J (z)Fx)1

ment for using parametric nonlinear instrumental variables (Ame-J (z)1

miya 1975). As an example, consider the case in which it is known that
and , where v is a vector of pa-2J (z) p J � J z � J z g (x) p g (x, v)1 0 1 2 1 1

rameters. In this case, first estimate . Then estimate the regressions′P̂ (z)
and . Finally, estimate2E(zFx) E(z Fx)

′ 2P̂ (z) p J � J z � J z � g (x, v) � e (33)0 1 2 1

using and as instruments for z and . While these instru-2 2E(zFx) E(z Fx) z
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ments are functions of x, theorem 5 guarantees that they are linearly
independent of .g (x, v)1

More generally, using nonlinear instrumental variables, we can esti-
mate the parameters generating and the parameters generatingJ (z)1

. The separability implies that we can vary separatelyg (x, v) E(J (z)Fx)1 1

from and hence identify both.g (x)1

We conjecture that this condition also justifies the application of non-
parametric instrumental variables (Florens et al. 2000; Darolles, Florens,
and Renault 2001; Newey and Powell 2003) when these parametric re-
strictions are not imposed. However, as currently formulated, those pa-
pers require an exclusion restriction that is not intrinsic to the model,
and it is necessary to extend their arguments to impose theorem 5 as
an identifying condition in the estimation. This is a task we leave for
the future.

VI. Summary, Conclusions, and Proposed Extensions

This paper considers identification and estimation of technology and
preference parameters using data on choices made in a single hedonic
market. The general hedonic problem is formulated, a normal-linear-
quadratic version of the model is developed, and its advantages and
peculiarities are exposed.

Standard criticisms directed against Sherwin Rosen’s two-stage esti-
mation procedure for hedonic models are shown to be misleading.
Generically, a separable nonparametric generalization of the linear-
quadratic-normal model is identified up to levels. When it is not iden-
tified, the pricing function alone identifies technology or preference
parameters only in the polar cases in which either firms or workers are
homogeneous. With mild functional form assumptions, the model is
completely identified both in the case in which e is independent of x
and under the weaker assumption that . Two estimation pro-E(eFx) p 0
cedures are presented: (a) nonparametric transformation methods and
(b) instrumental variables in a general nonlinear (but parametric)
setting.

The analysis developed here applies to closely related problems of
estimating preferences and technology when taxes are set optimally
(Mirrlees 1971), when monopolists price-discriminate (Mussa and Rosen
1978; Wilson 1993), for equilibrium pricing of jurisdictions as in Epple
and Sieg (1999) and Nesheim (2001), and for the standard problem of
taxes and labor supply (Heckman 1974; Hausman 1980) when tax sched-
ules are nonlinear and continuous.

Our presentation of the hedonic model pertains to the vector case.
Yet our basic proofs pertain only to the scalar case. Extensions for the
scalar nonseparable and the vector cases are under way in joint work
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with Rosa Matzkin. That work also considers the case of identification
for a nonseparable hedonic model with vector attributes when some of
the attributes are missing (Heckman et al. 2002).

Appendix A

Proofs

Recall that we have denoted by and the supports of and , so that weX Y f fx y

may assume that and . Denote by the domain of z, so thatx � X y � Y Z z �
; both and map into . For the sake of simplicity, it will be assumedZ J J Z �1 2

that is an interval, possibly unbounded.Z
Assume that there are some continuous probability densities and withh hx y

on and on such that and are bounded away fromh 1 0 X h 1 0 Y f /h f /hx y x x y y

zero and infinity on and . Note that this will always be the case if andX Y X
are compact intervals. Set and .0 0Y f p f /h f p f /hx x x y y y

For a rectangle , denote by the space of continuously differ-n 1A P � C (A )
entiable17 functions on endowed with the following topology: iffA J r J Jn n

converges to J and the derivatives converge to , uniformly on all compact′ ′J Jn

subsets of . It is known that this topology turns into a complete metric1A C
space. The function space is the natural space for and ; the function1C (Z ) J J1 2

spaces and are the natural spaces for and , respectively.1 1C (X ) C (Y ) g g1 2

For an interval , denote by the space of twice-differentiable2A P � C (A )1

functions f on , satisfying and everywhere on , with f, , and′A f p 1 f 1 0 A f∫A
continuous and uniformly bounded. It is endowed with the topology of uni-′′f

form convergence of f, , and , which turns it into a complete metric space.′ ′′f f
The function spaces and are the natural spaces for and ,2 2C (E ) C (H ) f f1 1 e h

respectively.
Denote by the space of continuous functions f such that and0C (X ) fh p 1∫X1 x

everywhere on , endowed with the uniform norm, which turns it into af 1 0 X
complete metric space. This is the natural space for .0fx

Finally, denote by the space of continuous functions f such that0C (Y )1

and everywhere on , endowed with the uniform norm, whichfh p 1 f 1 0 Y∫Y y

turns it into a complete metric space. This is the natural space for .0fy

We now restate theorem 1 more precisely.
Theorem 1 (restated). Generically with respect to any of the parameter pairs

, ,1 1 2 2 1(J , J ) � C (Z ) # C (Z ) ( f , f ) � C (E ) # C (H ) (g , g ) � C (X ) #1 2 e h 1 1 1 2

, and , the equilibrium equations have no so-1 0 0 0 0C (Y ) ( f , f ) � C (X ) # C (Y )x y 1 1

lution of the form , nor any solution of the form′ ′P (z) p a � b J (z) P (z) p1 1 1

, where , , , and are constants.a � b J (z) a a b b2 2 2 1 2 1 2

Proof of Theorem 1

Set and0 0(J , J , f , f , g , g , f , f ) p v1 2 e h 1 2 x y

1 1 2 2 1 1 0 0C (Z ) # C (Z ) # C (E ) # C (H ) # C (X ) # C (Y ) # C (X ) # C (Y ) p V.1 1 1 1

17 Throughout this discussion, we omit definitions of continuity and differentiability at
points on the boundaries of the domains in question. Details can be supplied easily.
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Define a map derived from equilibrium condition (16)2 0F : V # � r C (Z )
by substituting :′P (z) p a � b J (z)1 1 1

F(v, a , b )(z) p1 1

′ 0(1 � b )J (z) f (�a � (1 � b )J (z) � g (x))f (x)h (x)dx1 1 � e 1 1 1 1 x x
X

′ ′ 0� [b J (z) � J (z)] f (a � b J (z) � J (z) � g (y))f (y)h (y)dy.1 1 2 � h 1 1 1 2 2 y y
Y

Saying that the equilibrium equation has a solution of the form ′P (z) p a �1

means that there is a pair such that for2b J (z) (a , b ) � � F(v, a , b ) p 01 1 1 1 1 1

every z. We want to show that generically in v this cannot happen.
To do so, fix three points , , and in , pairwise distinct, and define az z z Z1 2 3

map by2 3W : V # � r �

W(v, a , b ) p [F(v, a , b )(z )] .1 1 1 1 i 1≤i≤3

We shall show that the map W is and that its derivative , which is a linear1C DW
map from into , is onto. We shall then apply Thom’s transversality2 3V # � �
theorem, which states that if implies that is onto; then genericallyW p 0 DW
in v, is transversal to the origin. This means that generically in vW(v, a , b )1 1

either

W(v, a , b ) ( 01 1

or

�W �W
[W(v, a , b ) p 0] ⇒ (v, a , b ), (v, a , b ) is onto .1 1 1 1 1 1( )[ ]�a �b1 1

But the linear map can never be onto, because it sends a two-(�W/�a , �W/�b )1 1

dimensional space into a three-dimensional one. It follows that W(v, a , b ) (1 1

generically.0
Lemma. The map W is .1C
Proof. The Gateaux derivative of W at is easily expressed. SetDW (v, a , b )1 1

0 0dv p (dJ , dJ , df , df , dg , dg , df , df ),1 2 e h 1 2 x y

where the components of dv belong to the appropriate vector spaces, (df , df ,e h

being subject to the additional requirement of integrating to zero.0 0df , df )x y

Similarly, set , and compute the first variation of W:2(da , db ) � �1 1

DW(dv, da , db ) p [DW(dJ ) � DW(dJ ) � DW(df ) � DW(df )1 1 1 2 e h

0 0� DW(dg ) � DW(dg ) � DW(df ) � DW(df )1 2 x y

� DW(da ) � DW(db )] , (A1)1 1 ip1,2,3
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where we use the notation

DW(dJ ) p1

′ 0dJ (z ) (1 � b ) f (�a � (1 � b )J (z ) � g (x))f (x)h (x)dx1 i 1 � e 1 1 1 i 1 x x[ (
X

0� b f (a � b J (z ) � J (z ) � g (y))f (y)h (y)dy1� h 1 1 1 i 2 i 2 y y )
Y

2 ′ ′ 0� dJ (z ) (1 � b ) J (z ) f (�a � (1 � b )J (z ) � g (x))f (x)h (x)dx1 i 1 1 i � e 1 1 1 i 1 x x(
X

2 ′ ′ 0� b J (z ) f (a � b J (z ) � J (z ) � g (y))f (y)h (y)dy1 1 i � h 1 1 1 i 2 i 2 y y
Y

′ ′ 0� b J (z ) f (a � b J (z ) � J (z ) � g (y))f (y)h (y)dy ,1 2 i � h 1 1 1 i 2 i 2 y y )]
ip1,2,3Y

DW(dJ ) p2

′ 0dJ (z ) f (a � b J (z ) � J (z ) � g (y))f (y)h (y)dy2 i � h 1 1 1 i 2 i 2 y y[
Y

′ ′ ′ 0� dJ (z )[b J (z ) � J (z )] f (a � b J (z ) � J (z ) � g (y))f (y)h (y)dy ,2 i 1 1 i 2 i � h 1 1 1 i 2 i 2 y y ]
ip1,2,3Y

′ 0DW(df ) p (1 � b )J (z ) df (�a � (1 � b )J (z ) � g (x))f (x)h (x)dx ,e 1 1 i � e 1 1 1 i 1 x x[ ]
ip1,2,3X

DW(df ) ph

′ ′ 0�(b J (z ) � J (z )) df (a � b J (z ) � J (z ) � g (y))f (y)h (y)dy ,1 1 i 2 i � h 1 1 1 i 2 i 2 y y[ ]
ip1,2,3Y

DW(dg ) p1

′ ′ 0(1 � b )J (z ) f (�a � (1 � b )J (z ) � g (x))dg (x)f (x)h (x)dx ,1 1 i � e 1 1 1 i 1 1 x x[ ]
ip1,2,3X
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DW(dg ) p2

′ ′ ′ 0�[b J (z ) � J (z )] f (a � b J (z ) � J (z ) � g (y))dg (y)f (y)h (y)dy ,1 1 i 2 i � h 1 1 1 i 2 i 2 2 y y[ ]
ip1,2,3Y

0 ′ 0DW(df ) p (1 � b )J (z ) f (�a � (1 � b )J (z ) � g (x))df (x)h (x)dx ,x 1 1 i � e 1 1 1 i 1 x x[ ]
ip1,2,3X

0DW(df ) py

′ ′ 0�[b J (z ) � J (z )] f (a � b J (z ) � J (z ) � g (y))df (y)h (y)dy ,1 1 i 2 i � h 1 1 1 i 2 i 2 y y[ ]
ip1,2,3Y

DW(da ) p1

′ ′ 0da (b � 1)J (z ) f (�a � (1 � b )J (z ) � g (x))f (x)h (x)dx1 1 1 i � e 1 1 1 i 1 x x[ (
X

′ ′ ′ 0� [b J (z ) � J (z )] f (a � b J (z ) � J (z ) � g (y))f (y)h (y)dy ,1 1 i 2 i � h 1 1 1 i 2 i 2 y y )]
ip1,2,3Y

and

DW(db ) p1

′ 0db �J (z ) f (�a � (1 � b )J (z ) � g (x))f (x)h (x)dx1 1 i � e 1 1 1 i 1 x x[ (
X

′ 0� J (z ) f (a � b J (z ) � J (z ) � g (y))f (y)h (y)dy1 i � h 1 1 1 i 2 i 2 y y
Y

′ ′ 0� J (z )(1 � b )J (z ) f (�a � (1 � b )J (z ) � g (x))f (x)h (x)dx1 i 1 1 i � e 1 1 1 i 1 x x
X

′ ′ 0� J (z )b J (z ) f (a � b J (z ) � J (z ) � g (y))f (y)h (y)dy1 i 1 1 i � h 1 1 1 i 2 i 2 y y
Y

′ ′ 0� J (z )J (z ) f (a � b J (z ) � J (z ) � g (y))f (y)h (y)dy .1 i 2 i � h 1 1 1 i 2 i 2 y y )]
ip1,2,3Y

Since the functions and are uniformly bounded, as are their first deriv-f fe h

atives, all the integrals in these formulas are well defined. Since the functions
and are uniformly continuous, as are their first derivatives, these integralsf fe h

depend continuously on and on v. So the function W is . Q.E.D.1(a , b ) C1 1
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This ends the proof of the lemma. To prove the theorem, we have to vary
each pair of parameters singly. This amounts to considering, instead of W, the
partial maps obtained by keeping all parameter values fixed except two and
showing that the corresponding derivative is onto. This gives four different cases.

Genericity with respect to .—We consider the partial map(J , J ) W(J , J , a ,1 2 1 2 1

and the derivative of the partial map , where it isb ) DW(dJ , dJ , da , db )1 1 2 1 1

understood that all the other parameters , , , , , and are set at fixed0 0f f g g f fe h 1 2 x y

values. Hence the derivative of the partial map is given by (A1) with all variations
other than set to zero. The derivative of the partial map is(dJ , dJ , da , db )1 2 1 1

DW(dJ , dJ , da , db ) p1 2 1 1

′ 0dJ (z ) (1 � b ) f (�a � (1 � b )J (z ) � g (x))f (x)h (x)dx1 i 1 � e 1 1 1 i 1 x x[ (
X

0� b f (a � b J (z ) � J (z ) � g (y))f (y)h (y)dy1� h 1 1 1 i 2 i 2 y y )
Y

2 ′ ′ 0� dJ (z ) (1 � b ) J (z ) f (�a � (1 � b )J (z ) � g (x))f (x)h (x)dx1 i 1 1 i � e 1 1 1 i 1 x x(
X

2 ′ ′ 0� b J (z ) f (a � b J (z ) � J (z ) � g (y))f (y)h (y)dy1 1 i � h 1 1 1 i 2 i 2 y y
Y

′ ′ 0� b J (z ) f (a � b J (z ) � J (z ) � g (y))f (y)h (y)dy1 2 i � h 1 1 1 i 2 i 2 y y )]
ip1,2,3Y

′ 0� dJ (z ) f (a � b J (z ) � J (z ) � g (y))f (y)h (y)dy2 i � h 1 1 1 i 2 i 2 y y[(
Y

′ ′ ′ 0� dJ (z )[b J (z ) � J (z )] f (a � b J (z ) � J (z ) � g (y))f (y)h (y)dy2 i 1 1 i 2 i � h 1 1 1 i 2 i 2 y y )
Y

� DW(da ) � DW(db ) .1 1 ]
ip1,2,3

Since the points are pairwise distinct, we can choose the so thatz (dJ , dJ )i 1 2

(dJ (z ), dJ (z )) p (0, 0)1 i 2 i

for all i. Choosing in addition cancels all the terms on the(da , db ) p (0, 0)1 1

right-hand side except the first and third ones. Since the remaining integrals
are nonzero, the coefficients of and cannot vanish together. So′ ′dJ (z ) dJ (z )1 i 2 i

the image by of vectors such that andDW (dJ (z ), dJ (z )) p (0, 0) (da ,1 i 2 i 1

must be all of .3db ) p (0, 0) �1

Saying that is onto means that the partial map W is transversal to everyDW
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point in , in particular to the origin. By Thom’s transversality theorem, ge-3�
nerically in , the partial map(J , J )1 2

(a , b ) r W(J , J , a , b )1 1 1 2 1 1

is transversal to the origin. This means that generically in either(J , J )1 2

or and the partial derivativeW(J , J , a , b ) ( 0 W(J , J , a , b ) p 0 D W1 2 1 1 1 2 1 1 a ,b1 1

is onto. The latter case is impossible since sends a two-dimensional spaceD Wa ,b1 1

into a three-dimensional one. So generically, .W(J , J , a , b ) ( 01 2 1 1

We have thus proved that, generically in , we must have(J , J ) F(J , J ,1 2 1 2

for one i at least. This implies that cannot bea , b )(z ) ( 0 F(J , J , a , b )(z)1 1 i 1 2 1 1

identically zero and hence that the equilibrium equation does not have a solution
of the form . A parallel argument shows that, generically in′P (z) p a � b J (z)1 1 1

, the equilibrium equation does not have a solution of the form(J , J )1 2

. Since the intersection of two generic properties is generic,′P (z) p a � b J (z)2 2 2

the theorem follows for the pair . Q.E.D.(J , J )1 2

Genericity with respect to .—We consider the partial map ,( f , f ) W( f , f , a , b )e h e h 1 1

where it is understood that all the other parameters are pegged to fixed values.
The derivative of the partial map is given by

DW(df , df , da , db ) pe h 1 1

′ 0(1 � b )J (z ) df (�a � (1 � b )J (z ) � g (x))f (x)h (x)dx1 1 i � e 1 1 1 i 1 x x[
X

′ ′ 0� [b J (z ) � J (z )] df (a � b J (z ) � J (z ) � g (y))f (y)h (y)dy1 1 i 2 i � h 1 1 1 i 2 i 2 y y
Y

� DW(da ) � DW(db ) .1 1 ]
ip1,2,3

Introduce the distribution functions and of the random variables andm m g1 2 1

. They are probability measures on the real line. Setting ,g (da , db ) p (0, 0)2 1 1

we can rewrite the formula above as

DW(df , df ) pe h

′(1 � b )J (z ) d f (�a � (1 � b )J (z ) � t)dm1 1 i � e 1 1 1 i 1[
′ ′� [b J (z ) � J (z )] d f (a � b J (z ) � J (z ) � t)dm .1 1 i 2 i � h 1 1 1 i 2 i 2]

ip1,2,3

Setting and , and denoting byc p �a � (1 � b )J (z ) d p a � b J (z ) � J (z )i 1 1 1 i i 1 1 1 i 2 i

and the translates of and by and , we rewrite the partiali im m m m �c �d1 2 1 2 i i

derivative again as

′ i ′ ′ iDW(df ,df ) p (1 � b )J (z ) df (t)dm � [b J (z ) � J (z )] df (t)dm .e h 1 1 i � e 1 1 1 i 2 i � h 2[ ]
ip1,2,3

We pick the probability measures and , , so they are pairwisei im m i p 1, 2, 31 2

different, and the values of the z, so that and do not vanish. Then′ ′J (z ) J (z )1 i 2 i

the coefficients of the integrals cannot vanish simultaneously, and the right-
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hand side clearly spans . We conclude as in the preceding case by applying3�
Thom’s transversality theorem. Q.E.D.

Genericity with respect to .—We consider the partial map0 0 0 0( f , f ) W( f , f , a ,x y x y 1

, where it is understood that all the other parameters are pegged to fixedb )1

values. The partial derivative is given by

0 0DW(df , df , da , db ) px y 1 1

′ 0(1 � b )J (z ) f (�a � (1 � b )J (z ) � g (x))df (x)h (x)dx1 1 i � e 1 1 1 i 1 x x[
X

′ ′ 0� [b J (z ) � J (z )] f (a � b J (z ) � J (z ) � g (y))df (y)h (y)dy1 1 i 2 i � h 1 1 1 i 2 i 2 y y
Y

� DW(da ) � DW(db ) .1 1 ]
ip1,2,3

We claim that the partial map obtained by setting is onto. At(da , db ) p 01 1

these values

0 0DW(df , df ) px y

′ 0(1 � b )J (z ) f (�a � (1 � b )J (z ) � g (x))df (x)h (x)dx1 1 i � e 1 1 1 i 1 x x[
X

′ ′ 0� [b J (z ) � J (z )] f (a � b J (z ) � J (z ) � g (y))df (y)h (y)dy .1 1 i 2 i � h 1 1 1 i 2 i 2 y y ]
ip1,2,3Y

We choose the so that the and the do not vanish and so that the′ ′z J (z ) J (z )i 1 i 2 i

functions and aref (�a � (1 � b )J (z ) � g (x)) f (a � b (z ) � J (z ) � g (y))e 1 1 1 i 1 h 1 1 i 2 i 2

pairwise different on a set of positive measure. The claim then follows, and
genericity obtains as in the preceding cases. Q.E.D.

Genericity with respect to .—We consider(g , g )1 2

DW(dg , dg , da , db ) p1 2 1 1

′ ′ 0(1 � b )J (z ) f (�a � (1 � b )J (z ) � g (x))dg (x)f (x)h (x)dx1 1 i � e 1 1 1 i 1 1 x x[
X

′ ′ ′ 0� [b J (z ) � J (z )] f (a � b J (z ) � J (z ) � g (y))dg (y)f (y)h (y)dy1 1 i 2 i � h 1 1 1 i 2 i 2 2 y y
Y

� DW(da ) � DW(db ) ,1 1 ]
ip1,2,3

and we argue as in the preceding case.
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Proof of Theorem 3

The strategy of the proof is to determine whether taking the objects determined
from the marginal densities as demonstrated in the previous subsection and
plugging them into (30) provides any more information about the parameters
that are not identified.

First we write all the unknown objects in (30) in terms of known functions.
We have

˜ ˜T (z) p K T (z) � C ; T (z) p K T (z) � C ,1 1 1 1 2 2 2 2

˜ ˜ ˜ ˜f (e) p f (K e)K ; f (h) p f (K h)K ,˜ ˜e e 1 1 h h 2 2

˜ ˜g (x) p K g (x) � R ; g (x) p K g (x) � R ,1 1 1 1 2 2 2 2

where

e C � R1 1˜ ˜ẽ(z, x) p p T (z) � g (x) � ,1 1K K1 1

h C � R2 2˜ ˜h̃(z, x) p p T (z) � g (x) � ,2 2K K2 2

and we define and . All objects denoted witht p (C � R )/K t p (C � R )/K1 1 1 1 2 2 2 2

a tilde are known from the analysis of the marginal densities of and(z, x) (z,
. Additionally, and are known from imposing a mean or median zeroy) t t1 2

restriction on and , respectively.˜ ˜e h
Substituting these expressions into (30), we obtain

′ ′˜ ˜ ˜ ˜˜ ˜f f f (T (z) � g (x) � t )T (z)f (T (z) � g (y) � t )T (z)y ˜ ˜x e 1 1 1 1 h 2 2 2 2f(x, y, z) p .′ ′ ′ ′˜ ˜˜f (x )f (T (z) � g (x ) � t )T (z)dx∫X ˜x e 1 1 1 1

It is apparent from the expression for the joint density that it conveys no new
identifying information on and beyond what is obtained from the marginalK K1 2

distribution, since all terms involving these two parameters cancel and andK 1

do not explicitly appear in the final expression.K 2

Proof of Theorem 4

As in theorem 1, we assume that there are some continuous probability densities
and with on and on such that and are boundedh h h 1 0 X h 1 0 Y f /h f /hx y x y x,e x y,h y

away from zero and infinity on and . Note that this will always be the caseX Y
if and are compact intervals. Set and .0 0X Y f p f /h f p f /hx,e x,e x y,h y,h y

The notation and parameter spaces are as in theorem 1 except that now the
natural spaces for and are and . Consider the partial0 0 2 2f f C (X# E ) C (Y#H )xe y,h 1 1

map
0 0W( f , f , a , b ) px,e y,h 1 1

′ 0(1 � b )J (z) f (x, �a � (1 � b )J (z) � g (x))h (x)dx1 1 � x,e 1 1 1 1 x[
X

′ ′ 0� [b J (z) � J (z)] f (y, a � b J (z ) � J (z ) � g (y)h (y)dy1 1 2 � h,y 1 1 1 i 2 i 2 y ]
ip1,2,3Y
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and its derivative

DW(df , df , da , db ) px,e y,h 1 1

′ 0(1 � b )J (z ) df (x, �a � (1 � b )J (z ) � g (x))h (x)dx1 1 i � x,e 1 1 1 i 1 x[
X

′ ′ 0� [b J (z ) � J (z )] df (y, a � b J (z ) � J (z ) � g (y))h (y)dy1 1 i 2 i � y,h 1 1 1 i 2 i 2 y
Y

� DW(da ) � DW(db ) .1 1 ]
ip1,2,3

We need to show that the right-hand side spans . Consider perturbations3�
of the type for all and for all′ ′ ′df (x, e) p df (x , e) x, x df (y, h) p df (y , h) y,x,e x,e y,h y,h

. Then argue as in the proof of genericity with respect to as in theorem′y ( f , f )e h

1. Then we can conclude the hypothesis of theorem 4 as in the preceding
theorems by applying Thom’s transversality theorem. Q.E.D.

Proof of Theorem 5

By assumption,

′P (z) � J (z) p g (x) � e.1 1

Because of the second-order condition, , so the left side can be′′ ′P (z) � J (z) ! 01

inverted uniquely (globally) to obtain

z p L(g (x) � e),1

where by the implicit function theorem . Define′ ′′ ′ �1L(q) p [P (L(q)) � J (L(q))]1

the mapping

h p J (L(g (x) � e)),1 1

x p x,

where

E (J (z)Fx) p E (hFx) p J (L(g (x) � e))f (eFx)de.z 1 z � 1 1 eFx
E

This conditional expectation is a functional of . We must prove that genericallyg1

is not a linear function of . We shall show that, generically withE (J (z)Fx) g (x)z 1 1

respect to , if the conditional expectation is a linear function of , then0f g (x)x,e 1

is a solution of the equilibrium equation. Generically, this′P (z) p a � b J (z)1 1 1

cannot happen, and the result follows.
Assume that is a linear function of . Pick a direction , andE (J (z)Fx) g (x) dgz 1 1 1

define a function on the real line byq(t)

q(t) p [J (L(g (x) � tdg (x) � e)) � J (L(g (x) � e))]f (eFx)de.� 1 1 1 1 1 eFx
E
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Since is a linear function of , is linear, so that .′′E (J (z)Fx) g (x) q(t) q (0) p 0z 1 1

Performing the computations, we get the equation

2[dg (x)] l(g (x) � e)f (eFx)de p 0,1 � 1 e

E

where the composite function
′′ ′′ ′ �2 ′ ′′′ ′′ ′′ ′ �3l p [J (P � J ) � J (P � J )(P � J ) ] L.�1 1 1 1 1

This reduces to

l(g (x) � e)f (eFx)de p 0 a.e. x,� 1 eFx
E

where a.e. x means almost everywhere with respect to x. This expression is the
same as

l(e )f (g (x) � e Fx)de p 0 a.e. x.� 1 eFx 1 1 1
E

The function l has the property that, a.e. x, it integrates to zero against the
density . This can be the case only if l equals zero orf (g (x) � e Fx)eFx 1 1

does not depend on x. The latter condition can obtain only iff (g (x) � e Fx)eFx 1 1

f(x, e) p f (x)f (g (x) � e) a.e. (x, e). (A2)x e 1

That is, does not depend on x if and only if the joint distributionf (g (x) � e Fx)eFx 1 1

of has the property that is independent of x. The set of(x, e) e p g (x) � e1 1

functions that satisfies (A2) is clearly not generic in .0 2f C (X# E )x,e 1

Hence, it follows that generically with respect to , we have almost0f l p 0x,e

everywhere. As a result,
′′ ′′ ′ ′ ′′′ ′′ ′′ ′ �3[[J (P � J ) � J (P � J )](P � J ) ] L�1 1 1 1 1

vanishes, meaning that vanishes on the′′ ′′ ′ ′ ′′′ ′′ ′′ ′ �3[J (P � J ) � J (P � J )](P � J )1 1 1 1 1

range of L, which is precisely the domain of z. This proves thatZ
′′ ′′ ′ ′ ′′′ ′′J (P � J ) � J (P � J ) p 0 on Z1 1 1 1

so that
′′ ′′′J P1 p′ ′′J P1

and . Thus solves the equilibrium equation, and the′′ ′ ′P p b J P p a � b J1 1 1 1 1

proof is concluded. Q.E.D.

Appendix B

Model Specifications

A. Model 1

Figures 2 and 3 display the slope and curvature of the equilibrium price function
in the unrestricted linear-quadratic hedonic economy in three cases. In all three
cases we use the parameters and . In addition, each case assumesA p 2.0 B p 2.0



hedonic models S107

that both n and v are distributed as mixtures of two normals: n is distributed as
a mixture of normals with weight l on the first component (mean 0.0 and
variance 0.5) and weight on the second component (mean 1.0 and variance1 � l
1.0), and v is distributed as a mixture of normals with weight l on the first
component (mean 1.0 and variance 1.0) and weight on the second com-1 � l
ponent (mean �1.0 and variance 0.1).

Each of the three cases is distinguished by the weights on the two components.
The benchmark case assumes that l, the weight on component 1 of the mixture,
is 1.0. Hence, case 1 is the benchmark linear-quadratic-normal model. The other
two cases use different values of l to show how the slope and curvature of the
price function vary with l. The other two cases use and .l p 0.9 l p 0.5

B. Model 2

Figures 4 and 5 display the logarithm of the slope and the elasticity of the slope
of the equilibrium price function in a model that restricts and . Inz 1 0 P (z) 1 0z

this model, firms’ profits are
1�Bexp (n)z

P(z) p � P(z),
1 � B

where ; y and h are independent and are distributed as mixtures′n p n � n y � h0 1

of normals. Workers have utility
1�Aexp (�v)z

V(z) p � � P(z),
1 � A

where and x and e are independent and distributed as mixtures′v p v � v x � e0 1

of normals. Figures 4 and 5 display the logarithm of the slope and elasticity of
the slope of the equilibrium price function in this model for three cases. All
three cases use the parameters and . In addition, each caseA p 2.0 B p 2.0
assumes that both n and v are distributed as mixtures of two normals: n is
distributed as a mixture of normals with weight l on the first component (mean
0.0 and variance 0.5) and weight on the second component (mean 1.01 � l
and variance 1.0), and v is distributed as a mixture of normals with weight l
on the first component (mean 1.0 and variance 1.0) and weight on the1 � l
second component (mean �1.0 and variance 0.1).

Each of the three cases is distinguished by the weights on the two components.
The benchmark case assumes that l, the weight on component 1 of the mixture,
is 1.0. In this case, is a linear function of as shown in figure 4. Theln P (z) ln zz

other two cases use different values of l to show how the slope and curvature
of the price function vary with l. The other two cases use andl p 0.9 l p

.0.5
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